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1. Introduction

This paper compares the forecasting performance of six models for a
univariate conditional variance, using bilateral weekly data for the dollar
versus the currencies of Canada, France, Germany, Japan and the United
Kingdom, 1973-1989. The six models include a homoskedastic one, two GARCH
models (Bollerslev (1986), Engle and Bollerslev (1986)), two autoregressions
and a nonparametric one. We compare the out-of-sample realization of the
square of the weekly change in an exchange rate with the value predicted by a
model of the conditional variance, for horizons of one, twelve and twenty four
weeks. The measure of performance that we focus on is mean squared prediction
error (MSPE).

For twelve and twenty four week ahead forecasts of the squared weekly
change, it is difficult to find grounds to choose one model over another. But
at a one week horizon, we find that GARCH models have a slight edge over the
other models. The GARCH mean squared prediction errors tend to be slightly
smaller, and regressions of realized exchange rate squares on their estimated
conditional variances tend to find somewhat more evidence of predictive power.
But statistical tests typically cannot reject at conventional significance
levels the null that the MSPE from the GARCH models are equal to those of
other models, and standard regression tests for bias and efficiency strongly
reject the null that the GARCH conditional variance differs from the realized
exchange rate square by a white noise error. It appears that GARCH models
leave something to be desired, even at the one week horizoen.

Other papers have compared univariate volatility models in related
frameworks, Using monthly stock return data and a one month ahead MSPE
criterion, Akigray (1989) found GARCH models preferable to maive and ARMA

ones, and Pagan and Schwert (1990a) found GARCH and ARMA models preferable to
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nonparametric and Markov switching ones. While we, too, find that GARCH
models perform well, our results complement and extend these earlier ones in
three ways.

First, and least important, we use exchange rate instead of stock price
data. One would obviously like to know if what works with one type of data
works with another as well. Second, we formally test for equality of MSPEs
across models, using a straightforward asymptotic technique that may be of
general interest. Third, we consider not only one period but multiperiod
horizons as well. Since, in the end, we could not reject the null of equality
of MSPEs across models, and since we found no grounds for preferring one
estimator over another at horizons of more than one period, our endorsement of
GARCH models is more moderate than it would have been had we not performed
these tests and examined these horizons.

Before turning to the analysis, a final remark seems advisable. The
literature on conditional volatility has grown enormously in recent years (see
Bollerslev et al. (1992) for an excellent survey), and it is simply not
practical to simultaneously study every model that has been proposed. While
we feel that we have chosen a representative set of models, we recognize that
some readers might prefer a different set. We hope that such readers will
nonetheless find it useful that our analysis leads us to speculate that
successful models will allow for what standard tests suggest is movement in
unconditional variances.!

Section 2 describes our data and models, sections 3 and 4 our empirical
results. Section 5 concludes. An Appendix available on request from the

authors contains some results omitted from the paper to save space.
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2. Data, Models, and Estimation Techniques

A. Data

Our exchange rates are measured as dollars per unit of foreign currency,
between the U.S. and Canada, France, Germany, Japan and the United Kingdom.2
The data are Wednesday, New York noon bid rates, as published in The Federal
Reserve Bulletin. When Wednesday was a holiday we used Thursday data; when
Thursday was a holiday as well we used Tuesday data. After an initial
observation was lost due to differencing (see below), the sample for each
country included the 863 observations from March 14, 1973, to September 20,
1989. Figures 1Al to 1A5 plot the levels rather than differences of the
series, with the vertical axis measured in cents per unit of foreign currency.
Figures 1Bl to 1B5 will be discussed below.

Prior to our formal analysis, we took logarithmic differences of the

series, and then multiplied by 100. That is, our exchange rate series is

e, = 100%1ln(exchange rate in week t/exchange rate in week t-1),

and thus has the interpretation of percentage change in the level of the
exchange rate., With a slight abuse of terminology, we will sometimes refer to
our data as "exchange rates" rather than "percentage changes in exchange
rates."

Table 1 contains some summary statistics on these data. Most standard
errors and p-values in the remainder of the table also are robust to the
possible presence of serial correlation and conditional heteroskedasticity,
and are computed as described below, Table 1 is consistent with the results

of many earlier studies (e.g., Baillie and Bollerslev (1989), Diebold and
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Nerlove (1989), Engle and Bollerslev (1986)). Exchange rate changes appear to
have zero unconditional means (line (1)), and, with the possible exception of
Japan, appear to be serially uncorrelated (lines (5) to (7)).

Exchange rate changes are also very fat tailed. This leptokurtosis may
be seen in Figures 1Bl to 1BS5, each of which plots both a normal density whose
mean and variance match sample estimates and a histogram of the data. More
formal evidence is in panel A of Table 1. The standard deviation of exchange
rate changes is about one per cent per week (line (2)); the maximum and
minimum changes in this sample of size 863 are generally five or more standard
deviations away from the mean (lines (8) and (12)), and the interquartile
range is much less than two standard deviations (lines (9) and (11)). Excess
kurtosis is greater than two and is significantly different from zero at any
conventional significance level for all countries except Canada (line (4)).
With the exception of Germany, there is no evidence of skewness (line (3)).

