




1. Introduction

This paper uses the Wald (1950) concept of the risk of a statistical decision function to integrate

statistical analysis of treatment response with normative analysis of treatment choice.  I begin from the premise

that empirical studies of treatment response should aim to improve treatment choices.  The question I address

is: How should sample data on treatment response be used to guide treatment choices in a heterogeneous

population?

Bayesian decision theory coherently integrates statistical and normative analysis, but rests on a

subjective probabilistic foundation that has inhibited applications.  Prevailing frequentist research practices

connect statistical analysis to normative objectives only loosely, if at all.  Many empirical studies test the null

hypothesis that some treatment effect is zero, with no reference to a decision problem that might motivate the

test.  Many studies report estimates of treatment effects, but do not evaluate the estimation methods used from

the perspective of a decision problem.  Viewing this situation, I concluded that Wald’s frequentist approach,

once well-appreciated but not much used today, warrants renewed attention.

The class of treatment choice problems considered here combines some realism and some simplicity.

As in some of my recent research focused on identification problems (Manski, 1997a, 1998, 1999), I assume

that a planner must choose a treatment rule assigning a treatment to each member of a heterogeneous

population of interest.  The planner might, for example, be a physician choosing medical treatments for each

member of a population of patients or a judge deciding sentences for each member of a population of convicted

offenders.  The planner observes certain covariates for each person; perhaps demographic attributes, medical

or criminal records, and so on.  These covariates determine the set of non-randomized treatment rules that are

feasible to implement: the set of feasible such rules is the set of all functions mapping the observed covariates

into treatments.  Each member of the population has a response function mapping treatments into a real-valued

outcome of interest; perhaps a measure of health status in the case of the physician or a measure of recidivism

in the case of the judge.  I assume that the planner wants to choose a feasible treatment rule that maximizes
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the population mean outcome; in economic terms, the planner wants to maximize a utilitarian social welfare

function.  An early discussion of treatment choice from this perspective appears in Stafford (1985).  Manski

and Nagin (1998) uses this framework to analyze judges’ sentencing decisions and Dehejia (1999) uses it to

study treatment choices for welfare recipients.  Heckman, Smith, and Clements (1997) propose alternatives to

the idea of maximizing population mean outcome.   

Under the above assumptions, an optimal treatment rule assigns to each member of the population a

treatment that maximizes mean outcome conditional on the observed covariates.  Planners rarely, however, have

the knowledge of treatment response needed to implement optimal rules.  Empirical analysis of treatment

response seeks to provide this knowledge, but identification problems and statistical issues stand in the way.

Over time, a body of research has illuminated the identification problems (e.g., Angrist, Imbens, and Rubin,

1996; Balke and Pearl, 1997; Heckman and Robb, 1985; Hotz, Mullins, and Sanders, 1997; Imbens and

Angrist, 1994; Manski, 1990, 1995, 1997b; Manski, Sandefur, McLanahan, and Powers, 1992; Robins, 1989;

Rosenbaum, 1995; Rosenbaum and Rubin, 1983) and some work has addressed the statistical issues from a

Bayesian perspective (e.g., Dehejia, 1999; Rubin, 1978).  Frequentist statistical inference, however, has

remained focused on hypothesis testing and on the asymptotic behavior of estimates.  Frequentist statistical

inference requires re-orientation to better inform treatment choice.  Wald’s approach is well-suited to this task.

Section 2 sets out the treatment-choice problem formally.  After specifying the planner’s choice set and

objective, I present the optimal treatment rule and characterize the value of covariate information.  I then define

statistical treatment rules, which are rules that map covariates and sample data into treatments.  The term

statistical treatment rule, or STR for short, recalls Wald (1950), who used the term statistical decision

function to describe functions that map sample data into decisions.  I also introduce the class of STRs that

condition on covariates.

We immediately confront a conceptual question about the evaluation of STRs, and of statistical

decision functions more generally.  Should such rules be evaluated ex ante, using the sampling distribution of
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data yet to be realized, or ex post, conditioning on the actual sample data realized?  Wald’s frequentist decision

theory adopts the former perspective, while Bayesian decision theory largely adopts the latter.  I evaluate STRs

ex ante and I focus attention on the expected welfare (negative risk in Wald’s terms) achieved by a rule.  To

partly close the gap between ex ante and ex post evaluation, I present a Lemma giving conditions under which

the two approaches yield the same conclusions with high sampling probability.

The heart of this paper is Section 3, which applies the expected welfare criterion to evaluate two

specific STRs when the sample data are generated by a classical randomized experiment.  I consider a

randomized experiment in order to focus cleanly on the problem of statistical inference, unencumbered with

concerns about identification.  I evaluate two simple rules that embody the reasonable idea that persons should

be assigned the treatment with the best empirical success rate, but that differ in their use of covariate

information.  The conditional success (CS) rule selects treatments with the best empirical success rates

conditional on specified covariates.  The unconditional success (US) rule selects a treatment with the best

unconditional empirical success rate.  Whereas the US Rule constrains the planner to choose the same treatment

for all persons, the CS Rule permits the planner to treat persons with different covariates differentially.

Whereas the US Rule has the planner compare success rates using the entire available sample, the CS Rule

requires that the planner compare success rates in sub-samples.

There is an evident tension between use of covariate information and available sample size.  The

analysis in Section 3 characterizes this tension and assesses the implications for treatment choice.  The main

finding is a Proposition giving finite-sample bounds on expected welfare under the two rules.  The bounds,

which rest on a large-deviations theorem of Hoeffding (1963), yield explicit sample-size and distributional

conditions under which the CS Rule is superior to the US rule.  I use a numerical illustration to give a

quantitative sense of these conditions.

Section 3 also draw implications for the reporting of covariate information in research articles

describing randomized experiments.  A prevalent practice has been to report estimates of conditional mean



4

outcomes only if a classical hypothesis test rejects the null hypothesis of zero treatment effect.  This reporting

criterion has no clear connection to treatment choice and may prevent implementation of rules that condition

on covariates.

Section 4 closes the paper with a question that may have no fully satisfactory answer.  Applying

Wald’s frequentist approach to statistical decision theory to the problem of treatment choice, we find that the

expected-welfare ranking of alternative STRs depends on the population distribution of treatment response.

