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1. Introduction

This paper proposes and evaluates an estimator of a heteroskedasticity
and autocorrelation consistent covariance matrix that is positive semidefinite
by construction. The estimator is applicable when the regression disturbance
follows a moving average (MA) process of known orderx, and the innovations in
this moving average process have zero mean conditional on past disturbances
and current and past instruments. I prove that the estimator, which is
parametric, is JT consistent under mild conditions, This means that it is
asymptotically more efficient than the nonparametric estimators emphasized in
recent work such as Andrews (1991), Andrews and Monahan (1992) and Newey and
West (1994).

Simulations are used to evaluate the finite sample performance of
hypothesis tests about a parameter in a linear model. Consistent with some
asymptotic calculations worked out for a& simple example, these simulations
indicate that the estimator works relatively well--has relatively accurately
sized tests--when cross-products of instruments and disturbances are sharply
negatively correlated. The simulations also indicate that these are precisely
the circumstances under which an estimator known as the "truncated" ome is
likely to fail to be positive semidefinite. Since repeated occurrence of this
failure in empirical work was one of the major spurs to development of
alternative covariance matrix estimators, I take the implication to be that
such circumstances are empirically relevant ones.? The simulations also
indicate, however, that when the estimator’s asymptotic advantages relative to
nonparametric estimators are relatively small (but still nonzero), the
estimator works comparably or slightly worse than the nonparametric ones.

A second contribution of the simulations is te evaluate some existing
estimators when cross-products of instruments and disturbances are negatively
autocorrelated. When the negative autocorrelation is sufficiently streng,
some earlier estimators have a tendency to reject too infrequently, rejecting
at the S per cent level, for example, in distinctly less than 5 per cent of

the simulations. This complements the Andrews and Monahan (1992) and Newey
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and West {1994) result that strong positive autocorrelation tends to cause the
nonparametric estimators to reject too often.

The proposed estimator, which generalizes one suggested by Hodrick
{1991), is more restrictive than the nonparametric ones now in common use. It
is not applicable when the order of the moving average of the disturbance is
not known or is infinite, as sometimes happens in empirical work. But in many
studies the null specification implies a moving average of known order.
Examples in which this is the case include: evaluation of multiperiod
forecasts, using either financial market (e.g., Hansen and Hodrick (1980)) or
survey data (e.g., Brown and Maital (1981})); Euler equations (first order
conditions) from rational expectations models when there are costs of
adjustment (e.g., West (1986)), non-separable utility (e.g., Eichenbaum et al.
(1988)) and/or unobservable moving average shocks (e.g., Kollintzas (1993));
time-aggregated models (e.g., Hansen and Singleton (1990)).

As was noted above, the estimator also requires that the innovation in
the regression disturbance have a zeroc mean conditional on past disturbances
and current and past instruments. This means that the best predictor of the
disturbance is the same as the best linear predictor, and so is not implied by
a conventional stationarity assumption. This condition thus is not invariably
maintained in empirical work. But it is consistent with popular parametric
models for regression disturbances, including for example GARCH models. It is
to be emphasized that the estimator allows for heteroskedasticity of the
disturbance conditional on the instruments.

In a system with £ equations, the estimator requires obtaining the
moving average coefficients of the £ dimensional vector of disturbances, In a
single equation system, then, one fits a univariate MA model, regardless of
the size of the parameter or instrument vector. Software to fit univariate MA
models of course is widely available. Software to fit multivariate MA models
1s less widely available, so computational considerations may well call for
use of other techniques such as nonparametric omes in systems with many

equations.
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Section 2 describes the estimator, section 3 presents simulation results
and section 4 concludes, For clarity of exposition, the formal econometric
theory--not only proofs but precise statement of technical conditions as

well--is in an appendix,

2, The New Estimator

A, Mechanics

I first illustrate this estimator with a simple scalar example, and then
define it in the general case. Precise statement of technical conditions may
be found in Appendix A. Let yg=x.f+u; be a scalar regression model, where u,
is the unobservable disturbance and # is an unknown parameter. For a sample
of size T, let g be estimated by instrumental variables using as an instrument
a scalar z,, B=(Zl.,z,x,) 'El.,2.y¢; z¢=x, if OLS is run. Thus, Ez,u,=0 is an
orthogonality condition used to estimate f. Let (z,%.} and (z,u) be
covariance stationary. For inference about B, one needs an estimate of the
asymptotic variance covariance matrix (Ez,x,) %S, where S = 2;...Ez,,u,_u,_-jzt__1 -
EzuZ + 25y Ezyuwuy-yzy-5.  (The last equality follows since z,u, is a stationary
scalar). Estimation of Ezyx, is straightforward, since under very mild
conditions TTIEZL z.x, & Ez.x,.