Panel B of Table 1 contains some summary statistics on squared exchange
rates. The means and standard deviations (lines (13) and (l4)) are presented
for convenience of interpretation of our empirical results; they are redundant
in the sense that the point estimates can be deduced from the appropriate
entries in panel A. Rows (15) to (17) in panel B suggest that, in stark
contrast to the levels, the squares of exchange rates are highly serially
correlated. This, too, is a result consistent with many earlier studies.

B. Models and Estimation Techniques

The in-sample evidence in Table 1 that e, is linearly unpredictable is
supported by the stronger results from other studies, some of which use
out-of- as well as in-sample evidence, that there is not even any nonlinear

dependence in the conditional mean of e,. The most salient reference is
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Diebold and Nason (1990), who drew their data from exactly the same source as
did we, but over the slightly shorter sample period 1973-1987. Despite much
in-sample evidence of nonlinear dependence in the mean of e,, they found
little out-of-sample evidence of such dependence. Papers that come to similar
conclusions using other data, sometimes with multivariate information sets,
include Meese and Rogoff (1983) and Meese and Rose (1991). We therefore will
limit ourselves to models in which the conditional mean of e, is zero.

To define our models, some notation is needed. Let

(2-1a) hy y = varg(eg;) = E.ef,; = (population) variance of ey,
conditional on information generated by past eg, sst;

(2-1b) gmmj - fitted conditional variance of e,,;, according to model m
(e.g., model m is GARCH(1,l), or homoskedastic), estimated using

data on past e, S=<t;

(2-1c) hy = hy 3, hye = hge 13

(2-1d) R = endpoint of first sample used in estimation of regression
parameters;
(2-1e) T = endpoint of last sample used in estimation.

Note our dating convention: what we denote h,; corresponds to what is
often called hyy; or o.y; (e.g., Engle (1982)). For concreteness in
interpreting (2-1b) and (2-1lc), it may help to note that in the tables below
we report results for j=l1, 12 and 24, corresponding to approximately to
weekly, quarterly and semiannual horizons. To do so for a given horizon, we
obtain for each model T-R+l fitted values hy, ;, t=R,...,T, for models

m=1,...,M, where the number of models M in the tables below is 6. We then
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compute the root mean squared prediction error (RMSPE) for model m at horizon

j as

(2-2) [ (T-R+1)72ELq(ed,;-hyy )2 172

We focus on RMSPE because mathematical expectations have minimum RMSPE, so a
good statistical model for the expected value of exchange rate squares will
tend to have forecast errors whose average squared value is small,?

Column (1) of Table 2 lists the models we estimated, column (3) the

acronyms used in some subsequent tables.*

Column (2) gives the formula for
the one period ahead conditional variance, except for the nonparametric
estimator for which the formula for the arbitrary j period ahead forecast is
given. Since all the other models are linear, multiperiod forecasts can be
obtained by the usual recursive prediction formulas. Consistent with the
assumption that exchange rate changes have zero conditional mean, in such
forecasts the changes were assumed to be conditionally uncorrelated at all
nonzero lags (i.e., E,jeieyy; = 0 for all j>0).

The homoskedastic model (line (1)) simply set the conditional variance at
all horizons equal to the sample mean of lagged e's.

Two GARCH models were used (lines (2) and (3)). Both were estimated by
maximum likelihood assuming conditional normality, using analytical
derivatives, with presample values of h and e? set to sample means. Lee and
Hansen (1991) and Lumsdaine (1989) show that the conditional normality
assumption is not necessary for the consistency and asymptotic normality of

the estimators.® We chose GARCH(1,1) and IGARCH from a larger set of possible

GARCH models after (1l)analysis of some in-sample diagnostics seemed to suggest
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GARCH(1,1) for Canada, Germany and the U.K., IGARCH for France and Japan, and
(2)a little experimentation with ARCH(1), ARCH(2), GARCH(1,2) and GARCH(2,1)
models suggested that MSPEs from these models are comparable or worse than the
two we chose to study,

We also studied two autoregressive models, both of which were estimated
by OLS. One autoregression used eZ (line (4)). It is included because GARCH
models imply ARMA processes for e? (see Bollerslev (1986}); OLS estimation of
such autoregressions therefore might perform comparably to more complicated
GARCH estimation (although under the GARCH null, such OLS estimation is
asymptotically inefficient). As in Schwert (198%9a, 1989b), whose work is
based on that of Davidian and Carroll (1987), the other autoregression used
le| (line (4)). Schwert suggests the factor of («/2) because the variance of
a zero mean normally distributed random variable is (x/2) times the square of
the expected value of its absolute value. For both autoregressions, the lag
length of 12 was chosen because for all countries in-sample results indicated
that such a lag length was more than sufficient to produce a Q-statistic that
implied white noise residuals.

