TECHNICAL WORKING PAPER SERIES

INTERACTION EFFECTS AND DIFFERENCE-IN-DIFFERENCE
ESTIMATION IN LOGLINEAR MODELS

John Mullahy

Technica Working Peper 245
http://ww.nber.org/papers/T0245

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
November 1999

Thanks are owed to Josh Angrist, Jon Gruber, Don Kenkel, Gene Laska, Will Manning, Mike Morrisey,
Edward Norton, Jon Skinner, Doug Staiger, and Aaron Stinnett for insightful comments and suggestions on
ealier drafts. The views expressed herein are those of the authors and not necessarily those of the National
Bureau of Economic Research.

© 1999 by John Mullahy. All rights reserved. Short sections of text, not to exceed two paragraphs, may be
guoted without explicit permission provided that full credit, including © notice, is given to the source.



Interaction Effects and Difference-In-Difference Egimation
in Loglinear Modes

John Mullahy

NBER Technical Working Paper No. 245

November 1999

JEL No. C2, 11

ABSTRACT

Inapplied econometric work, analystsare concerned oftenwithestimation of and inferences about
interaction effects, e.g. “ Does the magnitude of the effect of z, ony depend on z,?”  This paper develops
testsfor and proper interpretation of various forms of interactioneffectsin one prominent classof regression
models — loglinear modd s — for which the nature of estimated interactioneffects has not dways beengiven
due attention. Theresults obtained here have adirect bearing on theinterpretation of so-called difference-
in-difference estimates when these are obtained using loglinear models. An empirical example of the
impacts of hedthinsurance and chronic illness on prescription drug utilization underscores the importance

of these issuesin practica settings.

John Mullahy

Departments of Preventive Medicine and Economics
University of Wisconan - Madison

787 WAREF, 610 Walnut Street

Madison, WI 53705

and NBER

jmullahy @facgtaff.wisc.edu



I. Introduction

In applied work, analysts are concerned often with
estimation of and inferences about interaction effects, e.g.

"Does the magnitude of the effect of z; on y depend on zp?".'

Such concerns are operationalized most commonly in terms of some
particular second-order properties of the conditional mean of
outcomes (y) given exogenous covariates (z), Ely|z].? Popular
estimation strategies like difference-in-difference estimation or
linear index function model specifications with second-order
terms in the elements of z typically involve considerations of
such interaction effects. This paper develops tests for and
proper interpretation of various forms of interaction effects in
one prominent class of regression models -- loglinear or log-link
models -- for which consideration of the nature of estimated

interaction effects has not always been given due attention.

It 1s of some importance to note at the outset that
intellectual or policy-related questions pertaining to

"interaction effects" -- whether structured in terms of

! For instance, Wedig, 1988, considers the extent to which the

response of health service utilization to price depends on
individuals' health status.

: of course, the focus on properties of E[yl|z] is by no means

necessary. For instance, Josh Angrist has suggested to me in an
email that "Most labor economists seem to think directly in terms
of" Elln(y)|z] for "wages or hours worked .
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quantities 1like as congidered here, or in

terms of other second-order properties of other features of the
conditional distribution ¢(ylz) that may be relevant to
particular circumstances -- are Jlogically distinct from issues
pertaining to the specification of functional forms of quantities
like E[y|z]. How to infer the presence and/or magnitude of such
interaction effects given particular functional form assumptions
is part of the task at hand. As such it is helpful to bear in
mind that the "policy guestion" issue and the "functional form®"

issue are in fact Ilogically separate yet ultimately analytically

intertwined,

The plan for the paper is as follows. Section II lays out
the baseline modeling assumptions. Section III describes some
alternative characterizations of ‘'"interaction effects" and

presents a set of test statistics for undertaking inference about
such effects. Section IV discusses the implications of a priori
restrictions on "interaction parameters." Section V sketches
differences between interpretations of interaction parameters and
intereaction effects. Sections VI and VII illustrate these
issues in the contexts of synergy/antagonism and of quantile
regression analysis, respectively. Section VIII presents an

empirical illustration. Section IX concludes.



ITI. Loglinear Models

Given scalar outcomes y>0 or y=20, analysts work freqguently
with a wvariety of loglinear econometric specifications, i.e.

specifications where

In(Ely|z]) = =zB

Ely|z] = exp(zB).

This specification encompasses log-link models in the GLM
framework, exponential conditional mean {ECM) models, etc.
Estimation 1is undertaken via suitable loglinear or nonlinear
regression wmethods, accounting properly for the fact that
E[ln{y) |z] is not necessarily proportional with respect to z to

ln(E[y|zI)3 (see Manning, 1998, or Mullahy, 1998).

