




1. Introduction

Estimation of average treatment e�ects in observational, or non-experimental, studies

often requires adjustment for di�erences in pre-treatment variables. If the number of pre-

treatment variables is large, and their distribution varies substantially with treatment status,

standard adjustment methods such covariance adjustment are often inadequate. Rosenbaum

and Rubin (1983, RR from hereon), Rubin and Rosenbaum (1984) and Rubin and Thomas

(1992) propose an alternative method for adjusting for pre-treatment variables based on the

propensity score, the conditional probability of receiving the treatment given pre-treatment

variables. They demonstrate that adjusting solely for the propensity score removes all the

bias associated with di�erences in pre-treatment variables between treatment and control

groups.

The RR proposals deal exclusively with the case where treatment takes on only two

values. In many cases of interest, however, the treatment takes on more than two values.

A physician may choose among three or more options to treat a patient. Alternatively, a

drug may be applied in di�erent doses, or a treatment may be applied over time periods

of di�erent length. In all cases the treatment takes on more than two values and the basic

propensity score methodology does not apply. In this paper an extension of this methodology

is proposed that allows for estimation of average causal e�ects with multi-valued treatments.

In addition, a weaker concept of unconfoundedness is introduced, and closer links with the

concept of missing at random from the missing data literature (Rubin, 1976; Little and

Rubin, 1987) are established.

2. The Basic Setup

We are interested in the causal e�ect of some treatment on some outcome. The treatment,

denoted by T , takes on values in a set T . RR focus on the case where the treatment is

binary, or T = f0; 1g. Associated with each unit i and each value of the treatment t there is

a potential outcome, Yi(t). We are interested in the average outcome, E[Y (t)], for all values
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of t, and particularly in di�erences of the form E[Y (t)� Y (s)], the average causal e�ect of

exposing all units to treatment t rather than treatment s. The average here is taken over

the population of interest, which may be the population the sample is drawn from, or some

subpopulation thereof. We observe for each unit i, in a random sample of size N drawn from

a large population, the treatment assigned and received, Ti, the outcome associated with

that treatment level, Yi � Yi(Ti), and a vector of pre-treatment variables Xi.

The key assumption, maintained throughout the paper, is that adjusting for pre-treatment

di�erences solves the problem of drawing causal inferences. This is formalized by using the

concept of unconfoundedness (RR). Two versions of unconfoundedness are used in this paper.

The �rst, labelled strong unconfoundedness, follows the de�nition in RR.

De�nition 1 (Strong Unconfoundedness)

Assignment to treatment T is strongly unconfounded, given pre-treatment variables X, if

T ?
n
Y (t)

o
t2T

��� X:

In addition a weaker version of unconfounded is used for which one additional piece of

notation is required. Let Di(t) be the indicator, for unit i, of receiving treatment t:

Di(t) =

(
1 if Ti = t;
0 otherwise:

Now weak unconfoundedness is de�ned:

De�nition 2 (Weak Unconfoundedness)

Assignment to treatment T is weakly unconfounded, given pre-treatment variables X, if

D(t) ? Y (t)
��� X;

for all t 2 T .
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Weak unconfoundedness relaxes two aspects of strong unconfoundedness. Strong uncon-

foundedness requires the treatment T to be independent of the entire set of potential out-

comes. Instead, weak unconfoundedness requires only pairwise independence of the treat-

ment with each of the potential outcomes. In addition weak unconfoundedness only requires

the independence of the potential outcome Y (t) and the treatment to be \local" at the

treatment level of interest, that is independence of the binary treatment level indicator

D(t), rather than of the treatment level T . This second di�erence is immaterial in the

binary treatment case.