The use of STRs to make treatment choices, however, arises when planners have only sample data on treatment

response, not knowledge of the response distribution.  How then should a planner use the expected welfare

criterion to guide choice of a treatment rule?  The frequentist and Bayesian literatures suggest pragmatic

answers, but neither is complete.  I use the CS and US rules to illustrate.

2. The Planner’s Problem

I set out basic concepts and assumptions here.  Section 2.1 follows the description in Manski (1999)

of the planner’s choice set and objective function.  Section 2.2 derives the optimal treatment rule and the value

of covariate information.  Section 2.3 defines statistical treatment rules and considers the ex ante and ex post

evaluation of such rules.  Section 2.4 introduces the class of STRs that condition on covariates and presents

a lemma connecting the ex ante and ex post evaluation of such rules.

2.1. The Choice Set and Objective Function

I suppose that there is a finite set T of mutually exclusive and exhaustive treatments.  A planner must

choose a treatment rule assigning a treatment in T to each member of a population J.  Treatment assignment
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is sometimes referred to as intention-to-treat.

Each person j 0 J has a response function yj(·): T 6 Y mapping treatments into real-valued outcomes

yj(t) 0 Y.  A treatment rule is a function J(·): J 6 T specifying which treatment each person is assigned.  Thus

person j's outcome under rule J(·) is yj[J(j)].  This notation maintains the assumption of individualistic

treatment made commonly in analyses of treatment response.  That is, a person's outcome may depend on the

treatment he is assigned, but not on the treatments assigned to others. 

The planner is concerned with the distribution of outcomes across the population, not with the

outcomes of particular persons.  Hence the population is taken to be a probability space, say (J, S, P), where

S is the F-algebra on which probabilities are defined and P is the probability measure. Now the population

mean outcome under treatment rule J(·) is well-defined as

(1)  E{yj[J(j)]}  /  I yj[J(j)]dP(j).

I assume that the planner wants to choose a treatment rule that maximizes E{yj[J(j)]}.  This criterion function

has both normative and analytical appeal.  Maximization of a population mean outcome, or perhaps some

weighted average outcome, is the standard utilitarian criterion of the public economics literature on social

planning.  The linearity of the expectation operator yields substantial analytical simplifications, particularly

through use of the law of iterated expectations.

The planner observes certain covariates xj 0 X for each member of the population.  The planner cannot

distinguish among persons with the same observed covariates and so cannot implement treatment rules that

systematically differentiate among these persons.  Hence the feasible non-randomized rules are functions

mapping the observed covariates into treatments.  I do not explicitly consider randomized treatment rules, but

there is a simple implicit way to permit such rules.  Let x include a component whose value is randomly drawn

by the planner from some distribution.  Then the planner can make the chosen treatment vary with this
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covariate component. 

To formalize the planner’s problem, let Z denote the space of all functions mapping X into T.  Let z(·)

0 Z.  Then the feasible treatment rules have the form

(2)  J(j)  =  z(xj),       j 0 J.

Let P[y(@), x] be the probability measure on YT × X induced by P(j).  Let E{y[z(x)]}  /  Iy[z(x)]dP[y(@), x]

denote the expected value of y[z(x)] with respect to this induced measure.  Then the planner wants to solve the

problem

(3)    max   E{y[z(x)]}.
        z(·) 0 Z

In practice, institutional constraints may restrict the feasible treatment rules to some proper subset of

the space Z.  In particular, the planner may be precluded from using certain covariates (say race or gender) to

assign treatments.  The analysis in this paper continues to hold if x is defined to be the covariates that the

planner is permitted to consider, rather than the full vector of covariates that the planner observes. 

2.2. Optimal Treatment Rules and the Value of Covariate Information

The solution to the planner’s problem is to assign to each member of the population a treatment that

maximizes mean outcome conditional on the person’s observed covariates.  Let 1[@] be the indicator function

taking the value one if the logical condition in the brackets holds and the value zero otherwise.  For each

z(·) 0 Z, use the law of iterated expectations to write
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(4)  E{y[z(x)]}  =  E{E{y[z(x)]*x}}   =   E{  E  E[y(t)*x]·1[z(x) = t]}    =  I  E  E[y(t)*x]·1[z(x) = t] dP(x).
                                                                       t 0 T                                           t 0 T

For each x 0 X, the integrand Et 0 T E[y(t)*x]·1[z(x) = t] is maximized by choosing z(x) to maximize E[y(t)*x]

on t 0 T.  Hence a treatment rule z*(·) is optimal if , for each x 0 X, z*(x) solves the problem

(5)   max E[y(t)*x].
        t 0 T

The optimized population mean outcome is E{max t 0 T E[y(t)*x]}. 

The set of feasible treatment rules grows as more covariates are observed.  Hence the optimal mean

outcome achievable by the planner cannot fall, and may rise, as more covariates are observed. The value of

covariate information is appropriately measured by the difference between the optimal mean outcome

achievable with and without use of this information.  This is

(6)   V(X)   /    E{max E[y(t)*x]}   -   max E[y(t)].
                               t 0 T                          t 0 T

Inspection of (6) shows that covariate information has no value if there exists a common optimal treatment;

that is, a t* 0 T such that z*(x) = t*, almost everywhere on X.  Covariate information does have value if

optimal treatments vary with x.

More generally, we may compare the value of observing distinct covariate vectors, say x and w.  A

planner who knows the conditional mean outcomes E[y(@)*x] and E[y(@)*w] should prefer observation of x to

w if and only if E{max t 0 T E[y(t)*x]}  $  E{max t 0 T E[y(t)*w]}.  In words, the planner should prefer x to w

if x better separates persons who differ in their optimal treatments.

Note that the present criterion for comparison of covariates x and w differs from the prediction
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criterion familiar in statistical decision theory.  The prediction criterion supposes that, for each t 0 T, one wants

to predict y(t) as well as possible in the sense of minimizing expected square loss.  The best predictors

conditional on x and w are E[y(t)*x] and E[y(t)*w] respectively.  A statistician who  knows E[y(t)*x] and

E[y(t)*w] and wants to predict y(t) as well as possible should prefer x to w if and only if E{y(t) - E[y(t)*x]}2

#  E{y(t) - E[y(t)*w]}2.  

2.3. Statistical Treatment Rules

 

A planner who does not know the conditional mean outcomes E[y(@)*x], x 0 X generally cannot

implement an optimal treatment rule.  Suppose, however, that the planner has sample data that enable statistical

inference on E[y(@)*x], x  0 X.  Then the planner may use these data to choose a treatment rule. 