 That 1is, issues properly invelving retransformation must be
accommodated in practice, but will be ignored in what follows.
Their consideration here cannot simplify the results presented
below, but may complicate them. In addition, several readers of
earlier drafts have emphasized that the basic arguments advanced
here apply mutatis mutandis to other nonlinear 1link function
{("transformation") models as well; the results are exposited here
in the context of the log-link specification because of the
dominance of ite use in practice.



III. Characterizing Interaction Effects

Let z be partitioned as z=[z7, 2z, 2zix2zy3, Zz], where z; and
zp are scalars whose possible '"interaction" is of primary

interest in the analysis, and let B be partitioned conformably as
B=[B1, Bz, B12. Bal. EIly|z] thus has the exponential conditional

mean (ECM) or log-link specification,

Ely|z] = exp(By1z; + Pazy + P1oz1xzo + zzBa) .

In(Ely|z]) = B1z1 + Bpzy + Bipzixzy + zaB5.

It might be tempting to infer something about the presence

~

or absence of interaction effects via point estimates B12 and
their estimated standard errors, possibly -- though neither
necessarily nor necessarily apprcopriately
-- obtained via a linear regression of ln(y) on =z. It may turn

out, however, that such an inference is not proper to draw, a
point underscored by means of the following particular cases

encountered commonly in applications.



Case 1: Continuous zj and zj

In the case where z1 and z9 are continuous, a common

conceptualization of an interaction effect is a nonzero value of

the cross-partial derivative

62E[y| z] & 1n Ely|z] = 0 1nEly|z] 8 1n Ely| 2]
= Elyl z] x +
621622 621622 821 622
= Ely[z] x {B1201 + (Byz1 + Pozy + Bigzixz3)] + B1Ba).
As such,

a proper test for and interpretation of this particular

form of interaction effect involves particular values of z1 and

Z. At such prespecified values, a test of the nonlinear-in-

parametefs null hypothesis

Hp1: Bl?_. [1 + (Blzl + ﬁzZz + ﬁ1221X22)] + B1B2 = 0

is a proper test for the interaction effect of interest.

Importantly, note that even if B1,=0, a nonzero value of the

product B1B5 would be indicative of a nonzero interaction effect

-- thus characterized -- at any values of z; and z5.



Case 2: Dummy Variable zj, z3 ("Difference-in-Difference”

Egtimation)

When zq and zp are zero-one dummies, the obvious analog to

the cross-partial derivative is the difference-in-difference

("DID"),
A°Ely| z]
o = exp(zafa) x [exp(Py+Pa+P12) - exp(By) - exp(Py) + 1]
Az Az
1772
= exp(zaPa) x T(B1,B2.B12),
where T(.) is shorthand for the term in square brackets. In this

case, a proper test for the absence an interaction effect (i.e.
the null is a zero difference-in-difference) would be a test of

the nonlinear-in-parameters null hypothesis

Ho2: T(B1,B2.B12) = 0.

Again, even if Py5=0 an interaction effect characterized as a

difference-in-difference is generally nonzero.



One prominent application of the DID method is in situations

where z1 represents a discrete time measure (0O="before";
l="after") and z; represents a discrete treatment-status measure
(0O="contrecl"; 1="treated"). In some such applications, the
treatment effect net of any secular trends captured by z1 may be

estimated by some quantity like the difference in the difference

of the (zq,z3)-subsample y-means,

(1“(Y11) - 1n(ylo)) - (ln pq) ~ 1n(Yoo))'

where the ij subscripts denote the respective values of zy and
zy. If In(y) is specified to have a linear regression structure,

then this expression would tend in probability to

[(B1 + B2 + Bi2 + Bza1Ba)- (B2 + Eza1Ba)l - [(B1 + Ezz0Ba) -EzaoBal = Piso,

where z57 and zy9 represent the treatment and control Zy
variables, respectively. Yet as shown below in secticn V this
DID will not generally capture the quantity that is probably of

A?Eb1ﬂ

interest, viz .
AzlAz2



Case 3: Dummy Variable zj and z3

In this dummy variable case, the effect of primary interest
may not be the difference-in-difference per se, but rather may
involve whether for a particular value of one of the dummy
variables (say zi1=1, without loss of generality), there is a
difference in the conditional mean of y between the z3=0 and zp=1
subpopulations. Interaction is interpreted here as a conditional
first difference, or as a treatment effect among the treated in
the terminology of the treatment effect literature {(Heckman,
1997) . For example, in the empirical analysis undertaken below
in section VIII, a main concern is whether for a subpopulation of

chronically ill individuals (CHRONIC=z;=1) there is a difference

in the conditionally expected utilization of prescription

medicines between uninsured (INSURED=z;=0) and insured (zp=1)

subpopulations.

