




1. Introduction

Consider a government contemplating the implementation of a training (or other social

assistance) program. The decision to implement the program depends on the assessment

of its likely e�ectiveness. Often policy makers have access to data from a similar program

implemented in an earlier time period or in another locality. The question arises as to

how these data might be used to assess the contemplated program's likely e�cacy. This

situation is not uncommon. For example, the U.S. federal government's primary program

for job training, the Job Training Partnership Act (JTPA), is designed and administered

at the local level. Thus, policy makers may wish to evaluate di�erences in the e�ectiveness

of the local programs. In addition, the recent federal reforms to the U.S. welfare system

have encouraged the development of state and local program diversity, both in the services

clients receive, and in the target populations. Increasingly, states and local authorities who

administer their own programs, seek to use information from other programs, conducted in

the past or in other locations, to assess the likely impacts and cost-e�ectiveness of these

programs.

There are two distinct steps for predicting the e�ectiveness of a new program using data

from previous programs. First, the researcher must evaluate the e�ectiveness of the initial

program. Estimating the average e�ect of the initial program, for the entire population or

for subpopulations, is straightforward if assignment to treatment was random. However, if

the data were not generated by a carefully designed randomized experiment, there are funda-

mental di�culties in estimating the average causal e�ects. A large literature in econometrics

examines complications in program evaluation using observational (non-experimental) data

(e.g., Ashenfelter and Card, 1978; Heckman and Robb, 1984; Card and Sullivan, 1988; and

Friedlander and Robins, 1995). In an inuential paper, Lalonde (1986) showed that many
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conventional econometric methods were unable to recover estimates based on experimental

evaluations.1 Recently, Dehejia and Wahba (1998), using the same data as Lalonde, �nd

that estimates based on matching and propensity score methods developed by Rosenbaum

and Rubin (1983, 1984) were more successful in replicating experimental estimates.2 Crucial

to this success was the availability of su�ciently detailed earnings histories and background

characteristics.

The second step in exploiting data from previous evaluations concerns generalizing the

results of the previous evaluation to a new implementation. The focus of the current paper

is on this second step. The issues associated with this step have received much less attention

in the literature. Meyer (1995), in his discussion of natural experiments in economics, briey

describes problems associated with what he calls the \external validity" of evaluations, fol-

lowing the terminology of Cook and Campbell (1979). Dehejia (1997) analyzes the decision

problem faced by an individual who, informed by data from a previous experimental evalu-

ation, is considering whether or not to enroll in a training program. The current paper can

be viewed as an examination of the credibility of the Dehejia research program: if, on the

basis of data from a previous randomized experiment, one cannot predict what the average

e�ect of a new program will be, it will be di�cult to advise speci�c individuals based on

such data. Finally, Manski (1997) considers the problem of predicting the average e�ect of

alternative assignment rules applied to the same population. In contrast, we focus on an

implementation using the same assignment rule (i.e., random assignment) but applied to a

di�erent population.

At least three distinct reasons may exist for di�erences in the average e�ect of treatment

1See also Fraker and Maynard (1987), and Heckman and Hotz (1989).
2See Angrist (1998), Heckman, Ichimura, Smith and Todd (1998), Lechner (1998), and Imbens, Rubin,

and Sacerdote (1999) for other economic applications of matching and propensity score methods.
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between two programs or localities. First, the distribution of characteristics in the two

populations may di�er. For example, suppose that the �rst population is older on average

than the second. If age is associated with program e�cacy, average program e�ects may

di�er for the two programs. Second, the programs, even if nominally the same, may di�er

in the mixture of, and assignment rules for, their treatment components. For example,

one job-training program may stress classroom training, whereas another may emphasize

job search assistance. Alternatively, one training program may be better run or organized

than the other, even though each contains the same population and nominally the same

treatment components. Third, there may be di�erences in average program e�ects because

of di�erences in the size of the program. The same program, implemented on similar people,

may yield di�erent average treatment e�ects if a larger fraction of the population receives

training in one of the implementations.

In this paper, we focus on the �rst two of these di�erences in treatment e�ects across

programs.3 With respect to the �rst source of di�erences, one can, in principle, remove

the associated biases by dividing the population into homogeneous subpopulations based on

the relevant background characteristics. Within these homogeneous subpopulations, average

treatment e�ects should be identical in both implementations of the program. By weighting

these \within" estimates appropriately, one can recover the population average treatment

e�ects. Two potential problems exist with this approach. First, not all relevant character-

istics are necessarily observed. Second, even if all the relevant characteristics are observed,

the distributions of some characteristics need not overlap across implementations. If there

is no overlap, one cannot adjust for di�erences in average treatment e�ects that depend

3While potentially important, we do not address the third complication. Rather, we assume in the
analyses that follow that there is no interference between trainees, and thus that the scale of the program is
not a source of di�erent average treatment e�ects.
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on these factors.4 For example, suppose that treatment e�ects vary with local labor mar-

ket conditions, indexed by local unemployment rates. Further, suppose that the prevailing

unemployment rate di�ers across location or program. Then, there is no overlap in labor

market conditions across these localities/programs and the assumptions necessary for valid

adjustment with background variables is not met. We refer to these violations as \macro

e�ects."

Similar di�culties arise with the second reason for di�erences in average treatment e�ects.

One can adjust for biases associated with di�erences in the mix of program components if

the treatment components received by trainees are recorded, and if assignment to these

treatments is unrelated to potential outcomes. However, predicting the e�cacy of a new

implementation is di�cult if information concerning components received is not coded in

the available data. Even if such details are recorded, typically only the assignment to the

binary treatment, \training" or \no-training," is randomized. Therefore, even estimation of

average e�ects of speci�c components in the initial implementation is already wrought with

di�culties, and extrapolation to other programs is less likely to be credible. We refer to the

latter as the \heterogeneous treatment" problem.

In this paper, we explore the empirical relevance of these two sources of di�erences in

average program e�ects by analyzing data from four random assignment evaluations of job-

training programs run in di�erent localities during the 1980s. Like Lalonde (1986), we use

the estimates from randomized experiments to evaluate the performance of various non-

experimental methods. We focus on three comparisons. First, we compare the average

outcomes for controls in pairs of locations after adjusting for various sets of background

4The importance of overlap in the distribution of background characteristics is discussed in Rubin (1977)
and its empirical relevance investigated in Dehejia and Wahba (1998) and Heckman, Ichimura, Smith and
Todd (1998).
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factors. Given su�cient adjustment for background characteristics and exclusion from all

training services, control groups should be comparable across sites, in the absence of macro

e�ects. Furthermore, control groups will be comparable regardless of any potential heteroge-

neous treatment e�ects for trainees. Second, we compare the average outcomes for trainees

across pairs of locations. Comparison of the average outcomes for trainees isolates the valid-

ity of the homogeneous treatment assumption. Third, we compare average treatment e�ects

in the two locations after various degrees of adjustment. This indicates the overall success

of di�erent adjustment procedures for eliminating biases due to macro and heterogeneous

treatment e�ects.

An important part of our empirical analyses is assessing the e�ectiveness of alternative

sets of pre-training and aggregate variables for eliminating the above sources of bias. A

growing literature documents cases in which observational control groups su�ce for unbiased

program evaluation, once detail on pre-training labor earnings is available (e.g., Dehejia and

Wahba, 1998; Heckman, Ichimura, Todd and Smith, 1998). Often such observational control

groups come from public use surveys (e.g., Lalonde, 1986) or eligible nonparticipants from

the same experiment (Heckman, Ichimura, Todd, and Smith, 1998). Our non-experimental

control groups are taken from experiments in other locations, and they may therefore be

subject to di�erent biases. Thus, we investigate whether and what type of pre-training

variables can eliminate such biases.

In the next section we set up the inferential problem in the potential outcome notation for

causal modelling. We demonstrate the close connection between the problem of predicting

the e�ects of one program with data from an evaluation of another and the problem of

evaluating programs using non-experimental data. We limit our attention in Section 2 to

the case with binary, homogeneous treatments. Complications arising from the presence of
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macro e�ects are discussed in Section 3. In Section 4 we allow for heterogeneous treatments.

Section 5 contains a discussion of issues related to estimation. An application of these

ideas to four Work INcentive (WIN) training programs is presented in Sections 6 through 8.

Section 9 concludes.

2. The Role of Unconfoundedness

A random sample of size N is drawn from a large population. Each unit i, for i =

1; 2; : : : ; N , is from one of two locations, indicated by Di 2 f0; 1g. For each unit there are two

potential outcomes, one denoted by Yi(0), describing the outcome that would be observed if

unit i received no training, and one denoted by Yi(1), describing the outcome given training.

Implicit in this notation is the Stable Unit Treatment Value Assumption (SUTVA) of no

interference and homogeneous treatments (Rubin, 1974, 1978). In Section 4 we shall relax

this assumption to allow for heterogeneous treatments but maintain the assumption of no

interference. In addition, there is, for each unit, an indicator for the treatment received,

Ti 2 f0; 1g (with Ti = 0 corresponding to no-training, and Ti = 1 corresponding to training),

and a set of covariates or pretreatment variables, Xi. The realized outcome for unit i is

Yi � Yi(Ti) = Ti � Yi(1) + (1� Ti) � Yi(0).

We are interested in the average training e�ect for the Di = 1 population:

�1 = E[Yi(1)� Yi(0)jDi = 1];

or the average treatment e�ect for a subpopulation within this program,

�1(x) = E[Yi(1)� Yi(0)jDi = 1; Xi = x]:

We wish to estimate this on the basis of N observations (Xi; Di; (1�Di) � Ti; (1�Di) � Yi).

That is, for units with Di = 0 we observe the covariates Xi, the program indicator Di, the
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treatment Ti and the actual outcome Yi. For units in the second program with Di = 1 we

observe covariates Xi and the program indicator Di but neither the treatment status nor the

realized outcome.

We assume that in the Di = 0 program assignment was random:

Assumption 1 (Random Assignment)

Ti ?
�
Yi(0); Yi(1)

� ���� Di = 0:

Random assignment of subjects to trainee and control status implies we can estimate the

average e�ect of training in the initial implementation by comparing average outcomes by

training status:

Lemma 1 (Identification of Average Treatment Effects Given Random As-

signment)

Suppose Assumption 1 holds. Then:

(i) the population average treatment e�ect, �0 = E[Yi(1) � Yi(0)jDi = 0], is equal to

E[YijTi = 1; Di = 0] � E[YijTi = 0; Di = 0] which can be estimated from the population

distribution of outcomes and treatment indicators.