Finally, we also tried a nonparametric estimator (line (6)). It can be
interpreted as working off the basic definition E(ed,;ley) =

e?, f(edy;|e,)ded,,, where f(efs;le,) is the density of eZ,; conditional on e,.
See Pagan and Ullah (1990a,1990b) for an excellent exposition. As in Pagan
and Schwert (1990a) we used a Gaussian kernel, defined in column (2), with the
bandwidth b = o(R-j)"%/%, ¢ the sample standard deviation of ey, t=1,...,R-J,
j=1, 12 or 24, We did not try any other kernel. We did a little
experimentation with some alternative fixed bandwidths and information sets,

comparing MSPEs, but found that these yielded similar results.
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There remain two questions before we can begin our model evaluation. The
first is where to begin the out of sample exercise. We arbitrarily began our
forecasts at the midpoint of the sample, and the first sample for which we fit
any models included the 432 observations from March 14, 1973 to June 17, 1981.
Because the final 24 weeks of the sample (April 12, 1989 to September 20,
1989) were used only for forecast evaluation, the last observation of our
final estimation sample was April 5, 1989. (In the notation of (2-1d), R=432
and T=839.) For our one week horizon, the predictions and realizations of e?
spanned the 408 weeks from June 24, 1981, to April 12, 1989; the comparable
408 week period for the 12 and 24 week horizons may be obtained by shifting
the one week dates forward by 11 and 23 weeks respectively.

The other question concerned what sample should be used for estimation as
additional observations were added beyond the June 17, 1981, date at which our
first sample ended. In our initial work, we estimated each of our models omn
both (l)rolling samples, in which the sample size used for estimation was
fixed at 432, and what had been the initial observation as each additional
observation was added, and (2)expanding samples, in which the sample size grew
as additional observations were added. RMSPEs were quite similar for rolling
and expanding samples, with those for rolling samples perhaps showing a slight
tendency to be smaller (rolling RMSPEs were smaller in 63 of the 90
experiments [90 = 5 countries times 6 models times 3 horizons]). To keep the
project manageable, we therefore decided to subject only the rolling
estimators to detailed analysis.

C. Procedures for Asymptotic Inference
Most of our inference is based on asymptotic approximations described

below. In addition to the usual reasons to be concerned about the finite
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sample accuracy of such approximations, there are grounds to be concerned
about the applicability of regularity conditions typically underlying such
approximations: exchange rate data may lack suitable higher order moments
(e.g., Loretan and Phillips (1992)); one of our models uses a nonparametric
estimator; more generally, the previous paragraph's observation that forecast
quality did not deteriorate when we used rolling rather than expanding samples
suggests that the usual conditions may not hold. Nevertheless, we conduct
most our inference using such theory, for two reasons. First, a small Monte
Carlo experiment to double check one piece of our asymptotic analysis
suggested that the asymptotic approximation is unlikely to be very misleading
if some minimal conditions do hold, and, second, the computational cost of
using bootstrap methods throughout is enormous, given the nonlinear search
required to estimate GARCH and IGARCH models.

To explain the asymptotic procedures that we used: Let P be the sample
size. Under suitable regularity conditions, it is well known that if g, is a
zero mean, covariance stationary random vector, P M?Zf_ g, 2 N(0,S), where S =
zgrmrj, T, =Eg.g¢-;' (e.g., Hannan (1973)); White (1984) summarizes some
parallel results that apply when data satisfy some mixing conditions but
possibly are not stationary. Suppese that g, is a function of an underlying
vector of parameters of interest, say, #, and that 3 is estimated by setting
P”iﬁqgt(a) - 0. A straightforward Taylor series argument yields PL/2(4-9) o
N(QO,V), V = (Eagt/aa)'ls(Eagt/ae)'l'; see Hansen (1982) for a formal argument
in the stationary case, Gallant and White {1988) for the parallel argument,
and more complicated formulas, under conditions that allow for the possibility
that g, is not stationary.

In our applications of this result, 3g./d6 does not depend on § and so
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Edg,/88 is a matrix of known constants. The estimator of S that we used was

that suggested by Newey and West (1587):

(2-3)  § = Ty + By [1-3/C) 1(Fy + T,

where fj is the j'th sample autocovariance of gt, fj = rflz§q+1§t§ﬁj'. The
value of k in (2-3) was determined by a data dependent automatic rule that has
certain asymptotic optimality properties (Newey and West (1993)): Let n be
the integer part of 4(P/100)?/°, so that n=6 for estimates based on the 863
observations in the whole sample (e.g., Table 1), n=5 for estimates based on
408 observations in the forecasting sample (e.g., Table 4). Also, let w be
vector of ones of the same dimension as g, gj = w‘fdw, s = ;0 + 223433, s
= 2Z@qj3j. Then k was set to the integer part of 1.1447[;‘“/;‘m}2”[samp1e
size)l’3. The resulting values for k in Table 1, for example, were Canada- -4,
France--1, Germany--6, Japan--7, and the U.K.--11. The values for the
remaining tables are available on request.

Some details may be helpful in understanding how we used this framework.
In Table 1, lines (1)-(4), (13) and (14), begin by defining the (4xl) vector
X, = (e,, €2, e?, e!)’'. Let § = (Ee,, Eef, Eei, Ee{)’, § = (P i=f e., PiEF e,

A

PigEed, PIsE.e)!, g, = Xy-0, g, = Xe-0. Then PY2(§-0) - N(0,5), § = FudT

L
[j=Eg.gy-;’ . Given the estimate of §, standard errors on the relevant entries
in Table 1 can be computed using the delta method. A similar method was used
in panel A of Table 6 below.

