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1 Introduction

Many economic time series display clear trends well represented by deterministic
linear or exponential functions of time. The slope of the trend function represents
the average growth in the series (or rate of growth, if the series is in logarithms) and
is often a parameter of primary interest. Serial correlation in the data complicates
efficient estimation and statistical inference about the trend function, and this paper
studies trend estimation and inference when this problem is severe.

To be specific, assume that a series can be represented as

v =a+ ft+u (1)

(1—pL)us = v, (2)

where y, is the level or log-level of the series, and u, denotes the deviations of the series
from trend. These deviations are serially correlated, with a largest autoregressive root
of p. The error term v, is an I(0) process. If the u}s are jointly normally distributed,
and the precise pattern of serial correlation is known, then efficient estimators of o
and # can be constructed by GLS, and statistical inference can be conducted using
standard regression procedures. In practise, the distribution of the errors and the
pattern of serial correlation is unknown, so that GLS estimation and exact inference
are infeasible.

Applied researchers typically use one of three feasible estimators, motivated by
the asymptotic equivalence of these estimators to the infeasibie GLS estimator. If
|ol < 1, so that u, is I(0), then the feasible GLS estimator is asymptotically equivalent
to the infeasible GLS estimator, under general conditions. Moreover, the classic
result of Grenander and Rosenblatt {1957) implies that the OLS estimators of a and
f are asymptotically equivalent to the GLS estimators. Thus, if u, is 7(0}, OLS
or feasible GLS applied to the level of y, is asymptotically efficient. On the other
hand, when p = 1, so that u, is J{1), a can no longer be consistently estimated by
any method, and the OLS estimator of 8 is no longer asymptotically efficient. In
this case, the data should be differenced and the Grenander and Rosenblatt result
implies that the sample mean of Ay, (the OLS estimator of 8 in the differenced
regression) is asymptotically equivalent to the efficient, but infeasible, GLS estimator
of A. In summary, if u, is J(0) then OLS from the levels regression produces the
asymptotically efficient estimator, while if u, is /(1) then the sample mean of Ay is
the asymptotically efficient estimator.

Inference is just as dependent on the I(0)/I(1) dichotomy. Ideally, in either sit-
uatjon, inference should be carried out using the t-statistic from the infeasible GLS
regression. When u, is I(0), this t-statistic can approximated using the OLS estima-
tor together with a serial correlation robust standard error estimated from the OLS
residuals. Alternatively, when p = 1 and the data are I{1), this t-statistic can be
approximated using the sample mean of Ay, together with a serial correlation robust
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variance estimated from the first differences of the data. Of course, since most re-
searchers can’t know a priori whether their data are 7(0) or /(1), these results are of
limited value. In this paper we study inference problems and the behavior of OLS,
first-difference and feasible GLS estimators when the data are either 7(0) or /(1) and
p is unknown.

Our analysis builds on two literatures. The first is the literature on the linear
regression model with AR(1) errors exemplified by Cochrane and Orcutt (1949) and
Prais and Winsten (1954). The second is the literature on inference in regressions with
(1) variables exemplified by Dickey and Fuller (1979), Durlauf and Phillips (1988)
and Elliott, Rothenberg and Stock (1992). Much of the former literature focuses on
efficient estimation of regression parameters when the errors follow a stationary AR(1)
process, and is directly relevant for our analysis when |p| < 1 and v, is iid.! There are
few exact analytic results in this literature because of the dependence of results on the
regressors and the nonlinearity introduced by feasible GLS estimation.? Moreover,
the asymptotic results summarized above rely on Jp| < 1 and are not refined enough
to discriminate between OLS and feasible GLS estimators. Thus, the majority of
work in this area has relied on Monte Carlo simulations. Equations (1) and (2) have
also been extensible studied in the unit root literature, primarily with a focus on tests
for the hypothesis that p = 1. In most of this literature, the regression coefficients a
and B are nuisance parameters and p is the parameter interest.> One of the purposes
of this paper is to highlight what this analysis says about the feasible estimators of
 and statistical inference.

We begin our analysis in Section 2 by presenting results on the asymptotic dis-
tributions of estimators of 8. These include the OLS, first-diflerence, infeasible GLS
and three different, but commonly used, feasible GLS estimators. We avoid the sharp
lpl < 1 and p = 1dichotomy in the asymptotic distributions by using local-to-unity
asymptotics, with the hope that these provide better finite sample approximations.
The asymptotic results for ]p] < 1 and p = 1 are not new: they are reported here for
completeness and because, particularly when p = 1, the results may not be widely
appreciated by applied researchers. In any event, the local-to-unity results are the
most relevant, since in most econometric applications the errors are highly serially
correlated, although perhaps not characterized by an exact unit root. These results

1There is large literature on this topic, including Beach and MacKinnon (1978), Chipman (1979),
Kadiyala (1968), Maeshiro (1976 and 1979), Magee (1987), Park and Mitchell (1980), Rao and
Griliches (1969), Spitzer (1979), and Thornton (1987).

3Two exceptions directly relevant for our analysis are Prais and Winsten (1954) and Chipman
(1979). The first paper studies equations (1) and (2) when a = 0 and v, is iid, and calculates the
relative efficiency of the OLS and first-difference estimators as a function of p and the sample size,
T. Chipman (1979) relaxes the assumption on a and calculates the greatest lower bound of the
efficiency of the OLS estimator for all T and p < 1. We discuss the Chipman (1979) analysis in
more detail in Section 2.2.1

3A notable exception is Durlauf and Phillips (1988}, which is discussed in more detail in Section
2.2.1.



show sharp differences in the relative efficiencies of the estimators and four conclu-
sions emerge from the analysis. First, the Cochrane-Orcutt estimator performs very
poorly when p is large. Second, the OLS estimator is more robust to variations in p
than the first-difference estimator. Third, the variance of the initial error term has an
important effect on the relative efficiencies of the estimators. Finally, the asymptotic
results suggest that the feasible Prais-Winsten estimator is the best estimator in most
applied situations. Section 2 concludes with a small finite-sample experiment that
indicates that the asymptotics provide reasonable approximations to the finite-sample
relative efficiencies.

Section 3 studies the problem of statistical inference about §. Existing Monte
Carlo evidence suggests that methods relying on I(0) asymptotic approximations
greatly understate the uncertainty in 8 when |p| < 1 but large. This leads to confi-
dence intervals that are much too small and hypothesis tests with sizes that are too
large. Asymptotic approximations that rely on p = 1 have analogous problems. This
section uses the local-to-unity asymptotic approximations from Section 2 to construct
bounds tests and conservative confidence intervals building on methods developed in
Dufour (1990} and Cavanagh, Elliott and Stock (1993).

In Section 4 we apply the methods to estimate and construct confidence intervals
for real per-capita GDP growth rates for one hundred and twenty-eight countries using
post-war data. Consistent with the analysis in Section 2, we find large differences
between the Cochrane-Orcutt and other estimators for many of the countries. There
are smaller, but economically important differences in the other estimators, and this
highlights the importance of estimator choice. Finally, for most countries, the high
degree of serial correlation and short sample leads to wide confidence intervals for 3.

Finally, we offer a summary and some conclusions in Section 5, and the appendix
contains proofs and other detailed calculations.

2 Estimators

2.1 The Model

The statistical model for the observations {y.}7, is conveniently summarized in the
following assumptions:

1. The data y; are generated by
m=a+Bt+ufort=1,...,T. (3)
2. The error term u, is generated by (1 — prL)uy =v, fort =2,...,T.
3. uy = TV phvs .
4. vy =d(L)e, with d(L) = £2,d;L’, and 2,1 [ d; |[< 0.
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5. The error term ¢, is a martingale difference sequence with E(¢? | ¢, 1€, )=
1 and with sup, Ee! < oco.

Assumption (1) says that the data are generated as a linear trend plus noise; the
parameter 3 is the average trend growth in the series and is the parameter of interest.
Assumptions (2) and (3) are written to include both I{0) and /(1) processes. When
pr = p, with |p| < 1, then u, is I(0); while when pr = 1, then u, is I(1). More
generally, when pr = (1 + £), then u, follows a “local-to-unity” /(1) process, with
¢ = 0 corresponding to an exact unit root and values of ¢ # 0 generating data that
are less (c < 0) or more (¢ > 0) persistent then the exact unit root process.

Assumption (3) incorporates a range of assumptions about the initial condition
u;, depending on the value of x and pr. For example, when « = 0, then u; = v; , so
that the initial value is assumed to be an O,(1) random variable. When x > 0, then
uy is O,(T*?) when u, is I(1), but is Op(1) when u; is /(0). When pr = p, with
lol < 1 and kT — co, then u; is drawn from the unconditional distribution of u,, and
the process is covariance stationary.®

Assumption (5) implies that the functional central limit applies to the partial
sums of ¢, ie, T-3 Tl e, = W(s), where W(s) is a standard Wiener process.®
Assumption (4) insures that the functional central limit theorem also applies the

partial sums of v, specifically T-1 LT v, = d(1)W (s).

2.2 Asymptotic Properties of Estimators
2.2.1 OLS, First-Difference and GLS Estimators

Let Bo.s denote the OLS estimator of # in (1), let Brp = (T =1)"! vT . Ay, denote
the first-difference estimator, and let ﬂGLs denote the infeasible GLS estimator that
corrects for non-zero pr. Specifically, BgLs is the OLS estimator in the transformed
regression

w—pry-1 =0 —prla+Blt—pr(t— 1))+ u — pruey, t=2,3,...., 7. (4)

together with
o 'yw=octato g+ 07y, (3)

where o7 = (1 — p3 T+ 51 p}) for pr # 1 and 0? = [kT] + 1 for pr = 1 For
simplicity, the GLS estimator ignores the 7(0) serial correlation associated with d(L).