Estimation of § is more problematical, and is the subject of this paper.
To illustrate the approach, let u; follow an MA(l) process, u=~e,+8¢,.;, and
suppose that (z,e.)] and {z,€,.;} are mean zero and stationary. (To prevent
confusion, it may be worth noting the dating convention: if e,., is a shock
realized in period t-1, and is orthogonal to z‘s that are realized in period
t-2 and earlier, then z, must be realized in period t-2 or earlier.) Suppose
further that ¢, has zero mean conditional on past e,'s and z,,,'s:
E{ee|€r-3,€t-24- 1Z441:Z4,--.)=0. (In other words, suppose that ¢, is a
martingale difference sequence with respect to past € 's and z,4,'s.) Since u,
~ MA(1l) and E(ey|€y-3,.--,Zp41,---) = O, the autocorrelations of z,u, are zero
for lags greater than 1. Hence, the Wold representation of z,u, is an MA(1),

and S = EzZu? + 2Ez,u.u,.;2,.;. We have
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(2-1) Ez?u? = E[z(e +816,1)%) = E[23(ef+20 6,6, +0Fel.1) )
- E[zf(e2+el )]

= Ezfel + #3Ez%, 3.

The equality at the beginning of the second line follows from
E(ep|€p-gr €21+ -~ +Zp414 24, - - . }=0, the last equality from stationarity.

Similarly, Ezyuguy.1Z-y = 6,Ez,z44,¢2. Thus,

(2-2) S = Ezfu + 2EZyuyuy g2,
- Ez?e? + 0%EzZ, 2 + 2(8,E2,Zy4,€8)

= E{(Zpey+012p41€,)%] = Edyy, deyy = (2o401Z40) €pn

One then estimates S by a sample average of a measure of d,, as illustrated
below.

The general case proceeds as follows. There is a regression model
(2-3) fe(B)=u,

where the Ixl vector f; depends on data observable at time t and the (kx1)
unknown parameter vector f, and u, is an £x1 unobservable disturbance vector.
In a linear model, for example, £,(8) = y.-X.'B, where the £xl vector y, and
the kx{ matrix X, are observable. Let Z, be a (qxf) vector of instruments
used to estimate 8. 1In the common case in which an (rxl) vector of
instruments R, is orthogonal to each of the elements of u, (e.g., Hansen and
Singleton (1982)), Z,=R,®I, and q-rf.

To motivate the present study, suppose that a technique such as that in
Hansen (1982) is used to estimate 8, under Hansen’s conditions (although the
present technique is not necessarily tied to Hansen’'s estimation technique and

technical conditions). Then # solves min g U [EIo1Ze£.(8) ) 'We [ B142.£.(8)) ),

vhere Wy is a (qxq) symmetric positive semidefinite matrix. Let Wy converge
in probability to a (qxq) symmetric positive definite matrix W, let F, denote
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the (kxf) matrix of derivatives of f, evaluated at the true parameter vector,
and let H=EZ,F,'. Then JT(F-g) = N(O,V), V = (H'WH) H'USWH(H'VH)'1", S =
Te-EZiuguy.y'Ziy' . Thus, here and in other contexts, one needs to estimate §.

Let the disturbance follow an MA process of known order n,

(2-4) uy, = €y + Oy + ...+ Bp€pp,

where ¢, is £xl, the ¢;'s are £x2, and I+4,L+ ... + ¢,L" 1s invertible. 1I
assume E(€y|€p-1,€4-24--+12tmsZpm-15---) = 0, which implies that Z,u, ~ MA(n).
Then

S = FU + Zg.l(rj-krj'), I‘j L E(Ztutu,_-i'zt___,').

Define the (qxl) vector dyy, = (Z +Z,,;0,+... 42,08 )¢,. It is easily
established that Edid;' = S. It is to be emphasized that Ed,d,’ = S even if U

is heteroskedastic conditional on Z,, so that EZ,uu 'Z,' » EZ; (Buyu, ' )Z,".

Let
~ A
uy = £.(8),
~ - . . ~ A .
where § is a consistent estimate of §. Let #,,...,7, be consistent estimates
A ~ A AOA P Y
of 8,,...,0,, and let ¢, satisfy u,=e +#,6¢1+...4F €. In the case where

£=1 and u, is a scalar, the §'s and ¢'s may be obtained, for example, by
nonlinear least squares applied to Gt_, with gt-O for t<0; Hannan and Deistler

(1988) discuss algorithms applicable for vector MA models. For t=1,...,T-n,

define the (gqxl) vector am as

(2-5) Qpug = (Zy + Zepfy + ... + Zonfo) ey,

Estimate § as

(2-6) § = (T-n) 125980l irn” -



Evidently, § is positive semidefinite.

