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1 Introduction

A firm’s response to changes in environmental policy is an issue that has
drawn considerable attention in the environmental economics literature (e.g.
[17], [18], [11], [9]). Questions that usually arise when environmental policy
is introduced or changed have been associated with how firms react to a
change in environmental policy, primarily with regard to their choices of
investment in productive or abatement capital, the mix of relatively more or
less polluting inputs, the choice of labor input or the decisions about R&D
expenses (process R&D or environmental R&D)(e.g. [17], [18], [11], [9], [2],
[3]), or what kind of decisions firms make regarding the location choices in
response to changes in environmental policy (e.g., [13], [14], [15], {10], [16],
[4)).

This paper analyses the behavior of polluting firms regarding expansion
of abatement capital and location decisions, in the presence of environmental
policy. Environmental policy takes the form of emission taxes or tradeable
emission permits, and subsidies against the costs of expanding abatement
capital. In this model accumulated abatement capital can be interpreted as
the stock of knowledge in pollution and abatement processes. This knowledge
is useful in designing new ‘cleaner’ products or better abatement processes.

The problem is analyzed in a dynamic framework and takes into account
two basic features of the problem. The first is uncertainty associated with
output price movements, environmental policy parameters such as the mar-
ket price of tradable emission permits, or technological parameters such as
the efficiency of the abatement processes. The second is irreversibility re-
lated to the fact that abatement investment expenses are indeed irreversible
once they are incurred by the firm, and that movement to a new location
when the costs of returning to the old location are sufficiently high is also
an irreversible decision. In a dynamic set-up the interaction of uncertainty
with the irreversibility characteristics of investment decisions or relocation
decisions generates well-known option value issues (see [1], [6], [7], [20] for
related environmental issues or [5] for a more general treatment).

The purpose of the present paper is to explore abatement investment
and location responses to environmental policy under uncertainty and irre-
versibility. The problem is analyzed in a dynamic set-up, where uncertainty
is modeled by It6 stochastic differential equations, by using optimal stopping
methodologies. The idea is to define continuation intervals during which
firms do not engage in expanding abatement capital or relocate and intervals
during which firms take the irreversible decision of undertaking abatement
investment expenses or relocating. The optimal stopping methodology will
define a free boundary. When a state variable crosses the boundary, the



irreversible decision, increasing abatement capital or relocating, is taken.

Using this methodological approach, free boundaries are determined or
characterized for a variety of cases that include output price uncertainty, pol-
icy uncertainty expressed both in terms of continuous fluctuations of permit
prices and unpredictable policy changes, and combined policy and technolog-
ical uncertainty. The effects from exogenous parameters changes (potentially
policy parameters) on the position of the boundary, which of course implies
changes in the firm’s reactions, are analyzed. The issue of the design of
optimal environmental policy in this framework is also examined. Optimal
policy is defined as the combination of policy parameters that makes the free
boundary corresponding to the profit maximization problem coincide with
the free boundary corresponding to a social optimization problem.

2 Abatement Investment Decisions under Uncertainty]

We assume an industry consisting of n identical firms producing in a small
open economy. The firms behave compettively and sell their product in
the world market where international competition prevails. We consider the
representative firm producing at each instant of time output ¢ (t) at a cost
determined by a cost function ¢ (g (¢)), with ¢ (¢) > 0, ¢’ (¢) > 0. Output is
sold in the world market at an exogenous world price p(t).

The production of output generates emissions. Emissions per unit of
output are determined by the function E (t) = v (t) e (R (t)), where v (¢) > 0
is an efficiency parameter associated with the abatement process and e (R (t))
is a function of the accumulated abatement capital, up to time ¢.! A reduction
in v indicates an improvement in the efficiency of the abatement process,
while abatement capital, denoted by R (t), is defined as

R (¢) =/Otr(s)ds

where 7 (s) is the abatement investment flow undertaken at instant of time
s. This flow can, for example, represent resources devoted to the firm’s lab
in order to design cleaner processes at time s. It is assumed that r (s) > 0,
thus the abatement capital accumulation process is irreversible.? For the
abatement process we assume that:

e(0) = 0,€¢(R)<0, e"(R)>0
lime'(R) < —oo, lim ¢ (R) =0
R—0 R—oo

Therefore an increase in abatement capital reduces unit emissions at a de-
creasing rate, which means that diminishing returns in abatement capital
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are assumed. Thus, when the firm produces output q (¢), total emissions are
defined as v (t) e (R (t)) ¢ ().