“These “local-to-unity” processes have been used extensively to study local power properties of
unit root tests, construct confidence intervals for autoregressive parameters for highly persistent
processes, and more generally, to study the behavior of statistics whose distribution depends on the
persistence properties of the data. Some notable examples are Bobkoski (1983), Cavanagh (1985),
‘(l')avanagh, Elliot and Stock {1993), Chan and Wei (1987), Chan (1988), Phillips (1987), and Stock

1991).
8See Elliott (1993) for related discussion of the initial error in the I{1) model.
€A range of alternative assumptions will also suffice; see Phillips and Sclo (1992) for discussion.
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This allows us to focus on the major source of serial correlation, pr # 0, and leads

to no loss of asymptotic efficiency for the models considered here (Grenander and
Rosenblatt (1957)).

In large samples, the behavior of Bm,s, Bpp and BGLS is summarized in Theorems
1 and 2:

Theorem 1 (Behavior of ﬁot.s, B;‘D and Bgrs with I (0) Errors):

Under assumptions (1)-(5) with pr = p, and |p| < 1:

(a) TH( Bors — B) == N(0, Vi), where Vi = 12(1 — p)=2d(1)".

(b) T(Brp — B) converges in distribution to a random variable with zero mean, vari-
ance V; = T2, f2 + var(uy), where f; = %, pU=d;. The limiting distribution of
T(Bpp — ) depends on the distribution of the €'s, and so in general is non-normal.
(c) TH( BoLs — B) == N(0,V}), where V, is specified in (a).

Proof.  Part (a) and (c) follow from a straightforward application of the central
limit theorem. To show part (b), note that T(8rp — B) = ur — uy, from which the
result follows immediately.O

Theorem 2 (Behavior of fors, Brp and fers with I(1) Errors):
Let S.(1) = (=2c)~'(1 — €*™¢). Then under assumptions (1)-(5), with pr = {1 + £):
(a) TH(BoLs — B) -+ N(0, Ry), where

Ry = d(1)*c73{18(c — 2)%e* + T2c(c — 2)e® + 12¢* + 542 + 72c — 72]

ceS + ¢ — 2(ef — l)}z-

+d(1)*144S.(«)[ 5o

(6)T4(Bep — B) N N(0, Ry), where
Ra = d(1)’[S(1) + (1 — €°)*Se())-

()T} (BgLs — B) == N(0, Ry), where

S.(x) +1

Ro = O e T = e + 1) = 5w — o

Proof. See Appendiz.

COI‘O“&I’Y 3 (Bcham'or Of ,éo[,s, épp and BGLS when p= 1).‘
Under assumptions (1)-(5), with pr = 1:

(a) T}(Bors — B) - N(0, ¢d(1)?).
(8) TH( Brp — B) = N(0,d(1)?).
(c) TH( Bors — B) = N(0,d(1)?).



We highlight five features of these results. First, ﬂoLs. Brp and BoLs converge
to B faster in the J(0) model than the J(1) model. This results obtains because the
variance of the errors is bounded in the I(0) model and increases linearly with ¢ in
the 7(1) model. Sampson (1991} discusses the implication of this result for long-run
forecast confidence intervals.

Second, the averaging in fors in the / (0) and I(1) cases and in ﬁpp in the 7(1)
case leads to asymptotically normal estimators. In contrast, since T(Brp — B) =
[T/(T — 1)}(ur — u1), no such averaging occurs for Frp in the I(0) case, so that Brp
is not asymptotically normally distributed in general. (See Quah and Wooldridge
(1988) and Schmidt (1993) for related discussion.)

Third, Bo:.s is the asymptotically efficient estimator regardless of the value of p
and it corresponds to the BLUE estimator when d(L) = d, a constant. The efficiency
of the FD and the OLS estimator relative to the GLS estimator differs dramatically
in the 1(0) and (1) cases. When the errors are I(0), then Bpp converges to f3
more slowly than does BcLs, and thus has an asymptotic relative efficiency of 0. In
this case, fors is asymptotically efficient, the familiar result from Grenander and
Rosenblatt (1957). When the errors are I(1), Bors, Brp and Bgrs converge at the
same rate and the relative efficiency depends on the parameters ¢ and . Figure
1 plots the asymptotic relative efficiencies (deﬁned as the ratio of the asymptotic
variances of ﬂo;g and ﬁpg to the asymptotic variance of ﬂGLs) in the /(1) model
for a range of values of ¢ and x. When ¢ = 0, both fors and Brp are invariant
to uy and so0 their variances and the relatwe eﬂic:ency do not depend on x. In this
case ﬂpp is asymptotically efficient and fors has an efficiency of 5/6. This result is
derived in Durlauf and Phillips (1988), who study the propert:es of trend estimators
in the model with p = 1 (equivalently, ¢ = 0). When c is sufficiently negative, Bors
dominates Bgp for all values of x. The intersection point of the Bovs and Brp relative
efficiency curves depends on . For example, when x = 0, Brp is efficient relative to
Bors for values of —18.6 < ¢ £ 1.2, and fors dominates Brp for ¢ outside this range.
When x = 1.0, the range narrows to —=7.6 < ¢ < 0.9.

Fourth, when x = 0, so that u,is O,(1), the relative efficiency of both Bors
and frp increases monotomca.lly with ¢. The relatively poor performance of these
estimators when ) is O,(1) has been noted elsewhere, notably by Elliott, Rothenberg
and Stock (1992) in the context of unit root tests. On the other hand, when x > 0, so
that u, is O,(T%), the relative efficiency of Bor.s is U-shaped, with a minimum that
depends on the specific value of x. For example, when x = 1, the minimum relative
efficiency of fors occurs at ¢ = —3.006 where it takes on the value of 0.7535. As
x — 0o, the minimum relative efficiency of Jo.s is .7538 and occurs at ¢ = —3.076,
a result that was also derived by Chipman (1979) using methods different from those
employed here.”

TChipman (1979) also shows that, when d(L) = d, this asymptotic relative efficiency value is the

gren&at lower bound for the relative efficiency of ﬁou for all n > 2. Because of a slight numerical
error in Chipman’s paper, his reported numerical results are different from those reported here.
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Finally, when the errors are I(1), the variances of Bo.s , Brp, and 5GL5 depend
on ¢ and « in important ways. For example, Figure 2 plots the variance of fgrs as a
function of cand x. As ¢ increases, the persistence of the errors increases and so does
the associated variance of Agrs. Similarly, as « increases, the variance of u, increases,
leading to an increased variance in BGLs.

2.2.2 Feasible GLS Estimators

The efficient GLS estimator relies on two parameters, p and «, whose values are typi-
cally unknown. In this section we analyze feasible analogues of fg.s. The parameter
p is easily estimated from the data, and as we show below, replacing p with an es-
timate has little effect on fgrs. On the other hand, it is impossible to construct
accurate estimates of «, since this parameter only affects the data through the vari-
ance of the single observation u;. We therefore analyze three feasible GLS estimators
that differ in their treatment of the initial observation. We find large differences in
the relative performance of these estimators across different values of «.

To focus attention on the parameter x, we begin by analyzing the estimators
assuming that p is known; a simple modification of these results yields the results
for unknown p. As above, the GLS estimators ignore the serial correlation associated
with the 7(0) dynamics in d(L), since the Grenander-Rosenblatt (1957) results imply
that OLS or GLS treatment of d(L) has no asymptotic effect on the estimators of
P that we consider. Let Sco denote the Cochrane-Orcutt (1949) GLS estimator that
ignores the levels information in the first observation; that is, Aco denotes the OLS
estimator of 8 in equation (4). Let fcc denote the GLS estimator constructed under
the assumption that uo = 0. This assumption is often made in the unit root literature
(see, e.g., Elliott, Rothenberg and Stock (1992)) and is referred to as the “conditional

* Thus, ﬁcc is the OLS estimator of 8 from (4) together with:

n=a+f+u. (6)

Finally, let Apw denote the Prais-Winsten (1954) estimator; that is, the OLS estima-
tor of B from (4) together with:

(1 = p1)y = (1- p1) e + (1 = p7)' /78 + (1 = p7) *us. (7

The Prais-Winsten estimator is defined for pr < 1, and we limit our discussion to
this situation. In the notation introduced in the last section, fcc corresponds to the
GLS estimator constructed using x = 0, and fpw is the limiting value of the GLS
estimator as x — oo,

When pr = p, with |p| < 1 (i.e., u, is I(0)), each of the GLS estimators is
asymptotically efficient and the large sample distribution is given in Theorem 1.

(Specifically, the value of ¢ that we report (¢ = —3.07558) is a more accurate estimate of the root
to his polynomial (3.3) than the value reported in his paper (¢ = —3.09485).)



Thus, we need only consider the behavior of the estimators in the /(1) model, and
this is done in the following lemma:

Lemma 4 (Behavior of GLS Estimators with I(1) Errors):
Under assumptions (1)-(5), with pr = (1 + £):
(a) TV3(fco — B) N N(0,G,), where

_ 12d(1)?
oA

Gy ,forc#0, and

Gy =d(1), forc= 0;
(8) T"*(Bcc ~ B) = N(0,G,;), where

_ o d(1) c— 1)
Gy = —l — lcﬁll + SC(IC)——J—I Tt %c’l'

(c) TV*(Bpw — B) ==+ N(0,G3), where

- day 2 1.
== T+ ilicz):z[c Sc(x)+1+ T ).

Gs

Proof. See Appendix.

Part (a) of the lemma implies that G,, the limiting variance of T%(Bco - B),is
discontinuous at ¢ = 0. This occurs because the regression constant term, a, becomes
unidentified as ¢ — 0. For values of ¢ close to zero, a is very poorly estimated, and
the collinearity between the two regressors (1,t) in equation (4) means that 3¢ is
also a poor estimate of . When ¢ = 0, a disappears from equation (4) and so this
source of variance disappears from Aco. Figure 3 shows the efficiency of each of
the estimators relative to BGLS. The Cochrane-Orcutt estimator, 3co, performs very
poorly for small values of ¢ regardless of the value of x. This result is consistent with
a large literature on the poor performance of the Cochrane Orcutt estimator with
trending regressors and p close to unity.?

The relative performance of the other two estimators depends on the values of «
and c. When x = 0, f¢c is the asymptotically efficient estimator; while Bpw is the
efficient estimator as x — co. From Figure 3, fpw is approximately efficient even
when « is very small. For example, for x = .01 the relative efficiency of Bpw is larger
than 0.73 for all values of ¢; for x = .05 the relative efficiency is larger than .92; and
for all values of x > .10, Bpw is essentially efficient. While Bcc is efficient when
x = 0, this efficiency gain disappears quickly for moderate values of ¢ as « increases.