Hodrick (1991) suggests a similar estimator, in the case of a certain
linear model in which it is known that #,-...=8,~1.
B, Discussion

If § and §,,...,8, are obtained by T!/? consistent estimators (and some
other mild conditions hold), this estimator is T!/2 consistent for 5. (See
the Appendix.?) By conventional asymptotic efficiency criteria, then, this
method dominates the positive semidefinite nonparametric estimators propocsed
by Andrews (1991), Andrews and Monahan (1992) and Newey and West (1994), which
are T® consistent for some o<l/2.

Under the present assumption that Z,u, ~ MA(n), the T2 rate of
convergence is, however, shared by the truncated kermel. This kernmel works as

follows. Let Gt-ft(ﬁ) be the regression residual. For j=0,...,n let ﬁj -
T2 Zy 00y ' Zyey’, With T, = EZ,u,u,.4'Z,-;" the corresponding population

moment. The truncated kernel estimates S as
(2-7) s m £+ (Fafyry + ...+ (PP,

As is well known, S need not be positive semidefinite, a point I return to
below.

To get a feel for how § compares to s . I computed the asymptotic
variances of § and S in a scalar linear model in which the only regressor is

the constant term. In this model, which is described in detail in the notes
to Table 1, £,(8) = y.-f, I=~n=k=q=1l, and Z,=1, Appendix B outlines the
algebra used to derive the asymptotic varilances.?

It may be seen that the new estimator--which I call the MA-2
estimator--is dramatically more efficient when 4; is near -1. This {is
essentially the following well-known result from Box-Jenkins analysis:

Suppose that one wants to estimate ¢ in the MA(l) model x,=v,+#v,.,, where v, ~

i.1.d.. Then if # is near -1, nonlinear least squares (NLLS) is dramatically
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more efficient than 1is the simple estimator that relles on the one-to-one
mapping between the MA coefficient and the first autocorrelation (e.g.,
Brockwell and Davis (1991,p254)). The textbook Intuition for this result is
that NLLS exploits information in the sample autocorrelations beyond the first
(Fuller (1976,p343)), intuition that seems to carry over here as well.

Note that the proposed estimator invelves estimation of the moving

average coefficients of Gt and not ZcGt. In the general, and empirically

plausible, case in which Z, is stochastic, a positive semidefinite estimator
at least as efficient as the one I propose results from fitting an MA(n) to

{gx1l) vector Ztﬁt and estimating S as the usual quadratic form in the
variance-covariance matrix of the innovation to Ztﬁt (see, e.g., Fuller

(1976,pl66) for the population formula). Why then do I not propose applying a

multivariate analogue of NLLS to Zth? The reason is computational. Since
qx£, fitting an MA(n) to the f-vector Gb obviously is computationally simpler

than fitting an MA(n) to the gq-vector ZbGt, and in practice it is often the

case that q>>£. In Eichenbaum et al. (1988), for example, q=14 and £=2.

It should be noted that the circumstances under which the new estimater
1s relatively efficient are precisely those under which the truncated
estimator tends to yield an estimate that is not p.s.d.. This is indicated by
the Monte Carlo simulations reported in the next section, and is suggested by
some algebra given in a footnote.*

In any case, one should expect the asymptotic compariscn in Table 1 to
provide at best a rough guide to actual performance. One obviocus reason is
that the example is so simple and stylized. When there are multiple,
stochastic regressors, efficiency of the MA-f estimator will of course be
affected not only by serial correlation properties of the disturbance but by
those of the instruments as well, In general, then, there will not be a
simple scalar that indexes relative efficiency of the MA-2 estimator for any
and all hypothesis tests. A second reason is that the precision of estimation

of the asymptotic variance covariance matrix is affected by the precision of
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estimation of the expectation of cross-products of Z, and the gradient of f;
(that is, of EZ,X.' in the linear model y,=X.’'B+u,--see the discussion of
(2-3)); given that this estimate typically will also converge at rate JT,
there is no a priori reason to expect performance to be dominated by the
precision of estimation of S.

As we shall see, the simulations nonetheless indicate a broad connection
between serial correlation properties of the disturbance and of cross-products
of instruments and disturbances on the one hand, and performance of the MA-2

estimator on the other.

3. Monte Carlo Results

A. Description of Data Generating Processes and Estimators

The data generating processes (DGPs) and hypothesis tests are very
similar to some reported in Andrews and Monahan (1992). The experimental
design was chosen in large part because the simplicity of the Andrews and
Monahan (1992) DGPs allowed me to cleanly extend their analysis of DGPs with
positive autocorrelation of cross-products of instruments and disturbances to
ones with negative autocorrelation.