The cost for increasing the stock of accumulated abatement capital by
AR is defined as (1 — s) hAR, where h is the exogenous unit abatement in-
vestment cost and s € [0, 1) is a subsidy potentially given by the government
to cover some of the expenses for expanding abatement capital. Assume that
the firm pays an exogenously determined emission tax 7 (t). Then the tax
payments are defined as: 7 (t) [v(t)e (R (2)) q(2)].

Given this set-up the firm has to decide about output production and
abatement investment. At each instant of time the firm decides about the
optimal output level given the stock of abatement capital. Thus output is
regarded as an operating variable and output decisions can be regarded as
“short-run” decisions while abatement investment decisions are “long-run”
decisions. The optimal choice of output for any given level of abatement
capital determines a reduced form instantaneous profit function which can
be defined as:

m(po, 7, R) =maxp(t)q(t) ~c(q(®) - 7O @) e(RE) ¢ (1)

The first-order conditions for the optimal output choice, assuming interior
solutions and dropping ¢ to simplify notation, are given as:

p—c(g) —Tve(R)=0
with optimal output determined as:
¢ =¢q"(p,7,v,R)

Using the first-order conditions for the optimal output choice we obtain the
following short-run comparative static results:

oq* oq* o¢*
Op or <0,

<Oai.

0 -1
> 3 <" 3R

>0

Thus an increase in the tax rate or a reduction in the abatement efficiency
(increase in v) reduces optimal output, while an increase in the stock of
abatement capital increases optimal output. From the short-run compara-
tive statics and the envelope theorem we obtain the derivatives of the profit
function as:3



or Pr  og

a. = * s Uy )R v 9 5 — A

3 ¢ (p,v,7,R) = B >0

on . & dq*

3 = —(T€(R)g)<0,w=—re(R) a(i>0

on . Foats dq*

a5 = —(ve(R)q)<0,ﬁ=—ve(R) 33_ >0

(971' ’ * 8271' n * ’ aq*
35 = "Tve (R)g* >0, R = TV (e (R)g"+ € (R) ﬁ)

Thus the profit function is convex in prices for fixed (7,v, R), decreasing in
(7,v) and increasing in R.
Uncertainty can be introduced into this model in a number of ways:

e It can be assumed that the world demand is affected by stochastic
shocks giving rise to a geometric Brownian motion price processes. In
this case output price is the exogenous state variable:

dp(t) = ap (t)dt + op (t) dz, (t) (2)

where {2, (¢)} is a Wiener process,* and ¢ and o are constants. If the
current price is a given constant p(0) = p,, then the expected value of
p(t) is Ep(t)] = p,e* and the variance of p(¢) is:®

VIp(®)] = ple* (e - 1)

It should be noted that the Brownian motion assumption causes price to
move away from its starting point. If however price is related to long-run
marginal costs then a better assumption about price movements could be a
mean-reverting process. Under this assumption price tends towards marginal
costs in the long run and price movements can be modeled as

dp(t) = a(B(t) ~p(¥) p(t) dt + op (t) dz, (¢)
where p'(t) can be interpreted as long-run marginal costs.®

® It can be assumed that environmenta] efficiency evolves stochastically
according to the geometric Brownian motion

dv (t) = y7 (t) dt + v () dz, (2) (3)

4



»
The interpretation of this type of uncertainty can be associated with
the stochastic operating conditions of abatement equipment. It can also
be associated with stochastic effects of the general level of abatement
knowledge in the economy which is external to the firm, but can affect
the firm’s abatement efficiency though spillover effects.”

o It can be assumed that environmental regulation takes place through
a system of tradeable permits, in which case 7 (t) can be interpreted
as the competitive market price for permits which can evolve stochas-
tically according to the geometric Brownian motion:®®

dr (t) =07 (t) dt + wr () dz, (t) (4)

Given the firm’s instantaneous profit function (1), the next stage is to
define the optimal abatement investment policy for the types of uncertainty
described above.

2.1 Abatement investment decisions under price un-
certainty

Having optimally chosen the output level, the next step is to analyze the
decision to undertake new abatement investment, denoted by AR, from the
existing abatement capital level of Ry, under price uncertainty modeled by
(2) and assuming that (7,v,s,h) are fixed parameters. Consider the firm’s
decision to undertake new abatement investment by AR from the existing
abatement capital level Ry then, the new abatement capital level becomes:

Ro+ = Ry + AR

The cost of this change in abatement capital is defined as:

(1— 8) h (Ror — Ro) (5)

In the model developed here, the optimal abatement investment strategy
takes the form of a free boundary, p = p(R;7,v,s,h), relating price and
accumulation of abatement capital. This boundary is parametrically defined
for the vector of parameters (7,v, s, h) . When observed price p°® is less than
p(R;7,v,s,h), no abatement investment is undertaken, while when p°® is
greater than p(R;T,v, s, h) enough abatement investment is undertaken in
the current period to restore equality on the boundary. Changes in the para-
meter vector (7,v, s, h) shift the boundary and can accelerate or decelerate
abatement investment accumulation for any given price.

