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I. INTRODUCTION

The method of instrumental wvariables (IV) is one of the most
powerful tools of econometrics, because it allows consistent parameter
estimation in the presence of correlation between explanatory variables
and disturbances. Econometricians have long realized that the
performance of the IV estimator depends crucially on the degree of
instrument relevance --the —correlation between instruments and
explanatory variables. Low relevance increases the inconsistency of IV
estimates whenever instruments are not perfectly exogenocus. Even when
instruments are perfectly exogenous, low relevance increases asymptotic
standard errors and therefore reduces the power of hypothesis tests.
Moreover, low relevance can cause the finite sample distribution of IV
estimates to depart considerably from the asymptotic normal
distribution; depending on the data generating process, the resulting
problems can include finite sample bias, fat tails and missized
hypothesis tests (see e.g. Buse (1992), Stock and Staiger (1993), Nelson
and Startz (1990) and Hall, Rudebusch and Wilcox (1994)).

In models with one explanatory wvariable, the R-squared from
regresssing the endogenous variable on the instrument vector is a useful
measure of relevance. In multivariate models, however, one cannot
measure relevance by simply regressing each explanatory variable on the
instrument wvector in turn. If instruments are highly ceollinear, for
instance, IV can work pocorly even when the R-squared is high for each
explanatory variable. This paper proposes a simple way to measure
relevance in multivariate models. For a given explanatory variable Xi'
I suggest computing the squared correlation between the component of Xi

orthogonal to the other explanatcry variables, and the component of Xi’s



projection on the instruments orthogonal to the projection of the other
explanatory variables on the instruments. This partial R-squared
measure can be computed using a series of simple OLS regressions.

The rest of the paper proceeds as follows. Section II motivates
the partial R-squared measure of relevance by examining the consistency
and precision of IV estimates in multivariate models. Section III
presents Monte Carlo evidence on the finite sample ©behavior of
multivariate IV, while Section IV presents a brief empirical example.
Section V concludes with a brief discussion of how relevance measures

might be used by practitioners.

IT. RELEVANCE IN MULTIVARIATE MODELS: ASYMPTOTIC THEORY

Consider the following setup. Suppose Y is a T-by-1 vector of
observations of a dependent variable, X 1is a T-by-k matrix of

explanatory variables, and € 1s an unobservable mean-zero T-by-1

disturbance correlated with some elements of X. Suppose one wants to
estimate
(1) Y = X3 + ¢

with two-stage least squares (2SLS), using a T-by-n matrix Z to
instrument for X, where n = k. How should one measure instrument
relevance in this case? At first glance, the answer seems obvious:
regress each element of X on Z in turn and compute the standard
R-squared from each regression. This precedure is in fact common in
applied work (see, for instance, Miron and Zeldes (1988), Campbell and
Mankiw (1990), Caballero and Lyons (1992) and Attanasic and Weber
(1995)). Unfortunately, this procedure may be misleading, as pointed

out by Nelson and Startz (1990). For instance, suppose X and Z both



have rank two. Suppose that Z, is highly correlated with X, and XZ’ but

1 1

22 is uncorrelated with X. Then a regression of X1 or X2 on Z2 will
produce a high R-squared, even though B is unidentified for practical
purposes.

Fortunately, there is a simple way to measure instrument relevance

in multivariate models. To motivate this measure, rewrite (1) as

(2) Y o= XB + X8, %,

where X, is T-by-1 and X, is T-by-(k-1).  Define 5‘(1 = X, -
XZ(XZ’XZ)_I(XZ’Xl) as the component of Xl orthogonal to XZ' Let %1 and
iz denote the projections of X1 and XZ on Z, and let il = %1 - %2
(§21§2)_1(§21i1) denote the component of Xl’s projection on Z orthogonal

to Xz’s projection on Z. Now suppose we estimate (2) using 2SLS, using

Z to instrument for X. Then the usual partialling-cut arguments imply

(3) B = (X,'X,)
which in turn implies

(4) BfSLS = B+ RURDTHE e

From (4), the probability limit of (B?SLS— B) can be written as a

OLS

function of plim(B1 B), the covariance between £ and X the

1 ?
covariance between £ and il’ and the population squared correlation

between il and il’ denoted Ri:

25LS OLS

1 B) = plim(B1 - B) * [Cov(il,e)/Cov(il,c)] * (Ri)_l

(5) plim(B

From (5), BfSLS is consistent if 2 is perfectly exogencus, so that

Cov(il,e) is zero. If the instruments are not exactly exogenous,

however, the degree of inconsistency depends on relevance, where in a



multivariate context relevance requires that Z have components important

te X1 that are lineraly independent of those important to XZ' Note that

if the partial R-squared is low enough, the degree of inconsistency may
be larger using 2SLS than using OLS, even if the degree of instrument
endogeneity is relatively small.
. 2SLS | . . . .
Provided that Bl is consistent, its asymptotic standard error is

given by

(6) ASE(B?SLS) = Gi

which conditicnal on knowing the true oi can be rewritten as

25L5

(7) ASE(B2 1

_ OLS 2 -
) = SE(B1 ] * (Rp) )

so that even if instruments are exogenous, a low partial R-squared
reduces precision and thus reduces the power of hypothesis tests.

The above discussion suggests that practitioners estimating
multivariate models may want to compute the sample partial R-squared

statistic for each endogenous explanatory variable. For a given Xl’

this statistic can be computed as follows:

STEP ONE: Regress X on 2. Save the fitted values X.

on the remaining X. Save the residuals X, .

STEP TWO: Regress X 1

1
STEP THREE: Regress X

~

on the remaining X. Save the residuals X_.

1 1

STEFP FOUR: Compute the sample squared correlation between il and il'

Notice that for scalar X, partial R-squared reduces to the standard
R-squared from regressing X on Z. Notice too that if X contains only
one endogenous variable, but at least one exogenous variable, the
statistic proposed in this paper equals the squared correlation between

the components of X, and X1 orthogonal to X a statistic sometimes

1 2’



reported in the previous literature under the name "partial R-squared”
(e.g. Bound, Jaeger and Baker (1995)). Third, as stated above, partial
R-squared automatically increases with the number of (possibly
irrelevant) overidentifying instruments. Asymptotically, of course,
adding irrelevant instruments to Z does no harm; however, Buse (1992)
finds that adding irrelevant overidentifying instruments increases the
finite sample bias of IV. Practitioners may therefore want to correct

partial R-squared for degrees of freedom, as follows:

(8) 2 = 1 - (T-1)/(T-n)*(1 - R9),
P P

where Rp denotes the corrected partial R-squared, Ri denotes
uncorrected partial R-squared, T is sample size, and n is the number of
instruments {(including, of course, any exogenous variables that are part
of both X and Z). Note that carrected and uncorrected partial R-squared
are identical in the case of a scalar X and Z (in which case, of course,
partial R-squared would be ldentical to standard R-squared), and that,
like a corrected standard R-squared statistic, corrected partial
R-squared falls relative to uncorrected partial R-squared as both the
dimension of X and the number of overidentifying instruments rise.

Finally, it 1is worth comparing partial R-squared to canonical
correlations. Bowden and Turkington (1984, pp. 29-32) show that the IV
estimator and its covariance matrix can be rewritten in terms of Z and
X’s canonical correlations and canonical facter loadings; in particular,
they show that the estimated standard error of B?SLS can be rewritten as
the square root of
(9) 02 *jgl(aij/rj)z,

where k is the dimension of X, rj is the jth canonical correlation



(where the r are arranged in descending order), and a. . is the loading
of canonical variable j on Xi' From (9), a low rj can cause imprecise
estimates of one or mcre elements of B, so it 1s natural to think of a
low r\j as a sign of instrument irrelevance. Indeed, Hall, Rudebusch and
Wilcox (1994) suggest assessing the relevance of Z for X by testing the
null hypothesis that the kth cancnical correlation is zero; if the null
is not rejected, then the effective rank of i is less than k, and 2SLS
is likely to perform poorly.