As in Andrews and Monahan {1992): all experiments involve the linear
regression y, = B1+8525.+83Z3+BZseHBsZ5ptuy ™ Z, f+u,, t=1,...,T, T=128;
E(u,]Z,)=0 and least squares is the estimator =—=> f = (ZI,Z,Z,")"12L,Z.y,;
without less of generality, 8 is set equal to zerc; the hypothesis of interest
is Hp: B=0. Let Iy = EZ,uu;yZ,.y'. In all experiments, Z,u, ~ MA(n) for n=1

O Nw2 w3

(3-1) S = T+, (MA(1) specifications)
S = Ty#l+T0, 47,4, (MA(2) specifications).

Let ¢ be an estimate of the asymptotic variance covariance matrix of ﬁ,

(3-2) ¢ = (T7'25.,2,2,' ) *(estimate of S)(T"'2l.,2,2,")L.
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A
The relevant test statistic is T§§/9(2.2) ~ x3(1). 1In all experiments, the

number of replications was 1000.

The regressors (= the instruments} follow independent AR{l) processes
with common parameter ¢: for i=2,...,5, z; =4z -;tey,. Two values of ¢ were
used: ¢=0.5 and ¢=0.9. An autocorrelation of 0.5 is approximately that of
growth rates of some macroeconomic variables, such as GDP; that of 0.9 is
characteristic of many undifferenced macrececonomic variables. For each value
of ¢, the variance of the {.i.d. normal variable e,, was chosen so that Ez},-1.

In the homoskedastic models, ug=~e +f1€p.7 O W=, +0; ¢, 1+0,€,., where ¢, is
i.i.d. normal and Ee,e,,=0 for all t,i,s. For varlous values of #; and §,, the
variance of ¢, was chosen so that Euf=l. In the MA(1l) model, §; ranged over
the seven values -0.9, -0.6, -0.3, 0, 0.3, 0.6, and 0.9. The values towards
the lower end perhaps capture some important characteristics of applications
in which the truncated estimator of S fails to be p.s.d., because, as we shall
see, these tend to cause such a failure. The smaller positive values might
arise from time aggregation. The larger positive values are for comparison.
In the MA(2) model, three sets of parsmeters were used: §;=-1.3, 8,=0.5;
8,=-1.0, 6,=.2; 8,;=.67, 8,=.33. The first two sets come from estimates from
inventory data in West and Wilcox (1995); the last is suggested by Andrews and
Monahan (1992). Thus the total number of homoskedastic MA(l) models is 14 (-
2 values of the regressors's autoregressive parameter ¢ times 7 values of the
disturbance’s moving average coefficient §y), the total number of MA(2) models
was 6 (- 2x3). When §;=f,~0, u, ~ 1.i.d.; to prevent possible
misunderstanding, I note that if this fact were known, one would not use an
autocorrelation consistent estimator.

The heteroskedastic models, which were suggested by a similar model in
Andrews and Monahan (1992), are identical to the homoskedastic models except

that

(3-3a) u, = (1//3)[z3,e, + 01(23-1601) ],
(3-3b) u, = (1//3)[2de, + 01(2hi1€e-1) + €2(2Fpzee2)].
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(The factor of 1//3 keeps the variance of u, at unity.)

For future reference, I note the following about the serial correlation
properties of u, and Z.u,, all of which may be established with a little bic
of algebra. First, for given ¢,’'s the autocorrelations of u, are fidentical
for the homoskedastic and heteroskedastic models. Second, the signs of the
first order autocorrelations of u, and z;u, (1=2,3,4,5) are the same as those
of 8,, for both MA(l) and MA(2) models; all the MA(2) mocdels happen to have
(small) positive second order autocorrelations. Third, the autocorrelatiens
of z,u, are smaller in absolute value for ¢~0.5 than for ¢=0.9.

Four estimators are considered. The new estimator is implemented by
applying nonlinear least squares to the least squares residuals, with
presample values of ¢, set to zero.®> A second estimator was the truncated. I
checked whether the estimate (2-7) was positive definite. 1If so, I used (2-7)
in computing the variance-covariance matrix (3-2); if not, I computed (3-2)

setting the estimate of S to fo (i.e., I ignored the autocorrelation in u, and

Z.). A similar procedure was used in the simulations reported in the working
paper version of Cumby and Huizanga (1992).