5
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Assume that the initial price is pg and the firm’s initial abatement gapital
stock is Ry. Given a discount rate p, the firm seeks the nondecreasing process
R (t), which will maximize the present values of profits less the cost of de-
velopment. The value function associated with this problem can be written
as:

V(p,R) = maxE/ e P (p(t),v(t),7(t),R(t))dt (6)

subject to (2)

By the concavity of the profit function in R, the value function is also concave
in R [5].

At each instant of time the firm has two choices: to undertake the new
abatement investment or not. The time interval when no new abatement in-
vestment is undertaken and the existing abatement stock is used to determine
the unit emission coefficient, can be defined as the continuation interval. A
stopping time is defined as a time 7 at which new abatement investment is
undertaken.

et R*(7) be the optimal development process at time 7. If 7 is a
stopping time, then [8]:

V(p,RyT,v) = mgxé' |;/0 e ”r(p(u),v,7,R(u))du
+e TV (R*(T),p(T))] (7)

where R*(7) is the optimal process at time 7. Assume that in the time
interval [0, 8], the firm undertakes no new abatement investment, but keeps it
constant at Ry. By the principle of dynamic programming, the value function
should be no less than the continuation payoff in the interval [0, ], plus the
expected value after 8, or:

o
Vip,RyT,v) > & [/ e r(p(u),v(u),r(u), R(u)du
0
+e PV (R (6),p(6))] ®)
with equality if Ry is the optimal policy in [0,6]. Applying It6’s lemma to

the value function on the right hand side of (8), dividing by 6 and taking
limits as # — 0, we obtain:!°
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pvV > 502p2Vpp +apV, + 7 (p,v,7, R) 9)

with equality if R (t) = Ry in the interval [0, 4]. _

Consider now the decision to undertake abatement investment instanta-
neously by AR = Ry+ — Ry. Then from the definition of the optimal stopping
time, we have

V(pJ R;T,’U) Z £ [V (RO"',p; T7U) - (1 - S) h(Rﬂ+ - RO)] (10)

Since the value function is concave in R, the optimal abatement invest-
ment flow can be obtained by maximizing the right hand side of (10). The
necessary and sufficient conditions for the optimal abatement investment
choice is:

Vr (R,p;T,’U) - (1 - S)h < O’
with equality if AR >0 (11)

Thus when no new abatement investment is optimal, (9) is satisfied as
equality, while when new abatement investment is optimal, (11) is satisfied
as equality. Combining (9) and (11), the Hamilton-Jacobi-Bellman (HJB)
equation can be written as:

1
min { [pV— 502p2Vpp —apVp, — 7 (p,v,7,R)| ,— [Ve — (1 — ) h]} =0
(12)
The optimal free boundary will divide the (p, R) space into two regions:
the “no new abatement investment” region, which we will call Region I, and
the “new abatement investment” region, which we will call region II.

In region I the first term of the HJB equation (12) is zero, since AR = 0,
and the second term of the HJB equation is positive by (11), thus

1
pV — EaszVpp —apVp, — 7 (p, R;7,v) =0 (13)

The general solution of this second-order differential equation (13) can
be obtained as:!!



V(p,R) = A1 (R)p” + A2 (R)p** + I (p, R; 7, )

where 8, =1 - &+ \/(a% - %)2 + 22 > 1 is the positive root, and '3, is the
corresponding negative root of the fundamental quadratic:

Q=%azﬁ(,8—1)+a,3—p=0,

and II (p, R; 7, v) is the particular solution. We need to disregard the negative
root in order to prevent the value from becoming infinitely large when the
price tends to zero, thus we set Ay(R) = 0 (see [5]). So the solution becomes:

V(p)R) =Al (}2)1751 +H(p,R,T,'U) (14)

In order to obtain tractable results we need a better specification of the
particular solution. To obtain such a specification, we consider a quadratic
cost function ¢ (g) = 3cq?, then the profit function becomes:

7 (p,7,v,R) = % [p2 — 27ve (R)p + [Tve (R)]z]

Using the method of undetermined coefficients we obtain the particular so-
lution as:

I (p, R;7,v) = To + I'1p + I'pp® (15)
[rve (R)]? Tve (R) 1
0 2cp 1 c(a—p)’ Iz 2c(02 4 2a - p) (16)

In region II the second term of (12) is satisfied as zero and AR > 0 or,

Ve(p,R)—(1—-5)h=0 (17)

Solving (17) for p in terms of R, we can write the yet unspecified boundary
equation as: p = p(R) . From (14), (15), (16) and (17) we can determine the
unknown functions A, (R) and p = p (R) using the ‘value matching’ and the
‘smooth pasting’ conditions.!?