Considering this in some abstraction, let Q denote a sampling process and let Q denote the associated

sample space; that is, Q is the set of data samples that may be drawn under Q.  Let - denote the space of

functions mapping X × Q into T.  Then, following Wald (1950), each function . (·, @)  0 - defines a statistical

treatment rule, or STR.  Thus an STR is a feasible rule whose identity depends on the sample drawn.

One’s perspective on a statistical treatment rule depends on whether one evaluates it before or after

the sampling process is engaged.  Let R 0 Q denote a sample that may potentially be drawn under Q and let

R0 0 Q denote the sample that is actually drawn.  Ex ante R is a random variable, so . (·, R) is a random

function of X.  Ex post R0 is a determinate element of Q, so . (·, R0) is a determinate function of X.  Thus an

STR is ex ante a random member of the set Z of feasible rules and ex post a determinate member of Z.

I evaluate statistical treatment rules from the ex ante perspective.  The (ex ante random) population

mean outcome under a specified rule . is

(7)  E{y[.(x, R)]}   =   I   3  E[y(t)*x]·1[. (x, R) =  t] dP(x) .
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                                         t 0 T

The Q-expected value of E{y[.(x, R)]} is

(8)   W(P, Q, .)   /  I E{y[. (x, R)]} dQ(R)    =  I [ I  3 E[y(t)*x]@1[.(x, R)  =  t] dP(x)] dQ(R)
                                                                                      t 0 T

                                                                          =  I  3 E[y(t)*x]@Q[.(x, R)  =  t] dP(x),
                                                                                 t 0 T

where Q[.(x, R)  =  t] / I1[.(x, R)  =  t]dQ(R) denotes the Q-probability of the event [.(x, R) = t].  I refer

to W(P, Q, .) as the expected welfare under rule . and I use W(P, Q, @) to compare alternative rules.  This

criterion follows Wald except that he described decision makers as minimizing risk rather than as maximizing

expected welfare.  The loss under rule . is -E{y[.(x, R)]} and the risk is -W(P, Q, .).

I can offer two substantive and one technical reason for adopting the ex ante perspective in general and

for focusing on expected welfare in particular.  The first substantive reason, which is commonly given by

statisticians performing ex ante evaluation of statistical decision functions, is that one may want to understand

how such decision functions perform as procedures in repeated applications (e.g., Berger, 1985, Section 1.6.2).

In the present setting, this argument is appealing if one is a statistician recommending a treatment rule to be

applied repeatedly in treatment choice problems with statistically independent sample data.  Focusing on

expected welfare in particular is appropriate if the statistician’s objective is to maximize a utilitarian social

welfare function aggregating outcomes across repetitions of the choice problem.

The above reasoning is not germane to a single planner concerned only with his own treatment choice

problem, a point made with compelling logic by Bayesian critics of frequentist statistical theory (e.g., Berger,

1985, Section 1.6.3).  A second substantive rationale may be relevant however.  Suppose that institutional

constraints require a planner to commit to an STR before observing the relevant sample data.  The institutional

constraint may, for example, reflect public distrust of the planner and a desire to limit his discretion.  A planner
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who is required to pre-commit must evaluate .(·, R) ex ante rather than . (·, R0) ex post.  If the planner is risk

neutral, his objective will be to maximize W(P, Q, @).  

The technical reason for focusing attention on expected welfare is its status as an approximate

sufficient statistic for ex post evaluation of STRs.  In some settings, the Q-distribution of E{y[.(x, R)]} can

be shown to be tightly concentrated near W(P, Q, .), implying that ex ante and ex post evaluation of STRs

yields the same conclusions with high Q-probability.  Section 2.4 develops this idea formally.

2.4. Statistical Treatment Rules That Condition on Covariates

The complexity of expected welfare W(P, Q, .) stands in the way of a constructive general analysis

of statistical treatment rules.  This being the case, I now focus on a class of STRs that is amenable to

interesting analysis.  These are the rules that condition on covariates.

Assume that the covariate space X is finite, with P(x) > 0, all x 0 X.  Assume that the sampling

process Q generates separate, statistically independent data for persons with different values of the covariates

x; that is, a data sample R is composed of a set of statistically independent sub-samples (Rx, x 0 X).  In this

setting, I shall say that an STR . conditions on x if the treatment that . selects for persons with covariates x

depends on the sample data R only through Rx.  With some flexibility of notation, I henceforth write .(x, Rx)

to indicate such a rule.  The conditional success rule introduced in Section 1 conditions on x.  The

unconditional success rule does not.

Expected welfare under an STR that conditions on x is

(9)   W(P, Q, .)   =    3 P(x)   3 E[y(t)*x]@Q[.(x, Rx)  =  t].
                                x 0 X        t 0 T
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I indicated in Section 2.3 that interest in W(P, Q, .) can be motivated by the status of this quantity as an

approximate sufficient statistic for ex post evaluation of ..  I now formalize this idea.

Consider the Q-variance of E{y[.(x, Rx)]}.  By (7) and the assumed statistical independence of the

sub-samples (Rx, x 0 X), 

(10)   VarQ {E{y[. (x, Rx)]}}  =   VarQ {  3   P(x)   3  E[y(t)*x]·1[. (x, Rx) =  t]}   =  3 P(x)2@C.x,
                                                                  x 0 X            t 0 T                                              x 0 X

  

where C.x  / VarQ { 3 t 0 T E[y(t)*x]@1[. (x,  Rx) =  t]}.  The following Lemma establishes upper bounds on

VarQ {E{y[.(x, Rx)]}}:

Lemma: Let " / max [P(x), x 0 X].  For x 0 X, let Mx / max t 0 T E[y(t)*x], mx / min t 0 T E[y(t)*x], and *x /

Mx - mx.  Let $.x be the Q-probability that rule .(x, Rx) selects a treatment that maximizes E[y(t)*x].  Let (.x