The third and fourth estimators are the prewhitened QS estimator
suggested in Andrews and Monahan (1992, section 3) and the prewhitened
Bartlett estimator suggested in Newey and West (1994, section 2). For details
on these estimators, see the original papers; here, I limit myself to a brief

outline. These two estimators: (1)Prewhiten ZhGL by fitting a vector
autoregression of order 1 to Ztﬁ,. Let h} denote the (5x1) vector of

residuals to this vector autoregression. (2)Estimate the spectrum of h} by
taking weighted sums of the sample autocovariances of this residual. After
defining (in the notation of both Andrews and Monahan (1992) and Newey and
West (1994)) w,=0, wy=wy=w,=ws~1, the weights are determined by a procedure
that is asymptotically optimal in a certain precise sense. The two estimators
differ in the ﬁeighting scheme used. Call the resulting estimate S!. (3)Use
St and the matrix of autoregressive coefficients estimated in step 1 to

estimate S.
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mula

Table 2 presents sizes of nominal 1, 5 and 10 percent tests for the
homoskedastic models. First consider panel A, in which ¢=0.5 so the
regressors are mildly positively autocorrelated. When #,2-0.3, so that the
autocorrelations of the disturbance, and of cross-products of instruments and
disturbance, are positive or mildly negative, all the estimators display a
tendency to overreject. For the QS and Bartlett estimators, such a tendency
also characterized the simulations in Andrews and Monahan (1992) and Newey and
West (1994). With the possible exception of the truncated, the estimators
seem to perform better for 4,=-0.9 and §,=-0G.6. Overall, the estimators seem
to perform comparably, with the possible exception of the truncated estimator
when 64=-0.9.

Panel B considers the MA(l) model when the regressors are strongly
positively autﬁcorrelated. When §,20, the estimators show a mild tendency to
overreject; for such values of §;, the Bartlett performs worse than the other
three, which seem about comparable. When #;--0.9 or #;=--0.6, so that the
disturbance, and cross-products of instruments and disturbances, are strongly
negatively autocorrelated, the Bartlett overrejects and the MA-{ estimator is
relatively accurately sized; the Q5 and truncated estimators substantially
underreject. With #,=-0.9, for example, the test statistic generated by QS
was greater than 3,84 (the 5 percent value for a x?(1)) in only 7 of the 1000
replications (the ideal is 50).

A comparison of Panels A and B suggests that for given §;, the MA-Z
estimator i{s not sensitive to ¢, the autocorrelation coefficient of the
instruments; for given ¢, the estimator seems to perform a little better when
8,=-0.9. The other estimators seem sensitive to both ¢ and #,, with the QS
and truncated estimators tending to underreject when the product ¢§, is near
-1--that is, when cross-products of instruments and disturbances are sharply
negatively autocorrelated.

Panel C tells a similar story for the MA(2) specifications. The

performance of the MA-£ estimator seems insensitive to ¢, but for given ¢ is
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better when #,<0. When §,<0, the QS and truncated estimators underreject
mildly for ¢=0.5 (columns (1) and (2) of panel C), substantially for ¢=0.9
(columns (4) and (5)). All four estimators tend to overreject when both ¢ and
§, are positive.

I also experimented with a MA{1l) DGP in which the instruments were
strongly negatively autocorrelated (¢=-0.9) and the disturbance was strongly
positively autocorrelated (#,=0.9). Such strong negative autocorrelation of
the instrument is not common in the economic data that I am famillar with. I
used this DGP nonetheless to see whether the key characteristic that leads to
relatively good performance of the MA-f estimator is strong negative
autocorrelation of cross-products of instruments and disturbance. And,
indeed, the MA-2 estimator seemed insensitive to this change Iin parameters,
while the QS and truncated estimators tended to underreject. Rejection rates
for nominal 5 percent tests, for example, were: Bartlett--5.2; QS--0.4;
truncated--0.5; MA-£--3.6.

A broadly similar story is told in the heteroskedastic simulations
reported in Table 3. While the performance of the MA-£ estimator is somewhat
worse here than in the homoskedastic simulations, so, too, is the performance
of the other estimators. And the MA-2 estimator continues to perform
relatively well when the autocorrelation of the disturbance is rather negative
(8, near -1 for MA(l) models, #;<0 for MA(2) models): in all three panels, the
QS and truncated estimators underreject when cross-products of instruments and
disturbances have sharp negative autocorrelation. See columns 1 and 2 in
panels A and B, and columns 1, 2, 4 and 5 in panel C. All the estimators show
a tendency to overreject when both 4 and 6, are positive,

I summarize the simulations in Tables 2 and 3 and the asymptotic
calculations in Table 1 as indicating that the MA-2 estimator tends to perform
relatively well when cross-products of instruments and disturbances are
strongly negatively autocorrelated, although the magnitude of autocorrelation
1s by no means a sufficient statistic for performance.

These points are illustrated in Figure 1, which plots the actual size of
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tests of nominal size 0 to 25, for selected experiments. A comparison of
coluans (1) and (2) in each panel illustrates the insensitivity of the MA-4
estimator to autocorrelation of the instrument, and the tendency of QS to
underreject when cross-products of instruments and disturbances display sharp
negative autocorrelation. Columns (1) and (3) of both panels illustrate that
the MA-2 and QS estimators behave quite similarly in many of the simulations.
Especially in column (4), a comparison of panel A to panel B illustrates that
the estimators perform worse in the heteroskedastic simulations.