In the modified Ljung-Box statistic, Table 1, lines (5)-(7), # = (Eeie.,,

, Eege,.r)', r=10, 50 or 90, 3 the corresponding sample moments, X =

A A
(€¢e-1r --- » €€4p)’ s B = Xe-0, gy = X,-0. We assume that the conditional
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first moment of e, is zero, which implies that g, is serially uncorrelated,
and that Eefe, e, ;=0 for i»j, which implies that EX.X,' is diagonal. With a
little algebra, this validates the following: For j=0,...,r, let ;j be the

A ~

A A A A
j'th element of #, o; = P18 ;,1ee. 35, and let k; = PizE . eel y, py = 04/00.

Then for any fixed r,
A PR PR A
(2-4) P(P+2)03%5ey (P-3) M (p3/ky) ~ X*(x).

If the data are conditionally homoskedastic, so that Eelfel ; - EefEel ; = of, ;j
e 0% and this statistic is asymptotically equivalent to the standard Ljung-Box
statistic.

In Tables 4 and 5 below, which report inference about forecasts or
forecast errors, the conceptual experiment that underlies our asymptotic
approximation is one in which both the number of observations used in
estimation (R, in the notation of (2-2)) and the number used for forecasting
(T-R+1=P) pgo to infinity, with (T-R+1)/R approaching a finite constant
(possibly zero).

Consider, for example, the one period ahead MSPE. For notational
simplicity, assume stationarity (rather than, say, just mixing). Let h,, be
model m’s population prediction of ef,; at time t (i.e., the prediction it
would make if an infinite sized sample had been used in estimation). Let & be
the vector of the entire set of regression parameters, across all models (the
constant for the homoskedastic model, the constant and coefficients on e? and
h,., for the GARCH(1,1) model,...). Let Upy = efs1-hpe | 02 = EuZ,, =
E(e2y1-hug)?, tgges = ehiy-Poy, 03 = (T-R+1)Thp(edny-hoed?, @ = (0%, ... , oB)',

= (0%, Ve 0&1)" g+1(8,6) = (u§t+1'0§:----uriu+1'aﬁ)': ge+1(8,6) = (u§t+1'a§s e
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Gﬁmi—gﬁ)'. It may be shown that under suitable conditions, sampling error in
3 is irrelevant for asymptotic inference on # (West (1993)), and we apply the
logic above to (T-R+1Y12Lﬁgﬁq(a,3) = szgmguq. The implication is that
P”Z(E-a) A N(0,S), where the (i,q) element of the MxM matrix S is
E3maE(ud,-02) (ud,.;-02). A test statistic for the equality of the MSPEs across
all M models is constructed as follows. Let B be the (M-1)xM matrix whose
first column is (-1,-1,...,-1)’ and whose (M-1) other columns contain the

identity matrix; the null is that B6=0. Then for § constructed as in (2-3),

(2-5) (T-R+1)[4'B’ (BSB’)"1B9] = P[8'B’ (BSB')"1BA] ~ x2(M-1),

5 = r0+z%-1[1‘j/(k+1)](F3+P3')’ Ly = P-lzzqﬁjgtgbﬁ'-

Note that since we select k as described, and do not constrain k to be 0, we
allow the forecast errors to be serially correlated. Similar formulas apply
for the 12 and 24 period ahead predictions, with, e.g., uy (412 = el 1o-hy pe1z

and ar%,lz - E(e§+]2'hm,t.+12)2'

3., Basic Empirical Results

To frame our discussion, Table 3A presents estimates of the GARCH(1,1l)
model for the first of our rolling samples. The Appendix available on request
has parallel estimates for the other models; we present GARCH(1,1) here
because of its simplicity and because, as we shall see, it worked relatively
well in forecasting. For the benefit of those familiar with GARCH, we briefly
note that the estimates suggest, as usual, considerable persistence, since a+B
is estimated to be above 0.80 in all five countries, above 0.90 in France,

Germany and Japan; the null that a+B=1 could not be rejected at the five
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percent level for France and Japan (not reported in the table).

What is of particular interest to us is how such parameters translate
into for RMSPEs at various horizons. Suppose ef is stationary, (a+f<l, under
a GARCH(1,1) parameterization). With the exception of IGARCH, all our
estimators will then yield the essentially the same predictions in population
for a sufficiently long horizon, since all will predict that the eZ will be
near its unconditional mean. Accordingly, the RMSPEs will also be essentially
the same. We use the GARCH(1,1) estimates in Table 3A to get an idea of how
long a horizon is needed for this to occur.

Table 3B reports the ratio of the population RMSPEs of a homoskedastic
model to that of a GARCH(1,1l) model, for each of our three horizons, and for
each of the five sets of estimates of a and 8 reported in Table 3A.7
According to columns (1) and (5) in Table 3B, the Table 3A estimates for
Canada and the U.K. suggest sufficiently rapid mean reversion that our
proposed comparisons of 12 and 24 week horizons are probably not of interest.
On the other hand, columns (2) to (4) indicate that other Table 3A estimates
imply as sharp a difference in RMSPEs at one or both of these longer horizons
as occurs at a one period horizon for the U.K. parameters in column (5).