(ii) the average e�ect within subpopulations de�ned by covariates, �0(x) = E[Yi(1)�Yi(0)jXi =

x;Di = 0], is equal to E[YijTi = 1; Di = 0; Xi = x] � E[YijTi = 0; Di = 0; Xi = x] which

can be estimated from the population distribution of outcomes, covariates, and treatment

indicators.5

Proof: See Appendix A

5Note that in the evaluation of training programs �0 is typically the average e�ect of interest. This is
so if the subpopulation subject to randomization is the target population that otherwise would be provided
with some set of training services.
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In other words, random assignment solves the problem of causal inference by eliminating

any bias from comparisons of trainees and controls.

The simplest condition under which we can estimate the average e�ect for the Di = 1

program is if location is random with respect to outcomes:

Assumption 2 (Random Location)

A location (or program) is said to be random if

Di ?
�
Yi(0); Yi(1)

�
:

Unlike random assignment of treatment, the mechanism that would guarantee this assump-

tion is not very practical. In particular, the only way to guarantee this assumption by

design is to randomly assign units in the population to di�erent locations. Note that it is

not su�cient to randomly choose the location of the initial implementation.6 In general, one

suspects that units are not randomly assigned across locations, rather units (individuals)

choose where to live.

Random location implies that the joint distribution of outcomes is the same in both

subpopulations, and hence the expected average outcomes are the same in the two imple-

mentations of the program. Combined with random assignment in the initial program, this

implies that the average e�ect in the second program is identi�ed:

Lemma 2 (External Validity Given Random Location)

Suppose assumptions 1-2 hold. Then:

E[Yi(1)� Yi(0)jDi = 1] = E[YijTi = 1; Di = 0]� E[YijTi = 0; Di = 0]:

6We note that although not su�cient for identifying the average e�ect of a speci�c program, it can be
of interest to randomly select locations/programs as was done in the National JTPA Study. This type
of randomization, discussed in Hotz (1992), is appropriate when interest centers on obtaining an average
treatment e�ect for a population of programs.
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Proof: see Appendix A.

The random location assumption can be relaxed in the presence of pretreatment variables:

Assumption 3 (unconfounded location)

Location of program is unconfounded given pretreatment variables Xi if

Di ?
�
Yi(0); Yi(1)

� ���� Xi: (1)

In addition we require complete overlap in the covariate distributions:

Assumption 4 (complete overlap)

There is complete overlap in the distribution of the pretreatment variables Xi if

0 < Pr(Di = 1jXi = x) < 1;

for all x in the support of X.

The complete overlap assumption implies that for all values of the covariates one can �nd

units in both subpopulations, or, alternatively, that the support of the covariate distributions

is identical in the two subpopulations. If it is not satis�ed, one can rede�ne the estimand

of interest as the conditional treatment e�ect in the subpopulation with common covariate

support, essentially dropping units with covariates outside the common support.

Under Assumptions 1, 3, and 4, the following results holds:

Lemma 3 (External Validity Given Unconfounded Location)

Suppose assumptions 1, 3, and 4 hold. Then:

E[Yi(1)� Yi(0)jDi = 1]

= E
�
E[YijTi = 1; Di = 0; Xi]� E[YijTi = 0; Di = 0; Xi]

����Di = 1
�
:
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Proof: See Appendix A.

Unconfounded location implies that within subpopulations that are homogeneous in co-

variates, that is, conditional on covariates, the average treatment e�ects in the two locations

are identical. Complete overlap implies that in each subpopulation it is feasible to estimate

these e�ects. Therefore, we obtain the population average training e�ect by averaging over

the \within" group training e�ect estimates.

There are two aspects of Assumption 3, the key to identi�cation, worthy of comment.

First, note the similarity between the unconfounded location assumption and the uncon-

founded assignment assumption that is often made in non-experimental evaluations. The

precise formulation of unconfounded treatment assignment (Rosenbaum and Rubin, 1983),

is

Ti ?
�
Yi(0); Yi(1)

� ���� Xi: (2)

This similarity underscores the symmetry between the two parts of the prediction problem:

evaluation of the initial program and generalization to the new program. In substantive

terms, the two assumptions, however, are very di�erent. Randomization of treatments within

a site guarantees unconfoundedness of the assignment { it does not address the unconfound-

edness of location per se. Even though the decision about where to implement the initial

version of the program is typically out of the control of the populations involved, location

is typically the individuals' choice. In other words, unconfoundedness of treatment assign-

ment is often a design issue, whereas unconfoundedness of location is likely to be a modeling

issue. In the absence of detailed background characteristics on the individuals, there is no

compelling reason to think that the unconfounded location assumption is plausible. On

the other hand, if the second implementation is in the same geographical area and occurs
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shortly after the initial implementation, unconfoundedness of location may well be plausible,

without speaking to the plausibility of the unconfounded assignment assumption.

The second comment is that the prediction problem, under the assumptions invoked,

has a missing data interpretation. Under the prediction problem, we are interested in the

average di�erence between trainees and controls in the Di = 1 subpopulation given random

assignment of the treatment in this subpopulation. Our unconfounded location assumption,

in the presence of random assignment of treatment, essentially amounts to assuming that

the missing outcomes, for the Di = 1 subpopulation, are Missing At Random in the sense of

Rubin (Rubin, 1976). To see this, note that for units with Di = 1, the treatment indicator Ti

and the outcome Yi are missing, that is, not observed. The Missing At Random assumption

implies that

Di ?
�
Yi; Ti

� ���� Xi:

Furthermore, the random assignment of treatment assumption implies

Di ? Ti j Xi:

Combining these two assumptions implies that

Di ? Yi

���� Xi; Ti:

Substituting for Yi = Ti � Yi(1) + (1� Ti) � Yi(0), this implies

Di ? Yi(0)
���� Xi; Ti = 0; and Di ? Yi(1)

���� Xi; Ti = 1:

Since Di ? TijXi by random assignment, it follows that conditioning on Ti is immaterial so

invoking the MAR assumption amounts to assuming

Di ? Yi(0)
���� Xi; and Di ? Yi(1)

���� Xi;
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which is the essence of the unconfounded location assumption.

3. Macro Effects

A threat to the validity of the weighted \within" estimators of treatment e�ects implied

by Lemma 3 is the presence of \macro e�ects." Di�erences between the two populations may

be unadjustable, or the environments of the two populations may di�er. Such di�erences

can be violations of either the unconfounded location assumption or the complete overlap

assumption.

First, there may be an additional covariate that is correlated with the outcomes of interest

and has a distribution that di�ers across the two locations. If we do not observe this variable,

its presence may prevent recovery of the average e�ects in the second location. For example,

suppose the training program is more e�ective for younger people than for older people,

and hence age is correlated with the outcome. If the average age di�ers between locations,

the average treatment e�ect in the second location cannot be estimated using data from

the �rst location unless the pre-training variables include age. We refer to this as the

\unobserved covariate" interpretation, viewing the macro e�ects problem as one of violating

the unconfounded location assumption.

A second interpretation also postulates the existence of an additional variable such that

the unconfounded location assumption is satis�ed conditional on this variable. If the dis-

tribution of this variable does not overlap in the two populations, even observing it does

not permit estimation of average causal e�ects. For example, if the initial implementation

is only on men, and the second implementation is only on women, di�erential e�cacy of the

program by gender may preclude accurate prediction of the average e�ect of the second im-

plementation. We refer to this as the \no-overlap" interpretation, viewing the macro e�ects
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problem as one of violating the complete overlap assumption.

Although formally distinct, the two interpretations often capture the same problem.

Suppose, for example, that the policy maker is concerned with di�erences in the demand for

labor in two programs in di�erent locations. In this case, one should adjust for individual-

level di�erences in demand conditions. One can attempt to approximate the individual-level

demand conditions by controlling for aggregate demand conditions. In this case, there may

be no overlap in the (possibly within-location, degenerate) distribution of the covariate.

Unfortunately, it may not be possible to rule out macro e�ects by design. A typical

case is one in which the initial implementation occurred in the past and the policy maker

is interested in the e�ect of a future implementation. Given the di�erence in the timing

of implementation, there is no guarantee that conditions are ever similar enough to allow

accurate predictions. The design strategies for addressing this problem involve: (i) using

initial implementations in locations that are as similar as possible in characteristics and time

to the location of interest and/or (ii), collecting as much detail as possible on covariates that

can proxy for di�erences in conditions across locations and time.

4. Heterogeneous Treatments

A complication that has been ruled out so far is heterogeneity in treatments. It is rare,

even in the context of randomized evaluations of training programs, that all individuals

receive exactly the same treatments in a particular program. More typically, individuals

are assigned to di�erent \tracks" based on additional screenings that occur after an initial

random assignment to \training" or \no-training". Some tracks may involve classroom

training, while others involve on-the-job training or job search assistance. Here we investigate

the implications of treatment heterogeneity on strategies for predicting the e�ect of future
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programs.

Formally, consider a training program with K + 1 training components. For each train-

ing component t, with t 2 T = f0; 1; : : : ; Kg, and each unit i, with i = 1; : : : ; N , there is a

potential outcome Yi(t). For unit i, ~Ti 2 T is the treatment component received. The re-

searcher only observes the binary treatment assignment, Ti = 1f ~Ti � 1g. The null treatment

Ti = 0 corresponds to no training at all. Randomly selected individuals are assigned to this

option in the initial location, or

Ti ?
n
Yi(0); : : : ; Yi(K)

o ���� Di = 0:

Di�erent treatment components may correspond to various treatment options, e.g., com-

binations of classroom training and job search assistance. Conditional on getting training

(Ti = 1), assignment to the di�erent training components is not necessarily random in the

initial location. That is

~Ti 6?
n
Yi(0); : : : ; Yi(K)

o ���� Di = 0:

To de�ne the average outcome under training in the new location we assume there is some,

possibly stochastic, rule that determines the treatment component, given assignment to train-

ing. This rule can be summarized by the conditional distribution of ~Ti given training (Ti = 1),

in each location Di, given covariates Xi, and given potential outcomes (Yi(0); : : : ; Yi(K)).

Under the unconfounded location assumption, it is still true that average outcomes in the

new location, conditional on no training, can be estimated without additional assumptions.