Like partial R-squared, canonical correlations "partial out"
correlation ameng instruments, and are thus not vulnerable to the
Nelson-Startz critique of standard R-squared. Furthermore, Hall et al's
approach utilizes a well-developed distribution theory for testing zero
canonical correlations. On the other hand, partial R-squared has the
advantage of assigning a relevance measure to each Xi’ allowing the
researcher to pinpoint variables needing better instruments. Canonical
correlations, meanwhile, do not map readily into particular X variables.
Mere importantly, canconical correlations do not distinguish problems due
to instrument irrelevance from those due to poor conditioning of X.
From (7), a high standard error for B?SLS can result either from a low
partial R-squared or a high OLS standard error., In turn, the latter can
result either from a high variance of the underlying disturbance {a high
og), a low variance of X., or a high degree of multicollinearity between

1
X1 and XZ (the latter two of which would reduce il’il]. Equation (9)
thus implies that canonical correlations depend on the the variance and
multicollinearity of X as well as on instrument relevance. Partial
R-squared, meanwhile, measures instrument relevance alone. The

distinction is important in practice, since irrelevance can sometimes be

cured by finding better instruments, while low variance or



multicellinearity of X is presumably incurable.1
I1I. FINITE SAMPLE EVIDENCE

The above discussion motivates partial R-squared by examining the
consistency and precision of IV in multivariate models. Aside from
these asymptotic problems, a recent literature has examined the effect
of relevance on the finite sample behavior of the IV estimator. In
general, this literature has found that under low relevance the finite
sample distribution of IV can depart dramatically from the asymptotic
normal distribution. Buse (1992), for example, approximates the exact
finite sample distribution of IV and shows that IV is biased in the
direction of OLS, with the bias increasing as instruments grow less
relevant. Stock and Staiger (1993) derive the asymptotic distribution
of IV in a model where the coefficients from projecting X on Z decline
as the sample size grows, so that the F-statistic from projecting X on Z
does not automatically go to infinity; they too find that low relevance
increases the blas of IV estimates. Nelson and Startz (1990) simulate a
Just-identified univariate model; they find that low relevance can cause
fat tails or, in extreme cases, concentration of IV estimates away from
true values with low estimated standard errors. Hall, Rudebusch and
Wilcox (1994) extend Nelson and Startz’ results, and find that low
relevance causes oversized t-tests primarily when the correlation
between the disturbance and the explanatory variable is extremely
high--that 1is, when instruments have low relevance, IV performs worst
exactly when it is needed the most.

Given these results, it seems prudent to conjecture that a low
partial R-squared in a multivariate setting may cause the finite sample

distribution of B?SLS to differ considerably from the asymptotic



distribution. This section presents simulation evidence on the finite
sample behavior of IV in a multivariate model. I consider the following

data generating process:

(10a) Y = lel + BZXZ + Aul + (1-?()1.12
(10b) X, = yu ¢ (1—7Je1
(10c) X2 = Ty, + (1—7)e2
{10d) 21 = Be1 + (l—6)e2 * oV,
(10e) Z2 = (1—6]e1 + Bez + ¢v2,

where ul, u2, el, e2, v1 and v2 are unobserved disturbances,
assumed to be standard normal and joint orthogonal; and where Y, Xl’ XZ’
Z1 and 22 are observable variables. Equation (10a) is the structural
equation of interest. From (10b) and (10c), OLS estimation is
inappropriate, since X1 and X2 are correlated with Uy and U,

respectively. From (10d) and (10e), the Z's are correlated with the X's
but uncorrelated with the u's, so that 2SLS estimation of (10a) is
warranted. The parameter & governs correlation among the Z's; prior
reasoning suggests that 2SLS should be poorly behaved as & approaches
0.5, since in the 1limit Z1 and 22 are 1identical up to disturbances
irrelevant to X. The parameters A and y govern the correlation between
the X’s and the disturbance to (10a), with increases in y raising the
endogeneity of both X1 and XZ’ and increases in A raising the