In this instance, the difference of interest is

AEly|z, = 1,2,)

a
A22

= Ely|z1=1,29=1,23] - Ely|z1=1,23=0,23]

= expl(zaBs) x lexp(Py + B + B12) - exp (Pl



and a.proper test for the absence of such an interaction effect

would be a test of the linear-in-parameters null hypothesis

Hpz: P2 + P12 = 0.

Once again, P19 is only partially informative about the presence
or absence of interaction effects thus defined, as opposed to the
linear model situation where testing Hp:B12=0 would be the proper

test of the null hypothesis.

In all three cases, the main point is that f1,=0 or, perhaps

more practically, failure to reject Hp:Pf13=0 does not provide

sufficient grounds for concluding that second-order interaction
effects when characterized as differences-in-differences are zero

or insignificant, power considerations notwithstanding. Even

when P13=0, second-order interaction effects will generally be

nonzero in the loglinear model so long as either or both of the
respective first-order or main parameters are themselves

important. Other cases -- z; continuous and z, dummy; quadratics
in continuous zj; and/or zy; -- can be imagined, but the basic idea

will still apply.

10



IV. A Priori Restrictions on P13

No less important to note is that loglinear wmodel

specifications that restrict a priori f313=0 are implicitly

imposing a sign structure on such interaction effects.

Specifically, when P15=0, the hypothesized interaction
effect will be positive if sgn{pj)=sgn(fp) and will be negative
if sgn(By)=-sgn(Pfy) for cases 1 and 2, and will be equal to

sgn(fy) for case 3.

V. Interpreting 12 and Interpreting "Interaction Effects"

What "P1,=0" does imply in the dummy-dummy case (case 2) is

that the "ratio of ratiocs" ("ROR"),

E[yl z, =1z, =1z,

E[y| z, = 0,2z, = 1, z,|

= = exp(B12),

E[y| z, = Lz, = 0, za:l

E[y] z, = 0,2z, =0, 2]
equals one. When all E[.] are positive, one could thus take an
ROR of one to indicate 'no interaction," an RORe(0,1} to

11



indicate a "negative interaction," and an ROR>1 to indicate a

"positive interaction.®

While conceptually kindred to the difference-in-difference
characterization of the interaction effect, this ratio-of-ratios
measure is clearly conveying a different sense of "interaction"
than does the difference-in-difference. Specifically, it 1is
evident that one can find the presence of interaction effects in
cne characterization while at -the same time finding their absence

in the other.

Consider for concreteness the following three scenarios. 1In
each table the southeast 2x2 matrix containg the expectations at

the indicated wvalues of the binary covariates indicated on the

top and left margins:

Scenario 1: B53=0, B;=1n2,

=1n3, =0 z1=0 z1=1

2 12 1 1
Z3=0 1 2
zp=1 3 6

Scenario 2: f3;=0, By=1n2z,

[32:11'13, [312=1n(2/3) z1=0 z1=1
z3=0 1 2
zp=1 3 4

12



Scenario 3: Bgz=0, By=1n5,
Ba=1n3, P13=1n(2/3) z1=0 zy=1
Zo=0 1 5
z2=1 3 10

The key insight here is that the DID and ROR characterizations of
ninteraction" need not lead to the same conclusion about either
the presence or the sign of an interaction effect. In Scenario
1, ROR=1 {("no interaction") but DID=2 ("positive interaction") ;
in Scenaric 2, ROR=2/3 ("negative interaction") but DID=0 ("no
interaction"); in Scenario 3, ROR=2/3 ("negative interaction")

while DID=3 ("posgitive interaction").

As a general matter obtaining gsensible empirical answers
requires specifying well-structured questions; the case of what
is meant by an "interaction effect" 1is clearly no different in

this regard.

VI. Synergy and Antagonism

Synergy and antagonism are in an important sense the more
general statistical counterparts of the eccnomic concepts of
substitutes and complements, respectively (Laska et al., 1997).

In the context of the previous discussion with z1 and zp measured

13



AEly]| z] on AEly| z]

as dummy variables, and assuming that sgn =g .
Az Az
1 2
synergy is the case where
AE[y| z]
sgn{Ely|z5.,21=1,22=1] - Ely|za,zi=1,24=0]} = sgn _jfd—_ ,
Z.
1
AE
for 1i,jef{1,2}, whereas antagonism replaces sgn _7§ﬂjﬂ with
%y
AE
—sgn-—z[Ztﬂ n the rhs. That is, synergy {resp. antagonism} is
Z.
i

the case where z7 and z; acting in concert produce a result

(measured in E[y|z] units) of greater (resp. smaller) magnitude

than that obtained by either zq or zp acting alone.