Lemma 4 (External Validity for Control Outcomes Given Unconfounded

Location under Treatment Heterogeneity)

Suppose Assumptions 1, 3, and 4 hold. Then:

E[Yi(0)jDi = 1] = E
�
E[YijTi = 0; Di = 0; Xi]

����Di = 1
�
:
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Proof: See Appendix A

However, in general one cannot estimate the average outcomes for trainees:

E[Yi(1)jDi = 1] 6= E
�
E[YijTi = 1; Di = 0; Xi]

����Di = 1
�
:

Hence only comparisons between controls in both locations would be valid and accurate

predictions of causal e�ects cannot be obtained without additional assumptions.

Under two assumptions, estimation of the average e�ect of the second implementation is

still feasible. The �rst assumption requires that the assignment rule be identical in the two

locations:

Assumption 5 (Conditional Independence of Assignment and Location)

Di ? ~Ti

���� Yi(0); : : : ; Yi(K); Xi:

The second assumption requires that assignment is independent of potential outcomes, given

covariates in each location:

Assumption 6 (Unconfounded Assignment)

~Ti ? Yi(0); : : : ; Yi(K)
���� Xi; Di:

This second assumption implies that assignment is unconfounded in both locations. Hence,

if one actually observed the treatment component, one could estimate the average e�ect

for each component by adjusting for covariates. Even without observing the treatment

component, we can now estimate the average e�ect of assignment to training. The �rst step
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is the implication of the two assumptions that assignment to treatment is independent of

location and potential outcomes within subpopulations de�ned by covariates:

~Ti ? Di; Yi(0); : : : ; Yi(K)
���� Xi:

Hence:

Lemma 5 (External Validity for Trainee Outcomes Given Unconfounded

Location under Treatment Heterogeneity)

Suppose assumptions 1, 3, 4, 5, and 6 hold, with Assumption 3 now assuming independence

of Di and the set of K + 1 potential outcomes conditional on Xi. Then:

E[Yi(1)jDi = 1] = E
�
E[YijDi = 0; Ti = 1; Xi]

����Di = 1
�
:

Proof: See Appendix A.

Violations of Assumption 6, unconfounded assignment, are di�cult to overcome. When

assignment is related to potential outcomes, it is di�cult to estimate the e�ect of di�erent

treatment components in the initial implementation, even if the treatment component is

observed. In this case, there is little hope of using the results from an initial implementation,

with its particular assignment rule, to predict the e�ect of future assignment rules. Violations

of Assumption 5 do not necessarily invalidate all methods of inference. However, in order

to fully adjust for di�erences in assignment rules, one needs to observe the actual treatment

component received by each unit. With only limited information on treatments, such as the

distribution of rates of participation in various program components for both locations, one

may still be able to calculate bounds on the average treatment e�ects (e.g., Manski, 1997;

Hotz, Mullin, and Sanders, 1997).
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5. Evaluating Unconfoundedness Using Randomized Experiments

Suppose we have available two randomized experiments that evaluate the same training

program in two di�erent locations. Under unconfounded location, we can estimate the

average outcome for controls in the second location in one of two ways. First, we can

estimate the average outcome directly with the estimator

dE[Yi(0)jDi = 1] =
X

ijDi=1

Yi � (1� Ti)
� X

ijDi=1

(1� Ti):

using the equality

E[Yi(0)jDi = 1] = E[YijDi = 1; Ti = 0];

implied by random assignment in the second experiment. Second, we can exploit the equality

E[Yi(0)jDi = 1] = E
�
E[Yi(0)jDi = 1; Xi]

����Di = 1
�

= E
�
E[Yi(0)jDi = 0; Xi]

����Di = 1
�
:

Estimators based on the second approach do not use the outcomes in the second experiment,

and therefore are functionally independent of the �rst estimator. Under unconfounded loca-

tion, the two estimators should be close and statistical tests can be based on their comparison.

A similar argument can be used to construct tests based on outcomes for trainees. Finally,

we can combine the two procedures to get estimates for the average causal e�ect in the

second location. There is, of course, the possibility that biases in outcomes for trainees and

controls o�set each other and lead to unbiased estimates of the average causal e�ect. This

could occur in the presence of persistent additive trends in outcomes when locations are

separated by time. Transformations of the outcomes could then be used to eliminate such

trends.
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In practice, this procedure requires estimation of the average outcome conditional on

di�erent sets of covariates. With many covariates this may be a di�cult task. However,

techniques identical to those based on the propensity score in program evaluation can be

used to reduce the dimension of the conditional estimation problem (e.g., Rosenbaum and

Rubin, 1983, 1984). These dimension-reduction procedures rely on the predicted location

given covariates, or the location score:

l(x) = Pr(Di = 1jXi = x):

The unconfounded location assumption given covariates implies unconfounded location given

the location score:

Di ? (Yi(0); Yi(1))
���� l(Xi):

Hence we can modify the equalities that form the basis for the second estimator to condition

solely on the location score rather than on the entire set of pre-training variables:

E[Yi(0)jDi = 0] = E
�
E[Yi(0)jDi = 0; l(Xi)]

����Di = 1
�

= E
�
E[Yi(0)jDi = 0; l(Xi)]

����Di = 1
�
:

In practice we estimate the location score l(x), using a exible parametric model such as

a logistic regression model, possibly with higher-order terms and interactions by inspecting

balance within blocks de�ned by the location score. The same strategies for searching for

the speci�cation of the standard propensity score are relevant here. See Dehejia and Wahba

(1998) for more details on implementing the propensity score methodology.
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6. Data

We investigate the problem of predicting the e�ects of future training programs from

past experiences using data from four experimental evaluations of WIN (Work INcentive)

demonstration programs. The programs were implemented in Arkansas, Virginia, San Diego,

and Baltimore. These programs di�er in timing, location, target population, funding and

program activities. We briey describe each of the four programs.7

The training services o�ered in the Arkansas WORK program consisted primarily of

group job search and unpaid work experience for some trainees. It targeted AFDC applicants

and recipients with children at least three years old, and the average cost of providing

these services was $118 per trainee. The evaluation of this program started in 1983 and

covered two counties. The training services under the Virginia Employment Services Program

(ESP) included both job search assistance and some job skills training and targeted AFDC

applicants and recipients with children at least six years old. It cost an average of $430

per trainee. This evaluation also began in 1983 and included �ve counties. The Saturation

Work Initiative Model (SWIM) in San Diego targeted AFDC applicants and recipients with

children at least six years old and provided job search assistance, skills training and unpaid

work experience. The average cost in this program was $919 per trainee and its evaluation

was begun in 1985. Finally, the Baltimore Options program provided job search, skills

training, unpaid work experience and on-the-job training and targeted AFDC applicants

and recipients with children at least six years old. The Baltimore program was the most

expensive of the four programs, with an average cost of $953 per trainee. This evaluation

began in 1982.

7See Gueron and Pauly (1991), Friedlander and Gueron (1992), Greenberg and Wiseman (1992), and
Friedlander and Robins (1995) for more detailed discussions of each of these evaluations.

19



Four modi�cations were made to the basic data sets. First, individuals with children

less than six years old were excluded from the analyses because of the severe imbalance in

their distribution across programs. (Individuals with children under six were only targeted

for inclusion in Arkansas.) Second, men were excluded from our analyses, as men were not

part of the target population in Virginia and comprised only small fractions of the sample

in the other locations (10% in Maryland, 9% in San Diego and 2% in Arkansas). Third,

women without children were also excluded from the analyses. Although such households

were present in all locations, they never made up more than 4% of the sample in any of the

locations. Finally, we added two aggregate variables, the employment to population ratio

and real earnings per worker, each measured at the county level, to account for di�erences

in labor market conditions across the four locations.

Table 1 gives means and standard deviations for all pre-training variables and outcomes

common to all four programs for the main sample used in the analyses. The individual pre-

training variables fall into two categories: personal characteristics and earnings histories. We

observe whether the woman has a high school diploma, whether she is non-white, whether

she ever married, and whether the number of children is more than one. The earnings history

variables consist of total earnings for each of the four quarters preceding randomization. We

report summary statistics for the actual earnings and for an indicator of positive earnings

in each of the four quarters. For the three programs other than San Diego, a t{statistic is

reported for each variable corresponding to the test of the null hypothesis that the average

value in that program is the same as the average in San Diego. These tests anticipate an

attempt to predict average causal e�ects of the training program in San Diego using results

from the other three locations. Finally, summary statistics are provided for the two post-

training outcomes used in the analyses, employment and earnings for the �rst and second
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year respectively, as well as estimates of the average e�ects of the four programs.

The t-statistics show clearly that the four locations are very di�erent in terms of the

populations served. For example, in Arkansas approximately 16% of the population was

working in any given quarter prior to randomization, whereas in Baltimore the incidence of

working prior to randomization was as high as 30%. The percentage white ranged from 16%

in Arkansas to 33% in Virginia. The percentage with a high school degree ranged from 40%

in Baltimore to 55% in San Diego. Therefore, it is not surprising that post-training earnings

also di�er considerably by location. The estimates of the e�ect of the training program

also di�er across the four locations. In the �rst year, the e�ect of training on employment

ranges from two percent in Arkansas to twelve percent in San Diego. The same e�ect in the

second year varies from three percent in Baltimore to nine percent in San Diego, with both

di�erences statistically signi�cant.

7. Analyses

We focus on San Diego as the program whose results we wish to predict from the results

of the other three programs. San Diego was chosen largely because the nature and cost of the

SWIM program di�ered markedly from the other locations.8 Also, San Diego's population

had relatively high average earnings compared to the other three programs. Finally, San

Diego was geographically separated from the other programs. Considering these di�erences,

one might expect that the treatment e�ects for the San Diego program would be the most

di�cult program to predict, given data from the other three implementations.

We focus on six issues for predicting the e�ect of the San Diego program using data from

the other programs. First, we examine the importance of restricting the samples so as to

8The San Diego SWIM program and the Baltimore Options program were the two most expensive pro-
grams, at $919 and $953 per trainee respectively, compared to $430 for Virginia and $118 for Arkansas.

21



ensure overlap in the distribution of pre-training variables. Second, we predict outcomes for

controls and trainees separately to highlight the potential for heterogeneous training e�ects.

Third, we analyze the sensitivity of the results to the choice of location. Fourth, we consider

alternative methods of prediction, including least squares adjustment and propensity score

methods. Fifth, we consider the importance of the individual-level pre-training variables.

Finally, we investigate the importance of using aggregate, county-level information to account

for labor market condition di�erences between San Diego and the other three locations.