The assumption of strong unconfoundedness has no testable implications. In addition

it is di�cult to think of applications where the weaker form would be plausible but the

stronger form would not be. The importance of the di�erence between the two versions is

more conceptual. The weak unconfoundedness concept is closely linked to the missing data

interpretation of the problem of causal inference. For units with Di(t) = 0 the variable

Yi(t) is missing. Given the interest in estimating the population average of Yi(t), E[Y (t)],

the concern is with the representativeness of the average of Yi(t) in the subsample with

Di(t) = 1. In that interpretation there is no direct role for the treatment level actually

assigned to units with Di(t) = 0. All that matters is that they did not receive treatment

level t. The main role for additional variables is in allowing the researcher to adjust for

di�erences by de�ning subpopulations. However, because the other potential outcomes Yi(s),

for s 6= t are never observed for units with Di(t) = 1, they can play no role in any adjustment

procedures. The de�nition of weak unconfoundedness reects this lack of relevance of the

other potential outcomes. As a result, the de�nition of weak unconfoundedness is closely

tied to the de�nition of Missing At Random (MAR, Rubin, 1976; Little and Rubin, 1987)

in the missing data literature.

Weak unconfoundedness implies that within subpopulations de�ned by pre-treatment

variables one can estimate average outcomes by conditioning on treatment status:

E[Y (t)jX = x] = E[Y (t)jD(t) = 1; X = x] (1)
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= E[Y (t)jT = t; X = x] = E[Y jT = t; X = x]:

Average outcomes can be estimated by averaging these conditional means:

E[Y (t)] = E
�
E[Y (t)jX]

�
:

In practice it can be di�cult to estimate E[Y (t)] in this manner when the dimension of

X is large, because the �rst step requires estimation of the expectation of Y (t) given the

treatment level and all pre-treatment variables. This motivated the work by Rosenbaum

and Rubin (1983, 1984) who proposed an alternative based on the propensity score that

circumvents the need to condition on the entire set of pre-treatment variables.

3. The Propensity Score with Binary Treatments

In this section we assume that the treatment of interest takes on two values, or T = f0; 1g

and review the relevant RR results, modi�ed where applicable to rely on weak, rather than

strong, unconfoundedness. RR de�ne the propensity score as

De�nition 3 (Propensity Score, Rosenbaum and Rubin (1983))

The propensity score is the conditional probability of receiving the treatment given the pre-

treatment variables:

e(x) � Pr(T = 1jX = x):

The �rst property of the propensity score is the balancing of the pre-treatment variables.

This is a mechanical result that follows from the de�nition of the propensity score and does

not require unconfoundedness.

Lemma 1 (Balancing of Pre-treatment Variables Given the Propensity Score

with Binary Treatments, Rosenbaum and Rubin (1983))

Suppose the treatment is binary. Then:

T ? X
��� e(X):
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Proof: See Appendix.

Combined with weak unconfoundedness, the balancing property leads to the key property

of the propensity score:

Lemma 2 (Weak Unconfoundedness Given the Propensity Score with Binary

Treatments, Rosenbaum and Rubin, 1983)

Suppose the treatment is binary, and suppose that assignment to treatment is weakly uncon-

founded. Then assignment to treatment is weakly unconfounded given the propensity score:

D(t) ? Y (t)
��� e(X);

for all t 2 T .

Proof: See Appendix.

This result implies that instead of having to condition on the entire set of pre-treatment

variables, it is su�cient to condition on a one-dimensional function of the pre-treatment

variables, the propensity score. Formally,

Theorem 1 (Adjustment for Propensity Score given Weak Unconfounded-

ness)

Suppose assignment to a binary treatment is weakly unconfounded. Then

(i),

�(t; e) � E[Y (t)je(X) = e] = E[Y (t)jT = t; e(X) = e];

(ii),

E[Y (t)] = E[E[�(t; e(X))];

for all t 2 T .

Proof: See Appendix.

An alternative method for exploiting the propensity score is through weighting by the

inverse of the probability of receiving the treatment actually received, as in the Horvitz-

Thompson (Horvitz and Thompson, 1952) estimator:
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Theorem 2 (Weighting and the Propensity Score)

Suppose assignment to a binary treatment is weakly unconfounded. Then

E

"
Y � T

e(X)

#
= E[Y (1)]; and; E

"
Y � (1� T )

1� e(X)

#
= E[Y (0)]:

Proof: See Appendix.