The value matching condition means that on the boundary separating
the two regions the two value functions should be equal. Then we have,
combining (14) and (17) and substituting for p:

Ve(p,R) = A (R)p" +T5(R) +T1 (R)p= (1 - s)h, p=p(R)  (18)
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The smooth pasting condition means that the derivatives of the value
functions with respect to p on the boundary are equal, or:

VRP (p7 R) = ﬁlA,l (R) pﬁl_l + F;. (R) =0,p=p (R) ’ (19)

Combining (18) and (19) we can solve for the unknown functions p (R)
and A} (R) to obtain:

B (1-s)h~Ty(R)

PB) = 5 Tm (20)
4w = - () b e

Relationship (20) is the equation of the free boundary which can be writ-
ten, after substituting for Ty (R) and I} (R), as:

—B, (a—p)lep(1—s)h+Tve(R)e (R)]
b—1 p Tve’ (R)

p(R) = (22)
Since p(R) > 0 the free boundary is defined for parameter values such
that cp(1 — s)h > |Tve(R) € (R)|. In order to describe the free boundary
we have, by the assumptions on the unit emission function, p(0) > 0 and
limg_,0 p (R) = +00. Furthermore

o B (a — p) [(T’u) (e’)3 —cp(l—3s) he”]

i >0

The free boundary is shown in figure 1. For any given level of abatement
capital, random price fluctuations move the point (R,p) vertically up or
down. If the point goes above the boundary, then new abatement invest-
ment is immediately undertaken so that the point shifts on the boundary.
Thus optimal abatement capital accumulation proceeds gradually. In the
terminology of Dixit and Pindyck [5], this is a ‘barrier control’ policy.

[Figure 1]

By inverting (22) we can obtain the optimal boundary function R* =
p~ ! (p;z), which determines the optimal abatement investment boundary as
a function of the state variable p and the vector z of the parameters of the
problem. For price movements to the right of the boundary, new abatement
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investment is undertaken. If price stays on the left of the boundary, no new
abatement investment is undertaken.

If price follows a mean reverting process then the HJB equation for region
I that corresponds to (13) becomes

1 5 ,
pV — 502P2Vpp—a(p—p)pr—ﬂ(p,R;T,v) =0 (13)

The steps for solving for the optimal boundary are the same as above,
however due to the more complicated structure of (13) the effects of mean
reversion require numerical solutions (see [5]).

2.2 The impact of changes in policy parameters

We examine the shifts of the free boundary in response to changes in the tax
parameter 7. To examine the effects of a change in the tax policy, we have

9p _ B (a—p)cp(l=s)h

— = <0
or pBi—-1 »p T2ve’

Thus an increase in the tax rate shifts the boundary downwards and induces
more abatement investment for any given price level, as is also shown in
figure 1. In the same way we obtain:

Op

— <0

Ov
A reduction in abatement efficiency induces more abatement investment for
any given price level.

2.3 Optimal environmental policy

In the previous section the tax and the subsidy parameters were treated as
fixed. The analysis can, however, be extended to analyze the case of an
environmental regulator who can choose optimally the policy parameters.
Optimal policy choice is considered in the following way. From the previ-
ous analysis it is known that the free boundary that determines the profit
maximizing abatement investment in equation (22) depends on the tax and
subsidy parameters. Consider the case of an environmental regulator that
determines a socially optimal free boundary by explicitly taking into account
environmental damages. An optimal environmental policy can then be de-
fined by determining the values of the policy parameters such that the profit

10
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maximizing free boundary will coincide with the socially optimal free bound-
ary, as determined by the environmental regulator. Define a social profit
function by

W (p,v, R) = max[p(t)q (1) — c(¢(t)) - D (v(t) e (R (2)) ¢ ()]

where D (v (t) e (R (t)) ¢ (¢)) is a strictly increasing and convex damage func-
tion. By following the steps of section 2, a free boundary that determines
the socially optimal abatement investment under price uncertainty can be de-
fined. Denote it by p* (R), and consider the free boundary defined in (22) as
a function of the policy parameters, or p (R; 7, s) . An optimal environmental
policy can be defined as the pair:

(r*,s%) :p(R; 7", s") = p° (R)

A solution of the form 7* = { (s*) will determine the trade off between emis-
sion taxes and abatement investment subsidies in the design of environmental
policy.13

It is interesting to note that under uncertainty and irreversibility the op-
timal environmental policy equates the privately optimal and the socially
optimal free boundaries and not the privately optimal and the socially op-
timal levels of the choice variables as in the case of optimal policy design
under certainty.