One issue that requires some additional motivation is the interest in predicting average

outcomes separately for controls and trainees, in addition to predicting average treatment

e�ects. One can argue that it is su�cient to be able to predict average treatment e�ects

and that failure to predict average outcomes for controls and trainees separately would be

of little concern. However, unless we can predict the distribution of outcomes for trainees

and controls in the second implementation, we cannot predict the average training e�ect

for all transformations of any particular outcome variable. Speci�cally, suppose we can

predict the average e�ect of the training on the level of earnings. Unless we can predict the

distribution of earnings for both trainees and controls, in general this does not imply that we

can predict the average e�ect of training on the logarithm of earnings or on the probability

of having positive earnings. Abandoning the search for methods that allow prediction of

average outcomes for trainees and controls in favor of a focus solely on di�erences implies

tying oneself to a speci�c transformation of the outcome.

7.1 Outcomes

We consider the following four outcomes: an indicator for employment and total earnings,

each measured in the �rst and second years after randomization. For each of these outcomes,

we make four comparisons: San Diego with all three other locations together and San Diego
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with each of the three other locations separately. For each pair of locations and for each

outcome, we then make predictions of average outcomes for controls, for trainees, and for

average program e�ects. Finally, for each comparison we use a number of di�erent procedures

for estimating the di�erence, as described below.

7.2 Methods

We predict outcomes in San Diego using four methods. First, we predict the outcomes

in San Diego using the average outcome in the other locations. This \level" prediction

does not adjust for any of the di�erences between San Diego and the other locations. The

second method predicts the gain (the change in earnings or employment relative to the pre-

randomization year) in San Diego using the gain in the other locations. Third, we use least

squares methods to predict the outcomes in San Diego using some of the pre-training vari-

ables. Fourth, we predict San Diego outcomes using propensity score methods (Rosenbaum

and Rubin, 1983, 1984; Dehejia and Wahba, 1998). For details on the implementation of

each of these methods, see Appendix B.

For the least squares and propensity score methods, we also must choose pre-training

variables for the adjustment procedures. The pre-training variables included are the four

personal characteristic variables (indicators for high school degree, non-white, never married,

one child), four quarters of pretreatment earnings, and four dummies for whether these

quarterly pre-training earnings are positive. In addition, other pre-training variables are

de�ned at a more aggregate level, such as the unemployment rate or price levels. Ideally

we would like to compare individuals faced with the same local unemployment rate and

price level. This is less likely to be feasible, however, given the few locations for which we

have data. Hence, adjustments for di�erences in these aggregate pre-training variables by

necessity rely more on modelling and smoothing assumptions.
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In the analyses below we incorporate two aggregate measures of labor market conditions:

the ratio of employment to population, and average real earnings per worker. Both are

measured at the county level. We use these in two di�erent ways. First, we include both

variables as regressors in least squares adjustments. Second, we deate the individual-level

earnings measures by the ratio of real earnings in San Diego to the average real earnings in

the alternative location. Speci�cally, if individual i is from Arkansas, we modify earnings

in the �rst quarter prior to randomization by the ratio of real earnings in the year prior to

randomization in San Diego to real earnings in the year prior to randomization in Arkansas.

These ratios may di�er from because of di�erences in location and in the calendar years

in which the various evaluations were conducted. The use of these adjustments are an

attempt to make the earnings measures more comparable. Without such transformations

it is di�cult to believe that earnings histories for individuals in Arkansas are informative

about individuals in San Diego with identical earnings histories.

8. Results

8.1 The Importance of Overlap

For most comparisons, we construct a basic data set by discarding observations with

little or no overlap in their distributions across locations, as described in Section 6. Tables 2

and 3 provide some detail on these discarded observations and the motivation for discarding

them. In Table 2, we present the sample means of variables for the discarded observations in

each location. We test the null hypothesis that the average for these discarded observations

is the same as the average for the basic data set in San Diego. Note that these t-statistics

are not much larger than those in Table 1, which correspond to a test of mean di�erences

using the observations we do not discard. This suggests that discarding these observations
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may not a�ect our results.

To further investigate the importance of overlap, we present more detailed tests on the

discarded observations for the Baltimore program in Table 3. The discarded observations for

Baltimore consist of men, women with children under six, and women with no children. Table

3 shows that insigni�cant di�erences between discarded Baltimore observations and the San

Diego sample is often the result of o�setting di�erences. For example, consider earnings in

quarter �4. Earnings for men in Baltimore are signi�cantly higher than earnings in the basic

San Diego sample (women with children over six years old). However, earnings for women

with children under six in Baltimore are much lower than earnings in the basic San Diego

sample. Combining the two discarded groups leads to a sample that is, on average, not so

di�erent from the basic San Diego sample. However, it is di�cult to believe that combining

men and women with young children provides a suitable control group for women with older

children.

8.2 Predicting Average Outcomes for Controls and Trainees versus Pre-

dicting Average Training Effects

Table 4A presents the prediction errors from predicting the �rst outcome, average earn-

ings in the �rst post-randomization year, for controls. In the �rst column, average outcomes

are predicted for San Diego using all three other locations. The �rst row uses the average

of �rst-year earnings in the other locations as a predictor for average �rst-year earnings in

San Diego. It shows that earnings in the �rst post-randomization year are $240 higher in

San Diego than in the other three locations. This di�erence of $240 is statistically not sig-

ni�cantly di�erent from zero, with a t-statistic of 1.8. In the second row, the average gain

in earnings for San Diego is predicted using the average gain in the other three locations.

Now the discrepancy is only $130. Rows 3 and 4 predict the average �rst-year earnings in
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San Diego using least squares and propensity score methods. Both predictions underesti-

mate average earnings by $140. The full set of individual background characteristics, as

well as aggregate variables, are used for this prediction. Tables 5A-7A report results for the

other outcomes. Tables 4B-7B report results for trainees, and Tables 4C-7C predict average

training e�ects.

For the two earnings levels outcomes, earnings in the �rst and second year following

randomization, there is a very clear result. We can predict the average outcomes for the

controls fairly accurately, but cannot predict the outcomes for trainees very well. Consider

earnings in the �rst year. Using data from all three alternative locations, both least squares

and propensity score predictions for average earnings in San Diego are o� by approximately

$140 for controls. Testing the null hypothesis that the prediction is equal to the average

outcome in San Diego leads to t-statistics of 1.2 and 1.1 for least squares and propensity score

estimates, respectively. For trainees, the di�erence between predicted and actual averages

are $290 and $320, signi�cantly di�erent from zero with t-statistics of 2.9. The second

year earnings results are equally clear. For controls, the predictions, using least squares

and propensity score methods, are o� by $20 and $50 respectively, and are not signi�cantly

di�erent from zero. For trainees, the corresponding prediction errors are $180 and $250, with

t-statistics of 1.3 and 1.6. In both cases, we cannot predict the average treatment e�ect in

San Diego because we fail to predict one of the components.

For the employment indicators, the results are not quite as clear. In the �rst year after

randomization, we clearly predict average outcomes better for controls than for trainees.

However, in the second year, outcomes are more accurately predicted for the trainees than

for the controls. In this respect, it is useful to consider the patterns of employment in the

di�erent locations. In the year prior to randomization, the fraction with positive earnings in
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San Diego was 0.390, higher than Arkansas at 0.260 and Virginia at 0.365, but lower than

Baltimore at 0.442. During the �rst year after randomization, the proportion of controls

with positive earnings in San Diego was 0.401, compared to 0.267 in Arkansas, 0.426 in

Baltimore and 0.454 in Virginia. In the second post-randomization year, the proportions

are 0.398 in San Diego, 0.271 in Arkansas, 0.465 in Baltimore, and 0.461 in Virginia. Thus,

it appears that employment trends changed substantially during the second year of the

Baltimore evaluation. Given the similarities between Baltimore and San Diego in earlier

outcomes, this contributes heavily to the failure to predict average employment rates in the

second post-randomization year.

8.3 Single Locations versus Combined Locations

The four locations di�er considerably in background characteristics and labor market

histories. For example, 56% of San Diego observations have a high school diploma, compared

to only 40% in Baltimore and 43% in Virginia. In the quarter prior to randomization, 27% of

the sample from San Diego had positive earnings, compared to only 17% in Arkansas, 29% in

Baltimore and 25% in Virginia. This suggests that a single comparison group might not work

very well in predicting outcomes in San Diego. This hypothesis is supported by the data.

Consider the �rst-year earnings for controls. We predict average earnings in San Diego using

all three alternative locations (with a prediction error of $140), but the prediction error is

$770 using only Arkansas data. Similarly, we predict employment in the �rst year accurately

using the combined control group (a prediction error of 3%), but the prediction performs

quite poorly using only the Virginia data (a prediction error of 8%). Only the Baltimore

control group performs consistently as well as the combined control group, but not better.

Therefore, using information from several alternative locations rather than a single location

improves prediction considerably, presumably because combining the locations increases the
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degree of overlap with the San Diego sample.

8.4 Least Squares versus Propensity Score Methods

In all cases, the least squares and propensity score estimates are fairly close, both in point

estimates and in estimated precision. For example, in Table 4A, the average prediction error

for controls using the three alternative locations is $140 for least squares, with a standard

error of $120, and $140 with a standard error of $130 for the propensity score estimates. This

suggests that the distribution of covariates is reasonably similar between San Diego and the

other three locations and that the linearity assumptions in the least squares estimates do not

a�ect the estimates too much. See Imbens, Rubin and Sacerdote (1999) for more discussion

on this issue. More evidence supporting this interpretation is the fact that larger di�erences

between least squares and propensity score estimates occur in comparisons between San

Diego and single alternative locations, such as Arkansas. In general, however, least squares

estimates perform fairly well.

8.5 Choosing Pre-training Variables

Least squares and propensity score estimates generally perform better than predictions

based on simple di�erences in levels or gains, especially when prediction is based on a single

alternative location. Consider, for example, the estimates based on the average outcome in

Arkansas in Table 4A. This simple \level" prediction leads to an average prediction error of

$1,070, with a t-statistic of 6.7. The least squares estimate is much smaller at $570 with

a t-statistic of 2.5. Using the Baltimore data to predict the average gain in San Diego has

a prediction error of $270, with a t-statistic of 1.8. The least squares error again is much

smaller at negative $30.

However, results in Tables 4-7 compare estimates using no pre-training variables and

estimates using the full set of available pre-training variables. Tables 8-11 examine these
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comparisons in more detail for controls, using least squares adjustment. In the �rst three

rows of Tables 8-11, we estimate the average outcome in San Diego with the average outcome

in the other locations, as in the \level" row in Tables 4-7. The �rst row uses the full data set.