/  max(1/2, $.x).  Then

(11)   VarQ {E{y[.(x, Rx)]}}   #   "   3 P(x)@(.x(1 - (.x)*x
2   #   ("/4)  3 P(x)@*x

2 .     �
                                                         x 0 X                                                   x 0 X

Proof: For each x 0 X, P(x)2  #  "P(x).  Hence VarQ {E{y[. (x, Rx)]}} #  " 3x 0 X P(x)@C.x.  A universally valid

upper bound on C.x is (1/4)*x
2, this being the variance under a treatment rule that selects an optimal treatment

with Q-probability ½ and a worst treatment with Q-probability ½.  A tighter upper bound on C.x is available

if $.x > ½.  Then an upper bound on C.x is $.x(1 - $.x)*x
2, this being the variance under a treatment rule that

selects an optimal treatment with Q-probability $.x and a worst treatment with Q-probability 1 - $.x.  Hence

C.x  #  (.x(1 - (.x)*x
2. 

                                                                                                                                                         Q.E.D.



12

The Lemma shows that VarQ {E{y[. (x, Rx)]}} is small if either of two sufficient conditions holds.

One sufficient condition is that the quantities (.x, x 0 X be near one.   This holds if the sample size is large and

if rule . is consistent.  The other sufficient condition is that the quantity " be near zero. This holds if the

covariate space X is large, with no dominant value of x.  If, for example, P(x) is uniform, then " = 1/*X*,

where *X*is the cardinality of X.   If either condition holds, the Lemma and Chebychev’s inequality imply that

the Q-distribution of E{y[. (x, Rx)]} is concentrated near W(P, Q, .).

The sufficient condition on " is of particular interest. Let . and .N denote any two STRs that condition

on x. The bound ("/4)  3x 0 X P(x)@*x
2 holds for both rules.  Hence

(12)   VarQ {E{y[.(x, Rx)]} - E{y[.N(x, Rx)]}}   #    "  3x 0 X P(x)@*x
2.

Suppose that W(P, Q, .)  <  W(P, Q, .N).  Then (12) and Chebychev’s inequality imply that

(13)    Q{E{y[.(x, Rx)]}  $  E{y[.N(x, Rx)]}  #   ["  3x 0 X P(x)@*x
2]/[W(P, Q, .) - W(P, Q, .N)]2.

Thus, if " is small, the ex ante and ex post rankings of rules . and .N are the same with high Q-probability.

3. Statistical Treatment Rules Using Data From Randomized Experiments

I now apply the expected welfare criterion to compare two STRs, the CS and US rules, when the

sample data are generated by a randomized experiment.  Section 3.1 describes the sampling process generating

the data.  Section 3.2 formalizes the CS and US rules and examines their expected welfare.  Section 3.3

develops the main finding, a proposition giving bounds on expected welfare under the two rules.  A corollary
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gives explicit sample-size and distributional conditions under which the CS Rule is superior to the US rule, and

a numerical illustration gives a quantitative sense of the conditions.  Section 3.4 draws implications for

reporting covariate information in research articles describing randomized experiments.  Section 3.5 poses

variations on and extensions to the present analysis that seem worthy of study.

3.1. The Sampling Process

I assume that, for each x 0 X and t 0 T, the sampling process draws Nxt persons at random from the

subpopulation with covariates x and assigns them to treatment t.  Each sample of subjects, denoted N(x, t), then

realizes outcomes yj, j 0 N(x, t).  I assume that the experiment is classical in all respects: subjects comply with

their assigned treatments, they do not interact with one another, and the planner observes their covariates,

treatments, and outcomes.  Thus, for each x 0 X, the planner observes Rx / [yj, j 0 N(x, t), t 0 T]. 

For simplicity, I restrict attention to treatment-choice problems with two feasible treatments, denoted

t = 0 and t = 1.  I also assume that the planner knows the covariate distribution P(x).  I evaluate expected

welfare under the assumption that the sampling process Q repeats the randomized experiment with the sample

sizes (Nxt, t 0 T, x 0 X) held fixed.  This is the natural sampling process to consider if the experimenter

specifies these sample sizes a priori. Experiments are sometimes carried out under another protocol in which,

for each t 0 T, the experimenter specifies a number of subjects, say Nt, to be drawn at random from the entire

population and assigned to treatment t.  Under this protocol, (Nxt, t 0 T, x 0 X) varies across repetitions of the

experiment, necessitating a more complex analysis than that performed here.
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3.2. Expected Welfare Under the CS and US Rules

In Section 1, I described the conditional success (CS) rule as one that selects treatments with the best

empirical success rates conditional on the observed covariates, and the unconditional success (US) rule as one

that selects a treatment with the best unconditional empirical success rate.  I now formalize these rules.

Let Gyxt  / (1/Nxt)  3 j 0 N(x, t) yj be the sample average outcome among subjects with covariates x assigned

to treatment t.  Let Gyt  / 3 x 0 X Gyxt@P(x) be the population-weighted average outcome among all subjects

assigned to treatment t. For each x 0 X, the CS rule selects a treatment that maximizes Gyxt on t 0 T. The US

rule selects a treatment that maximizes Gyt on t 0 T.  Each rule requires a tie-breaking convention to be used

when multiple treatments maximize the relevant average outcome.  I use the convention that treatment 1 is

chosen when both treatments yield the same average outcome.

With these definitions, the CS rule yields expect welfare

(14)   W(P, Q, CS)    =    3 P(x) {E[y(1)*x]@Q[Gyx1 $ Gyx0]   +  E[y(0)*x]@Q[Gyx1 < Gyx0]}.
                                      x 0 X

The US rule yields expected welfare

(15)   W(P, Q, US)   =   E[y(1)]@Q[Gy1 $ Gy0]  +  E[y(0)]@Q[Gy1 < Gy0].

Applying the expected welfare criterion, we shall say that the CS rule is superior or inferior to the US rule if

W(P, Q, CS) is larger or smaller than W(P, Q, US).

It is easy to see that the CS rule asymptotically yields the optimal population mean outcome and that

this rule is asymptotically superior to the US rule if the value of covariate information is positive.  Let n / min



15

(Nxt, t 0 T, x 0 X) denote the smallest experimental sample.  The strong law of large numbers implies that as

n 64, W(P, Q, CS)  6 E[max{E[y(1)*x], E[y(0)*x]}], which is the optimal mean outcome.  Moreover,

                                                                    a.s.