We will not attempt to squeeze an interpretation of the results of our
out-of-sample comparison into the Table 3 figures. Even under a GARCH(1,1)
null the Table 3 figures will be misleading insofar as sampling error has
affected the point estimates of @ and 8. Rather, we interpret Table 3 as
presenting in-sample evidence that it may be possible to distinguish different
estimators at horizons of as long as 24 weeks,

Table 4 presents our attempts to do so, for forecasts of 1 and 12 weeks

as well as 24 weeks ahead, in panels A, B and C respectively. In each panel,
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under each country are two columns. The second, labelled "RMSPE" gives the
root mean squared prediction error, computed according to equation (2-2). The
other column, labelled "Rank,” indicates the relative size of that model’s
RMSPE, 1 indicating the best (smallest) RMSPE, 6 the worst (largest). The
rows labelled "H,", "Hp" and "Hc" (at the bottom of each panel) will be
discussed below.

We begin with two general comments, before beginning a comparison of the
models. First, as one would expect, given the noisiness of exchange rate
data, these out-of-sample RMSEs generally are larger than the in-sample RMSEs
reported in line (14) of Table 1. That is, the out-of-sample predictions
using the estimated conditional variances are usually less accurate than an
in-sample prediction using the in-sample unconditional variance. Second, and
somewhat surprisingly, there does not appear to be a tendency for RMSPEs to
increase at longer horizons; the median Table 4 values for the 1, 12 and 24
week horizons are 4.746, 4.791 and 4,503, for example. In the context of
GARCH(1,1) models, the implication is that mean reversion occurs as rapidly as
in, say, column (5) of Table 3B. The figures in columns (2) to (4) of that
Table suggest otherwise, so there is a clear conflict between the
out-of-sample and in-sample evidence.

Turn now to comparing the models. At the 1 week horizon, panel A
indicates that one of the two GARCH models had the smallest RMSPE for all five
countries. The IGARCH model was probably the most consistent performer
overall, being best in three countries (France, Germany and U.K.), second and
third best in the other two (Japan and Canada). At the 12 week horizon (panel
B), the best model was either the homoskedastic (Canada, France and Germany)

or autoregression in absolute values (Japan, U.K.). At the 24 week horizon
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(panel C), depending on the country, one of four different models had the
lowest RMSPE, GARCH(1,1) being the only model that was best in two countries
(Germany, U.K.). But the most consistent performer at 24 weeks was probably
the autoregression in exchange rate squares, which was second in four
countries and first in one (Japan).

Which model performs best, then, varies from country to country and
horizon to horizon; if there is an underlying pattern, it is difficult for us
to discern, and, at least superficially, Table 1 suggests that it might be
largely a matter of chance which model produces the smallest RMSPE.® That
performance is quite similar across models is also suggested by casual
inspection of the point estimates of the RMSPEs; even at a one period horizon,
in only one case is the worst model’s RMSPE more than five percent larger than
the best model's (U.K.); once again, such point estimates are surprising in
light of Table 3B.

For an additional measure of similarity of RMSPEs, we turn to formal
statistical testing of the hypothesis that these are the same across various
models, for a given horizon. In Table 4, the "H,", "Hg" and "Hc" rows at the
bottom of each panel give statistics and, in brackets, p-values assuming an

asymptotic chi-squared distribution, for the following three hypotheses:

(3-1) H,: MSPEs for all six models are equal (x?(5)).

Hy: MSPEs for the best model and the homoskedastic model are equal

AL
He: MSPEs for the homoskedastic, GARCH(1,1), and two autoregressive

models are the same (x%(3)).
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Hypothesis A is an obvious one.? Tests of hypothesis B were performed because
the homoskedastic model is the simplest one, and therefore probably the model
of most appeal if; in fact, performance is similar across models. Tests of
hypothesis C were performed because the formal asymptotic theory that
underlies the test makes assumptions that rule out our nonparametric estimator
and possibly the IGARCH estimator as well.

Table 4 indicates that the H, test of the null of equal RMSPEs across all
models is rejected at the .05 level in four of our fifteen experiments (Canada
and France, 12 and 24 week horizons) and once at the .10 but not .05 level
(Canada, 1 week horizon). This suggests that the seeming similarity of point
estimates of RMSPEs might be misleading, at least for Canada and France. In
no case, however, can one reject at conventional significance levels the null
that the homoskedastic model's RMSPE is the same as that of the best model:
the lowest of p-value for Hy is 0.217 (U.K., one week horizon). The H; test
of equal RMSPEs for the homoskedastic, GARCH{1,1), and two AR models rejects
at the .05 level for France for all three horizons, again suggesting that the
seeming similarity of point estimates of RMSPEs might be misleading for
France.