In those simulations in which the QS and truncated estimators performed
poorly, use of formula (2-7) tended to generate truncated estimates that were
not p.s.d.. When §;=-0.9 and ¢=0.9 (column 1 of panel B in Tables 2 and 3),
for example, (2-7) was not p.s.d. in an astonishing 93.2 (Table 2) and 88.7
(Table 3) percent of the simulations. (See Appendix G.) Given that in such
cases I set the estimate of S to fo. the tendency to underreject is
unsurprising: in such DGPs V(2,2) < [4(2,2), so the estimator will underreject
if £,(2,2) is near Iy(2,2).

To get a feel for why the QS estimator also underrejected in these DGPs,
I calculated the bias across the 1000 repetitions in the estimate of S5(2,2).
(Recall that in population, V(2,2)=5(2,2).) My thought was that
underrejection might be associated with estimates of $(2,2) that were too
large, i.e., that QS was biased upwards in these DGPs. And this was indeed
the case. For example, in the homoskedastic MA(l) process with ¢=0.9, #=-0.9,
the average differences between the estimated and population values of S$(2,2),
expressed as a fraction of the population value of 5(2,2), were 3.86 for
truncated, -.20 for Bartlett, 0.96 for QS, and -0.35 for MA-Z%.

On the other hand, in all but the DGPs with sharp negative correlation,
QS tended to be biased downwards, as it was in Andrews and Monahan (1992).

S0, too were the other estimators, as is consistent with the general tendency

to overreject that is evident in Tables 2 and 3.%

4, Conclusions
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This paper has propesed and evaluated a positive semidefinite estimator
of a heteroskedasticity and autocorrelation consistent covariance matrix. A
requirement is that the regression disturbance follow a moving average (MA)
process of known order. In a system of £ equations, this "MA-2" estimator
entails estimation of the moving average coefficients of an 2-dimensional
vector; in a single equation system, for example, one fits a univariate MA
model, regardless of the size of the parameter or instrument vector.
Simulations indicate that the estimator performs better than the nonparametric
ones now in common use when cross-preducts of instruments and disturbances are
sharply negatively autocorrelated, comparably or slightly worse otherwise.

One priority for future work is to allow for disturbances whose moving
average representation is of unknown, and possibly infinite, order. Such an
estimator might be implemented in, say, a single equation model as follows.
First estimate a univariate autoregression. Then obtain the first pn moving
average coefficients from the autoregressive estimates in the usual way (e.g.,
Fuller (1976,p74)). Use these coefficients as described in equations (2-3)

and (2-6) above, with the autoregression’s residuals used for ?t.7 If the

order of the ARMA process of the disturbance is unknown, one needs to let the
number of coefficients in the autoregression, and the number of moving average
coefficients, increase as a suitable function of sample size. The theoretical
challenge is to determine this suitable function.

A second priority i{s to develop refined asymptotics that better

characterize the finite sample distribution of the present estimator.
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Footnotes

1. Unfortunately, empirical papers typically do not provide enough information
to allow one tc deduce the autocorrelations of cross products of instruments
and disturbances, But perhaps the unpublished calculations underlying some of
my own work on monthly, aggregate inventories is representative. West and
Wilcox (1995) considered a model with an MA(2) disturbance. Underlying the
estimates in Table 7 of West and Wilcox (19%5) are cross-products of
instruments and disturbances whose estimated first order autocorrelations are
around -0.6. In the simulations, the proposed estimator performs relatively
well with an MA(2) process calibrated to the West and Wilcox estimates. S;e

Table 2C, column (5) below.

o)

2., The Appendix also shows that § is consistent as long as B and g,

are consistent. The implication 1s that one will be able to obtain the 51'5

by inverting the estimates of the autoregressive representation of Gt,
provided one lets the order of the autoregression to increase at an
appropriate rate. Such a procedure might be computationally convenient when
the number of equations £ is large. 1In this paper I do not, however, attempt
to establish what this rate might be.

3. The Table assumes that ¢, is i.i.d. normal. Suppose more generally that ¢,
is i.1i.d. with Ee?=0, Eeg=x. Then the ratios reported in Table 1 will
centinue to be greater than one, but will shrink if x>3, grow if x<3.

4. Suppose that ug-e,+8,e.y is a scalar (£=1) MA(l). For j-0,1 let yy~Euu,.;
and ?danigtﬁqﬁ‘atﬂ be the population and sample autocovariance of u,.