(16)   lim   W(P, Q, CS)  - W(P, Q, US)     =   E[max{E[y(1)*x], E[y(0)*x]}]  -  max{E[y(1)], E[y(0)]}.
          n64

The right side of (16) is the value of covariate information defined in equation (6).   Thus W(P, Q, CS)  > W(P,

Q, US) a.s. if n is sufficiently large and if the value of covariate information is positive.

Asymptotic theory may be suggestive, but a planner comparing the CS and US rules must be concerned

with their performance in finite samples.  A simple example illustrates the subtlety of the matter:

Example:  Let the covariate space have two elements, with X = (a, b) and P(x = a) = P(x = b) = ½.  Let the

experimental design be balanced with one subject in each sample, so Na1 = Na0 = Nb1 = Nb0 = 1.  Let the

response distributions P[y(0)*x = a] and P[y(0)*x = b] be degenerate with mass points 8a and 8b respectively,

where 0 < 8a < 1, 0 < 8b < 1, and 1 < 8a + 8b.  Let the response distributions P[y(1)*x = a] and P[y(1)*x = b]

be Bernoulli with means µa and µb respectively, where 0 < µa < 1 and 0 < µb < 1.

 In this setting, Q[Gya1 $ Gya0]  =  P[y(1) = 1*x = a] = µa,  Q[Gyb1 $ Gyb0]  =  P[y(1) = 1*x = b] = µb, and

Q[Gy1 $ Gy0]  =  P[y(1) = 1*x = a]@P[y(1) = 1*x = b]  =  µa µb.  Hence

  W(P, Q, CS)  - W(P, Q, US)   

                          =    ½ {[µa
2  + 8a (1 - µa) +  µb

2  + 8b (1 - µb)]  -  [(µa + µb)µa µb  +  (8a + 8b)(1 - µa µb)]}

                          =    ½ {µ a(µa - 8a) + µb(µb - 8b)  -  µa µb(µa - 8a) - µa µb(µb  - 8b)}

                          =    ½ {µ a(µa - 8a)(1 - µb) + µb(µb - 8b)(1 - µa)}.
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Thus the CS rule is superior or inferior to the US rule, depending on (µa, µb, 8a, 8b).  Observe that the CS rule

is superior if (µa > 8a, µb > 8b) and the US rule is superior if the inequalities are reversed.  �

In general, the expected-welfare ranking of the CS and US rules depends on the distributional and

sample-size features of the treatment-choice problem.  We would like to characterize the circumstances in

which the planner should prefer one rule to the other.  Direct analysis of the expressions for expected welfare

in (14) and (15) is difficult because the treatment-selection probabilities Q[Gyx1 $ Gyx0] and Q[Gy1 $ Gy0]  typically

are complex functions of the response distributions {P[y(@)*x], x 0 X}, the sample sizes (Nxt, t 0 T, x 0 X),

and the covariate distribution P(x).  Fortunately, a large-deviations theorem of Hoeffding (1963) for averages

of bounded random variables yields relatively simple bounds on Q[Gyx1 $ Gyx0] and Q[Gy1 $ Gy0].  In Section 3.3,

I use Hoeffding’s theorem to develop bounds on expected welfare under the CS and US rules.  These bounds

imply explicit sample-size and distributional conditions under which the CS Rule is superior to the US rule.

3.3. Bounds on Expected Welfare Under the CS and US Rules

Here is the Hoeffding theorem that forms the basis for my findings:

Large Deviations Theorem (Hoeffding, 1963, Theorem 2): Let w1, w2,  @ @ @ , wn be independent real random

variables, with bounds ai # wi # bi, (i = 1, 2, @ @ @, n).  Let  Gw / (1/n) En
i = 1 wi and µ / E(Gw).  Then, for v > 0,

Pr(Gw - µ $ v) #  exp[-2n2v2/En
i = 1 (bi - ai)

2].                 �

Hoeffding’s Theorem 2 is a very broad, powerful result.  The only distributional assumptions are that the

random variables w1, w2,  @ @ @ , wn be independent and have bounded supports.   The derived upper bound on

Pr(Gw - µ $ v) has no nuisance parameters and is of order exp(-nv2) in the sample size n and the distance v.  I



17

would note that Hoeffding (1963), Theorem 1gives tighter but more complicated bounds on Pr(Gw - µ $ v) that

hold if w1, w2,  @ @ @ , wn have the same range.  It may be that these alternative bounds can be used to improve

on my Proposition below.  I leave this as an open question. 

I now use Hoeffding’s Theorem 2 to obtain finite-sample bounds on expected welfare under the CS

and US rules.  The Proposition developed here requires that the outcome variable y be bounded but otherwise

is entirely general.  (The Proposition assumes that outcomes take values in the unit interval but, given

boundedness, this may always be achieved by appropriate normalization of location and scale.)  The proof of

the Proposition is in an Appendix.

Proposition: Let T = {0, 1} and 0 # y(t) # 1, t 0 T.  For x 0 X, let Mx / max{E[y(1)*x], E[y(0)*x]} and *x

/ *E[y(1)*x] - E[y(0)*x]*.  Let M / max{E[y(1)], E[y(0)]} and *  / *E[y(1)] - E[y(0)]*.  Then

(17)        3 P(x) Mx  -  3P(x)*x@exp[-2*x
2/(Nx1

-1 + Nx0
-1)]  #   W(P, Q, CS)  #  3 P(x) Mx.

            x 0 X               x 0 X                                                                                 x 0 X

(18)        M  -  *@exp[-2*2/{E x 0 X P(x)2(Nx1
-1 + Nx0

-1)}]  #   W(P, Q, US)  #   M.        �

Expected welfare under the CS rule necessarily exceeds that under the US rule if the sample sizes are

sufficiently large that the CS lower bound exceeds the US upper bound.  The Corollary below states this

immediate implication of the Proposition.