These asymptotic tests may well be deceptive in finite samples, even if
the asymptotic theory eventually yields a good approximation. One indication
that this may be the case is that of the four rejections at the .05 level of
equality of all six models, three occur in experiments in which the
homoskedastic model is the best (Canada, 12 and 24 week; France, 24 week).
1f, indeed, a homoskedastic model were generating the data, at least four of
the other five models would produce exactly the homoskedastic forecast in an

infinitely large sample (the possible exception is IGARCH, whose asymptotic
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behavior under these conditions is unclear to us). But this suggests a
tendency to reject too much, not too little, a result that we have found in
related Monte Carlo studies using data generated by GARCH processes (Newey and
West (1993)).

But to double check the possibility that our asymptotic tests are instead
rejecting too infrequently, we undertook two exercises. First, we examined a
seventh model, which set ﬁt = eZ--the conditional variance in week t is equal
to the realized square of the exchange rate. (Reminder to readers familiar
with the GARCH literature: what we call hy here is usually called hy;.) Teo
our knowledge, this has not been seriously proposed as a model for exchange
rate volatility, for the good reason that it is not an appealing one: the
RMSPEs for the one week horizon, for example, are: Canada 0.933; France 7.119;
Germany 6.574; Japan 5.593; U.K. 7.466. These are a good 25 percent above the
Table 4A figures for the other models. We use it here to see if our
asymptotic tests have enough power to recognize the substantial difference
between this model and the others. And they do, as is indicated by the
following summary of test results. Of 15 x2(6) tests of the equality of
RMSPEs across all seven models, 11 reject at the .05 level, 13 at the .10
level. Of 15 x2(1) tests of the equality of the RMSPE from this additional

model and that of the worst of the six models reported in Table 4, 13 reject

at the .05 level, 14 at the .10 level (the exception was U.K., one week
horizon, which rejects at the .15 level). It seems, then, that whatever the
problems with our asymptotic tests, these tests do have enough power to reject
an egregiously poor model at conventional significance levels.

The second exercise we undertook to check the validity of our asymptotic

tests was a small Monte Carlo experiment. Because of space constraints, we
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1imit ourselves to the succinct statement that the experiment suggested that
if our asymptotic procedures have a small sample bias, that bias is towards
rejecting too much, not too little. A detailed discussion of the experiment

is available in the Appendix that is available on request.

4 . Additional Empirical Results

It seems that to a first approximation all our models are equally good as
predictors of exchange rates squares. To compare them from a slightly
different perspective, we conducted a standard efficiency test (e.g., Pagan

and Schwert (1990a)), estimating by OLS the regression

(4-1) e,y = by + bihyy + €.

If, indeed, E.e?,; = Gmt, one should get bg=0, b;=1. One should also find that
€e4; is serially uncorrelated. But a quick look at the autocorrelations of
the residuals suggested that this was rarely if ever the case. So we do not
formally test for the absence of serial correlation, and instead correct the
variance-covariance matrix of the estimated parameter vector for conditional
heteroskedasticity as well as serial correlation, using the techniques
described above.

Results are in Table 5. Asymptotic standard errors for b, and b, are
given in parentheses beneath the point estimates. For all five countries, the
x%(2) column gives the point estimate and asymptotic p-value for Hy: be=0,
by;=1. The "#*" and "%" after the estimates of ﬁl indicate significant

differences from zerc, not one.

We note first that the rankings by R? are quite similar to those by



19

RMSPE. This indicates that models with relatively low RMSPEs also have RMSPEs
whose variance component is relatively low, since R? reflects the variance but
not bias-squared component of MSPE. Some new information is yielded by the
other estimates. Of the 30 x2(2) tests of Hy: by=0, by=1, 27 reject at the .10
level (the exceptions are GARCH(1,1) for Japan, IGARCH for Japan and U.K.), 25
at the .05 level (the additional exceptions are the two autoregressions for
Canada). The standard errors on go and 61 yield compatible conclusions.

Perhaps unsurprisingly, then, none of the models pass this efficiency
test: the Monte Carlo simulation indicates that this test has good power,
being very likely to reject the null (not reported in the Table). More
encouraging is that 7 of the estimates of b, are significantly different from
zero at the .05 level, five of these being for GARCH models (see the "#**"
entries). This shows that there is some predictive power in the estimated
conditional variances. For future reference, note the marked tendency of the
models to have predictive power for Canadian data.

We also performed the efficiency test in Table 5 for the 12 and 24 week
horizons. For these horizons, the results did not help discriminate between
models, and we therefore limit ourselves to a summary of the results. 0f the
60 x%(2) tests, 58 reject at the .10 level (the exceptions are GARCH(1,1) for
Canada 12 week and U.K. 24 week), 56 at the .05 level (the additional
exceptions are homoskedastic for Canada 12 and 24 week). More troubling is
that while 31 was different from zero at the .05 level 7 times, only two of
those estimates were positive (GARCH(1,1) and IGARCH for U.K., 12 week).

Overall, then, it seems that at the one period horizon there is some
evidence favoring GARCH models: while Table 4 cannot reject the null that the

RMSPEs are the same for all models, GARCH models do tend to produce lower
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RMSPEs, and Table 5 suggests that they have markedly more predictive power for
next period’s e?,;. On the other hand, at longer horizons, we find little
grounds for preferring one model over another.