endogeneity of X1 relative te that of XZ' Prior research suggests that

the performance of B?SLS may deteriorate as ¥y or A increases,

particularly if relevance is weak. The parameter ¢, finally, governs

the amount of variation in the Z’s that is unrelated to the exogenous



components of the X’s; I set ¢ to be nonzero so that 2SLS estimation of

(10a) is still mechanically possible in the limiting case of 8 = 0.5.
Table 1 presents results from a series of experiments investigating

the empirical distribution of B?SLS generated by (10a)-(10e). In all

cases, I set Bl and BZ equal to zero, A equal to 0.9, and ¢ equal to

0.1; 8 and ¥ vary across experiments. Each experiment consists of
10,000 trials. For each trial, I draw 100 observations and estimate
25LS . s s . .
Bl and its t-statistic. For each experiment, I report the population

correlation between X1 and the disturbance to (10a), denoted wxe; the

population standard R-squared (denoted Ri), equal to the squared

correlation between X, and the projection of X

1 on Z; the population

1

partial R-squared (denoted Rg], equal to the squared correlation between

the part of X, orthogonal to X, and the part of X ,’s projection on Z

1 2 1

orthogonal toc X,'s projection on Z; the theoretical asymptotic standard

2
28LS . . .
error for Bl (denoted ASE), defined as in (7): the median of the
- , . . 2S8LS . . .
empirical distribution of Bl ; the empirical size, defined as the
empirical fractlon of estimated t-statistics for B?SLS greater than 1.96

in absolute value, where t-statistics are computed using estimated
rather than theoretical asymptotic standard errors; and (one minus) the
coverage rates of the 95 and 99 percent confidence intervals, defined as
the empirical fraction of estimates 1lying more than 1.96 or 2.326
thecretical asymptotic standard errors away from zero.

Reading down the rows of Table 1, I find that increases in ¥
increase the correlation between X1 and the disturbance to (10a), as
expected; the set-up of my data generating process implies that
increases in ¥ also reduce the correlation between X1 and the

instruments, as reflected in the results for standard R-squared. For a

given %y, both standard and partial R-squared decline as & approaches



0.5. However, as expected, partial R-squared declines much more rapidly
than standard R-squared as & approaches 0.5, and asymptotic standard
errors rise. I find that the finite sample distribution of 2SLS is
similar to the asymptotic distribution when 8 = 1 and y is low: the
empirical median is zero, the t-test 1is correctly sized, and the
coverage rates of the theoretical asymptotic confidence intervals are
accurate. However, the finite sample performance of 2SLS deteriorates
as instrument relevance declines and as the correlation between X1 and
the disturbance increases. As & approaches 0.5, the median of the
empirical distribution of B?SLS departs from zero, the more so the
higher is %; this result is consistent with Buse {(1992) and Stock and
Staiger (1993). The empirical distribution initially develops fat tails
relative to the theoretical asymptotic distribution as 8 falls; the fat
tails eventually subside as & nears 0.5, which is not surprising given
that the theoretical asymptotic standard error becomes infinity in the
limit. Increases in ¥, meanwhile, cause the median of B?SLS to diverge
farther from zero, and cause the t-test to become oversized, consistent
with Nelson and Startz (1990) and Hall et al (1994). Interestingly, the
effect of instrument relevance on size appears to depend on 7y; size
declines as & approaches 0.5 for ¥y less than 0.8, but rises as &
approaches 0.5 for ¥ = 0.9. Note, finally, that the standard R-squared
1s often quite high despite the presence of median inconsistency and fat
tails for & near 0.5; not surprisingly, standard R-squared can give

misleading information about relevance when instruments are highly

correlated among themselves.
IV. AN EMPIRICAL EXAMPLE

This section presents a brief empirical example, inspired by the

10



. . 2 . .
recent macreoeconomic literature on returns to scale. My estimating

equation is as follows:

(11} dx, = a + f8 dyt + doilt + g

t t’

where dxt is the growth rate of a composite labor and capital input
for the US manufacturing sector at time t, dyt is real manufacturing
value added growth at t, doilt is the growth rate of the real price of
oil at t, and gy is a disturbance term that represents a technology
disturbance. Equations similar to (11) have been estimated by Hall
(1990), Caballero and Lyons (1992), and many others. The key parameter
in (11) is B, the elasticity of input use with respect to output growth;
under constant returns, B should equal o¢ne, while under increasing
returns B should be less than one. Following Caballero and Lyons
{1992), I include the growth of o0il prices as an additional regressor in
order to control for potential inconsistencies arising from using
double-deflated NIPA value added data rather than gress output data (see
Bruno (1978) and Basu and Fernald (1995)).

I estimate (11) using US manufacturing data from 1948 through 1987,
I measure dxt as a welghted average of labor and capital growth, where
labor is measured as NIPA total hours of all employees in manufacturing,
capital 1is measured as BEA fixed reproducible tangible wealth in
manufacturing, and dxt is weighted wusing 1labor’s average share of
nominal manufacturing output between t and t-1. I measure the real
price of o0il as the nominal BLS producer price index for crude oil
divided by the GNP deflator. Since € is a technology shock and since
technology shocks are likely to affect output, I must instrument for dyt

using demand-shift variables that are relevant for output but

uncorrelated with technology. Following Ramey (1989} and Hall (1990),

11



my instruments are the constant term, the growth rate of the real oil
price, the growth rate of real US military spending in terms of the GNP
deflator, and a dummy variable equal to one when the year-end US
President is a Democrat. The 25LS results are as follows:

(12) dxt = -0.013 + 0.818 dyt + 0.068 doil  + &,
(0.009) (0.244) (0.032)

Inputs thus increase less than one-for-one with output, consistent
with increasing returns, although B is not significantly different from
one. The high standard error on f suggests that the instruments might
not be very relevant for output growth. The uncorrected standard
R-squared from regressing dyt on the vector of instruments is 0.10. The
uncorrected partial R-squared, however, is only O.OS.3 The discrepancy
arises because the most relevant instrument for output growth over my
sample period is the o0il price, which is an included variable in (11).
Partial R-squared recognizes the fact that relevance due to doil cannot
help identify B in (11), and thus correctly indicates that the

instrument set is not very relevant for output growth in my sample.

V. CONCLUSION

I conclude by discussing the possible uses of partial R-squared in
applied work. Given the importance of instrument relevance for the
performance of 2SLS, it is tempting for practiticners to use relevance
measures such as partial R-squared as a screening device, narrowing down
a list of potential instruments by discarding those displaying
insufficient relevance.4 As Hall, Rudebusch and Wilcox (1994)
demonstrate, however, such pretesting can be dangerous, because high

measured correlation between Z and X in the sample can be due to a high

12



correlation between Z and the endogenous part of X in the sample, even
if Z is exogenous in population. Screening instruments for relevance ex
ante can thus increase the chance of inconsistent estimates ex post.
Hall et al’'s results do not mean, however, that partial R-squared
and other relevance measures are useless. In the first place, one can
use relevance measures as ex post diagnostic tools, perhaps to identify
the cause of high standard errors or to alert the researcher to possible
inconsistency if one suspects that the instruments are not perfectly
exogenous (Bound, Jaeger and Baker (1995) provide an example of the
latter). Second, one may be able to avoid pretesting problems by using
a split sample technique; specifically, one might set aside part of the
sample for screening instruments for relevance, and then conduct
estimation using the rest of the sample.5 As long as the instruments
are exogenous in population, such a screening procedure should not
select instruments that are especially likely to be correlated with the
disturbance in the estimation sample. I plan to explore the efficacy of
such an instrument selection procedure in future work. Finally, one can
use the concept of Iinstrument relevance as a guiding principle when
designing instrument selection strategies ex ante, even if one does not
want to pretest instruments for relevance. For instance, to estimate
equation (11) controlling for energy prices, the concept of partial
R-squared suggests that one must find plausible demand-shift instruments
besides the oil price that are correlated with output. At worst, Hall
et al's results do not mean that relevance should be abandoned as a
criterion for instrument selection; they merely suggest that researchers
should rely primarily on prior reasoning rather than pretests to

determine whether an instrument is likely to be relevant or not.
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FOOTNOTES

1For instance, Campbell and Mankiw (1990) and Shea (1995) acheive
powerful tests of the life cycle-permanent income hypothesis by finding
instruments that are stronger predictors of income growth than those
considered in previous literature.