In many applications the researcher does not know the propensity score. In that case

one has to estimate the propensity score before being able to use it for conditioning or

weighting purposes in estimating average treatment e�ects. In practice, however, inference

for average treatment e�ects is often less sensitive to speci�cations of the propensity score

than to speci�cation of the conditional expectation of the potential outcomes, and the two-

step approach to inference through estimation of the propensity score has often been more

e�ective than direct adjustment methods. Since the early work of Rosenbaum and Rubin

(1983, 1984) these methods have generated widespread interest in various �elds such as

epidemiology (e.g., Harrel et al, 1990; Robins and Greenland, 1986), and social sciences

(e.g., Dehejia and Wahba, 1998; Hahn, 1998; Heckman, Ichimura, Smith and Todd, 1998).

4. Multi-valued Treatments

In this section we allow the treatment of interest to take on integer values between 0 and

K, or T = f0; 1; : : : ; Kg. We �rst modify the RR de�nition of the propensity score:

De�nition 4 (Generalized Propensity Score)

The Generalized Propensity Score (GPS) is the conditional probability of receiving a partic-

ular level of the treatment given the pre-treatment variables:

r(t; x) � Pr(T = tjX = x) = E[D(t)jX = x]:

In terms of this notation the RR de�nition of the propensity score is e(x) = r(1; x). The GPS

will be used in di�erent ways. First, it de�nes a single random variable as a transformation of
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the two random variables T and X: r(T;X). Second, it de�nes a family of random variables

indexed by t as transformations of X alone: r(t; X), for all t 2 T .

Similar to the standard propensity score, the GPS satis�es a balancing property by

construction:

Lemma 3 (Balancing Given the Generalized Propensity Score)

D(t) ? X
��� r(t; X);

for all t 2 T .

Proof: See Appendix.

First note that the conditioning argument changes with the level of the treatment. It is

in general not true that D(s) ? Xjr(t; X) for s 6= t.

Also note that in the binary case T = D(1) and r(1; X) = e(X), and hence we have

conditional independence of T and X given the score. This is not true in general with multi-

valued treatments. To guarantee conditional independence of a multi-valued treatment T

and the pre-treatment variables X one would need to condition on the entire set of K + 1

scores fr(t; X)gt2T . It is only in the binary treatment case that conditioning on the set

fr(t; X)gt2T , in that case equal to fr(0; X); r(1; X)g = f1� r(1; X); r(1; X)g, is identical to

conditioning only on a single score (the propensity score e(X)) because of the adding up of

the assignment probabilities.

As in the binary treatment case, the balancing property does not require any form of

unconfoundedness. It is a mechanical result implied by the de�nition of the score. It is

however in combination with unconfoundedness that this balancing property is useful.

Lemma 4 (Weak Unconfoundedness Given the Generalized Propensity Score)

Suppose assignment to treatment T is weakly unconfounded given pre-treatment variables X.

Then:

D(t) ? Y (t)
��� r(t; X);
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for all t 2 T .

Proof: See Appendix.

Lemma 4 leads to the main result in the paper that one can estimate average outcomes

by conditioning solely on the GPS.

Theorem 3 (Estimation of Average Potential Outcomes through Adjust-

ment for the Generalized Propensity Score)

Suppose assignment to treatment is weakly unconfounded given pre-treatment variables X.

Then

(i),

�(t; r) = E[Y (t)jr(t; X) = r] = E[Y jT = t; r(T;X) = r];

(ii),

E[Y (t)] = E[�(t; r(t; X))];

for all t 2 T .

Proof: See Appendix.

Consider �(t; r). It represents the conditional expectation of the outcome with two

conditioning arguments. The �rst conditioning argument is the treatment level T . The

second is the probability of receiving the treatment that was actually received, r(T;X).

To obtain the population average of E[Y (t)] this conditional expectation is then averaged,

evaluated at treatment level t and the probability of receiving treatment level t, r(t; X). Note

that the averaging is not after evaluating �(t; r) at treatment level t and the probability of

receiving the treatment actually received, r(T;X).