8See Prais and Winsten (1954), Maeshiro (1976,1978), Beach and MacKinnon (1978), Park and
Mitchell (1980), Thornton (1987) and Davidson and MacKinnon (1993, Section 10.6).



We are now ready to discuss the feasible GLS estimators with pr unknown. These
estimators are calculated like their infeasible counterparts, using an estimator of pr
in equations (4) and (7). These estimators will be denoted as Srco. Brcc, and Brew .
Analysis of these estimators is complicated by the fact that they implicitly depend on
the estimator for pr, and a variety of estimators of pr have been suggested. For frco
the non-linear least squares estimator is often employed, and this estimator is studied
by Nagaraj and Fuller (1991) for the model with general regressors. Their analysis
can be simplified here because of the special structure of the regressors: equation (4)
together with assumption (2) can be combined as:

ye=a+ b +pry—1 +v,fort=23,...,T, (8)

where a = a(l ~ pr) 4+ Bpr and b = B(1 — pr). Thus, Brco can be formed | _from the
OLS estimators from equation (8) as Srco = 5/(1 — pr) for pr # 0 and Brco = @
for pr = 1, where @, 5, and pr are the OLS estimators of the coefficients in equation
(8). Equivalently, Srco can be constructed as the OLS estimator of 8 in (4) using
pr in place of pr. Since the asymptotic distribution T(1— pr) is readily deduced
when pr = (1 + £), (see Stock (1991), for example), the asymptotic distribution of
T4(Brco — B) can also be readily deduced. R

The problem is more complicated when analyzing Srcc and Brpw, since these
estimators are generally based on iterative schemes for estimating pr,a, and 8. Iter-
ative schemes are often used to construct ﬂpco as well. Since the limiting distribution
of pr depends in important ways on the precise way the data are “detrended” (for
example, see Schmidt and Phillips (1992) and Elliott, Rothenberg and Stock (1992)),
the limiting distribution of Brcc, and frpw will depend on the precise specification
of the iterations. Rather than present results for specific versions of these estima-
tors, we present limiting representations of ﬁrcc, and ﬂppw written as functions of
¢ = plimT'(1 — pr). Different estimators of pr will lead to different limiting random
variables ¢ and different asymptotic distributions for the estimator of 8. A specific
example is contained in Durlauf and Phillips (1988 Theorem 4.1), who derive the lim-
iting distribution of ﬁpco when ¢ = 0 and ¢ is constructed from the Durbin-Watson
statistic calculated from the levels OLS regression.

Before presenting the limiting distributions for the feasible GLS estimators, it
is useful to introduce some additional notation. The error term in the feasible GLS
version of (4) is ¥; = u¢— 11, and the limiting values of the feasible GLS estimators
can be written in terms of initial condition ¢, and partial sums of , . In the appendix
we show that T-4u; = W,(u) ~ N(0,5.(x)), where Sc(x) is defined in Theorem 2;
we also show that T-1 vl 5, = W(s) where W(s) is a functional of W(s) and
w. (k).

With this notation established, we now present the limiting distribution of the
feasible GLS estimators:
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Theorem 5 (Behavior of Feasible GLS Estimators):

Suppose that assumptions (1)-(5) are satisfied, pr = (14+ %), and plim{pr~1) = ¢ #£ 0.
Then:

() TH(Brco - B) = T2 [3(} = )W (s), _ )

(b) T¥(Brcc — B) = [1 -+ L& 7((e = JEIWelr) = f5 (s — 1)dW (s)], and

(c) TH(Brpw — B) = [1 — 16+ L& [eW.(x) — fo(1 + 1E - &s)dW (s)).

Proof. See Appendiz.

This theorem allows us to offer practical advice about choice of estimators. First,
notice that ¢ appears in the denominator of the limiting representation of Té(ﬁpco -
B). For most commonly used estimators of p, pr can take on values arbitrarily close
to 1 with positive probability, so that & can be very close to zero. This means that
Brco can be very badly behaved, since realizations of Z close to zero will often lead to
extreme realizations of Srco. On the other hand, frce and Brpw are better behaved,
since [1 ~ &+ 1&@] > 0 and [I — 12+ 4] > 0 for all values of &. This can be seen in
Figure 4 which plots the limiting probability densities of T*(Epco -B), T%(ﬁ[.‘cc -B)
and T*(ﬁppw — ), for the case with ¢ = 0, x = 1, and d(1) = 1.° Also plotted is the
probability density of the exact (mfeas:ble) GLS estimator (which in this case is the
standard normal). The estimators ﬂpcc, and ﬂppw have probability distributions
very close to the infeasible efficient estimator. On the other hand, the distribution
of Brco is much more disperse, with thicker tails than the other distributions. For
example, the limiting probability that IT!‘(ﬂpco —f)] exceeds 2 is approximately 20%;
while the corresponding values for rcc and pppw are approximately 5%. Figure 4
suggests that little is lost using in using either Brcc and Bppw in place of the infeasible
efficient estimator, at least for this value of cand x, and that Brco performs poorly.
Additional calculations (not shown) indicate that the relative efficiencies of Arcc and
Brpw are close to their infeasible analogues for a wide range of values of ¢ and x.

Table 1 summarizes many of the results in this section by presenting the average
mean squared error for the different feasible estimators and different values of «, av-
eraged over different ranges of ¢.!® As a benchmark, the first row of the table shows
results for the efficient, but infeasible, GLS estimator. The next two rows are the
OLS and first-difference estimators, followed by two of the feasible GLS estimators.
(Since the asymptotic mean squared error of frco does not exist, this estimator is
not included in the table.) The last row of the table shows results for a “pre-test”

*The densities for the feasible GLS estimators are estimates based on 5000 draws from approxi-
malions to the uymptotlc distributions (constructed using T=500). The estimators ﬂrco and ﬂrcc
were constructed using pr constructed as the OLS estimator of (8). The Prais-Winsten estimator
used min(1, pr).

1%These MSE's were estimated using the simulations described in footnote 9.
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estimator (8pr) constructed from the OLS and FD estimator. Figure 1 provides the
motivation for this estimator. Since the OLS estimator dominates the first-difference
estimator for large negative values of ¢ and is dominated by the first-difference est;-
mator for small values of c, the pre-test estimator corresponds to the OLS estimator
when ¢ is large and negative and corresponds to the FD estimators when Z is close to
zero. Specifically, ﬂm‘ ﬂor.s when & < and Bpr = ﬂpp when € > 2, where Z is
pre-specified threshold. The results shown in the table are for € = —15, a value that
produced good results over the range of values of x and ¢ that we considered.

Table 1 and the figures shown above suggest five conclusions:

(i) The infeasible GLS estimator fico performs very pootly for values of ¢ close to
0. This poor performance is inherited by the feasible GLS estimator. For all values
of ¢ # 0 and for all values of , this estimator is dominated by fors. Thus, this
estimator should not be used and is ignored in the rema.mmg discussion.

(ii) For very small values of c (say, -2 < ¢ € 0), ﬂp is the preferred estimator with
a mean squared error approx1mate!y 5% lower than ﬂpcc and frpw. For this range
of values of ¢, the OLS estimator, Bors, has a relative efficiency of approximately
.75. The pre-test estimator performs well, and is 1%-2.5 % less efficient than fsp,
depending on the value of «.

(ii1) For values of ¢ in the range —10 < ¢ < -2, the relative performance of the
estimators depends critically on the value of the initial error, parameterized by «.
When & = 0, frcc dominates the other estimators; Brpw is the preferred estimator
when & > .10. When « = .05 the feasible GLS estimators and Brp are comparable,

(iv) For valuesof —30 < ¢ < —10 and when k = 0, Brcc is the preferred estimator.
When « > 0.05, the variance of Brec is more than twice as large as the variance of
the best estimator, Arpw. The first difference estimator also performs poorly relative
to ﬁppw when « > .05.

(v) Items (ii)-(iv) show clearly that the best estimator depends on the values of ¢
and «. Neither of these parameters can be consistently estimated from the data, and
so a good choice must depend on either prior know]edge or robustness considerations.
Our reading of the results suggests that Brpw is the most robust estimator, with a
MSE close to the optimum for all values of the parameters considered. The pretest
estimator is a reasonable alternative to fgpw; it has slightly better performance when
¢ close to 0 but somewhat worse performance for large negative c.

2.3 Small Sample Properties of Estimators

The asymptotic results summarized in Theorems 1, 2 and 5 are potentially useful
for two reasons. First, the asymptotic relative efficiencies can provide a criterion
for choosing among the estimators even in finite samples. Second, the asymptotic
distributions provide a basis for constructing confidence intervals and carrying out
hypothesis tests. In this section we evaluate the first of these uses, and ask whether
the I(0) and I(1) asymptotic variances provide a useful guide for choosing among the
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estimators in small samples. In the following section, we discuss confidence intervals
and statistical inference. . N ~ . _

Table 2 shows the exact relative efficiencies of fors, Brp ,» Brcc, Brpw, and Bpr
for the model with d(L) = d, & ~ NIID(0,1), for various values of T, p, and for
x = 0 (panel A) and x = 1.0 (panel B).}! Also shown in the table are the relative
efficiencies implied by the /(1) asymptotics, calculated using ¢ = T(p ~ 1). The I (0)
asymptotic relative efficiencies are not shown because they do not vary with T,
x; from Theorem 1 they are 1.00 for ﬁo[,s, ﬂpcc, ﬂppw, and ﬁp'r and 0.00 for ﬁpo
In all cases, the J(0) asymptotic relative efficiency suggests indifference between the
four estimators ﬁoz.s, ﬁpcc, ﬂppw and ﬂpg-, and suggests that these estimators are
preferred to ﬂpp

When p = 0.5, the finite sample results in Table 2 suggest that BoLs, Brcc, and
Brpw are essentially efficient for all of the sample sizes considered. These estimators
are significantly better than ﬂpp The pre-test estimator has a relative efficiency
intermediate between ﬂo:.s and ﬂpp when T = 30, and very close to Bors for larger
values of T. Thus the I(0) relative efficiency predictions are quite accurate when
p = 0.5. The predictions based on the I(1) asymptotic relative efficiencies are off
the mark. The I(1) asymptotics suggests that Brce strongly dominates the other
estimators when x = 0 and is strongly dominated by both ﬁo:.s and Brpw when
x = 1. On the other hand, the estimator with the largest I{1) asymptotic relative
efficiency coincides with the largest finite sample relative efficiency, even when p = 0.5.