Corollary: Let the sample sizes (Nx1,  Nx0; x 0 X) be such that 

(19)    3P(x)*x@exp[-2*x
2/(Nx1

-1 + Nx0
-1)]   <  3 P(x) Mx  - M.    

         x 0 X                                                     x 0 X



18

Then W(P, Q, CS) > W(P, Q, US).           �

The right side of (19) is the value of covariate information, which is necessarily non-negative and is

positive if optimal treatments vary with x (Section 2.2).  The left side of (19) bounds from above the damage

that sampling variation may cause to expected welfare under the CS rule.  This quantity falls to  zero as the

sample sizes (Nx1,  Nx0; x 0 X) grow.   Hence the Corollary reiterates our earlier finding ( Section 3.1) that the

CS rule is superior to the US rule if the samples are sufficiently large and if optimal treatments vary with x.

The important new contribution of the Corollary is that its sufficient condition for superiority of the CS rule

is a simple explicit function of the sample sizes (Nx1, Nx0; x 0 X),  the covariate distribution P(x), and the

conditional mean outcomes {E[y(@)*x], x 0 X}.   Moreover, this sufficient condition supposes only that

outcomes are bounded.  No other distributional assumptions are imposed.

Illustration: A numerical illustration gives a quantitative sense of the Proposition and Corollary.  Let X = (a,

b), with P(x = a) = P(x = b) = ½.  Let the design be balanced, with Na1 = Na0 = Nb1 = Nb0 = n, where n is a

specified positive integer.  Let E[y(1)] = E[y(0)] = ½.  Then the CS and US bounds are

        ½(Ma + Mb)  - ½*a@exp(-n*a
2)  - ½*b@exp(-n*b

2)  #   W(P, Q, CS)  #  ½ (Ma + Mb)

        ½  #   W(P, Q, US)  #   ½ .

The table below evaluates the CS bound when E[y(1)*x = a], E[y(0)*x = a], and n have specified

values, namely E[y(1)*x = a] = .4, E[y(0)*x = a] 0 (.4,  .5, .6, .7, .8), and n 0 (1, 10, 25, 50).   The quantities

E[y(t)*x = b] cannot be varied freely because E[y(t)]  =  E[y(t)*x = a]P(x = a) + E[y(t)*x = b]P(x = b).  Hence

the terms of the illustration require that ½ = ½E[y(t)*x = a] + ½ E[y(t)*x = b], implying that E[y(t)*x = b] =
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1 - E[y(t)*x = a].  Thus, in the table, treatment 0 is always optimal for persons with x = a and treatment 1 is

always optimal for persons with x = b.

The entries in the column titled “nN” give the smallest value of n such that the lower CS bound exceeds

½, the expected welfare under the US rule; that is, nN is the smallest integer n such that (Ma + Mb)  - *a@exp(-

n*a
2)  - *b@exp(-n*b

2)  >  1.  When n exceeds nN, the CS rule definitely yields higher expected welfare than does

the US rule.  When n is smaller than nN, Proposition 1 does not yield a definite ranking of the two rules.  The

column titled “nO” will be explained in Section 3.4. 

The CS Bound

E[y(0)*x = a]     n = 1   n = 10   n = 25   n = 50   nN   nO

.4 [.50, .50] [.50, .50] [.50, .50] [.50, .50]   4   4

.5 [.45, .55] [.46, .55] [.47, .55] [.49, .55]  70 196

.6 [.41, .60] [.47, .60] [.53, .60] [.57, .60]  18   48

.7 [.38, .65] [.53, .65] [.62, .65] [.65, .65]    8   20

.8 [.37, .70] [.62, .70] [.69, .70] [.70, .70]    5     5

The first row of the table describes the boundary case in which treatments 0 and 1 yield the same

conditional mean outcomes, so the planner is indifferent between the CS and US rules. The other rows show

the tension between use of covariate data and sample size.  The value of covariate information increases as

E[y(0)*x = a] moves away from E[y(1)*x = a], with treatment 0 becoming increasingly better for persons with

x = a and, symmetrically, treatment 1 becoming increasingly better for persons with x = b.  Hence the upper

CS bound increases monotonically.  The behavior of the lower CS bound is more complex. As the value of

covariate information increases, so does the loss to the planner if covariate data are used to make sub-optimal

treatment choices.  The result is that, holding sample size fixed, the lower CS bound first falls and then rises
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as E[y(0)*x = a] moves away from E[y(1)*x = a].

Although the lower CS bound varies non-monotonically with  E[y(0)*x = a], the sample size nN at

which the lower bound first exceeds ½ falls monotonically.  Observe how small the values of nN are.  If

E[y(0)*x = a] = .5, the CS rule is superior to the US rule in samples of 70 observations or more.  If E[y(0)*x =

a] = .8, the CS rule is superior in samples of 5 observations or more.    �

3.4.  Implications for Reporting Covariate Information in Research Articles

The foregoing analysis carries implications for reporting covariate information in research articles

describing randomized experiments.  Planners often have extensive covariate information on the population of

interest.  However, research articles reporting the findings of randomized experiments often present estimates

of mean outcomes with little accompanying covariate information.  As a result, planners often have only limited

ability to apply CS rules.  

Consider, for example, a physician who must choose treatments for a population of heterogeneous

patients.  Physicians often observe many covariates –  medical histories, diagnostic test findings, and

demographic attributes  –  for the patients that they treat.  Research articles often report the outcomes of

randomized clinical trials evaluating alternative treatments.  These articles, however, rarely report much

covariate information for the subjects of the experiment.  Articles reporting on clinical trials usually describe

outcomes only within broad risk-factor groups.

There seem to be several reasons why research articles report little covariate information. (I say “seem

to” because these reasons are rarely stated explicitly.)   Sometimes researchers seem to assume that there exists

a common optimal treatment across the population of interest; then covariate information has no value (see

Section 2.2).  Sometimes concern for the confidentiality of subjects’ identities inhibits researchers from

reporting covariates that may be related to treatment outcomes.  Sometimes sampling variability inhibits
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researchers from reporting estimates of treatment effects conditional on covariates.