As an alternative to the conditioning argument in Theorem 3, as in the binary case, one

can use the score to weight the observations, using the following equality:
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Theorem 4 (Weighting and the Generalized Propensity Score)

Suppose assignment to treatment is weakly unconfounded. Then

E

"
Y �D(t)

r(T;X)

#
= E[Y (t)]:

Proof: See Appendix.

5. Comparison with Binary Treatments

Here we discuss the key di�erence between the RR and the current approach. The RR

propensity score partitions the population into subpopulations where valid causal compar-

isons can be made. Within the subpopulation with propensity score equal to e(X) = e, the

average value of Y (1) for treated units is unbiased for the subpopulation average value of

Y (1), and similarly for the average value of Y (0) for control units. Hence the di�erence in

sample averages by treatment status is unbiased for the expected di�erence of Y (1)� Y (0)

within that subpopulation, that is, it is unbiased for the average causal e�ect. Another

way of stating this is that the regression of the observed outcome on treatment level and

propensity score has a causal interpretation. To get an estimate of the population average

causal e�ect one then adds up the within-subpopulation estimates, weighted by population

shares.

The GPS also partitions the population in subpopulations. Consider the subpopulation

de�ned by r(T;X) = r. Within this subpopulation the average value of Y (t) for units with

treatment level t is an unbiased estimate of the average of Y (t) for the subpopulation with

r(t; X) = r. The reason is that this subpopulation with T = t and r(T;X) = r is the same as

the subpopulation with T = t and r(t; X) = r. However, the average of Y (s) for units with

T = s in the same subpopulation with r(T;X) = r is unbiased for the average of Y (s) in

a di�erent subpopulation, namely that with r(s;X) = r. Hence no causal comparisons can

be drawn within the subpopulation de�ned by r(T;X) = r, and the regression of observed

outcome Y on treatment level T and the score r(T;X) has no causal interpretation.
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More formally, with

�(t; r) = E[Y jT = t; r(T;X) = r];

consider the di�erence �(t; r)� �(s; r):

�(t; r)� �(s; r) = E
h
Y (t)

���T = t; r(T;X) = r
i
� E

h
Y (s)

���T = s; r(T;X) = r
i
:

By weak unconfoundedness this is equal to

E
h
Y (t)

���r(t; X) = r
i
� E

h
Y (s)

���r(s;X) = r
i
;

but there is no causal interpretation for this di�erence because the conditioning sets di�er:

fxjr(t; x) = rg 6= fxjr(s; x) = rg. To obtain a causal interpretation one needs to contract

the conditioning set to the intersection of the two conditioning sets:

E
h
Y (t)

���T = t; r(t; X); r(s;X)
i
� E

h
Y (s)

���T = s; r(t; X); r(s;X)
i

= E
h
Y (t)� Y (s)

���r(t; X); r(s;X)
i
:

However, in general such causal interpretations require conditioning on an additional vari-

able. This is exactly what the propensity score approach attempts to avoid.

In the binary treatment case the expansion of the conditioning set can be avoided while

still obtaining a causal interpretation of di�erences in outcomes by treatment status by

virtue of the adding up of the two assignment probabilities. Consider the binary case with

K = 1 and the propensity score e(x) = r(1; x). In their discussion of the propensity score

methodology, RR demonstrate that conditional on the propensity score outcome di�erences

by treatment status are unbiased for average treatment e�ects:

E
h
Y (1)

���T = 1; e(X) = e
i
�E

h
Y (0)

���T = 0; e(X) = e
i
= E

h
Y (1)� Y (0)

���e(X) = e
i
:

To see the di�erence with the GPS, let us rewrite this in the GPS notation:

�(1; e)� �(0; 1� e) = E
h
Y (1)

���T = 1; r(1; X) = e
i
�E

h
Y (0)

���T = 0; r(0; X) = 1� e
i
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= E
h
Y (1)� Y (0)

���r(1; X) = e
i
:

The reason this causal comparison requires no additional conditioning is because the condi-

tioning sets are identical:

�
x
���r(1; x) = 1� e

�
=
�
x
���r(0; x) = e

�
;

and hence

E
h
Y (1)� Y (0)

���r(0; X); r(1; X)
i
= E

h
Y (1)� Y (0)

���1� r(1; X); r(1; X)
i

= E
h
Y (1)� Y (0)

���r(1; X)
i
:

In contrast, there is still no causal interpretation for the comparison conditional on the value

of the GPS:

�(1; r)� �(0; r) = E
h
Y (1)

���T = 1; r(1; X) = r
i
�E

h
Y (0)

���T = 0; r(0; X) = r
i

= E
h
Y (1)

���r(1; X) = r
i
�E

h
Y (0)

���r(1; X) = 1� r
i
;

because again the conditioning sets di�er.

However, the lack of a causal interpretation of within the subpopulations does not inval-

idate the causal interpreation after averaging over the distribution of the score.

6. Implementation

Similar to the implementation of the binary treatment propensity score methodology, the

implementation of the GPS method consists of three steps.

In the �rst step the score r(t; x) is estimated. With a binary treatment the standard

approach (e.g., Rubin and Rosenbaum, 1984; Rosenbaum, 1995) is to estimate the propensity

score using a logistic regression. With a multi-valued treatment one may distinguish two

cases of interest. First, consider the case where the values of the treatment are qualitatively

distinct and without a logical ordering. For example, a physician may be choosing from
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a set of distinct treatments, e.g., surgery, drug treatment, no treatment. In that case one

may wish to use discrete response models. For example extensions of the logistic regression

model such as multinomial logit or nested logit models may be appropriate. In the second

case of interest the treatments correspond to ordered levels of a treatment. This may reect

the dose of a drug, or the time over which a treatment is applied. The ordering is likely to

come with a corresponding degree of belief that the probability of receiving the treatment

is a smooth function of the level of the treatment. In that case one may wish to impose

smoothness of the score in t.

In the second step the conditional expectation �(t; r) = E[Y jT = t; r(T;X) = r] of

the outcome given treatment level t and the probability of receiving the treatment received

r(T;X) is estimated. Again there is a distinction between the case where the levels of

the treatment are qualitatively distinct and the case where smoothness of the conditional

expectation function in t is appropriate. In the �rst case estimation of the conditional

expectations should be separate for di�erent levels of the treatment. In the second case one

may wish to impose smoothness, for example by constructing blocks based on values of both

treatment and score, and within the blocks use covariance adjustment methods.

In the third step the average response at treatment level t, �(t) = E[�(t; r(t; X))] is

estimated as the average of the estimated conditional expectation, �̂(t; r(t; X)), averaged

over the appropriate distribution of the pre-treatment variables. Here the choice is in the

appropriate distribution of the pre-treatment variables. The most obvious choice is the

empirical distribution. In that case the estimand is the population average of the potential

outcomes. However, this need not be the relevant distribution. It may be that the researcher

is interested in the dose-response function for a particular subpopulation. In that case the

averaging should be over the distribution of pre-treatment variables in that subpopulation.

Another reason for choosing a di�erent distribution of pre-treatment variables to average over

concerns the resulting precision. If for some values of the pre-treatment variables, common

in the population, particular levels of the treatment are rare, estimates of the population
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average dose-response function are will be imprecise for those levels of the treatment. In

that case it may be that by choosing a di�erent distribution of pre-treatment variables a

dose-response function can be precisely estimated over a larger range of treatment levels.

7. Overlap in the Distribution of Pre-treatment Variables

No procedure for adjusting for pre-treatment di�erences is likely to work well if there is

insu�cient overlap in the distribution of pre-treatment variables by treatment status. It is

often di�cult to assess whether there is su�cient overlap when there are many pre-treatment

variables. It may be that there is considerable overlap in each pair of marginal covariate dis-

tributions without overlap in the joint distributions. RR suggest inspecting the distribution

of the propensity score by treatment status as a descriptive tool for investigating the over-

lap. A su�cient condition for overlap in the joint pre-treatment variable distributions is that

there is overlap in the two marginal propensity score distributions. The two distributions

that are compared in the binary treatment case are f(e(X)jT = 1) and f(e(X)jT = 0). If

the distributions show su�cient overlap, attempts to draw causal inferences are more likely

to lead to satisfactory inferences.