3 Abatement Investment Decisions under En-i
vironmental Policy or Abatement Efficiency]
Uncertainty

When, under fixed prices, the environmental policy uncertainty is present
in the form of stochastic evolution of prices for tradeable emission permits,
or abatement efficiency is stochastic, the mathematical treatment is similar,
although the sources of uncertainty are different. Policy uncertainty can be
regarded as uncertainty outside the firm while abatement uncertainty can be
regarded as internal to the firm. So although the mathematical results are
the same, their interpretation and their policy implications are different.

In the case of policy uncertainty, the Hamilton-Jacobi-Bellman equation
can be written as:

min{|:pV—— %w2T2V,.T—nTV,. —n(r,R;p,v)|,—[VR— (1 —s)h]} =0

11



As before the optimal free boundary will divide the (7, R) space into two
regions: the “no new abatement investment” region (region I), and the “new
abatement investment” region (region II).

In region I the first term of the HJB equation is zero, since AR = 0, and
the second term of the HJB equation is positive by (11), thus

1
pV — §w27'2V" -V —m(r,R;p,v) =0

The general solution of this second-order differential equation can be
obtained as above as:

V(7,R) = Bi(R)7% + By (R) 7% + @ (p, Ry 7, )

-2 w?
corresponding negative root of the fundamental quadratic

where £, = 1 — & + \/(ﬁ - %)2 + 22 > 1 is the positive root and ¢, is the

Q=W (E~1) +nE—p=0

and ® (7, R;p,v) is the particular solution. As before we set By(R) = 0, so
the solution becomes:

V(r,R) = By (R) 7% + ® (7, R; p,v)

Using again the quadratic cost function specification, ¢ (¢) = %cq2, we obtain
the particular solution as:

@ (r,R;p,v) = Ao+ A7 + AyT?

P __pe® (e (B

T2’ T 2T (W +2m—p)

Ap = ,
° c(n—p)

In region II the second term of the HJB equation is satisfied as zero and
AR >0, or,

Ve(t,R)—(1-8)h=0
The value matching and smooth pasting conditions imply that:

Vr(t,R) =B (R) T + AL (R)T+ A, (R)72=(1—s)h, T=7(R) (23)

12



and

Va- (1, R) =&, B, (R) ™8 + AL (R) + 205 (R)r =0, 7=7(R)  (24)

respectively, where
pve' (R)
c(n—p)

Combining (23) and (24) we obtain a quadratic expression which implic-
itly defines 7 (R) as:

S0, &y (R) = 2R (R

A (R) = "~ 2 (w?+2n - p)

8,®) (B22) r @+ AR (B ) (R - - 9)h =0 (29

By taking the positive root of (25) the free boundary is defined as:
e, AR (S2)+VvA
2(6:-2) A (R)
2
[A'l (R) (El—l>} + 4A5 (R) (i——2> (1-38)h
61 &1

with & > 2 for A > 0.
Using the assumptions about the unit emission function we have

T(R) =

A

lim 7 (R) = —o0, and lim 7(R)=M >0

R0 R—oo
If the free boundary is monotonic, a property that can be checked by using
specific functions, then its graph is shown in figure 2.

[Figure 2]

An increase of the policy parameter above the boundary induces more
abatement investment. By inverting the 7 (R) function, an optimal boundary
function for abatement capital accumulation in terms of the policy parameter
7 is defined as:

R =711 (r,2).

Policy uncertainty and abatement efficiency uncertainty can also be ex-
amined together by introducing the variable z = Tv, with £ (dz,dz,) = p,,dt.

Using the fact that g% = %12—,% =0 and 8‘9:51, =1 we obtain

dz = (v +n+ p0w) zdt + (6dz, + wdz,) 2

13



Thus changes in z have mean and variance

kl = 7+77+p'rv6w
ky = 6%+ 206w+ w?

respectively. Following the same steps as above the HJB equation is defined
as:

min { {pV - —;—kgszzz —k12V, — (2, R;p)| ,— [VR— (1 — 9) h]} =0

Then the free boundary can be defined in the context of correlated policy
and technological uncertainty, as in the case of policy uncertainty above.