Assume that the first element of Z; 1s the constant term —> 5(1,1)-$u+2$1.
Then §(1,1)<O L> ;D+2;1<0; given that yg+2y; - 0 as §,; - -1, it is not
unreasonable that when §, is nearer -1 sampling error will more likely cause
5(1.1)<0. The same logic applies to the other diagonal elements of §. at
least when u, is conditionally homoskedastic and the relevant element of Z, is
highly positively autocorrelated.

5. I rarely encountered numerical problems using this estimator. Of 40,000
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sets of estimates, only 21 did not converge using a canned nonlinear search
algorithm (the OPTMUM procedure of GAUSS). Of the 21 cases of
non-counvergence, eight occurred for the heteroskedastic MA(l) model with
#,=0.9; for no other parameter configuration did nonconvergence occur more
than three times. Rather than attempt to tune the search for these 21 data
sets, I omitted them altogether from the size calculations reported in Tables
2 and 3: with so few cases of nonconvergence per parameter configuration, the
character of the results would not change in the slightest, no matter what
test statistics would result from playing with the search algorithm until it
converged for these datasets,

6. To prevent misunderstanding, let me note that many factors determine the
small sample performance of the estimators. An downward (upward) bias in the
estimate of 5(2,2) may not and indeed did not always traﬁslate into
overrejection (underrejection) at a given nominal significance level, let
alone at all significance levels. For example, in the homoskedastic MA(1)
process with ¢=~0.9, $#=0.9, the bilases as a fraction of S(2,2) were -0.51 for
truncated, -.53 for Bartlett, -0.23 for QS, and -0.47 for MA-2. Thus, QS was
biased downwards, but, as indicated in Table 2, still underrejected (slightly)
at the .05 and .10 significance levels.

7. Cumby et al. (1983) and Eichenbaum et al. (1988) suggest similar
procedures, but require that an autoregression be estimated whose dimension is

the number of orthogonality conditions rather than the number of equations.
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end
This appendix formally proves the consistency results stated in section
2. To do so, it is helpful to denote the true value of the regression vector
as g" rather than 8, the true value of the matrices of moving average
parameters as #; rather than 4,. So: Let Z; be gx!, let u, and ¢, be £xl, with
u, = ey t8leg+. . H0ney ;s for e, [T+8ic+.. . +85¢P[=0 => |¢|>1. Let § =

D nEZeupu g Zyy' . Let £,(8%)=u,, where 8" is (kxl).

Assumption 1: E(e¢|€-1,€¢-2,---18tmrZtam-1+---2 = 0, and [(Zeey) ', ..., (Zgsnee) ')’
is covariance stationary and ergodic.

Assumption 2: In some open neighborhcod around B8', £.(B) is continuously
differentiable in 8.

For notational simplicity, assume that none of the elements of #7,...,8,
are known. (In some applications it may be known that some of the elements of
the #{'s are, say, zero; in slich cases, the argument presented here is easily
adapted.) Let a* = (8% ,vec(d])',...,vec(83)')’'; let

= {k+ne?)
be the dimension of a*. Methods for estimation of MA models vary in treatment
of presample values of the unobservable disturbance. For concreteness, I
assume that these are zero, both in the data and in the estimation method:
€gmE_y=. . .m€_py1mEqmEy=. . . =€.ns1=0. Accordingly, for an estimate a of a'
obtained from a sample of size T, define &, = ¢.(a) by solving for the first
T-1 autoregressive weights obtained by inverting the MA(n) lag polynomial
I+8,1+. . . 48,17, e (a) = Z};&%_‘f,__j(ﬁ), where the autoregressive ,'s are defined
by the usual recursion (e.g., Fuller (1976), p74)): $p=1, $y=-8;, Po=-01¥:-83,

. For given aeR®, define ¢,(a) analogously, and define diy,(a):R™R% as
(Zy+Zysg 81+, . 4Zg ) € (). It 1s understood that "d,” means *d, (a"), ng,"
means "dy(a).” Let § = (T-n) 2l ndeem’ -

By assumption 2, there is a neighborhood N around a* in which dy(a) is
continuously differentiable; for ae¢N, let D, {a) = 3dd,(a)/3a denote the (qxr)}
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matrix of partial derivatives of d;{a). For any matrix A=[a;], let

IA"m"Jla’_JI .

Assumption 3: There exists a constant ¢ and a random variable m, such that for

all t, sup g {dp(a)]| < m,, SUP oex [De(a)| < m, Emfz.<c<‘°-
Assumption 4: TY2[(T-n)  Zld,qdesn’-S] = Op(l).

Proposition l: Under Assumptions 1-3, if a £a%, §3s.

Proposition 2: Under Assumptions 1-4, if TY2ja-a"| = 0y(1), then TV2(§-8) =
0,(1).