For all of the other values of p that are considered (0.8, 0.9, 0.95, 1.0), the rank-
ings implied by the J(1) asymptotic relative efficiencies are more accurate the 7(0)
rankings. Indeed in all cases studied in the tables, the estimator with the largest /(1)
asymptotic relative efficiency has the largest finite sample relative efficiency as well.
Thus, this experiment suggests that the I(1) asymptotic relative efficiencies provide
a useful criterion for ranking estimators in typical econometric settings.

3 Confidence intervals

3.1 Construction of confidence intervals.

In this section we discuss methods for constructing confidence intervals for 3. When
p < 1 (so that the errors are 7(0)) confidence intervals can be constructed in the usual
way by mvertmg the “t- statlstnc constructed from any of the asymptotically equiv-
alent estimators ﬁow, Brco, ﬁpcc, Brew, or Bpr. These t-statistics can be formed
using an estimator for the variance ¥} in Theorem 1, constructed by replacing p and
d(1) with consistent estimators. While these conﬁdence intervals are asymptotically

' The mean nquued errors for fp C: ﬂppw, and Bpr, wete estimated using 10,000 Monte Carlo
draws, using 5 = ):, 2 Urth—1/ 2,=, @7, where @i, are the OLS residuals [rom the regression of
w onto (1,¢). This estimator of p is suggested by the simulation results in Park and Mitchell (1980).
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valid, they can greatly understate the uncertainty about 8 when p is large and the
sample size is small. (See Park and Mitchell (1980) for simulation evidence.) Thus,
in most situations of practical interest, confidence intervals based on /(0) approxima-
tions are not satisfactory.

An alternative method pursued here is to construct confidence intervals using
approximations based on /(1) asymptotics. As we show below, this method yields
confidence intervals with coverage rates closer to the nominal size than the I(0) ap-
proximations. Unfortunately, the method is also more complicated. The complication
arises because in the (1) model, the asymptotic distribution of the various estimators
of 8 depends on the nuisance parameters ¢ and «, and these parameters cannot be
consistently estimated from the data. Thus, the variances of the estimators cannot
be consistently estimated, so that t-statistics will not have the approptiate limiting
standard normal distribution. While this problem cannot be circumvented entirely, it
is possible to construct asymptotically conservative confidence intervals following the
procedures developed by Dufour (1990) and Cavanagh, Elliott and Stock (1993).12

Specifically, let B.(c) denote a 100(1 — a,)% confidence interval for B constructed
conditional on a specific value of ¢ and «. Similarly, let C. denote a 100{1 —
a2)% confidence interval for ¢ conditional on x. Assume that 0< x < %, where % is
pre-specified constant. Then the Bonferoni confidence interval, U< <z Ucec. Bx(c),
is a conservative 1001 — a; — a2)% confidence interval for 3. T

This confidence interval requires the conditional confidence interval for 8, B.(c),
and the marginal confidence interval for ¢, denoted C.. Since B.(c) conditions on
the nuisance parameters ¢ and «, an asymptotically valid approximation can be con-
structed using any of the estimators fors, ﬁpo, Bcc» or Bpw, and their asymptotic
variances given in Theorem 1 and Lemma 4. (These variances require d(1), which
can be consistently estimated using standard spectral estimators.) The marginal
confidence intervals for ¢, Cx, can be constructed using the methods developed in
Stock(1991).13

12Pufour (1990) considers the problem of statistical inference in the regression model with Gaus-
sian AR(1) disturbances. He develops “bounds™ tests and associated confidence intervals based on
exact distributions. Cavanagh, Elliott and Stock (1993) consider testing for Granger-Causality in
a regression with a highly serially correlated regressor modeled as a local-to-unity process. They
develop bounds tests and associated confidence intervals based on asymptotic distributions.

13Stock (1991) considers the case with x = 0 and, using our notation, develops methods for con-
structing confidence sets Cp. However, it is easy to modify his analysis for « > 0. Specifically, fol-
lowing Stock, we construct confidence intervals by inverting the Dickey-Fuller t-statistic, ¥*. Under
the assumption that x = 0, Stock shows 77 = (f) W (s)?ds) e + [} W (2)dW(s)/([) W!(5)*ds)],
where W] (s) is the “detrended” diffusion: W7 (s) = We(s) — f) as(r)We(r)dr — s [y as(r)We(r)dr,
where the diffusion W,(s) is defined in the appendix, ay = 4 — 6r, and az = —6 + 12r. These
results rely on the fact that T'fu[,q-] = d(1)W.(s) when x = 0. As shown in the appendix, when
k # 0, T-Yu,ry = d(1)[W.(2) + e*<W,(x)], where W.(x) ~ N(0,S.(x)) and is independent of
W,(s). Using this, it is straightforward to show that all of Stock’s analysis continues to hold, with
W.(5) + e*“W.(x) replacing W.(s) in the above limiting tepresentation for 77.
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In general, this procedure is quite demanding. For each 0 < x < %, C, must be
formed, then B,(c) must be constructed for all ¢ € C,, and the union taken over all of
these confidence sets. There are three special features of the linear trend model that
simplify this procedure. First, from Theorem 2, the asymptotic variances of fo s and
Brp are monotonically increasing in c. Thus, when B,(c) are formed using t-statistics
constructed from fois or Srp, then U, Ba(c) = Bi(2), where € = sup.{c € C,}.
While this simplification does not necessarily hold for the GLS estimators Becc and
Bpw, experiments that we have performed suggest that U.cc. Ba(c) =~ B.(Z) appears
to be a good approximation for confidence sets constructed from these estimators as
well. The second simplifying feature is that the distributions of the statistics used
to form C, change little as x changes, so that Cy & C, for all x.14 Finally, for all
of the estimators, the asymptotic variance is increasing in x and the limit exists as
x — 00, s0 that B,(c) C Boo(c) for all x. Putting these three results together implies
that UocaczUcec, Bx(c) = Bo(€), where € = sup.{c € Co}. Thus approximate
100(1 — a; — a3)% confidence intervals can be formed by (i) choosing the largest value
of ¢ in the 100(1 — a3)% confidence interval constructed using the procedure from
Stock (1992), and (ii) constructing a 100(1 — a1)% confidence interval for 8 using
this value of ¢ together with 8o, Brp, Bcc, or Bpw and an associated variance
from Theorem 2 or Lemma 4 evaluated at x = co.

We make two final points before evaluating the small sample properties of this
procedure. First, since the variance of all of the estimators is increasing in ¢, smaller
confidence intervals for # can be obtained by constructing 1-sided confidence intervals
for c. Second, when the B,(c) confidence intervals are constructed by inverting the t-
statistics for the estimators, the widths of the intervals will be non-random conditional
on ¢ and x. This implies that the narrowest of the confidence intervals (across all
estimators) will also have coverage rate exceeding 100(1 — a; — az)%. Thus, for
example, since Bors is efficient relative to E;.:_D when ¢ < —7.6 and « is large, the
confidence interval can be constructed using Bprs when € < —7.6 and using Brp
when € > -7.6.

3.2 Small sample performance of confidence intervals

Table 3 shows estimated coverage rates for confidence intervals for different values
of T and ¢, calculated as described above. In panel A, the confidence intervals are
calculated as the narrowest of the OLS and FD confidence intervals. Panel B shows
results for confidence intervals constructed from the Prais-Winsten estimator. The
design was much the same as in Section 2.3, i.e., d(L) = d and ¢, ~ N(0,1). Results

When ¢ = 0 the distribution of 77 is invariant to x. This is not strictly true for other values of
¢, but the distribution changes very little. For example, when ¢ = —1.0 the 97.5 percentiles for 7"
are -3.72, -3.70, -3.70 and -3.70 when x = 0.0, 0.5, 1.0, and 10.0, respectively. The corresponding
percentiles are -3.89, -3.84,-3.84, -3.84 for ¢ = -35.0; -4.20, 4.20, 4.20, -4.20 for ¢ = —10.0; and 4.52,
-4.54, -4.54, -4.54 for ¢ = —20.0. These percentiles are based on 5,000 simulations with T = 500.
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are reported for conservative 90%, 95% and 99% confidence intervals constructed with
a; = a3. Results for non-symmetric a; and a; are similar and are not reported. The
confidence interval for p was constructed from the 77 statistic constructed from the
regression of y; onto Ay, and (1,t) using the sample t = 2,...,T. The sample
residual variance from this regression was used as the estimator of d(1)? in the con-
struction of the confidence intervals for 8. Finally, since the Prais-Winsten estimator
is defined for |p| < 1 we restricted the upper limit of the confidence interval to p = 1.
For comparability, this restriction was also used in the ,601,5 and Brp confidence
intervals.

The coverage rates are close to their nominal level for ¢ = 0. When ¢ < 0, the
confidence intervals are conservative, with coverage rates exceeding the nominal level.
This occurs because of the sharp increase in the variance of estimators for small c.
So for example, when the true value of ¢ = -5, then ¢ = 0 is often in the confidence
set Cp, the variance of the estimators is much larger when ¢ = 0 than when ¢ = —5
(see Figure 2) and this leads to a wide confidence interval for 3.