2Other‘ examples from recent 1literature using partial R-squared

include Fuhrer, Moore and Schuh (1995) and Burnside (1995).

3The degrees—of -freedom corrected standard R-squared is 0.022; the

degrees—-of-freedom corrected partial R-squared is -0.031.

4Regrettably, Shea (1993) is an example of this practice.

5Angrist and Krueger (1995) suggest the use of split samples to
avoid the usual finite sample bias in 25LS caused by "overfitting" in
the first stage regression. Their proposed procedure is to set aside
part of the sample to estimate the coefficients of the first-stage
projection of X on 2, and then to estimate the second-stage
relationship using the other part of the sample, using the coefficients
from the first sample to form fitted X. Angrist and Krueger do not

discuss pretesting instruments for relevance, however.



TABLE 1
Monte Carlo simulation of (10a)-(10e)

Coverage Rates

8 ¥ GXC RS Rp ASE Median Size 95 99

1 0.3 0.39 0.84 0.84 0.13 -0.00 0.05 0.06 0.01
0.53 0.3 0.39 0.53 0.36 0.20 -0.00 0.05 0.07 0.02
0.52 0.3 0.39 0.48 0.20 0.26 0.00 0.03 0.10 0.05
0.51 0.3 0.39 0.43 0.06 0.48 0.02 0.01 0.16 0.11
0.50 0.3 0.39 0.4z 0 0 0.18 0.00 -—- -——=

1 0.5 0.70 0.50 0.30 0.18 -0.00 0.0S 0.06 0.03
0.53 0.5 0.70 0.31 0.21 0.28 0.00 0.05 0.09 0.04
0.52 0.5 0.70 0.28 0.12 0.37 0.00 Q.05 0.11 0.07
0.51 0.5 0.70 0.26 0.04 0.67 0.09 0.03 0.18 0.14
0.50 0.5 0.70 0.25 0 0 0.40 0.02 -—-—- -—=

1 0.7 0.91 0.15 0.15 0.3¢c ©0.00 0.07 0.10 0.06
0.53 0.7 0.91 0.10 0.06 0.47 0.03 0.07 0.15 0.12
0.52 0.7 0.91 0.09 0.04 0.61 0.09 0.07 0.19 0.15
0.51 0.7 0.91 0.08 0.01 1.11 0.30 0.06 0.17 0.13
0.50 0.7 0.91 0.08 0 © 0.47 0.05 -—- -—-

1 0.8 0.96 0.06 0.06 0.46 D.02 0.09 0.17 0.14
0.53 0.8 0.9 0.04 0.02 0.70 0.1 0.08 0.21 .17
0.52 0.8 0.96 0.03 0.01 0.92 0.26 0.09 0.20 0.16
.51 0.8 0.9 0.03 0.004 1.66 0.41 0.09 0.12 0.09
0.50 0.8 0.96 0.03 0 o 0.51 0.08 ~-—- =

1 0.9 0.99 0.01 0.01 0.91 ¢.42 0.15 0.23 0.18
0.53 0.9 0.99 ©0.01 0.005 1.40 0.58 0.17 0.15 ¢0©.11
0.52 0.9 0.99 0.01 0.003 1.84 0.62 0.18 (©€.10 0.08
0.51 0.9 0.99 0.01 0.001 3.33 0.67 0.19 0.05 0.04
¢.50 0.9 0.99 0.01 0 © 0.69 0.20 -—- -——=

NOTES: This table presents results from simulating equations

(10a)-(10e) in the text, for varying &8 and 7. See the text for details.