Results in the second row discard observations for men, women without children and women

with children under six years old. In the third row, we adjust earnings using the county-level

real earnings measure. In the fourth row, we use least squares methods to adjust for the four

personal characteristics (indicator for high school degree, non-white, never married, and one

child). In the next row, we also adjust for the level of earnings and indicators for positive

earnings in each of the four quarters preceding randomization. The last row adds the two

aggregate variables to the least squares regression.

Restricting the data set and adjusting earnings appears to be more important than the

exact choice of pre-training variables. This general �nding di�ers somewhat from previous

work in the non-experimental evaluation literature, where it is typically very important to

adjust for detailed labor market histories. See for example, Ashenfelter and Card (1985),

Card and Sullivan (1988), Lalonde (1986), and Dehejia and Wahba (1998). One reason for

this di�erence may be the nature of the non-experimental control groups. In many of these

studies, e.g., Lalonde (1986), the control groups are constructed from data sets collected

outside the scope of the training programs, such as the Current Population Survey (CPS)

and the Panel Study of Income Dynamics (PSID). Therefore, it is not surprising that such

comparison groups di�er substantially from the target population for these programs. In our

case, the control groups are from experiments on relatively similar target populations, namely

individuals eligible for training programs. After removing any non-overlapping groups in

these samples, the groups appear to be quite similar so that simple adjustments are adequate

to remove remaining biases.
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8.6 Aggregate Confounders

We use the aggregate variables in two ways. First, we include them as pre-training vari-

ables in the regression adjustment procedures. We do not include them in the speci�cation

of the propensity score because there is little overlap in their distributions across locations.

In the propensity score methods, we use the aggregate variables in the within-block least

squares adjustment only. Second, we use the real earnings measure to adjust earnings, mak-

ing them more comparable across time and location. Both aspects appear to contribute to

the ability to predict control outcomes.

9. Conclusion

Using training programs from three very di�erent locations (Baltimore, Arkansas and

Virginia), we attempt to predict the e�ect of a training program in San Diego. We �nd

that we are able to predict the average outcomes for non-trainees fairly accurately, thus

eliminating selection bias. Important for achieving this results is the inclusion of pre-training

earnings, some personal characteristics, and some measures of aggregate di�erences across

locations. Thus, we �nd that we require less detail on background information to predict

control outcomes relative to other studies which use non-experimental control groups from

large surveys such as the CPS. For example, Dehejia and Wahba (1998) require two years

of earnings information to estimate training e�ects using controls from the PSID and CPS

as substitutes for experimental controls. Heckman, Ichimura, Smith and Todd (1998) also

�nd that adjustment for detailed pre-training di�erences (including earnings) is required for

removing most of the average bias. Using control groups from other experimental evaluations

appears to lead to more suitable comparison groups in our analyses, even though these

experiments are conducted in very di�erent locations and for di�erent training programs. In
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contrast to these results for non-trainees, however, we cannot predict outcomes for trainees

accurately.

Our interpretation for our di�erential success in predicting the outcomes of controls

versus trainees across locations is as follows. Although the populations di�er considerably

across the four locations, enough detail exists on pre-training variables to predict earnings

and employment gains within subpopulations in the absence of training. These �ndings are

consistent with recent studies in the literature on non-experimental evaluations of training

programs. This literature does not speak, however, to the di�culties in predicting outcomes

for trainees using data from di�erent implementations of the program. Here we �nd that

none of the adjustment procedures succeeds in removing biases for trainees. The most

plausible interpretation is that di�erences in the exact nature of the programs, such as the

mix of components, are responsible for this failure. In that case, it appears to be di�cult to

make accurate predictions of the e�ects of future implementations of these training programs

without more detail on the exact nature of the programs at the individual level.

The results support the importance of collecting detailed pre-training data, even in the

context of randomized experiments, for extrapolation to other populations. They also suggest

that more detail on the exact nature of the programs than is typically provided is necessary

for experimental or non-experimental evaluations of existing programs to be useful guides

for policy makers. How much and what type of detail about program structure and training

components received is needed is a subject for future investigation.
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Appendix A: Proofs

Proof of Lemma 1:

E[Yi(1)� Yi(0)jDi = 0] = E[Yi(1)jDi = 0]� E[Yi(0)jDi = 0]:

By Assumption 1 this is equal to

E[Yi(1)j; Ti = 1; Di = 0]� E[Yi(0)jTi = 0; Di = 0];

which proves the �rst part. The same argument, conditional on Xi = x proves the second

part. 2

Proof of Lemma 2:

We can write

E[Yi(1)� Yi(0)jDi = 1] = E[Yi(1)jDi = 1]� E[Yi(0)jDi = 1]:

By random allocation this is equal to

E[Yi(1)jDi = 0]� E[Yi(0)jDi = 0];

and by random assignment in the initial location this is equal to

E[Yi(1)j; Ti = 1; Di = 0]� E[Yi(0)jTi = 0; Di = 0]

= E[YijTi = 1; Di = 0]� E[YijTi = 0; Di = 0];

which completes the proof. 2

Proof of Lemma 3:

Using the same argument as in the proof for Lemma 2, we can show that

E[Yi(1)� Yi(0)jXi = x;Di = 1]
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= E[YijXi = x; Ti = 1; Di = 0]� E[YijXi = x; Ti = 0; Di = 0]:

Then

E[Yi(1)� Yi(0)jDi = 1] = E
h
E[Yi(1)� Yi(0)jXi = x;Di = 1]jDi = 1

i
;

which �nishes the proof. 2

Proof of Lemma 4:

This proof is based on the same argument as the proof for Lemma 3:

E[Yi(0)jXi = x;Di = 1] = E[YijXi = x; Ti = 0; Di = 0];

and

E[Yi(0)jDi = 1] = E
h
E[Yi(0)jXi = x;Di = 1]jDi = 1

i
;

which �nishes the proof. 2

Proof of Lemma 5

We can write

E[YijDi = 1; Ti = 1; Xi = x] = E[
KX
t=1

Yi(t) � 1f ~Ti = tgjDi = 1; Ti = 1; Xi = x]

=
KX
t=1

E[Yi(t)j ~Ti = t; Di = 1; Ti = 1; Xi = x] � Pr(Ti = tjDi = 1; Ti = 1; Xi = x):

By unconfounded assignment,

E[Yi(t)j ~Ti = t; Di = 1; Ti = 1; Xi = x] = E[Yi(t)jDi = 1; Ti = 1; Xi = x];

and by unconfounded location this is equal to

E[Yi(t)jDi = 0; Ti = 1; Xi = x]:
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By conditional independence of assignment and location

Pr(Ti = tjDi = 1; Ti = 1; Xi = x) = Pr(Ti = tjDi = 0; Ti = 1; Xi = x):

Putting the two parts together:

KX
t=1

E[Yi(t)j ~Ti = t; Di = 1; Ti = 1; Xi = x] � Pr(Ti = tjDi = 1; Ti = 1; Xi = x)

=
KX
t=1

E[Yi(t)jDi = 0; Ti = 1; Xi = x] � Pr(Ti = tjDi = 0; Ti = 1; Xi = x)

=
KX
t=1

E[Yi(t)j ~Ti = t; Di = 0; Ti = 1; Xi = x] � Pr(Ti = tjDi = 0; Ti = 1; Xi = x)

= E[
KX
t=1

Yi(t) � 1f ~Ti = tgjDi = 0; Ti = 1; Xi = x]

= E[YijDi = 0; Ti = 1; Xi = x]:

Averaging this over the distribution of Xi given Di = 1 gives the desired result. 2
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Appendix B: Estimation Methods

In this appendix we describe the exact implementation of the estimators employed in

the paper. In all the tables we use San Diego as the target program, and attempt to

predict the average outcome for controls or trainees or the average program e�ect using data

from all the other three programs combined, or from one of the other three programs. We

report the di�erence between the actual average of the outcome variable or treatment e�ect

directly estimated from San Diego data and the predicted value using outcomes from the

other locations and pre-training variables from San Diego, as well as t-statistics for the null

hypothesis that this di�erence is zero on average.

We discuss in detail the estimators in the �rst column of Table 4A. In this column the

data used to predict the results for San Diego are from the other three locations combined.

We have three sets of pre-training variables. The �rst, personal characteristics consists of

four dummy variables, indicating whether the woman has a high school diploma, whether

she is white, whether she has ever been married, and whether she has more than one child.

The second set of pre-training variables consists of earnings for each of the four quarters

prior to the job-training program, and four dummy variables, indicating positive earnings in

each of those four quarters. The third set consists of the aggregate measures, the ratio of

employment to population and real earnings per worker, both measured at the county level.

The four outcome variables are: (i) earnings in the �rst four quarters following the ran-

domization, (ii) earnings in the �fth to eighth quarters following the randomization, (iii) an

indicator for positive earnings in any of the �rst four quarters following the randomization,

(iv) an indicator for positive earnings in any of the �fth to eighth quarter following random-

ization. In Tables 4A-C only the �rst outcome variable, earnings in the �rst four quarters
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following randomization is used. Tables 5A-C analyze earnings in the second year, Tables

6A-C analyze the employment indicator for the �rst post-randomization year and Tables

7A-C analyze the employment indicator for the second year.

The di�erent rows in Table 4A refer to the di�erent estimators for the average outcome

for controls in San Diego. That is, in all entries in this table we attempt to estimate average

earnings for control units in San Diego:

�̂c;SD =
X

di=1;ti=0

yi=N10;

where yi, ti, and di, are the outcome for unit i, her training status, and her location, respec-

tively, and Ndt is the number of observations with di = d and ti = t. According to Table 1,

�̂c;SD = 1:77:, or $1,770.

First consider the \level" estimates. Here we predict the average outcome for controls in

San Diego using the average outcome in the other three locations combined. The estimator

for �c;SD in the \level" row is

�̂level
c;SD =

X
di=0;ti=0

yi=N00:

In addition to the di�erence between the direct and indirect estimates �̂c;SD � �̂level
c;SD, we

report the t-statistic testing the null hypothesis that the estimand, �̂level
c;SD; is identical to the

average outcome for controls in San Diego, �̂c;SD.

The second row uses a single pre-training variable, the sum of earnings in the four quar-

ters preceeding randomization to rede�ne the target outcome as the gain in earnings or

employment status in San Diego. Let yi0 denote the pre-randomization value of the outcome

for individual i, and let

�̂c;SD =
X

di=1;ti=0

(yi � yi0)=N10;
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be the direct estimate of the average change in outcome for San Diego. This value can be

calculated from Table 1, which indicates that �̂c;SD = 0:22: The estimator used in the second

row of Table 4A is:

�̂gainc;SD =
X

di=0;ti=0

(yi � yi0)=N00:

Again we report the error, �̂c;SD� �̂gainc;SD, and the t-statistic comparing the direct and indirect

estimates.