A similar graphical diagnostic is avaiable for the multi-valued treatment case. Because

the treatment can take on many values, the comparison requires more than two univariate

distributions. Instead we compare for each value of t the univariate distribution of r(t; X)

conditional on T = t with the same distribution conditional on T 6= t. As in the binary

treatment case, the concern is with di�erences in the two distributions. If for a given value

of t the distribution of r(t; X) conditional on T = t is similar to that conditional on T 6= t,

then all adjustment methods are likely to perform well. If, however, there are substantial

di�erences, the choice of adjustment method becomes more important and methods relying

on functional form are likely to lose robustness. If one graphs the probability distribution

of r(t; X) given T = t for all values of t 2 T in a single graph, and similarly for the

distribution of r(t; X) conditional on T 6= t, the diagnostic requires the comparison of two
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three dimensional graphs.

In applications it may be the case that there is su�cient overlap for pairs of values of

the treatment for ranges of the pre-treatment variables, but not for others. Let us consider

an example with three levels of the treatment, or T = f0; 1; 2g, in some detail. Suppose

there is a single pre-treatment variable X, uniformly distributed over the interval [0; 3]. If

Xi 2 [0; 1), then with probability (1�")=2, for some " close to zero, unit i receives treatment

0, and with probability (1 � ")=2 the unit receives treatment 1. If Xi 2 [1; 2), then with

probability (1 � ")=2 unit i receives treatment 1, and with probability (1 � ")=2 the unit

receives treatment 2, and �nally Xi 2 [2; 3], then with probability (1 � ")=2 unit i receives

treatment 0, and with probability (1�")=2 the unit receives treatment 2. Assume in addition

that treatment assignment is weakly unconfounded. The score is

r(t; x) =

8>>>>>>>>>>><
>>>>>>>>>>>:

(1� ")=2 if t = 0; x 2 [0; 1) [ [2; 3];
" if t = 0; x 2 [1; 2);
(1� ")=2 if t = 1; x 2 [0; 2);
" if t = 1; x 2 [1; 3];
(1� ")=2 if t = 2; x 2 [1; 3];
" if t = 2; x 2 [0; 1);
0 otherwise:

Now consider estimation of the average potential outcome Y (0). We cannot accurately

estimate the population average because with X 2 [1; 2) there are few units assigned to

treatment level 0. Similarly, the population average of Y (1) cannot be precisely estimated

because there are few units with T = 1 in the range X 2 [0; 1), and the population average

of Y (2) cannot be precisely estimated because there are few units with T = 2 and X 2

[1; 2). Hence we cannot make precise statements regarding the population e�ect of any of

the treatments relative to any other. However, we can make precise statements regarding

the relative e�ect of treatment level 1 versus treatment level 0 for the subpopulation with

X 2 [0; ). Similarly we can make precise statements regarding the relative e�ect of any other

combination of treatments for di�erent subpopulations.
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8. Conclusion

In this paper an extension of the propensity score methodology developed by Rosen-

baum and Rubin (1983) is proposed to deal with mult-valued treatments. As in the binary

treatment case, this methodology allows the researcher to avoid estimating a conditional ex-

pectation of the outcome of interest as a function of all pre-treatment variables and instead

requires only estimation of this conditional expectation as a function of one variable for each

level of the treatment. In order to achieve this a weaker version of unconfoundedness is

introduced that highlights links to the missing data literature.
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Appendix

First I prove Lemmas 3 and 4, and Theorems 3 and 4. The earlier lemmas and theorems

are then shown to be special cases of these results.