 The merits of the first two reasons must be assessed on a case-by-case basis, but the third reason is

subject to a general critique.  Researchers often perform randomized experiments with samples of subjects that

are large enough to yield statistically precise findings for unconditional treatment effects but not large enough

to yield precise findings for treatment effects conditional on covariates.  Findings conditional on covariates

commonly go unreported if they do not meet conventional criteria for statistical precision.  A prevalent practice

is to report estimates of E[y(@)*x] only if a classical hypothesis test rejects the null hypothesis {H0: E[y(1)*x]

= E[y(0)*x]}.  In particular, researchers often use the t-statistic criterion

(20)    Report  (Gyx1, Gyx0)   if   (Gyx1 - Gyx0)/[SVar (Gyx1 - Gyx0)]
½   > 2,

where SVar (Gyx1 - Gyx0) is the conventional sample estimate of the variance of (Gyx1 - Gyx0).

Reporting criteria based on statistical precision bear no clear connection to treatment choice.  I think

it would be better if researchers describing randomized experiments would report treatment effects conditional

on covariates whenever (i) there is a priori reason to think that optimal treatments may vary with these

covariates and (ii) reporting is consistent with maintenance of confidentiality of subjects’ identities.

Illustration: The illustration in Section 3.3 gives a quantitative sense of the implications of conventional

reporting criteria.  Consider the idealized t-statistic criterion

(21)    Report  (Gyx1, Gyx0)   if   EQ(Gyx1 - Gyx0)/[Var Q(Gyx1 - Gyx0)]
½   > 2.

I refer to this as an “idealized” criterion because the operational t-statistic rule given in (20)  makes reporting

a function of the sample drawn, hence a random variable, whereas the idealized t-statistic given in (21) makes
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reporting a function of population characteristics specified in the illustration.  Let y be binary, so E[y(@)*x] =

P[y(@) = 1*x].  Let Ptx / P[y(t) = 1*x], t = 0, 1. Then the idealized criterion becomes

(22)    Report  (Gyx1, Gyx0)   if  (P1x  -  P0x)/[P1x(1 - P1x)/n  + P0x(1 - P0x)/n]1/2    >   2.

The column titled “nO” in the table of Section 3.3 gives the minimal value of n at which this reporting criterion

is met.  Comparison of the entries for nN and nO shows that nN #  nO in every case and that nO is much larger

than nN when P0x 0 (.5, .6, .7).  Thus, use of a reporting criterion based on statistical precision may prevent use

of the CS rule when that rule is superior to the US rule.     �

3.5. Variations on and Extensions to the Analysis

Many variations on and extensions to this analysis seem worthy of study.  These include

Measurement of Empirical Success: The versions of the CS and US rules analyzed here measure the empirical

success of treatment t by the sample averages Gyxt and Gyt.  These averages are natural nonparametric estimates

of E[y(t)*x] and E[y(t)], but it may be that other estimates yield higher expected welfare.  More generally, there

is a large open question about optimal estimation of E[y(@)*x] for use in the CS rule.  What nonparametric

estimate should be used when x is not discrete, given specified smoothness restrictions on E[y(@)*x] as a

function of x?  What estimate should be used when the planner has prior parametric or semiparametric

information restricting the form of E[y(@)*x]?  These are familiar questions in the literature on efficient

estimation of regressions, but the traditional objective has been to minimize mean square error in predicting

outcomes.  Here the objective is to choose treatments that maximize expected welfare.
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Hybrid CS-US Rules:  The CS and US rules are polar cases, one always and the other never using the available

covariate information. It may be that hybrid CS-US rules, in which the use of covariate information depends

on sample size, are more effective.  The literature on prediction suggests shrinkage estimators to minimize mean

square error.  It may be that similar approaches improve expected welfare.

Experimental Design: The analysis in this paper takes the design as given.  Experimental design has received

extensive study from the perspective of hypothesis testing.  In particular, there is a longstanding practice of

selecting sample sizes that achieve specified power when testing a null hypothesis of no treatment effect against

a specified alternative.  The expected welfare criterion may be used to study experimental design from the

perspective of treatment choice.

4. Using the Expected-Welfare Criterion to Choose a Treatment Rule

This paper has used Wald’s statistical decision theory to evaluate statistical treatment rules in the

setting of a randomized experiment.  Wald’s approach is capable of yielding important findings on the

performance of STRs.  At the same time, it is incomplete.

The difficulty is that the expected-welfare ranking of alternative STRs depends on the population

distribution of treatment response.  The use of STRs to make treatment choices, however, arises when planners

have only sample data on treatment response, not knowledge of the response distribution.  Hence it is not clear

how a planner should use the expected welfare criterion to guide choice of a treatment rule. The CS and US

rules illustrate the conundrum.  Expected welfare under the CS rule is a function of {E[y(@)*x], Q[Gyx1 $ Gyx0],

x 0 X} and under the CS rule is a function of {E[y(@)], Q[Gy1 $ Gy0]}. The planner, however, only has sample

data on treatment response.
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The frequentist and Bayesian literatures suggest alternative pragmatic solutions.  The frequentist

literature suggests that the planner use the available sample data to estimate the relevant parameters of the

distribution of treatment response, and then “plug-in” these estimates to evaluate expected welfare.  For

example, one might estimate W(P, Q, CS) and W(P, Q, US) by

(23)    w( P, Q, CS)    /  3 P(x) {Gyx1@q[Gyx1 - Gyx0 $ 0]   +  Gyx0@q[Gyx1 - Gyx0  <  0]}
                                      x 0 X

(24)    w( P, Q, CS)    /  Gy1@q[Gy1 - Gy0 $ 0]   +  Gy0@q[Gy1 - Gy0  <  0].

Here q[@] denotes a sample estimate of the corresponding treatment-selection probability Q[@]; for example, the

empirical distribution of the sample data might be used to generate a bootstrap estimate of Q[@].  Then one

might choose the CS rule if w(P, Q, CS) > w(P, Q, US) and the US rule otherwise.

The plug-in prescription is easy to explain and implement, but its theoretical foundation is incomplete.

Lacking finite-sample theory, frequentist statisticians commonly cite asymptotic theory showing that sample

estimates of population parameters have well-behaved limiting distributions.  The planner’s objective, however,

is not to obtain estimates of expected welfare with good asymptotic properties.  It is to choose a treatment rule

maximizing expected welfare when applied to samples of specified finite size.  Using asymptotic theory to guide

a finite-sample statistical decision problem requires a leap of faith.