The third row uses a linear regression to predict the change for a woman with pre-training

characteristics xi. First we regress the outcome, the change in earnings, on the characteristics

using the observations with di = 0:

�̂ =
� X
ijdi=0;ti=0

xix
0
i

��1� X
ijdi=0;ti=0

xi(yi � yi0)
�
:

Then the predicted value for the average change in San Diego is

�̂olsc;SD =
X

di=1;ti=0

x0
i�̂=N10:

The covariates in this regression include fourteen variables: four dummy variables for per-

sonal characteristics, the level of earnings in each of the four quarters preceding randomiza-

tion, indicators for positive earnings in those four quarters, and the two aggregate measures.

In the estimates based on a single comparison location we drop the aggregate measures that

lead to perfect collinearity.

The fourth row reports results from propensity score procedures. First we divide the

sample into the subsample of women with no pre-training earnings (approximately sixty

percent of our sample) and the subsample of women with positive pre-training earnings in

at least one of the four quarters.
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For the �rst group, there are sixteen possible combinations of the four dummies describing

personal characteristics. Twelve of the sixteen categories contain controls and trainees from

all four locations. In the remaining four categories, women with one child and women with

more than one child were combined to create two additional cells. The two cells are white

women who never married, with and without a high-school diploma. For each San Diego

control observation in these fourteen cells we predict (yi � yi0) by the average value of this

change for observations with the exact same values for x in the other locations. That is, for

all San Diego observations with di = 1, ti = 0, yi0 = 0, and covariates xi, we estimate the

gain by least squares estimates using only the control units in the alternative locations with

the exact same values for the individual level covariates, and as regressors the dummy for

San Diego and the aggregate variables.

For the second group, women with positive earnings in at least one of the four quarters

prior to randomization, we estimate a location score as a logistic function of a set of pre-

training variables. Formally, we �t a logistic model for the indicator for San Diego on a

set of regressors consisting of the four personal characteristics, four earnings levels, the four

positive earnings indicators, and all squared terms and interactions, excluding only those

that lead to perfect collinearity. Let l̂i be the predicted value of the logistic regression for

individuals in this group. We then calculate the quintiles of the distribution of l̂i for control

observations in San Diego with positive pre-training earnings (di = 1, ti = 0, and yi0 > 0).

Based on these quintiles we split the controls with positive pretraining earnings into �ve

groups. Within these �ve blocks we estimate the average outcome in San Diego using least

squares with a dummy variable for San Diego and the same pre-training variables as before

(four personal characteristics, the four earnings levels, four positive earnings indicators, and

two aggregate variables). Finally we weight these fourteen within-cell plus �ve within-block
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estimates by the proportion of San Diego controls in all nineteen groups to get an overall

estimate of the average change for controls in San Diego.

The other columns in Table 4A are constructed exactly the same way using only the

controls from one alternative location at a time, rather than the controls from all three

alternative locations at the same time. Table 4B is constructed exactly the same way, using

the trainees instead of the controls. Table 4C compares estimates for average treatment

e�ects for San Diego. In the �rst two rows (level and gain) we estimate separately the

average outcome for the control and trainee units, exactly as in Tables 4A-B, and then take

the di�erence. For the OLS row in Table 4C, we predict the average treatment e�ect by

predicting �rst for each unit in San Diego, trainee or control, the unit-speci�c treatment

e�ect, and then average these over all units. This implies that the prediction error in this

row is not necessarily identical to the di�erence in prediction errors in the OLS rows in

Tables 4A and 4B, Two modi�cations are made for the propensity score estimates in Table

4C. First, the propensity, or location score l̂i is estimated using both trainee and control

units. Second, we use only one block for women with positive pre-training earnings, rather

than �ve blocks, for predicting San Diego outcomes when using the Arkansas location. This

is due to the smaller sample size in Arkansas. Tables 5-7 are constructed exactly the same

way, using di�erent outcome measures.
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Table 1: Summary Statistics and T-statistics for Difference with San Diego

San Diego (2603) Arkansas (480) Baltimore (2080) Virginia (2753)
mean s.d. mean s.d. t-stat mean s.d. t-stat mean s.d. t-stat

Personal Char.
High School Dipl. 0.56 (0.50) 0.50 (0.50) [-2.4] 0.40 (0.49) [-10.7] 0.43 (0.49) [-9.5]

Nonwhite 0.69 (0.46) 0.83 (0.37) [7.5] 0.70 (0.46) [1.1] 0.67 (0.47) [-1.6]
Never Married 0.26 (0.44) 0.35 (0.48) [3.7] 0.38 (0.48) [8.3] 0.28 (0.45) [1.2]
One Child 0.48 (0.50) 0.42 (0.49) [-2.5] 0.48 (0.50) [0.1] 0.46 (0.50) [-1.7]

More Than One Child 0.52 (0.50) 0.58 (0.49) [2.5] 0.52 (0.50) [-0.1] 0.54 (0.50) [1.7]

Pre-training Earnings
Earn Q-1 0.40 (1.02) 0.18 (0.51) [-7.0] 0.42 (0.94) [0.8] 0.31 (0.75) [-3.4]
Earn Q-2 0.40 (1.03) 0.17 (0.52) [-7.4] 0.42 (0.93) [0.7] 0.32 (0.79) [-3.2]
Earn Q-3 0.38 (0.98) 0.19 (0.56) [-6.1] 0.44 (0.96) [2.0] 0.30 (0.82) [-3.3]
Earn Q-4 0.37 (0.99) 0.18 (0.52) [-6.2] 0.42 (0.90) [1.9] 0.28 (0.74) [-4.0]

Earn Q-1 Pos. 0.27 (0.44) 0.17 (0.38) [-5.0] 0.29 (0.46) [2.0] 0.25 (0.44) [-1.1]
Earn Q-2 Pos. 0.25 (0.43) 0.16 (0.37) [-4.3] 0.31 (0.46) [4.6] 0.20 (0.40) [-3.7]
Earn Q-3 Pos. 0.25 (0.44) 0.14 (0.35) [-6.1] 0.30 (0.46) [3.2] 0.23 (0.42) [-2.2]
Earn Q-4 Pos. 0.25 (0.44) 0.17 (0.38) [-4.4] 0.29 (0.45) [2.6] 0.24 (0.43) [-1.1]

Aggregate Variables
Emp./Pop.

Pre-Randomization 0.53 0.54 0.48 0.49
Year 1 0.55 0.55 0.48 0.50
Year 2 0.56 0.57 0.49 0.52

Real Inc. (Thousands)
Pre-Randomization 17.8 16.2 18.3 16.6

Year 1 18.1 16.8 17.4 17.5
Year 2 18.7 17.0 17.6 17.8

Post-training Earnings
Year 1 Earn Train 2.08 (3.83) 0.84 (1.77) [-7.8] 1.65 (3.14) [-2.9] 1.60 (2.93) [-3.8]
Year 1 Earn Contr 1.77 (3.95) 0.71 (1.83) [-6.7] 1.75 (3.60) [-0.1] 1.52 (2.95) [-1.7]
Ave Treat E� (s.e.) 0.30 (0.15) 0.13 (0.16) [-0.8] -0.10 (0.15) [-1.9] 0.07 (0.12) [-1.2]

Year 2 Earn Train 2.86 (5.45) 1.28 (2.58) [-6.9] 2.54 (4.23) [-1.6] 2.39 (3.95) [-2.7]
Year 2 Earn Contr 2.28 (4.81) 1.10 (2.67) [-5.5] 2.49 (4.35) [1.1] 2.12 (3.92) [-0.9]
Ave Treat E� (s.e.) 0.57 (0.20) 0.18 (0.24) [-1.3] 0.05 (0.19) [-1.9] 0.27 (0.16) [-1.2]

Post-training Employment
Year 1 Emp Train 0.52 (0.50) 0.29 (0.45) [-7.1] 0.47 (0.50) [-2.4] 0.49 (0.50) [-1.6]
Year 1 Emp Contr 0.40 (0.49) 0.27 (0.44) [-4.3] 0.43 (0.49) [1.2] 0.45 (0.50) [2.5]
Ave Treat E� (s.e.) 0.12 (0.02) 0.02 (0.04) [-2.2] 0.05 (0.02) [-2.5] 0.04 (0.02) [-2.9]

Year 2 Emp Train 0.49 (0.50) 0.31 (0.46) [-5.3] 0.49 (0.50) [0.2] 0.52 (0.50) [1.7]
Year 2 Emp Contr 0.40 (0.49) 0.27 (0.45) [-4.1] 0.47 (0.50) [3.3] 0.46 (0.50) [2.9]
Ave Treat E� (s.e.) 0.09 (0.02) 0.04 (0.04) [-1.1] 0.03 (0.02) [-2.1] 0.06 (0.02) [-1.2]
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Table 2: Summary Statistics and T-statistics for Difference with San Diego,

Using Only Discarded Observations in Comparison Programs

San Diego (2603) Arkansas (647) Baltimore (677) Virginia (397)
mean s.d. mean s.d. t-stat mean s.d. t-stat mean s.d. t-stat

Personal Char.
High School Dipl. 0.56 (0.50) 0.50 (0.50) [-2.6] 0.54 (0.50) [-0.6] 0.50 (0.50) [-2.1]

Nonwhite 0.69 (0.46) 0.89 (0.31) [13.2] 0.71 (0.45) [1.4] 0.70 (0.46) [0.6]
Never Married 0.26 (0.44) 0.60 (0.49) [15.9] 0.49 (0.50) [10.9] 0.54 (0.50) [10.6]
One Child 0.48 (0.50) 0.38 (0.49) [-4.7] 0.43 (0.50) [-2.3] 0.41 (0.49) [-2.6]

More Than One Child 0.52 (0.50) 0.57 (0.49) [2.5] 0.48 (0.50) [-1.8] 0.44 (0.50) [-3.0]

Pre-training Earnings
Earn Q-1 0.40 (1.02) 0.14 (0.46) [-9.5] 0.28 (0.72) [-3.4] 0.28 (0.68) [-3.0]
Earn Q-2 0.40 (1.03) 0.15 (0.48) [-9.1] 0.31 (0.80) [-2.4] 0.26 (0.67) [-3.8]
Earn Q-3 0.38 (0.98) 0.15 (0.50) [-8.3] 0.33 (0.85) [-1.3] 0.18 (0.62) [-5.4]
Earn Q-4 0.37 (0.99) 0.16 (0.49) [-7.8] 0.38 (0.90) [0.3] 0.16 (0.59) [-5.8]