Proof of Lemma 3:

First,

Pr(D(t) = 1jX; r(t; X)) = E[D(t)jX; r(t; X)] = E[D(t)jX] = r(t; X);

because by de�nition r(t; X) = E[D(t)jX]. Second,

Pr(D(t) = 1jr(t; X)) = E[D(t)jr(t; X)] = E
�
E[D(t)jX; r(t; X)]

����r(t; X)
�

E[r(t; X)jr(t; X)] = r(t; X):

Hence Pr(D(t) = 1jX; r(t; X)) = Pr(D(t) = 1jr(t; X)) and conditionally on r(t; X) the

treatment indicator D(t) and the pre-treatment variables X are independent. QED.

Proof of Lemma 4:

First,

Pr(D(t) = 1jY (t); r(t; X)) = E[D(t)jY (t); r(t; X)]

= E
�
E[D(t)jY (t); X; r(t; X)]

����Y (t); r(t; X)
�

= E[r(t; X)jY (t); r(t; X)] = r(t; X):

Second, as shown before in the proof for Lemma 3, Pr(D(t) = 1jr(t; X)) = r(t; X). Hence

Pr(D(t) = 1jY (t); r(t; X)) = Pr(D(t) = 1jr(t; X)), and conditionally on r(t; X) the treat-

ment indicator D(t) and the potential outcome Y (t) are independent. QED.

Proof of Theorem 3:

Part (i). First,

E[Y jT = t; r(T;X) = r] = E[Y (t)jT = t; r(T;X) = r]
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= E[Y (t)jT = t; r(t; X) = r] = E[Y (t)jD(t) = 1; r(t; X) = r];

which by unconfoundedness is equal to

E[Y (t)jr(t; X) = r]:

Part (ii) follows directly by applying iterated expectations.

Proof of Theorem 4:

First rewrite the expectation as an iterated expectation with the inner expectation condi-

tional on X:

E

"
Y �D(t)

r(T;X)

#
= E

�
E
�
Y �D(t)

r(T;X)

����X
��
:

Next, by conditioning on D(t) = 1 and multiplying by the probability of D(t) = 1 this is

equal to

E
�
E
�

Y

r(T;X)

����D(t) = 1; X
�
�Pr(D(t) = 1jX)

�
:

Conditional on D(t) = 1, Y = Y (t) and r(T;X) = r(t; X), so this can be rewritten as:

E
�
E
�
Y (t)

r(t; X)

����D(t) = 1; X
�
�Pr(D(t) = 1jX)

�
:

Now the conditioning on D(t) is irrelevant by the weak unconfoundedness assumption, so

this is equal to:

E
�
E
�
Y (t)

r(t; X)

����X
�
�Pr(D(t) = 1jX)

�
:

Because Pr(D(t) = 1jX) = r(t; X), this can be written as:

E
�
E
�
Y (t)

r(t; X)

����X
�
�r(t; X)

�
= E

�
E
�
Y (t)

����X
��

= E[Y (t)]:

QED.

Proof of Lemma 1:

With T binary, D(1) = T , and e(X) = r(T;X)(1). Because the assumptions in Lemma 1

are the same as those in Lemma 3, it follows that

D(t) ? X
��� r(t; X);
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for all t 2 T , and hence

D(1) ? X
��� r(1; X):

With T binary, D(1) = T , and e(X) = r(T;X)(1), so

T ? X
��� e(X):

QED.

Proof of Lemma 2:

The assumptions for Lemma 4 are satis�ed. Hence

D(t) ? Y (t)
��� r(t; X);

for all t 2 T , implying

D(1) ? Y (1)
��� r(1; X);

and

D(0) ? Y (0)
��� r(0; X):

With T binary the �rst is equivalent to

D(1) ? Y (1)
��� e(X);

and the second to

D(0) ? Y (0)
��� 1� e(X);

with the latter expression equivalent to

D(0) ? Y (0)
��� e(X):

Hence

D(t) ? Y (t)
��� e(X);
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for all t. QED.

Proof of Theorem 1:

This follows directly from the proof for Theorem 3. QED.

Proof of Theorem 2:

This follows directly from the proof for Theorem 4 QED.
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