4 Economic Growth Rates for the Postwar Pe-
riod

Table 4 shows estimated annual growth rates of real GDP per capita for 128 coun-
tries over the postwar period. The data are annual observations from the Penn World
Table (version 5.5) described in Summers and Heston (1991) (series RGDPCH). The
data set contains 150 countries, and we limited our analysis to those 128 countries
with 20 or more annual observations. The first column of the table shows the country
identification number from the Penn World tables, and the next column shows the
country name. Columns 3-6 present four estimates of average trend growth (BoLs,
ﬁpp, ﬂrco, and ,Bppw, respectively); column 5 shows the estimate of ¢ used to con-
struct the feasible GLS estimates (¢); column 6 shows the Dickey-Fuller unit-root
test statistic (77) used to construct a confidence interval for ¢, and columns 7 and 8
present lower and upper limits of the approximated 95% confidence interval for 8 con-
structed from the Spw (Bmin and Pumax, respectively). The estimate ¢ was calculated
as explained in footnote 11. The 7~ statistic was calculated from the regression of Ay,
onto yi_1, Aye_y and (1,t) using data from ¢ = 3,...T, and the point estimates from
this regression were used to estimate d(1). We highlight five features of the results.
First, for the majority of the countries, the different estimators give similar results.

For example, for the Congo _(count:y 12) the estimates range from 2.8% (ﬂpp) to 3.4%
(ﬂpco) Second, while the Brco estimates are usually similar to the other estimates,
they occasionally deviate substantially. For example, the estimates for Suriname
{country 81) constructed from ﬂozs. ﬂpg,and Brpw range from 0.4% to 1.4%, while
the estimate constructed from Brco is —212%. Indeed for 31 of the 128 countries,
Brco differs from Bors by more than 5 percentage points. Third, while the differences
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in the other three estimators are much smaller, these differences can be quantitatively
important. For example, ,Bo;,s, ,Bpp differ by more than 1% in 5 cases and by more
than 1% in 35 cases.

Fourth, the confidence intervals are often wide and include negative values for 3.
This results from three factors: a small sample size, a large error variance and a high
degree of persistence in the annual growth rates. For example, the approximate 95%
confidence interval for Algeria (country 1) is —1.18 € A < 4.10. For Algeria, the
Dickey-Fuller t-statistic is —1.46 which implies that ¢ = 0 (i .., p = 1) is contained in
the 97.5% confidence interval for c. Thus, for this value of ¢, ﬂpw corresponds to the
first-difference estimator. The mean growth rate for Algeria over the sample period is
1.45% (= Brp) and this is the center of the confidence interval. The standard devia-
tion of the annual growth rates is 7.3%; thus, if the annual growth rates were serially
uncorrelated, the standard deviation of the sample mean (= ﬂpD = fBpw) would be
1.33% (= 7.3%/v30). For Algeria, the growth rates are slightly negatively corre-
lated and the estimated standard deviation of ﬂpw used to construct the confidence
interval was 1.18%.

Finally, a few of the confidence intervals are quite narrower. For example, the
estimated confidence interval for the UK (series 140) is 2.07 < 8 < 2.44. This series is
less persistent than most of the others, and the Dickey-Fuller t-statistic is -4.51. This
leads to a confidence interval for ¢ with an upper limit of ¢ = —14.1 {corresponding
to p = 0.66). From Figure 2, estimates of # are much more precise when ¢ = —14.1
than when ¢ = 0. Indeed the ratio of the asymptotic standard deviation for Bpyw for
¢=—14and ¢ =0 is 0.2, which approximately corresponds to the difference between
the widths of the confidence intervals for g for the UK and the US (country 71).

5 Concluding Remarks

In this paper we study the problems of estimation and inference in the deterministic
model. While the structure of the model is very simple, serial correlation in the errors
can make efficient estimation and inference difficult. Asymptotic results are presented
for 7(0) and local-to-unity J{1) error processes, with the latter being the most rele-
vant for econometric applications. The asymptotic distribution of the estimators is
shown to depend on two important parameters: (1) the local-to-unity parameter that
measures the persistence in the errors and (ii) a parameter that governs the variance
of the initial error term.

Three conclusions emerge from our analysis. First, the Cochrane-Orcutt estimator
is dominated by the other feasible estimators and should not be used. When the data
are highly serially correlated (i.e., the local-to-unity parameter is close to zero), the
distribution of the Cochrane-Orcutt estimator has very thick tails, and large outliers
are common. Second, the {easible Prais-Winsten estimator is the most robust across
the parameters governing persistence and initial variance. This is the preferred es-
timator unless the researcher has sharp e priori knowledge about these parameters.

17



Finally, inference that ignores uncertainty about p or the variance in the initial er-
ror term can be seriously flawed and lead to large biases in confidence intervals for
trend growth rates. It is not clear how to optimally account for uncertainty in these
parameters, but conservative confidence intervals and tests are easily constructed.
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A Appendix: Theorem Proofs

A.1 Preliminaries:

From assumption (5), T-% }:,_, € => W (s); in addition, this result, together with as-
sumption (4) implies T~ *2!’,’;’ v; = d(1)W(s), where W(s) is a standard Weiner pro-
cess. Analogously, accumulating the errors backwards from time 0, T-} ):?=-I-T) € =
W(s) and T- 52“_[,7-] v, = d(1)W(s), where W (s) is a standard Weiner process,
independent of W(s).

Let i, = {23 prve—i with pr = (14+%). Then T~ '“[nTl = d(1)W,(s), where W_(s)
denotes the diffusion process generated by dW, (s) = cW,(s)ds + dW(s). Similarly,
T4y, =T- %Z.fo Prvr—i = d(l)W(__) where W,(x) denotes the diffusion process
generated by dW.(s) = cW,(s)ds + diW(s). Note that W, (rc) N(0, S.{x)), where
S:(x) = (=2¢)}(1 — e**). Finally, write u, = & + pf 'y, so that T-du,n =
d(1)[W.(s) + e<W.(x)].

A.2 Proof of Theorem 2:
A.2.1 Proof of (a):
By direct calculation:

T-3 Tie1 T"c (T, ’;')(T_'21 T “z).

TH(BoLs — B) = T\ YL (52— (T L, ($))?

Thus,

TH(Bos — B) = 12T~} Eu, T-'—)'{"op( )
=1

= d(2 [ ‘(s - %)[wc(,) + e W.(x)|ds ~ N(0, Ry),
where R, = A; + Az, with
Ay = var{d(l)12/OI(3 - %)Wc(s)ds}

and

Az = var{W,(x)d(1)12 / ~)e*ds}.

To calculate A;, note that:
1 1 1 1. ¢»
_ = - 2 e(a~1)
/o (s = 5)We(s)ds /o (s=3) /D =" dW (r)ds
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= '[:{j:(a - -;-)c"d.s}e‘"dW(r)

1 1 1
= /o b(r)dW (r), with b(r) = { ] (s = 5)eds}e".
Thus,
Ay = 144d(1)? /o " b(s)ds,
and .
Ay = 144!1(1)’5:(5)[‘/; (s~ %)c“da]’.

The first term in R; is A; after simplification, and the second term is Aj.

A.2.2 Proof of (b):
THArp — B) = T-Vur = T-huy = T 3ar - T hu (1 - o1 ) =
d)We(1) - (1 = e)elx)] ~ N(O, d(1P[S(1) + (1 = e Sclx)].

A.2.3 Proof of (c):

This GLS estimator is constructed by OLS applied to an equation of the form y, =
26 + e, where § = (@ BY, z1 = (e o', 2z = [(1 — pr) t — pr(t — 1)) for
t=2,...,T. Let Q = L z,z!, and r = ¥ z.e,, with elements ¢;; and r; fori,j = 1,2.
Then (BGLS — B) = (qu1q22 — ¢%) (91172 — q1ar1). The various parts of the theorem
will be proved by evaluating the relevant expressions for ¢;; and r;.

Specifically,

T
m =0+ (T=1)(1-pr)% qa=02+(T = pr(1 —pr) + (1 - pr)’ 3_t;

=2

T T
=02 +(T-1)ph+2r(1 ~pr) Tt +(1 = pr) 215
=2

t=2
T T
r = 0':12“1 + (1 - p‘I‘) EUH rp = 0:‘211] + z l?([t(l - pT) + pT]
i1=12 t=2
We consider the cases with x = 0 and « > 0 in turn,
k=0:
By direct calculation:

i
T~ (qugn2 —95a) = (1 —c + ‘2‘02)
L t
T'*qur; =T"3 Zv.(l - cf) + op(1);
=2
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T'kqurl ‘B* 0.

So that, L er
A T3 vl — c§)
TH(BaLs — B) = (1—::+5lc3) L +o(1)
l —
d(l)(f*;(_l cfgi’)"(’)] ~ N, (1= 4 36)) (9)

The result follows by noting that (1 — ¢+ 1c?)~! = R; evaluated at x = 0.
K> 0: :
By direct calculation:

(g = a1) = (S 4 A1 = e+ 1) = (b2 = o
T
Thaurs = (S0 + T L wull - eq)) + o1
t=2

' T
T,’thzfn = (%c2 - C)(S:(x)“'T'%u, ~ T} z ve).

t=2

Thus,
_ —(32 =980T hus + T EL (1 - cf)(Seln)! + ) + (3 - )]
TH{Bous=p) = = Bm )1 o+ lo)-(fe ~op ’ toll)
o (e~ IWRIS() ! + RIS+ )1 = e3) + (G = W g )

{3+ Sx)")1-c+ %c’) - (%cz —c)?
where
c+1

R= d(l)zl(sc(,‘)cz +1){(1-c+ %c’) - S:(N)(%Cz - C)zl-

A.3 Proof of Lemma 4:

As in the proof the part (c) of Theorem 2, each of the estimators can be written
as the OLS estimator from an equation y, = zi6 + ¢, where § = (a f), and
the estimators differ in their definition of z; and e). As above, let Q = ¥ z,1},
and r = ¥ z,¢;, with elements ¢;; and r; for i,7 = 1,2. Then, for each estimator

(ﬁ - 8) = (qn1q22 - %) Ygurz: - q12r1) and the for the proof we evaluate these
expressions for each estimator.
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A.3.1 Proof of (a):
When ¢ =0, T3(fco — B) = T~4 £1_; v, and the result follows directly. For ¢ #0,

qu=T-1)1=pr); qu=(T-1pr(l "PT) +(1- PT)’Z‘
=2

T T
g2 =(T = 1)pr +2er(1 = pr) -t + (1 ~ pr)? 1%
=2 t=1]