The Bayesian literature suggests that the planner should assert a subjective prior distribution on the

space of treatment-response distributions, use the available sample data to update the prior, and apply the

resulting posterior subjective distribution to evaluate alternative treatment rules.  Bayesian decision theory

provides a coherent finite-sample approach to evaluation of treatment rules by reaching beyond frequentist

statistics to introduce a new concept, the subjective prior distribution on the space of treatment-response
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distributions.  Bayesian conclusions about the performance of alternative treatment rules inevitably depend on

the prior invoked, but the Bayesian paradigm is silent on the critical question of how the prior should be

specified.  Thus, in practice, the Bayesian prescription is incomplete. 

It may be that a fully satisfactory approach to evaluation of treatment rules using sample data is

unachievable.  We can, however, expand the set of available options.  The bounds on expected welfare under

the CS and US rules developed in Section 3.3 demonstrate one approach.  Evaluation of the bounds does not

require all of the distributional information needed to evaluate expected welfare.  Consider the CS rule.

Whereas expected welfare is a function of {E[y(@)*x], Q[Gyx1 $ Gyx0]}, the bound depends only on E[y(@)*x]. A

frequentist contemplating plug-in estimation of the bound need not address the subtle problem of estimating

Q[Gyx1 $ Gyx0].  A Bayesian contemplating use of the bound need not articulate a full subjective posterior

distribution on the space of treatment-response distributions; the posterior for E[y(@)*x] suffices.  Of course

these benefits are achieved with an accompanying cost.  The CS and US bounds may overlap, in which case

the ranking of these treatment rules is indeterminate.

Appendix: Proof of the Proposition

CS Bound: The upper bound follows from (14), so the task is to prove the lower bound.  For x 0 X, I write Gyx1

- Gyx0 as the average of independent random variables and apply Hoeffding’s theorem to show that 

(A1)  Mx  -  *x@exp[-2*x
2/(Nx1

-1 + Nx0
-1)]  #  E[y(1)*x]@Q[Gyx1 - Gyx0 $  0]   +  E[y(0)*x]@Q[Gyx1 - Gyx0  <  0].

Let Nx  /  Nx1 + Nx0.  For each x 0 X,
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(A2)    Gyx1 - Gyx0  =  (1/Nx1)  3 j 0 N(x, 1) yj  -  (1/Nx0)  3 j 0 N(x, 0) yj 

                          =  (1/Nx)[ 3 j 0 N(x, 1) (yj@Nx/Nx1)  +  3 j 0 N(x, 0) (-yj@Nx/Nx0)].

Thus Gyx1 - Gyx0 is the average of Nx independent random variables.  The first Nx1have range [0, Nx/Nx1] and the

remaining Nx0 have range [-Nx/Nx0, 0]. 

Consider x 0 X such that E[y(1)*x] < E[y(0)*x].  Then E(Gyx1 - Gyx0) =  -*x.  Hoeffding’s theorem yields

(A3)    Q[Gyx1 - Gyx0 $  0]  #  exp[-2Nx
2 *x

2/{Nx1@(Nx/Nx1)
2 + Nx0@(Nx/Nx0)

2}]  =  exp[-2*x
2/(Nx1

-1 + Nx0
-1)].

Hence 

(A4)    E[y(1)*x]@Q[Gyx1 - Gyx0 $  0]   +  E[y(0)*x]@Q[Gyx1 - Gyx0  <  0]

                       $  E[y(1)*x]@exp[-2*x
2 / (Nx1

-1 + Nx0
-1)]  +  E[y(0)*x]@{1 - exp[-2*x

2/(Nx1
-1 + Nx0

-1)]

                       =   Mx  -  *x@exp[-2*x
2/(Nx1

-1 + Nx0
-1)].

So (A1) holds.  Next consider x 0 X such that E[y(1)*x] > E[y(0)*x].  For such x, E(Gyx0 - Gyx1) = -*x.

Application of Hoeffding’s theorem yields 

(A5)  Q[Gyx1 - Gyx0  <  0]  =  Q[Gyx0 - Gyx1 >  0]  #  Q[Gyx0 - Gyx1 $  0]  #  exp[-2*x
2/(Nx1

-1 + Nx0
-1)].

Thus (A1) continues to hold by an argument analogous to (A4).  Finally consider x 0 X such that E[y(1)*x]

= E[y(0)*x].  For such x, *x = 0.  Hence (A1) holds as an equality. 

US Bound: The upper bound follows from (15).  The lower bound holds as an equality if E[y(1)] = E[y(0)].
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The task is to show that the lower bound holds otherwise.  As in the proof of the CS bound, I write Gy1 - Gy0 as

the average of independent random variables and then apply Hoeffding’s theorem.

Let N /  E x 0 X (Nx1 + Nx0).  Then

(A6)    Gy1 - Gy0   =   3 x 0 X P(x)  (1/Nx1)  3 j 0 N(x, 1) yj   -   3 x 0 X P(x) (1/Nx0)  3 j 0 N(x, 0) yj 

                       =  (1/N)[3 x 0 X  3 j 0 N(x, 1) (yj@P(x)N/Nx1)   +  3 x 0 X 3 j 0 N(x, 0) (-yj@P(x)N/Nx0)].

Thus Gy1 - Gy0 averages N independent random variables with ranges [0, P(x)N/Nx1] and [-P(x)N/Nx0, 0], x 0 X.

Let E[y(1)] < E[y(0)].  Then E(Gy1 - Gy0) = -*.  Application of Hoeffding’s theorem yields

(A7)  Q[Gy1 - Gy0 $  0]   #  exp[-2N2 *2/{E x 0 X Nx1(P(x)@N/Nx1)
2 +Nx0(P(x)@N/Nx0)

2}]

                                   =   exp[-2*2/{E x 0 X P(x)2(Nx1
-1 + Nx0

-1)}].

Hence 

(A8)  E[y(1)]@Q[Gy1 - Gy0 $  0]  +  E[y(0)]@Q[Gy1 - Gy0  <  0]   $  M  - *@exp[-2*2/{E x 0 X P(x)2(Nx1
-1 + Nx0

-1)}].

The same result holds when E[y(1)] > E[y(0)].

                                                                                                                                                         Q. E. D.
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