Earn Q-1 Pos. 0.27 (0.44) 0.14 (0.35) [-7.7] 0.25 (0.43) [-1.2] 0.29 (0.45) [0.8]
Earn Q-2 Pos. 0.25 (0.43) 0.14 (0.35) [-6.7] 0.27 (0.44) [1.2] 0.17 (0.38) [-3.5]
Earn Q-3 Pos. 0.25 (0.44) 0.14 (0.35) [-7.1] 0.26 (0.44) [0.1] 0.18 (0.38) [-3.7]
Earn Q-4 Pos. 0.25 (0.44) 0.15 (0.36) [-6.0] 0.25 (0.43) [-0.2] 0.24 (0.43) [-0.5]

Post-training Earnings
Year 1 Earn Train 2.08 (3.83) 0.74 (1.83) [-9.2] 2.50 (3.97) [1.8] 1.80 (3.50) [-1.1]
Year 1 Earn Contr 1.77 (3.95) 0.59 (1.68) [-8.2] 1.94 (3.81) [0.7] 1.67 (2.65) [-0.4]
Ave Treat E� (s.e.) 0.30 (0.15) 0.15 (0.14) [-0.7] 0.56 (0.30) [0.8] 0.14 (0.31) [-0.5]

Year 2 Earn Train 2.86 (5.45) 1.30 (2.77) [-7.2] 3.98 (5.95) [3.2] 2.45 (4.47) [-1.3]
Year 2 Earn Contr 2.28 (4.81) 0.94 (2.49) [-7.0] 3.00 (4.89) [2.4] 2.17 (3.62) [-0.4]
Ave Treat E� (s.e.) 0.57 (0.20) 0.36 (0.21) [-0.7] 0.98 (0.42) [0.9] 0.29 (0.41) [-0.6]

Post-training Employment
Year 1 Emp Train 0.52 (0.50) 0.30 (0.46) [-7.9] 0.60 (0.49) [2.5] 0.48 (0.50) [-1.3]
Year 1 Emp Contr 0.40 (0.49) 0.24 (0.43) [-6.0] 0.51 (0.50) [3.5] 0.54 (0.50) [3.2]
Ave Treat E� (s.e.) 0.12 (0.02) 0.06 (0.03) [-1.6] 0.09 (0.04) [-0.8] -0.06 (0.05) [-3.3]

Year 2 Emp Train 0.49 (0.50) 0.32 (0.47) [-5.8] 0.64 (0.48) [5.1] 0.53 (0.50) [1.2]
Year 2 Emp Contr 0.40 (0.49) 0.26 (0.44) [-4.9] 0.61 (0.49) [7.0] 0.51 (0.50) [2.6]
Ave Treat E� (s.e.) 0.09 (0.02) 0.06 (0.04) [-0.8] 0.03 (0.04) [-1.4] 0.02 (0.05) [-1.3]
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Table 3: Summary Statistics and T-statistics for Difference with San Diego,

Using Only Discarded Observations in Baltimore

San Diego (2603) All Discards (677) Men (279) Child<6 (362) No Kids (36)
mean s.d. mean t-stat mean t-stat mean t-stat mean t-stat

Personal Char.
High School Dipl. 0.56 (0.50) 0.54 [-0.6] 0.39 [-5.3] 0.67 [4.5] 0.39 [-2.0]

Nonwhite 0.69 (0.46) 0.71 [1.4] 0.52 [-5.5] 0.86 [8.2] 0.83 [2.3]
Never Married 0.26 (0.44) 0.49 [10.9] 0.19 [-2.9] 0.72 [18.1] 0.56 [3.5]
One Child 0.48 (0.50) 0.43 [-2.3] 0.41 [2.3] 0.49 [0.4] 0 [-48.9]

More Than One Child 0.52 (0.50) 0.48 [-1.8] 0.51 [-0.5] 0.51 [-0.4] 0 [-53.2]

Pre-training Earnings
Earn Q-1 0.40 (1.02) 0.28 [-3.4] 0.44 [0.7] 0.17 [-7.1] 0.26 [-1.5]
Earn Q-2 0.40 (1.03) 0.31 [-2.4] 0.50 [1.4] 0.17 [-7.2] 0.32 [-0.7]
Earn Q-3 0.38 (0.98) 0.33 [-1.3] 0.48 [1.5] 0.22 [-4.0] 0.29 [-0.8]
Earn Q-4 0.37 (0.99) 0.38 [0.3] 0.62 [3.4] 0.20 [-4.8] 0.35 [-0.2]

Earn Q-1 Pos. 0.27 (0.44) 0.25 [-1.2] 0.32 [1.8] 0.19 [-3.7] 0.28 [0.1]
Earn Q-2 Pos. 0.25 (0.43) 0.27 [1.2] 0.35 [3.6] 0.20 [-1.8] 0.25 [0.1]
Earn Q-3 Pos. 0.25 (0.44) 0.26 [0.1] 0.35 [3.2] 0.19 [-2.7] 0.17 [-1.4]
Earn Q-4 Pos. 0.25 (0.44) 0.25 [-0.2] 0.34 [2.8] 0.19 [-3.1] 0.25 [-0.1]

Post-training Earnings
Year 1 Earn Train 2.08 (3.83) 2.50 [1.8] 3.72 [3.8] 1.75 [-1.3] 0.97 [-2.6]
Year 1 Earn Contr 1.77 (3.95) 1.94 [0.7] 3.09 [3.0] 1.11 [-3.4] 0.83 [-1.6]
Ave Treat E� (s.e.) 0.30 (0.15) 0.56 [0.8] 0.64 [0.5] 0.64 [1.1] 0.14 [-0.2]

Year 2 Earn Train 2.86 (5.45) 3.98 [3.2] 5.96 [4.7] 2.86 [-0.0] 0.81 [-5.9]
Year 2 Earn Contr 2.28 (4.81) 3.00 [2.4] 4.24 [3.6] 2.20 [-0.3] 0.73 [-3.6]
Ave Treat E� (s.e.) 0.57 (0.20) 0.98 [0.9] 1.72 [1.3] 0.65 [0.2] 0.09 [-0.9]

Post-training Employment
Year 1 Emp Train 0.52 (0.50) 0.60 [2.5] 0.71 [4.4] 0.54 [0.4] 0.38 [-1.3]
Year 1 Emp Contr 0.40 (0.49) 0.51 [3.5] 0.59 [4.2] 0.47 [1.6] 0.27 [-1.1]
Ave Treat E� (s.e.) 0.12 (0.02) 0.09 [-0.8] 0.12 [-0.0] 0.07 [-0.9] 0.11 [-0.0]

Year 2 Emp Train 0.49 (0.50) 0.64 [5.1] 0.70 [5.1] 0.60 [2.8] 0.57 [0.8]
Year 2 Emp Contr 0.40 (0.49) 0.61 [7.0] 0.61 [5.0] 0.62 [5.7] 0.40 [0.0]
Ave Treat E� (s.e.) 0.09 (0.02) 0.03 [-1.4] 0.08 [-0.1] -0.02 [-2.0] 0.17 [0.5]
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Table 4.A: Adjusted Differences between San Diego and Other Locations in First Year Post-

training Earnings for Controls in Thousands of Dollars

SD/All SD/AR SD/MD SD/VA
dif t-stat dif t-stat dif t-stat dif t-stat

Level 0.24 [1.8] 1.07 [6.7] 0.03 [0.2] 0.25 [1.7]
Gain 0.13 [0.9] 0.16 [1.0] 0.27 [1.8] -0.06 [-0.4]

OLS(Agg., Adj. Earn.) 0.14 [1.2] 0.57 [2.5] -0.03 [-0.2] 0.02 [0.1]
PS(Agg., Adj. Earn.) 0.14 [1.1] 0.77 [2.2] 0.02 [0.1] 0.07 [0.4]

Table 4.B: Adjusted Differences between San Diego and Other Locations in First Year Post-

training Earnings for Trainees in Thousands of Dollars

SD/All SD/AR SD/MD SD/VA
dif t-stat dif t-stat dif t-stat dif t-stat

Level 0.52 [4.4] 1.24 [7.8] 0.42 [2.9] 0.48 [3.8]
Gain 0.28 [2.4] 0.48 [2.5] 0.47 [3.3] 0.16 [1.2]

OLS(Agg., Adj. Earn.) 0.29 [2.9] 0.71 [3.1] 0.21 [1.5] 0.16 [1.3]
PS(Agg., Adj. Earn.) 0.32 [2.9] 0.68 [2.0] 0.43 [2.6] 0.21 [1.7]

Table 4.C: Adjusted Differences between San Diego and Other Locations in Experimental and

Predicted Average Treatment Effect for First Year Post-training Earnings in Thousands

of Dollars

SD/All SD/AR SD/MD SD/VA
dif t-stat dif t-stat dif t-stat dif t-stat

Level 0.28 [1.6] 0.17 [0.8] 0.40 [1.9] 0.23 [1.2]
Gain 0.15 [0.9] 0.31 [1.3] 0.19 [0.9] 0.21 [1.1]

OLS(Agg., Adj. Earn.) 0.18 [1.0] 0.13 [0.5] 0.30 [1.5] 0.10 [0.5]
PS(Agg., Adj. Earn.) 0.16 [0.9] 0.05 [0.2] 0.20 [0.9] 0.25 [1.2]
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Table 5.A: Adjusted Differences between San Diego and Other Locations in Second Year

Post-training Earnings for Controls in Thousands of Dollars

SD/All SD/AR SD/MD SD/VA
dif t-stat dif t-stat dif t-stat dif t-stat

Level 0.10 [0.6] 1.18 [5.5] -0.21 [-1.1] 0.17 [0.9]
Gain -0.01 [-0.1] 0.28 [1.3] 0.04 [0.2] -0.15 [-0.7]

OLS(Agg., Adj. Earn.) 0.02 [0.1] 0.57 [1.9] -0.33 [-1.8] -0.09 [-0.4]
PS(Agg., Adj. Earn.) 0.05 [0.3] 0.94 [2.2] -0.25 [-1.2] -0.13 [-0.6]

Table 5.B: Adjusted Differences between San Diego and Other Locations in Second Year