T T
n=(1-pr)} v; ra=3 wft(l-pr)+pr)

=2 =2
Thus, '
1 1 1
_ 2 201 _ 2 = [t o) =
Qg — g1z = (1 — e+ 3 (36" ~€)" = 53¢t
baury = 3T~} ¢ :
T qur = — T Evg(cT -— 1) + 0,(1),
1 2 1 1
Tiqyry =c*(1 - EC)T 2 Zv, + 0,(1).
So that,

T}(Beco - B) = —(—-)[T %zu,(c_ ~1)+ (1~ —c TS v + 0,(1)

= (—)[T *Ev‘(- - --) +0,(1) (10)

= () ['(5 - )aw (). (1)
The result follows by noting that
() [ - s1aw(s) ~ N(0.G)

where

124(1)2

12
= (210 [(5 - o)ds =
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A.3.2 Proof of (b):

For Scc.
T
gn=1+(T =D =pr)% qu=1+(T-pr(l —pr)+ (1 —pr)*Y_t;
i=2
T T
g2 =1+ (T — 1)p7 + 2pr(1 —Pr)z‘+(1 —ﬁ"r)nzt2
1=2 t=2
T T
rp=w + (1l - PT)ZUI; rp=u; + Zv,[t(l — p1) + p1]-
= t=12
Thus, .
T Mgugz —q3y) = (1 —c+ §Cz)§
1 1 L - t
T-igura=T 3u; =T} Zv.(c;j; - 1)+ 0,(1);
t=2
-1 - 1 2 ..%
T iquri=(1~c+ 2¢ )T 2uy + o0,(1).
So that,

ol - %C)T'%‘m T- i‘}:v,(cr - 1)

THBec - 8) = (- 10 + 0p(1)

d(1) 1~ 1
* T Ialell ~ g = [ (e = DIW )L

The result follows by noting that

d)(1 = ¢+ 211 - %‘C)Wc(n) - jol(ca — 1)dW(s)] ~ N(0,Ga),

3
where ' d(l)’ . 1 ,
o= (e gaplle™ g + [ fes - 1744
d(1)? {e— 38"
= ]_c—+—-l—2[1+3('c) C+1C2]

(12)
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A.3.3 Proof of (c):

For Bpw,

T
qu =1 "P%‘H‘(T“ 1)(1~-pr)%; qi2 = (1 "‘P?I')'*'(T— Der(1-pr)+(1 “Pr)zzt;
=2

T
‘h‘z«-(l—Pr)+(T"‘l)Pr+2PT(1—PT)z¢+(1—PT) E ¢

ri=(1-ppu +(1 -PT)E”n ra= (1 - pF)us + ZU:[‘U - p1) + p1).

[£-F] t=2

Thus,
i 1
922 — g1z — (¢ = 2)(1 — c + 3 2y~ (562 —¢)?
1 1
= (o2 _ _l 1
= (C 2C)(1 2C+ 12(; ),
T
Thaurs = ~(¢ = 29T Yuez — 1) + o,(1);
=2
1 I
T%lerl = -~-§-(¢:2 - 2c)(2cT"5‘ul + T} zv‘)__}_ 0p(1).
t=2
So that,

cT"*u; -7-4 L vfek — %c - 1)

T4(Bpw — B) = Tl Lo + 0,(1) (14)
d(1) = 1 1
T To TaleWe(x) = [tes = 3e- naws)] (15)

The result follows by noting that

d(l)(l-—%c+ écz)[cﬁ;‘(&) ](cs—%c—ldW )] ~ N(0,G3),

where a1y
1
g L OURTY!
Gs = (-Te+ T c’)'-’[ Se(x +/0 s - c 1)ds]
- d(t)? 2 L
T Tes gaptc = +1+ 1<l
a
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A.4 Proof of Theorem 5:

[t is straightforward to verify that the analogues of (6), (8), and (10) continue to hold
for the feasible GLS estimators, with ¢ replacing ¢ and ¥, = v, — pru,_;, replacing v,.
The theorem then follows from (7), (9) and (11) using T~} 015, = W(c). To see
this, and to derive an expression for W{c), write

U = Uy — prU—1 = Y — (ﬁ‘r - PT)ul—l

= v — (& — OT'[X, hvicrss + pi wil,

=0

where ¢ = T(1 — pr). Thus

7]
T4y % =
[T] bT) 1 . )
T-% YNv-(Er—T ' YT (3 prve-i—;) — (Er — )(T™7u)T' Y pF ')
t=1 =1 =0 t=1
= d(1)W(s),
where
Wis) = Wis) - E=c) [ Welr)dr - (- IW(x) =2,

and the last line follows from &r 5 &, T-1 =170 ghvpqy; = We(r), and T 17} ot
]-e"
- "

(]
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Table 1
Average Mean Square Error of Estimators

A. Average MSE for -30%cs0

Bcis 0.057 0.067 0.081 0.089 0.097 0.105
BoLs g.108 0.110 0.116 0.120 0.12¢6 0.133
Brp 0.077 0.085 0.102 0.111 0.121 0.129
Brce 0.065 0.083 0.113 0.128 0.142 0.152
Brpw 0.077 0.081 0.038 0.094 0.101 0.108
Bpr 0.082 0.085 0.094 0.102 0.110 0.118

BoLs 0.493 0.697 0.512 0.529 0,566 0.634
BoLs 0.678 0.682 0.695 0.710 0.743 0.808
Bep 0.498 0,502 0.516 0.532 0.567 0.635
Brcc 0.595 0.598 0.615 0.641 0.676 0.766
Arpy 0.529 0.531 0.544 0.559 0.590 0.664
Apr 0.509 0.512 0.526 0.541 0.574 0.649

BeLs 0.069 0.083 0.115 0.136 0.158 0.168
Bors 0.168 0.172 0.186 0.197 0.211 c.219
Brp 0.097 0.107 0.134 0.1534 0.179 .190

0.106 0.114 0.131 0.146 0.165

0
Brec 0.075  0.093  0.135  0.168  0.206  0.220
0
0.110 0,118 0.141 0.160 0.182 0

D. Average MSE for -30scx-l10

BoLs 0.008 ©0.018 0.025 0.026  0.026  0.026
BoLs 0.028 ©0.028 0.030 0.030 0.030  0.030
Prp 0.027  ©0.035 0.049 0.052 0.053  0.053
Prcc 0.008 ©0.028 0.054 0,060 0.063  0.063
Brpy 0.020 ©0.022 0.025 0.026  0.027  0.027
Bpr 0.028 ©0.029 0.033 0.035 0.035  0.035

Notes: The entries in the table are the mean squared error averaged over the
indicated range of c.



Table 2
Relative Efficiencies of Estimators
Exact and I(l) Approximaticn

A. &= 0.00
(1) p=0.50
-ee T30 --- <vs TS0 --- --< T=100 ---
. Exact _[{1) Exact _I{1) Exact _I1I(1)
BoLs  ©.891  0.283 0.9264 0.268 0.958 0,258
Arp 0.492  0.330 0.335  0.213 0.185 0.113
Becc 0.958  0.9%0 1.000 1,000 0.974  1.000
Bppy  0.957  0.3%0 1.000 0.350 0.975 0.301
Bpr 0.705 0.276 0.941 0.272 0.953  0.258
(1) p=0.80
foLs  ©.607 0.358 0.631  0.305 0.714 0.273
frp 0.810 0.632 0.670 0.451 0.466 0.259
Bpcc  ©0.922  0.950 0.937 0.968 0.947 0.997
frpy  0-838  0.560 0.824 0,454 0.839 0.355
PT 0.805 0.529 0.664 0.363 0.675 0.260
(114) p=0.90
Bors  0.579  0.488 0.511  0.386 0.498  0.305
Bep 0.912  0.859 0.803 0.698 0.616 0.451
Brcc  0.887  0.917 0.940 0.944 0.925 0.962
Bppy  0.809  0.786 0.772 0.632 0.695 0.442
Bpr 0.882 0.815 0.778  0.631 0.560 0.343
(iv) p=0.95
foLs 0.678 0.635 0.572  0.529 0.452  0.386
Brp 0.978 0.971 0.923  0.902 0.760 0.698
Bpcc  0.889  0.797 0.875 0.899 0.939  0.942
Bppy  0.926  0.874 0.840 0.830 0.697 0.619
Bpr 0.978  0.905 0.906 0.860 0.720 0.622
(v) p~1.00
jors  0.860  0.833 0.850 0.833 0.842 0.833
D 1.000 1.000 1.000 1.000 1.000 1.000
Brcc  0.907  0.830 0.903 0.859 . 0.892 0.821
Sppy  0.944  0.965 0.964 0.966 0.977 0.974
0.969 0.986 0.992  0.993 1.000  0.996



Table 2 (Continued)
Relative Efftciencies of Estimators
Exact and 1{1) Approximation

B. x = 1.00

(1) p=0.50
--- T30 --- -+ T=50 --- --- T=100 ---
. Exact (1} Exact 1) Exact _I(1)
BoLs  0.950  0.856 0.966 0.902 0.982 0.946
Bep  0.463  0.550 0.308  0.381 0.166 0.213
Pecc  ©-981  0.470 0.960 0.328 1.000 0.174
Pppy  1.000  0.979 0.979 0.974 1.000 ©0.99%
Bpr  0.735 0.698 0.932  0.859 1.000  0.949

(11) p~0.80
Bors 0.83%9  0.774 0.867 0.817 0.915 0.883
Bpp  0.861  0.859 0.667 0.698 0.620 0.451
Pecc  0.932 0.75 0.870  0.591 0.866 0.393
Srpy  0.975  0.990 0.958 0.974 1.000 1.000
Bpy  0.834  0.866 0.699 0.721 0.836 0.809

(111) p=0.90
BoLs  0.801 0.753 0.800 0.764 0.842 0.817
Bpp  0.970  0.971 0.895 0.902 0.683  0.698
Prcc 0.916 0.863  0.870 0.786 0.805 0.621
Breu 0.950 0.98¢ 0.942 0.960 0.980 0.994
pd 0.962 0.971 0.858 0.869 0.720 0.746

(iv) p=0.95
Bors 0.803  0.764 0.781 0.755 0.782 0.764
frp  0.997 0.997 0.983  0.983 0.898 0.902
Brcc  0.886  0.861 0.876 0.829 0.863 0.786
Brpy  ©0.951 0.959 0.948 0.957 0.983 0.979
Bpr  0.9% 0.975 0.970  0.962 0.888 0.898

. (v) p=1.00
BoLs ©.860 0.833 0.850 0.833  0.842 0.833
o 1.000 1.000 ° 1.000  1.000 1.600 1.000
Bpce  0.936  0.895 0.927  0.879  0.863 0.838
Bppy  0.989  0.991 1.000  0.965  0.958 0.959
Bpr 1.000 1.000 1.000  0.996  0.980 0.981

Notes: The relative efficiency is the ratio of the variance of the infeasible
GLS estimator to the variance of the estimator given in column 1. The columns
labeled I(1) are the asymptocic relative efficlencies using c=T(p-1). The
corresponding I(0) relative efficiencies are 1, 0, 1, 1, 1, 1, respectively
for the estimators in column 1 and for all T and |pl<l.