This is a disappointing, and surprising, result. It seems that mean
reversion in the conditional variance occurs rapidly enough that no model
dominates the others at 12 week or longer horizons. This suggests that the
in-sample fits overstate the conditional predictability of exchange rate
squares, Lamoureux and Lastrapes (1990) have shown that occasional discrete
shifts in the mean level of volatility cause substantial upward bias in
estimates of the persistence of volatility. We close this section with some
evidence that such shifts may have occurred here, and thus may help account
for our inability to sharply distinguish one model from another.

Panel A of Table 6 reports split sample estimates of the standard
deviation of e,. As one can see, the point estimate is markedly higher in the
second half of the sample for all countries except perhaps Canada.® In
addition, line (3) of the table indicates that the null of equality is
rejected at the .05 level for France, Japan and the U.K., at the .10 level for
Germany.

Given that we began forecasting at the sample midpoint, the choice of the
midpoint as a date to test for a shift is natural, but nonetheless still
arbitrary. In panel B we report a Pagan and Schwert (1990b) test for the
constancy of the unconditional variance of e, that does not require a priori
specification of a date. The details of the test are described in the notes
to the table. As indicated in the table, the null of constancy is rejected
at the .05 level for all countries but Canada, for which it is not rejected at

even the .20 level. See row (1) of panel B.
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Rows 2 to 4 of Table 6 report the results of applying this test on three
subsamples for each country: the first half of our total sample (March 14,
1973 to June 17, 1981), the middle two-fourths (April 24, 1977 to July 31,
1985), and the last half (June 24, 1981 to September 20, 1989). Of the 15
tests for constant variances (15 = 3 subsamples times 5 countries), only two
tests rejected at the .05 level (Japan, beginning and middle subsamples).

Now, if the data were driven by a stationary model that allows time
varying conditional variances, it would not be surprising if tests such as
those in Table 6 found evidence of shifts in variance at short but not long
horizons. We, however, find the converse. And, as briefly noted in section
2, forecast quality was no better for expanding than for rolling samples,
which also seems to suggest a failure of the stationarity assumption.

In this study, we followed many others (e.g., Engle et al. (1990)) and
implicitly allowed for a failure of stationarity by using rolling samples. We
conjecture that it will be productive to explore models that explicitly allow
for seeming or actual movement in the unconditional variance of e,. The sort
of movement that one wants to capture appears to be slow enough that it might
not be detectable in samples that are eight years long, but rapid enough that
it is marked in samples sixteen years long.

Canadian data were unusual in that Table 4's tests of equality of RMSPEs
tended to find differences across models, and Table 5's efficiency tests were
unusually likely to be able to find predictive power in the estimated
conditional variances. Perhaps the distinctive results for Canada are no
accident, but instead are linked to the stationary behavior of its exchange

rates.
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5, Conclusions

The in-sample evidence summarized in Tables 1 and 3 strongly suggests
that a homoskedastic model should be dominated by the other models that we
studied. This did not turn out to be the case. We speculate that models that
allow for seeming or actual drift in unconditional moments may result in
superior performance. Possibilities include processes that allow occasioconal
discrete jumps (Jorion (1988)) and models with time varying parameters (Chou

et al. (1990)).
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Footnotes
1. We find this to also be a message, perhaps implicit, in the studies using
stock price data by Pagan and Schwert (19%90a,1990b) and Chou et al. (1991}, as
well in Loretan and Phillips (1992).
2. We also obtained Italian data. But in-sample statistics such as those
reported in Table 1 suggest a ponzero unconditional mean. Fitted GARCH models
tended to be explosive, with ;+E>1 in the notation of Table 2; apparently this
resulted in part from the nonzero sample mean since removing this mean
lessened the tendency to get explosive estimates. We dropped Italy rather
than fit means as well as variances.
3. In related work (West, Edison and Cho (1993)) we consider an alternative
measure of model quality, which also tends to favor GARCH.
4. We also used these models in another paper (West, Edison and Cho (1993)),
and some of the prose in the remainder of this subsection also appears in that
paper.
5. For efficiency reasons, one might nonetheless prefer to assume, say, a
conditional t distribution, if the conditional density is in fact t. Our
reading of the in-sample evidence is that this is not essential (e.g., Baillie
and Bollerslev (1989) found little support for the use of a t in weekly
exchange rate data).
6. Diebold and Mariano (1991) have independently suggested conducting
jnference on forecast errors using similar techniques, and Diebold (1988)
suggested our modification of the Ljung-Box statistic in the specific case of
a GARCH data generating process.
7. These population figures ignore the effects of sampling error in the
estimation of model parameters. Reinsel (1980) and Ericcson and Marquez
(1989), among others, have suggested a refinement to the computation of the