3.1 Unpredictable policy changes

Policy uncertainty as analyzed above is associated with continuous fluctua-
tions of the tradeable emission permit price. It is possible, however, for a
sudden change in policy due for example to an unexpected - from the firm’s
point of view - change in the supply of permits, to cause a discontinuous
change in their price. In the context of our model this unpredictable change
introduces jump characteristics. Thus, while the usual fluctuations in prices
are captured by the geometric Brownian motion, the sudden policy change
should be captured by a Poisson process. Therefore the price of permits is
modelled by a mixed Brownian motion/jump process, or

dr = nrdt + wrdz, + rdq¥

where dq” is the increment of a Poisson process with mean arrival time of
the change in the supply of permits A. We further assume that the change
in the supply of permits represents an increase, and that this causes a fixed
drop in the price!* by a known percentage ¢ € [0, 1] with probability 1, and
that dz, and dq* are independent.

To analyze this problem the HJB equation is derived by using It6’s lemma
for combined Brownian motion/jump process [5]. Then the HIB equation
can be written as:

min { [pV = 3272V, — 7V, — 7 (1, Ry p,0)] + AV (1 = 9) 7) = V]

~[Va - (1—s)h }ZOI

The solution to the value function is
V (7, R, %) = BY (R) 7' + &% (7, B; p,v,¥)

14
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where ¢¥ is the positive solution of the nonlinear equation (see [5]):

S92 (€8 = 1) + 1€ — (p+ N+ A1 - ) =0
Once a solution for E'f is obtained, then the free boundary can be obtained
as before.

It should be noted that special cases of the general mixed Brownian mo-
tion/jump process model can be used to analyze specific cases. For example
if n = w = 0 is set, and 7 is interpreted as an emission tax, then the same
model can be used to analyze the implications of unpredictable changes in
the emission tax rates.

4 Location Decisions

When we examine location decisions, the problem can be defined as an opti-
mal stopping problem. In the waiting or continuation region the firm stays in
its present location, pays the emission tax and follows the optimal abatement
capital accumulation path, R* (¢), given uncertainty described by the evolu-
tion of the state variable (price, policy parameter, or technology parameter).

Suppose that the firm examines the possibility of relocation to a new lo-
cation (country) where there is no environmental policy. Assume that the
set-up costs are fixed, F, and are incurred once at the time of relocation,
that the cost function remains the same and that there are no transporta-
tion costs.!® Suppose that relocation takes place at time ¢4, then the profit
function for the firm that chooses optimally operating output, is defined as:

{ ma(p(t)) — F, for t =t4
ma(p(t)), for t > t4

where 74 (p) = max, [pg — c(g)].
Assuming that price uncertainty exists, then at each period of time the
firm faces a binary choice:

1. Relocate and take the termination payoff defined as W (p (t4), F)) =
£ [ e Pma(p(t))dt - F.

2. Continue operation at the initial location for one period, choosing out-
put and abatement investment optimally, receive the operating profits
and then consider another binary choice in the next period.
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The Bellman equation for this problem can be written as: g

1
1+ pdt

V (p) =max{7r(p,7','v,R*)+ E[V(p—f-dplp)],W(p,F)} (26)
In the continuation region, the first term on the right hand side is the largest.
Using Ité’s lemma on this term we obtain the usual differential equation

1
pV — Eazszm, —apVy, —m(p;R*,7,v) =0 (27)
with solution
V(p(t); R 7,v) = Kip(t) + I (p(t); R, 7, v) (28)

From the Bellman equation we have that at the critical relocation time
tdt

|4 (p (td) ; R*: 7, ’U) =W (p (td) aF) (29)

This is the value matching condition. The smooth pasting condition requires
that: '

Vo(p(ta); B, 7,v) = Wy (p(ta) , F) (30)

Conditions (29) and (30) can be used to determine the constant K; and the
free boundary p = p* (t;) . By inverting the boundary equation we obtain
the optimal relocation time boundary function ¢} = p*~! (p) . This boundary
determines the critical relocation time as a function of the observed price for
given values of the parameters 7,v, s.

Environmental policy uncertainty or abatement efficiency uncertainty can
be treated in the same way. Suppose that policy uncertainty exists in the
sense of stochastic permit prices. Then following the same steps as above,
the free boundary 7 = 7* (4) is defined by the following conditions, using
the quadratic cost function:

V(r(t);R\pv) = AT +3(7(t);R",p,v)

V(r(ts); R*,p,v) = W(F), value matching
2

W(p,F) = /we‘p‘p—zdt—F=p——F p fixed
’ 0 2c 2cp O’

Vi (7 (ta); R*,p,v) = W, (F) =0, smooth pasting
Using the conditions above, the free boundary 7* (t) is implicitly defined by:

—(I)T(T*(t);R*,p,”U) * * . P* —_ p2
3 ™)+ @ (r*(t); R ,p,v)—%—F (31)

16



By inverting the boundary function 7* (¢4) , we obtain the optimal relo’cation
time boundary function tj = 7*~!(7) in terms of the environmental policy
parameter and the rest of the parameters of the problem. Optimal relocation
implies the existence of a threshold policy parameter such that when the
actual policy parameter crosses this threshold, then relocation takes place.
This result is stated in the following proposition.