Confidence Interval Coverage Rates (%)

Table 3

A. Smallest of aOLS and aFD Confidence Intervals

Level
90.
90.
90.

95.
95.
95.

99.
99.
99.

90.
90.
90.

95.
95.
95.

99.
99.
99.

90.
90.
90.

95.
95.
95.

9%.
99.
99.

0
0
0

© o

(=2 =)

o

[=]
-

-0 0
o - o

-0 O

-0 0o - O

~ o0

—

(1) T =130
----- tPreuvsvene  weavemcoccaws
] =1 =3 :10.
88.7 96.0 97.8 97.3
88.7 95.6 97.4 96.6
89.2 94.0 97.1 96.8
93.0 97,9 98.8 98.6
92.9 97.9 98,7 98.3
93.6 96.7 98.5 98.%
97.9 99.4 99.7 99.5
98.0 99.5 99.6 99.6
97.9 99.2 99.6 99.7
(1t) T = 50
90.7 97.3 98.3 98.2
90.8 96.3 97.9 97
90.5 95.2 97.9 98.1
94.9 98.7 99.2 99.3
9.8 98.3 99.0 99.1
9.9 97.7 99.0 99,1
98.6 99.7 99.8 99.9
98.7 99.6 99.8 99.8
98.8 99.6 99.8 99.9
(iii) T = 100
91.4 97.8 98.8 98.6
92,3 97.5 98,4 98.8
91.9 96.4 98.3 98.8
95.6 99.0 99.5 99.5
95.8 99.0 99.3 99.5
95.9 98.5 99.3 99,6
99.1 99.8 99.9 100.0
98.8 99.9 99.9 99.9
99.0 99.8 99.9 100.0

-----

98.5
98.
98.3

(¥ )

99,
99.
99.

&

o

99.
99.
99.9

0



Table 3 (Continued)
Confidence Interval Coverage Rates (%)

B. Confidence Intervals Constructed from BPU

(1) T =130

-------------- c - e e e e an = =-ee .
Level . 0 -1 -5 =10  -20
90.0 0.0 88.5 96.0 97.7 97.2 93.9
90.0 0.1 88.6 95.4 97.3 96.% 93.6
90.0 1.0 89.0 93,7 97.1 96.5 93.6
95.0 0.0 93,0 97.8 98.7 98.5 96.5
95.0 0.1 92.9 97.8 98.5 98.2 96.5
95.0 1.0 93.4 96.6 98.5 98.4 96.5
99.0 0.0 97.8 99.3 99.7 99.5 98.9
99.0 0.1 97.9 99.5 99.6 99.5 99.0
99.0 1.0 97.9 99.2 99.7 99.6 99.0

(i1) T = 50
90.0 0.0 90.5 97.1 98.4 9B.4 96.5
90.0 0.1 90.7 96.2 97.8 97.9 96.4
90.0 1.0 90.3 95.1 97.8 98.0 96.4
95.0 0.0 9.8 98.6 99.1 99.3 98.5
95.0 0.1 9.7 98,2 99,0 99,1 98.2
95.0 1.0 9.9 97.6 99.0 99.1 98,3
99.0 0.0 98.6 99.7 99.8 99.9 99,7
99.0 0.1 98.7 99.5 99.8 99.8 99.6
99.0Q 1.0 98.8 99.6 99.7 99.9 99,7

(i11) T = 100

90.0 0.0 91.3 97.7 98.9 98.9 98.6
90.0 0.1 92,1 97.5 98,4 98.8 98.2
90.0 1.0 91.8 96.3 98.3 98,8 98.2
95.0 0.0 95.6 99.0 99.5 99,6 99.4
95.0 0.1 95.8 98.9 99.3 99.5 99.3
95.0 1.0 95.8 98.5 99.3 99.6 99.3
99.0 0.0 99.1 99.8 99.9 1i00.0 99.9
99.0 c.1 98.8 99.8 99.9 99.9 99.8
99.0 1.0 99.0 99.8 99.9 99.9 99.9

Notes: The table shows the exact coverage rates (in percent) for conservative
confidence intervals constructed with an asyamptotic level given in the firsc
colusn. The confidence intervals in panel A were constructed as the narrovest
of the intervals constructed from the OLS and first-difference estimators.

The confidence intervals from panel B were constructed from the Prais-Winsten
estimator.
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ALGERIA
ANGOLA

BENIN
BOTSUANA
BURKINA FASO
BURLMDI
CAMEROON

CAPE VERDE 15.
CENTRAL AFR.R.

MAURITANIA
MALRITIUS
MOROCCG
MOINe IQUE
NAMIBIA
NIGER
NIGERIA
REUNTON
RHANDA
SENEGAL
SEYCHELLES
SIERRA LEONE
SOMALIA
SOUTH AFRICA
SUBAN
SWALZILAND
TANZANIA
TOGO
TUNISIA

smel Period

1860 1990 2,734
1960 1989 -2.038
1950 1989 ~0.403
1960 1989 5.008
1839 1990 0.038
1860 1980 0.587
1960 1990 2.604
1960 18 3.080
1860 1990 -0.486
1880 1980 -3.384
1860 1847 -0.044
1860 1990 3.314
1850 1990 3.002
1831 1886 0.431
1860 1990 2.294
1860 1990 1.130
1955 18689 ~0.368
1938 1989 =0.304
1960 1890 Q.31
1860 1990 1.073
1830 1990 1.17¢
1960 1990 4,402
1860 1088 q9.682
1860 1990 -1.962
1854 1990 1.171
1860 1990 0.477
1960 1990 -0. 164
1850 1990 1.340
1950 1900 2.414
1960 1990 -2.309
1860 1989 0.384
1960 i96¢ ~0.413
1850 1990 1.989
1860 1988 3. 764
1860 1890 1.974
1860 1890 0.13¢
1960 1988 3. 808
1861 1890 0.049
1860 (989 0. 448
1950 1990 1.792
1971 1990 ~0.286
1360 1908 1.826
1960 1388 1.332
1960 1990 1.717
1960 1990 3.761
19350 1880 -0.108
1530 1969 0.339
1955 1990 -0.613
1954 1990 0.90¢

1.430
=1.004
~¢.370

6.07¢%

0.008
~0.423

1.088

1.9
-g.300
-2.010

©.3520

1.7

1.383

.88

2.820

0.833
~0.008
~0.21%

1.03¢

0.803

1.1s8

4.053

0.310
~1.818

1.22¢

0.150
~0.207

1.39%

2.355
~1.428

0.3508
-0.258

1.33?

3. me

6. 191

0.204

3.448

0.393
=-0.551

1.342
+0.848

1.945

1.686

1.797

3.222

0.948

Q.648
-0.397

1.014

Table &4
Annual Real Per-Capita Growth Rates

2.788
-3.739
-0.38)

6173

-20.378

2.043

1.438

4.00)
-0.879
~3.380
-0.780

3.3%60

3.604

0.6as

-37.342
-0.222
~0.423
~0.380
-0.212

5.807

1.101

2.089

448.30)
~2.441

0.684

3.057
-0.841

3.080)

2.004
-7.858
-5.391
~4.6812
-@.255

2.603

1.018

6.101

4.072
-4.622
-0.382

~18.304
-0.313
=4.704

0.710
=1.483

2.980
=0.00
19.1357
~2.633

0.785

aOLS' EFD" ircc- ZIPV'

2.004
-1.343
-0.397

3.908

0.008

0.041

1.032

3.543
-0.342
-2.442

0.219

3.002

2.401

0.761

2.818

1.013%
~0.203
-0.280

0.724

0.6823

1.7

4.1329

0.3:0
-1.880

1.197

0.274
-0.182

1.383

2.600
-1.493

0.403
~0.388

1.473

3.784

1.388

0.139

3.703

¢.3519
~0.480

1.344
-0.508

1.832

1.6326

1.78)

3.208

9.1717

G.6e8
-$.602

0.950
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N1}
.52
N1
788
.529
.208
L4l8
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a3
130
.83
538
.937
.13
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~1.404
~2.200
~3.2%
~3.282
~3.408
=4.247
~1.018
-2.948
=1.184
~2.620
-3.008
~2.45%
~3.723
-1.814
=1.41}
-1.112
~2.418
=3.108
=2.080
0.611
-2.978
-1.881
0.194
-1.064
-1.016
~2.758
-1.889
-1.677
-2.689
-2.240
+1.409
~1.924
~1.008
~3.252
«2.314
3. 062
~3.284
~2.238
=2.408
-g.188
-2.318
~1.261
-1.819
=1.408
-1,123
-2.3575
=1.250
-1.120
-3.788