Post-training Earnings for Trainees in Thousands of Dollars

SD/All SD/AR SD/MD SD/VA
dif t-stat dif t-stat dif t-stat dif t-stat

Level 0.50 [3.0] 1.57 [6.9] 0.32 [1.6] 0.47 [2.7]
Gain 0.26 [1.7] 0.82 [3.6] 0.36 [1.9] 0.14 [0.9]

OLS(Agg., Adj. Earn.) 0.18 [1.3] 0.87 [2.6] -0.13 [-0.7] 0.02 [0.1]
PS(Agg., Adj. Earn.) 0.25 [1.6] 1.03 [2.1] 0.08 [0.3] 0.13 [0.7]

Table 5.C: Adjusted Differences between San Diego and Other Locations in Experimental and

Predicted Average Treatment Effect for Second Year Post-training Earnings in Thousands

of Dollars

SD/All SD/AR SD/MD SD/VA
dif t-stat dif t-stat dif t-stat dif t-stat

Level 0.40 [1.7] 0.39 [1.3] 0.52 [1.9] 0.30 [1.2]
Gain 0.27 [1.2] 0.54 [1.7] 0.32 [1.2] 0.28 [1.1]

OLS(Agg., Adj. Earn.) 0.21 [0.9] 0.33 [0.9] 0.26 [0.9] 0.13 [0.4]
PS(Agg., Adj. Earn.) 0.15 [0.6] 0.22 [0.6] 0.25 [0.8] 0.28 [1.0]
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Table 6.A: Adjusted Differences between San Diego and Other Locations in First Year Post-

training Employment for Controls

SD/All SD/AR SD/MD SD/VA
dif t-stat dif t-stat dif t-stat dif t-stat

Level -0.018 [-1.0] 0.134 [4.3] -0.025 [-1.2] -0.053 [-2.5]
Gain -0.011 [-0.6] 0.012 [0.4] 0.038 [1.8] -0.075 [-3.2]

OLS(Agg., Adj. Earn.) -0.014 [-0.9] 0.070 [2.4] -0.002 [-0.1] -0.098 [-4.4]
PS(Agg., Adj. Earn.) -0.025 [-1.5] 0.105 [2.4] 0.011 [0.6] -0.081 [-3.8]

Table 6.B: Adjusted Differences between San Diego and Other Locations in First Year Post-

training Employment for Trainees

SD/All SD/AR SD/MD SD/VA
dif t-stat dif t-stat dif t-stat dif t-stat

Level 0.051 [3.1] 0.234 [7.1] 0.050 [2.4] 0.030 [1.6]
Gain 0.040 [2.2] 0.095 [2.7] 0.090 [3.9] 0.006 [0.3]

OLS(Agg., Adj. Earn.) 0.041 [2.6] 0.171 [5.2] 0.050 [2.5] -0.005 [-0.3]
PS(Agg., Adj. Earn.) 0.036 [2.2] 0.171 [3.9] 0.071 [3.1] 0.010 [0.6]

Table 6.C: Adjusted Differences between San Diego and Other Locations in Experimental and

Predicted Average Treatment Effect for First Year Post-training Employment

SD/All SD/AR SD/MD SD/VA
dif t-stat dif t-stat dif t-stat dif t-stat

Level 0.069 [2.9] 0.099 [2.2] 0.074 [2.5] 0.083 [2.9]
Gain 0.051 [2.0] 0.083 [1.9] 0.052 [1.6] 0.081 [2.7]

OLS(Agg., Adj. Earn.) 0.054 [2.2] 0.117 [2.5] 0.046 [1.6] 0.095 [3.1]
PS(Agg., Adj. Earn.) 0.063 [2.7] 0.130 [2.9] 0.062 [2.0] 0.097 [3.4]
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Table 7.A: Adjusted Differences between San Diego and Other Locations in Second Year

Post-training Employment for Controls

SD/All SD/AR SD/MD SD/VA
dif t-stat dif t-stat dif t-stat dif t-stat

Level -0.043 [-2.5] 0.127 [4.1] -0.067 [-3.3] -0.063 [-2.9]
Gain -0.036 [-1.8] 0.005 [0.2] -0.005 [-0.2] -0.085 [-3.4]

OLS(Agg., Adj. Earn.) -0.027 [-1.6] 0.084 [2.7] -0.047 [-2.4] -0.076 [-3.3]
PS(Agg., Adj. Earn.) -0.041 [-2.3] 0.058 [1.3] -0.034 [-1.6] -0.096 [-4.3]

Table 7.B: Adjusted Differences between San Diego and Other Locations in Second Year

Post-training Employment for Trainees

SD/All SD/AR SD/MD SD/VA
dif t-stat dif t-stat dif t-stat dif t-stat

Level -0.006 [-0.4] 0.177 [5.3] -0.005 [-0.2] -0.030 [-1.7]
Gain -0.018 [-0.9] 0.039 [1.1] 0.035 [1.4] -0.053 [-2.5]

OLS(Agg., Adj. Earn.) -0.010 [-0.6] 0.123 [3.6] -0.012 [-0.6] -0.057 [-3.0]
PS(Agg., Adj. Earn.) -0.016 [-1.0] 0.140 [3.0] -0.003 [-0.1] -0.045 [-2.4]

Table 7.C: Adjusted Differences between San Diego and Other Locations in Experimental and

Predicted Average Treatment Effect for Second Year Post-training Employment

SD/All SD/AR SD/MD SD/VA
dif t-stat dif t-stat dif t-stat dif t-stat

Level 0.037 [1.5] 0.050 [1.1] 0.062 [2.1] 0.033 [1.2]
Gain 0.019 [0.7] 0.034 [0.7] 0.040 [1.2] 0.032 [1.0]

OLS(Agg., Adj. Earn.) 0.018 [0.7] 0.040 [0.8] 0.030 [1.0] 0.024 [0.8]
PS(Agg., Adj. Earn.) 0.015 [0.6] 0.047 [0.9] 0.028 [0.9] 0.042 [1.4]
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Table 8: Least Squares Adjusted Differences between San Diego and Other Locations in

First Year Post-training Earnings for Controls, Using Different Comparison Groups and

Control Variables
SD/All SD/AR SD/MD SD/VA

Control Var. Data dif t-stat dif t-stat dif t-stat dif t-stat

None All 0.20 [1.8] 1.05 [8.8] -0.11 [-0.8] 0.14 [1.1]
None Restr. 0.24 [1.8] 1.07 [6.7] 0.03 [0.2] 0.25 [1.7]
None Restr. (Adj. Earn.) 0.18 [1.4] 1.01 [6.1] -0.04 [-0.3] 0.20 [1.4]
Pers. Restr. (Adj. Earn.) 0.04 [0.3] 0.93 [3.6] -0.24 [-1.5] 0.08 [0.5]

Pers., Earn. Restr. (Adj. Earn.) 0.05 [0.4] 0.57 [2.5] -0.03 [-0.2] 0.02 [0.1]
Pers., Earn., Aggr. Restr. (Adj. Earn.) 0.14 [1.2] 0.57 [2.5] -0.03 [-0.2] 0.02 [0.1]

Table 9: Least Squares Adjusted Differences between San Diego and Other Locations in

Second Year Post-training Earnings for Controls, Using Different Comparison Groups and

Control Variables
SD/All SD/AR SD/MD SD/VA

Control Var. Data dif t-stat dif t-stat dif t-stat dif t-stat

None All 0.12 [0.9] 1.25 [7.8] -0.35 [-2.1] 0.14 [0.8]
None Restr. 0.10 [0.6] 1.18 [5.5] -0.21 [-1.2] 0.17 [0.9]
None Restr. (Adj. Earn.) -0.04 [-0.2] 1.06 [4.6] -0.37 [-1.9] 0.06 [0.3]
Pers. Restr. (Adj. Earn.) -0.19 [-1.2] 0.94 [3.0] -0.58 [-3.0] -0.09 [-0.5]

Pers., Earn. Restr. (Adj. Earn.) -0.15 [-1.0] 0.61 [2.1] -0.33 [-1.8] -0.12 [-0.7]
Pers., Earn., Aggr. Restr. (Adj. Earn.) 0.02 [0.1] 0.57 [1.9] -0.33 [-1.8] -0.09 [-0.4]

Table 10: Least Squares Adjusted Differences between San Diego and Other Locations in

First Year Post-training Employment for Controls, Using Different Comparison Groups

and Control Variables
SD/All SD/AR SD/MD SD/VA

Control Var. Data dif t-stat dif t-stat dif t-stat dif t-stat

None All -0.011 [-0.7] 0.154 [7.0] -0.041 [-2.2] -0.062 [-3.1]
None Restr. -0.018 [-1.0] 0.134 [4.3] -0.025 [-1.2] -0.053 [-2.5]
None Restr. (Adj. Earn.) -0.018 [-1.0] 0.134 [4.3] -0.025 [-1.2] -0.053 [-2.5]
Pers. Restr. (Adj. Earn.) -0.035 [-2.0] 0.128 [3.9] -0.041 [-2.0] -0.072 [-3.4]

Pers., Earn. Restr. (Adj. Earn.) -0.025 [-1.6] 0.072 [2.5] -0.002 [-0.1] -0.077 [-4.0]
Pers., Earn., Aggr. Restr. (Adj. Earn.) -0.014 [-0.9] 0.070 [2.4] -0.002 [-0.1] -0.098 [-4.4]
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Table 11: Least Squares Adjusted Differences between San Diego and Other Locations in

Second Year Post-training Employment for Controls, Using Different Comparison Groups

and Control Variables
SD/All SD/AR SD/MD SD/VA

Control Var. Data dif t-stat dif t-stat dif t-stat dif t-stat

None All -0.042 [-2.8] 0.137 [6.2] -0.097 [-5.3] -0.067 [-3.4]
None Restr. -0.043 [-2.5] 0.127 [4.1] -0.067 [-3.3] -0.063 [-2.9]
None Restr. (Adj. Earn.) -0.043 [-2.5] 0.127 [4.1] -0.067 [-3.3] -0.063 [-2.9]
Pers. Restr. (Adj. Earn.) -0.056 [-3.2] 0.124 [3.7] -0.080 [-3.9] -0.076 [-3.5]

Pers., Earn. Restr. (Adj. Earn.) -0.047 [-2.9] 0.084 [2.7] -0.047 [-2.4] -0.081 [-4.0]
Pers., Earn., Aggr. Restr. (Adj. Earn.) -0.027 [-1.6] 0.084 [2.7] -0.047 [-2.4] -0.076 [-3.3]
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