In this context, it is straightforward to see that the
proper test of the null hypothesis of {no synergy, no antagonism}

is the test of Hpp as described above.

VII. Loglinear Quantile Regressions

Suppose the a-th conditional quantile of ¢(y|=z) is given by

Qu (v|2) = exp(zlqy) -

14



Given the monotonicity property of (conditional}) quantiles

(Powell, 1991), this implies that the o-th conditional guantile

of ¢(1ln(y)|z) is given by

Qu (In(y) |2) = =z&q,

i.e. a linear conditional quantile relationship. It thus follows

that a proper test of the null hypothesis of no interaction

effects between z; and zp at the a-th conditional gquantile of

2
‘ . AQ vl 2
¢ (y|z) when zi and z; are dummy variables, 1.e. Hp: ——=—— =0,
Az Az
1- 72
is from a test of the null hypothesis
Hog: exp(Cq1+Ga+Cu12) - exp(fu1) - exp(Sgz) + 1 = 0,
i.e. the quantile-model analog of Hpj. Parallel ccnsiderations

would result in a gquantile-model analog of the other null

hypotheses described above.

15



VIII. An Application

Mullahy, 1999, uses a sample of 4,753 adults from Wave III,
Phase 2 of the National Health and Nutrition Examination Survey
(NHANES-III) to estimate a set of conditional mean models of the
demand for prescription drugs. The dependent <variable of
interest is the number of prescription drugs reported used in the
month prior to the survey, ranging from 0 to 15 (NMEDS, sample
mean 0.81). One main concern in this study is the extent to
which health insurance coverage (INSURED, dummy variable, sample
mean 0.77) influences the demand for prescription drugs, with
particular concern about the extent to which insurance affects
the utilization of individuals suffering from chronic health

problems (CHRONIC, dummy variable, sample mean 0.59).

In terms of the preceding discussion, these are tantamount
to concerns about interaction effects between INSURED and
CHRONIC. Two estimators are used (in models that also control
for other relevant exogenous covariates): a simple linear
regression model; and an ECM/log-link model estimated by weighted

GLM method described in Mullahy, 1999.

Table 1 summarizes the results for the main and interaction
effects of these covariates. For the linear regression model,
the estimated interaction effect is positive and statistically

significantly different from zerc at conventional levels. For

16



the ECM formulation, the parameters corresponding to the main

effects are also significant by conventional standards, but the

B1, parameter point estimate is actually negative albeit with a
small asymptotic t-statistic.

Based on the ECM results (a model that Mullahy, 1898, argues
to be more suitable for the data than the linear model), would it
be proper to conclude that there are no interaction effects
between insurance status and chronic disease gtatus? Tests of

the null hypothesis Hpp as described above suggest ctherwise. In

table 1, this test statistic (a null—xé) test statistic,

computed here using Stata's testnl procedure) has a realization
of 5.32 (p=.021), strongly recommending rejection of the null
hypothesis of no interaction effect. This interaction inference

is conscnant with the corresponding standard linear model

inferences based on 612 drawn from the results in column 1.

IX. Conclusions

Testing for interaction effects in loglinear regression
models is straightforward, but entails more than simply the
consideration of the parameters associated with interaction
terms. The importance of a proper specification of the null

hypothesis of no interaction effects was demonstrated via an

17



application in which such interaction effects were found to be
important. Ultimately, the results in this paper shcould serve to
alert applied analysts to one class of particular complications
involved in using log-transformed models, much as has the work of
Halvorsen and Palmguist, 1980, Manning, 1998, and Mullahy, 1998,

in other contexts. At a minimum, the results here suggest that

the strategy "Run a regression of 1ln(y) on z and test Hgp:f1p=0"

will generally not be informative about the interaction effect

that probably concerns the analyst.

18
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Table 1

Estimation Results: Linear and Nonlinear Models of Prescription
Drug Demand
(robust asymptotic t-statistics in parentheses;
other point estimates suppressed for brevity)

Variable Linear Model ECM Model
INSURED .019 .586
(0.4) (3.7)
CHRONIC . 257 1.086
{(3.9) (8.5)
INSUREDxCHRONIC .391 -.173
(4.8) (1.0)
2 istic f
XGJ test statistic for test of Hpj 5.32
(p=.021)

21