~1.183
-8.an
-1.840

3.180
~3.763
-0.347
~1.118
-¢.33?
~2.031
~5.228
«3.013
-0.2848

1.472
-0.213
~2.910
~1.874
-3.20
~«1.021
~1.41¢
-1.318%
~0.648

0.153
-1.703
-3.438
-0.438
-1.433
-2.457
=1.644

0.083
~4.800
~2.309
=3.373
~3.502

2.160
~3.5%46
~0.138

1.558
-1.869
=3.10)
-9.201
~35.100
~2.133
-0.432
-0.563

1.364
-2.943
~1.334
-2.083
-1.004

4. 102
4.071
1.009
9.908
1.793
0.938
.00
r.2M
0.8
1.208
4.054
3.083
3.401
1.3%
8.130
3.744
2.102
1.401
4. 000
2.784
2.901
7.032
.33
-0.179
3.900
1.734
3.84)
[T
4.928
1.066
1.528
3.081
8.17¢
$.429
3.140
0.404
3.340
3.033
1.680
2.888
3.3%7
4.103
3.803
4.130
3.07%
4. 877
2.850
1.780
3.3
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1860
1050
1930
1950
1930
1950
1960
1950
1433
1850
1950
1930
1833
1930
1930
1930
1950
1830
1930
1930
1930
1930
1950
1950
1960
1050
1950
1959
1968
1960
1350
1960
1933
1933
1933
1930
1054
1933
1953
1930
1860
1850
19350
19¢0
1950
1960

1909
1990
1990
1900
1990
1990
1980
1990
1989
1990
1987
1990
1089
1990
1990
1990
1990
1990
1900
19%0
1990
1980
1990
1990
1989
19%0
1980
1990
1990
1990
1990
1990
1009
1987
1990
1990
1990
1909
1990
1089
1988
1890
1860
1960
1989
1990

3.471 2.81% 2.1%7
2.762  2.30) 1.%0
2.316  1.383 0.04%
2.425 1.978 2.0
1.063 1.000 -4.320
1.239  0.790 -$.382
0.147 -0,32) 0,003
1,101 0.788 0.880
1.830 2,020 13.278
2.353 2.258 1.73s
1.021  0.943 -11.828
2.821 2.181 1.e28
3.849 DJ.930 0.193
2.870 2.598 -4.81Y
1.980  1.888 1.9%9
0.922 0.388 -1.12)
1.317 0.832 90.40
1.489  1.8%30 -1.322
0.823 1.2 0.801
2,148 1.027 2.202
2.731  21.183 0.848
-0.218 -0.008 -0.76)
2.060 1.407 2.0638
1.406 0.888 $.271
1.3908  0.418 -31.103%
0.372 0.%79 0,23}
0.439 0.349 6.788
1.208 1.302 1.18)
5.752 5.984 3.338
8,266 6.250 €.031
1.437  1.784 1.833
A.4TL 3,770 -AB.I23
1.913  1.528 -55.184
1.787 0,478 ~-2.787
3.820 3.837 15.801
$.781  S5.742 14.077
.39 3110 1.888
5.0 3,891 -387.470
4,266 .87 4347
.41 2.38) 1318
1.928 1.547  2.127
2.3%3 2.3116 2.814
z.000 2.073 -7.99¢8
.72 8.190 8.347
1.8058  1.030 2.434
3.702 ).3222 1.99

3.383
2.8268
2.355%
1.2%7
1.012
6.708
-0.083
0.084
2.020
2.333
G.048
1.3
3.811
1.81%
1.918
0.433
¢.711
2.081
1.038
2.017
z.217
-0.702
1.308
0.088
0.437
0.437
0.3489
1.281
3.00
6.281
1.808
3.7
1.329
0.801
3.8
$.742
3.278
3.69
4.034
2.448
1.800
2.234
2.0712
8.207
1.044
3.489

-

P S
-2.722

-3.07%
~1.487
~9.068
~0.013
~0.318
-8.403
-3.092
0.733
~3.248
-0.049
~2.013
-1.123
=1.154
=11.488
-2.03%
-1.82)
-0.77%
8.
~4.08)
~1.384
-4.521
~3.378
1.937
~0.340
-10.010
1.237
-10.095
-4.728
~11.705
-8.794
0.097
-0.23
~3.958
0.928
0.720
-4,103
0.017
-3.803
~13.488
-9.233
~3.090
-0.439
~2.224
-4.102
~7.048

at

IS, S
-1.572
~2.253
~1.151
-1.127
-1.963
~0.983
~1.117
“1.684
~1.810
=1.718
~1.188
~1.202
-1.902
-0.730
-2.774
~0.307
=1.319
-0.813
=3.087
~1.807
~1.174
-1.392
~1.082
-0.187
~0.232
~2.007
=1.338
-2.81)
-2.310
"3.0“
~1.473
~3.505
-1.108
-3.791
-1.004
-0.743
~1.043
-1.008
-3.018
-2.110
=1.342
-1.323
-23.369
-1.838
-1.32%
~0.608

1.708
1.847
0.303
6.187
=1.430
=1.021
-1.681
-0.73%
~0.643
0.374
~2.434
-0.10%
1.800
-0.037
0.958
=1.433
-1.149
0.080
~1.83})
8.973
~0.008
~4.300
~0.318
-1.088
-4.127
=1.442
~1.383
-1.218
3.28
3.0
©.383
1.78%
-3.873
=5.444
1.682
3.748
-0.194
3.520
1.397
0.423
=5.244
0.352
-g.101
1.5
0.83?7
0.388

3.35%
3.339
4134
3.770
J. s
1.802
1.018
1.32
4,083
4,144
4.330
4. 484
8.080
3.120
2.800
2.184
2.412
5.049
3.890
2.881
4,428
2.3
3.3
3.059
4.082
2.800
2.401
4.000
8.707
8.881
3.207
5.
8.730
6.397
3.30)
7.741
6.413
7.884
6.343
4,303
37
3.700
4,520
.83
3.000
8.037
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111 TAIWAM 1951 1990 5.65) 3,600 e6.05 3.81) ~3.311 -1.302 4,208 S.0L8
112  THAILAND 1950 1990 .82 3.570 37.em1 1.5N1 =0.187 -~3.81s 1.00 s$.1%1
1l YEMEM 1969 1946 4,727 3.67¢ 3.73% 5.029 -3.825% -1.08) 1,030 s.402
115  AUSTRIA 19050 1980 3.840 3 684 23.762 1.684 0.178 -0.867 3.370 AW
1186 BELGIUM 1930 1990 2.008 2.767 2.78 1.802 ~3.043 ~-1.368 .73 1.73
118 CYPRUS 1950 1996 3.970 4,098 J.994 1.0 -16.347 -7} 2.3 3.780
119 CIECHOSLOVAKIA 1960 1990 3,315 3.041 -0.384  3.081 =1.179% =-0.883 1.R2L 4,961
120  DENMARX 1950 1990 .84 2,402 2.378 1.407 =3.84) -1.283 1.322  3.501
121 FINLAND 1950 1990 1,434 3,452 D240 DAL -9.043 -3.482 2.073 4028
122 FRANCE 1930 1990 3.080  J3.008 11.423 3.008 0.251 -0.333 2.004 4,002
123 GERMANY, WEST 195¢ 1990 .18 3.37% 3.273 3.57% 2.718 -~1.881 .07 LA
124 GREECE 193¢ 1990 4,328 3.867 19.217 . 487 0.218 0.1 2.360 3,404
125  BUNGARY 197¢ 1990 .23 2.322 s202 2.3 1.402 -0.83¢ 0.473 4160
126 [CELAND 1950 1990 3.422 2.960 3322 law ~10.913 -3.14) 1.004 4.90)
127  IRELAND 1950 1990 3.207  3.102 3.4a5 3151 ~5.801 -2.702 1.718 &40
128 ITALY 195¢ 1990 3.752  3.740 14.277T9 3. .740 0.350 -0.848 2.703 4791
129  LIXEHBOURG 195¢ 1990 2.183 2.34¢ 2.207 1.190 -14.2720 -3.110 0.843 J.aw
130 MALTA 1954 1908 3.4086  3.024 6.840 3,104 =3.148 =1.048 3.072 &.97
131 NETHERLANDS 1930 16880 2.763 2.588 1.80¢ .51 ~1.793 ~1.482 1.332  3.9%
132 NORWAY 1830 19%%0 3.4 3031 31.123 }AM ~3.480 -~1.070 1.1 2,988
133 POLAND 1970 189C 0.684  1.342 -18.334 1.22¢4 -0.728 -1.783 =11.793 14.3280
134 PORTUGAL 1930 1880 4.320  4.213  2.890 120 ~1.883 <1.250 2.450 3,975
136 SpaIN 1850 198C 3.786 31.908 -9.252 3,093 -0.388 -0.588 2.207 .49
137 SWEDEN 1950 199¢ 2.375  2.312  0.048  2.314 -~6.817 -1.170 1.478  J.148
138 SWITIERLAND 1950 1990 2.003 2.219 1.174 2.189 ~2.870 -1.800 0.018 3.319
138  TURKEY 1830 196¢0 2.748 3. 144 ZT.460 1.875 ~10.380 -1.304 1Ll T
140 UK. 1630 19680 2.241 2.306 2.249 2.23 ~18.913 -4.3505 2.072 31.40
141 U.5.5.R. 1970 1900 3.272 3.377 -9.927  1.318 ~0.215 ~-1.%41 2.670  4.Q7s
142 YUGODSLAVIA 1960 1990 3.630  2.812 13.477 1.812 1.128 0.81% 0.226 3.2
143 AUSTRALIA 1950 1990 2.184 1.870 2.158 1.088 +10.973 -1.063 0.732 1.90
s FLII 1960 1990 2.043 2.006 1.833 27.621 ~4.6290 -1.318 =0.302 4.403
143 NE4 ZEALAND 1950 1990 1.674  1.388  1.3%9 1.3% -8.353 -2.021 0.033 2.742
146  PAPUA M. GUINEA 1980 1990 0.215 0.643 J.108 0.84) 3.420 -2.880 -1.220 2.351%

Notes: The column labeled ID shows the country ID from the Penn World Tables.
The estimators ﬂOLS' BFD' ﬂFCO' ﬁPU are described in the text; ¢ }: an
estimate of the local-to-unity paramater, constructed as T(p -1); ¢ {is the
augmenced Dickey-Fuller t-statistic; ﬂuin and 8 .. ars the endpoints of the 95%
confidence interval for B constructed using the Prais-Winsten estimator, as
described in che text.