Proposition 1 Let 7° (') be the observed environmental policy parameter at
timet'. If ° (t') < 7* (t'), then it is optimal to remain at the initial site. If
7°(t') > 7* (') it is optimal to relocate at time t'.

P roof. e Appendix. =

This proposition implies that for any time ¢ a threshold environmental
policy parameter exists such that when the policy parameter exceeds the
threshold, then the firm moves to the new location. The relation between the
threshold policy parameter and the optimal relocation time is shown in figure
3, where T indicates the permit price that induces immediate relocation. The
lower the permit price, the further away the optimal relocation time is. When
the permit price crosses the boundary it is optimal to take the irreversible
relocation decision.

[Figure 3]

Similar analysis, although with different interpretation, can be applied to
the case where uncertainty relates to abatement efficiency, or to correlated
policy and abatement uncertainty.

The above analysis suggests that since firms are identical they will delo-
cate simultaneously when the critical time arrives. If firms are heterogenous
regarding characteristics of production cost or abatement technologies, then
the optimal delocation time will be different across firms. In this case there
will more than one boundary like the one depicted in figure 3. Suppose that a
second boundary, 77 (ta) , exists and as shown in figure 3, the two boundaries
do not intersect. Then the same permit price 7 implies different optimal
delocation times.

4.1 Relocation time policy under uncertainty

The free boundaries and the optimal relocation policy functions derived above
can be used to provide useful information regarding the effects of exogenous
shocks on the critical relocation time and describe a framework for designing
a policy that could affect relocation time. This can be obtained by performing
comparative static analysis of the optimal boundary function.
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Assuming again identical firms to simplify things, consider the bogndary
function t; = p*~! (p; 7, v, s) and take the derivative:

oty _op' (p)
or or

This derivative determines the effect on the critical relocation time of an
exogenous change in the emission tax for any given price level. In the same
way the effects from changes of other parameters of the model on relocation
time can also be defined.
Consider now the total differential
a3 (p) = Sty + 58
This differential can express the rate of substitution between the emission tax
rate and the abatement investment subsidy rate in order to produce a given
change in the critical relocation time at any given price level. For example
by setting dt}; (p) = 0, the marginal rate

ds

oty
ds _ 5

dr %;1
expresses the necessary increase in the abatement investment subsidy in order
to keep the critical relocation time constant after an increase in the emission
tax for any given price. The changes in the policy parameters shift the free
boundary p = p* (t4) and enlarge or shrink the “stay” or “delocate” regions
as shown in figure 4.

[Figure 4]

The particular forms of the policy functions, the comparative static deriv-
atives, as well as the marginal rates of substitution, can be explored under
the quadratic cost function assumption.

5 Concluding remarks

The responses of firms to environmental taxation regarding their abatement
investment and location decisions were analyzed in an analytical framework
characterized by uncertainty and irreversibilities.

The optimal stopping time methodology adopted in this paper makes
possible the derivation of optimal policy functions for abatement investment
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and location decisions as functions of prices, environmental policy or abate-

ment efficiency. These policy functions can provide very useful information
to a regulator seeking to explore the effects of regulation on firms’ decisions.
It is also possible to use the optimal stopping time methodology. in order
to design optimal environmental policy under uncertainty and irreversibility,
in the sense of choosing the policy parameters so that the free boundary,
or equivalently the optimal policy function under profit maximization, coin-
cides with the socially optimal free boundary (abatement investment policy
function).

The implication of this approach regarding policy design under price un-
certainty and irreversibility is that a regulator can in principle design a policy
scheme consisting of two instruments, an emission tax or a tradable permit
system and a subsidy on abatement investment. The policy scheme takes into
account uncertainty through its dependence on the parameters on the price
process and will induce individual firms to undertake the same output and
abatement investment under uncertainty that a regulator would have under-
taken. In this sense the policy mix of emission taxes (or emission permits)
and abatement investment subsidies will be welfare maximizing. It should be
noticed that the function 7* = ( (s*) determining the optimal trade-off be-
tween taxes and subsidies allows the regulator to determine the policy mix in
order to obtain an optimal balance between the output contacting pollution
control by emission taxes and pollution control throught the subsidization of
the accumulation of abatement capital.