P of Propositions and 2: Set gq=1 for notational simplicity. A mean

value expansion of (T-n) 'zld2, = (T-n)"!zd%,, around (T-n)'Ed%,, yields

§-s = (T-n)"1%d2,,-S + 2By, By m (T-n) }(Bdyyn(@)Dein(a) (a-a)),
vhere & is on the line between a and a*. By the ergodic theorem, (T-n) !ZdZ,
E Ed?; it is easily verified that Ed2-S. For &gsufficiently close to a', we
have

| Ay (E) Dpag (&) (@-0") | S T|dpn(@) ] | Desn(B) | |a-a”| s rof]a-a”|
~=>  |By] = rla-a”|[(T-n)"Zm?].
Since (T-n) 'Zm? is 0,(1) by Markov's inequality, By % 0 under the conditions

of Proposition 1, and T!/2B, - 0,(1) under the conditions of Proposition 2.

Assumptions similar to 2 and 3 are also made in Andrews and Monahan
(1992) and Newey and West (1994). Assumption 4 follows from the assumption
about summability of fourth cumulants made in assumption A in Andrews and
Honahan and in assumption 2 in Newey and West.

For the reader unfamiliar with those papers, the following illustration
may help in interpretation of my assumptions. Consider a scalar linear model,
£.(8%) = y,-X.'p* for some observable data y, (a scalar) and X;. Then
Assumption 2 holds. Assumption 3 holds if sup,E|Z|* < =, sup,E|X;|* < =,

SUP.E|€,}* < @. Assumption & holds if 2, is stationary with moving average
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representation {say) Ij.gg;e,-j, and: Zieolggl<=; for some m, the (q+l1)xl vector
ley’ ,€xg)’ is 1.i.d. with finite eighth moments, with Eei¢,., possibly not
zero, (See section 2 on the dating comvention, which accounts for a nonzero

cross-correlation between e, and ¢,o occurring when m0.)

Appendix B

This appendix outlines the asymptotic theory used to compute the figures
in Table 1. Let o?mEe?, Ty = Eu? = (148%)o?, I, » Ewu,., = #,0%. From Fuller
(1976,p239) the asymptotic variance of the truncated estimator fo+2f1 is
VyHV iV, Vy =2T3+4T%, Vy maloTy, Vo=T3+3T%.

In this example, the MA-£ estimator is (1+8,)2(T-1)7'zki}e?,, w (1+§,)252,
where ?, is the NLLS residual. From Fuller (1976, pp346-49), one can conclude
the following. After some rearrangement, a second order mean value expansion
of § around 5 gives JT(§-S) = g'Srtoy (1), g=[2(1+481)02, (1+4,)%)",
ST—JT(il-ﬂl,gz-az)’. For a certain (2xl) randoem vector Cy, §y=Cr+op(l), with
1im ;.. ECCy' = C, C(1,1)=1-8%, C(1,2)=C(2,1)=0, C(2,2)=20* —> the asymptotic
variance of § is g'Cg = 4(1+8,)2(1-63)o'+2(1+8,)%a".

Appendix C
Percentage of truncated estimates that were not positive definite:
Value of 4,

-0.9 -0.6 -0.3 0.0 0.3 Q.6 0.9
Table 2A 65.3 44.7 5.3 0.1 0.0 0.0 0.0
Table 2B 93.2 78.5 27.3 1.7 0.0 0.0 0.0
Table 3A 69.7 48.9 17.6 2.4 0.2 0.5 0.1
Table 3B 88.7 78.9 45.3 12.6 1.7 0.2 0.0

Values of ¢, 4;, 4,
.5,-1.3,.5 .S5,-1.,.2 .5,.67,.33 .9,-1.3,.5 .5,-1.0,.2 .9,.67,.33

Table 2C 68.6 63.3

0.0 95.6 33.6
Table 3C 72.8 68.6 0.6 .

.0
7
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Table 1

Inefficiency of the Truncated Estimator Relative to the MA-4 Estimator

8,
-0.9 -0.6 -0.3 0.3 0.6 0.9
840.08 8.25 1.47 1.16 1.52 2.04

Notes:

This table presents the ratio of the asymptotic variance of the truncated
estimator (equation 2-7) to that of the MA-! estimator (equation 2-6). That
the entries are greater than one indicates that the truncated estimator is
less efficient asymptotically. The calculations assume OLS estimation of a
scalar model with a MA(l) disturbance, whose only regressor is the constant
term: y,=p+u,, w=e¢,+#,¢,,, where ¢, is an 1.1.d. normal variable. The
reported ratios are invariant to the scale of ¢,. In the MA-£ model, it is
assumed that 31 is obtained by nonlinear least squares or an asymptotically
equivalent procedure. The object of interest is S = Euf+2Euu,.,.
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