A similar mix of emission taxes (or emission permits) and abatement
investment subsidies can be used to affect location decisions. By linking
location decisions to subsidies in emission-reducing abatement investment,
it was possible to derive rules relating to the amount of subsidy required
in order not to accelerate relocation after the introduction of a stricter en-
vironmental policy. Given the function that determines optimal relocation
time as a function of the observed price an increase in emission taxes may
induce delocation of all or a subset of firms, depending on the heterogeneity
assumptions, by bringing delocation time forward at the same price level. If
delocation is not desirable it may be prevented by an appropriate increase in
the abatement subsidy. On the other hand if price movements in the world
market induce delocation, our results indicate that it could be prevented by
an appropriate change of the policy mix, that is changes in emission taxes
and/or abatement subsidies.

Further research could be directed towards the study of the relocation
time when the country abroad follows a different environmental policy, or
when the firms in the home country are heterogenous. Further research
could also be directed towards the study of the socially optimal relocation
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time. The optimal stopping time methodology could indicate the time that
is socially desirable for a firm to relocate, then help to design a policy scheme
to prevent suboptimal relocation decisions.
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Appendix

P roof. oposition 1
The Bellman equation is:

1
1+ pdt

V(T)zmax{w(T;p,v,R*)+ 5[V(T+dT|T)],W(p,F)}

Following [5], define G(7) = V(1) — W , 7 + dr = 7' and subtract W
from both sides of the Bellman equation above to obtain

G(r) = ma.x{O,ﬂ(T)—W—i- ! /V(T’)d@(T'IT)}

1+ pdt
O,7r(7')—W+—1+lpdtW+ } .
- , , 32
ma"{ ww [ G () de (7 |r) (32)

Since W does not depend on 7, we have that the expression

1

m(T)=7r(7')—W+1+pdt

|44

dm

is decreasing in 7, since &% = & < (. The function m (7) reflects the dif-
ference between waiting for one period before relocating and relocating right
away. Since m () is decreasing in 7, continuation - that is no relocation -
should be optimal when 7 is low.

Assume that the cumulative distribution ® (7/|7) of the future values
of the policy parameter shifts uniformly to the left as 7 increases, so that
the disadvantages of an increase in the current value of the environmental
policy parameter in the original location are unlikely to be reversed in the
future. This assumption, along with the decreasing m (r) function, implies
that G’ (1) < 0 (see [5] Appendix B).

Therefore the second argument of (32) is decreasing in 7. Thus a unique
critical time 7* (') exists such that the second argument of (32) is negative if
and only if 7° (¢') > 7* (¢'). Then it is optimal to relocate (optimal to stop)
at time t'. If 7°(¢') < 7* (¢), then it is optimal to remain at the initial site
(continue).
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Endnotes d

1 A more general formulation would be to define the e(-) function as
e (R, RA°), where RA¢ = nR, is aggregate abatement knowledge. In this
case there could be positive spillovers from aggregate abatement capital to
the individual abatement function. When firms consider aggregate knowledge
as fixed there is a divergence between the private return of abatement capital
and the social return of abatement capital [19].

2 To simplify things we ignore depreciation issues.

3 It is assumed that: (e" (R)¢* + ¢ (R) %) > 0, so that the profit func-
tion is concave in R for fixed (p,7,v). The concavity assumption requires
sufficient curvature of the unit emission function e (R) .

4 For definitions see [12].

5 See [5]. _

6 If we consider entry and exit decisions in the world market then an upper
reflecting barrier P to the price movement can be considered. When price
moves to the reflecting barrier, new entry is triggered, quantity increases and
price decreases.

7 Stochastic delays in the R&D processes can be modelled by assuming
that v follows a Poisson process.

8 Then v(t)e(R(t))g(t) can be interpreted as the excess demand for per-
mits.

9 The expected values and the variances for v (¢) and of 7 (t) are defined
in a similar way as for p (¢) above.

10 Subscripts associated with the value function denote partial derivatives.

11 The homogeneous part of this differential equation is an Euler equation.

12 For a presentation of these conditions see [5).

13 The relationship between the two policy instruments can be further
elaborated to include balance-budgeting schemes, where total tax revenues
equal total subsidy expenses.

14 A fixed increase in the price can be treated symmetrically.

15 Alternative assumptions could include the existence of a different en-
vironmental policy abroad, for example command and control regulation, or
differences in the political systems that affect the stringency of environmental
policy. =
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Figure 1: Free boundary under price uncertainty
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Figure 2: Free boundary under policy uncertainty
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Figure J: Relocation time policy