RMSPE that accounts for sampling error in such estimation. But inspection of
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their formulae and simulation results indicates that the refinement has a
noticeable effect only when the following ratio is much larger than in our
application: (number of regressors) / (sample size). While neither of these
papers considers data that are conditionally heteroskedastic, we take the
message to be that such a refinement is unlikely to much affect the Table 3B
figures.
8. Consistent with this statement, and with the literature surveyed in Clemen
(1989), a prediction formed by averaging the six forecasts typically performs
better than any of the individual forecasts, at least at the longer horizons.
Of the 15 comparisons, the ranking of the average forecast was: 1--7 times (2
of the 7 occur for a one period horizon; IGARCH performs roughly comparably
here): 2--6 times, 3--once; 4--once. Details are in the Appendix that is
available on request.
9, For computational convenience, we computed tests for equality of the MSPE's
rather than the asymptotically equivalent tests for the RMSPE’s; for
expositional convenience, in all discussion apart from the statement of the
tests in the preceding paragraph in the text, we refer to these as tests on
the RMSPE's.
10. This raises the question of whether our exercise would produce different
results if applied to split samples, a question also raised by a referee who
noted that in the mid-1980s central banks attempted to drive down the dollar.
We computed one week ahead RMSPEs for samples running from (1)6/17/81 to
9/18/85 (number of predictions = 223), and (2)9/18/85-4/5/89 {number of
predictions = 185); the split date was chosen because the Plaza Accord was
announced on 9/22/85. The RMSPEs were generally higher in the later sample.
But GARCH or IGARCH still fared relatively well: one or the other was best in
all five comparisons in the early sample, in three of the five comparisons in

the later sample, Details are in the Appendix that is available on request.
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This not-for-publication appendix contains results cmitted from the body
of the paper to save space. Following are:

I. Parameter estimates or summary statistics, T=432

A. GARCH({1,1)

B. IGARCH

¢. AR(12) in le(t)!

D. AR(12) in e(t)**2
II. Diagnostics on GARCH models

A. Ljung-Box Statistics for e(t)/sqrt(h(t))

B. Ljung-Box Statistics for e(t)**2/h(t)

C. GARCH{1,2) estimates

D. GARCH(2,1) estimates

E. LM test for one and two additional coefficients, and

t-test for IGARCH

III. Mean squared errors for additional GARCH models, using German data
IV. Estimates with Italian data
V. Mean squared errors for additional nonparametric medels, using German data
VI. Out of sample RMSPEs for models estimated on expanding samples
VII. Bandwidths used in estimation of variance-covariance matrices
VIII. Chi-squared statistics for tests of model in which h{t) = e(t)**2
IX. Regression Tests of Efficiency, 12 and 24 Week Horizons
X. Monte Carlc Experiment

XI. RMSPE for prediction made using average forecast

XII. RMSPE for split samples



I. Parameter estimates, T=432

Additional Appendix, pA2

A. GARCH({1,1)
1. Canada 2. France
CONSTANT ALPHA BETA CONSTANT
EST 0.00000552 0.26072752 0.54451673 EST 0.00001396
S.E. 0.00000131 0.02411562 0.06148268 S.E. 0.00000266
3. Germany 4. Japan
CONSTANT ALPHA BETA CONSTANT
EST 0.00002022 0.29526189 0.61345651 EST 0.00000074
S.E. 0.00000447 0.04876142 0.05331147 S.E. 0.00000035
5. U.K.
CONSTANT ALPHA BETA
EST 0.00001888 0.11460277 0.73289811
S.E. 0.00000733 0.04635227 0.09907802
B. IGARCH
1. Canada 2. France
ALPHA ALPHA
EST 0.12549316 D0D.87450684 EST 0.07941096
S.E. 0.00630164 S.E. 0.00547796
3. Germany 4. Japan
ALPHA ALPHA
EST 0.08882797 0.91117203 EST 0.04363261
S.E. 0.00033945 S.E. 0.00301078
5. U.K.
ALPHA
EST 0.00007805 0.99992195
S.E. 0.00102633
C. AR(12) in le(t)]
DEPENDENT VARIABLE 1 EABSCAN
FROM 1973: 6: 6 UNTIL 1981: 6:17
TOTAL OBSERVATIONS 420 SKIPPED/MISSING 0
USABLE OBSERVATIONS 420 DEGREES OF FREEDOM 407
R**2 .06733482 RBAR**2 .03983609
SSR .50911213E-02 SEE .35367920E-02
DURBIN-WATSON 2.02197733
Q( 60)= 42.1373 SIGNIFICANCE LEVEL .961263
DEPENDENT VARIABLE 2 EABSFRA
FROM 1973: 6: 6 UNTIL 1981: 6:17
TOTAL OBSERVATIONS 420 SKIPPED/MISSING 0
USABLE OBSERVATIONS 420 DEGREES OF FREEDOM 407
R**2 .15970723 RBAR**2 .13493201
SSR .25915306E-01 SEE .79795971E-02

DURBIN-WATSON 2.00114184

Q( 60)= 44.7489 SIGNIFICANCE LEVEL .929113
DEPENDENT VARIABLE 3 EABSGER

FROM 1973: 6: 6 UNTIL 1981: 6:17

TOTAL OBSERVATIONS 420 SKIPPED/MISSING 0
USABLE OBSERVATIONS 420 DEGREES OF FREEDOM 407
R¥**2 16477312 RBAR**2 .14014727
SSR .30872286E-01 SEE .87093790E-02
DURBIN-WATSON 1.98183755

Q( 60)= 40.9947 SIGNIFICANCE LEVEL .971228
DEPENDENT VARIABLE q EABSJAP

FROM 1973: 6: 6 UNTIL 1981: 6:17

TOTAL OBSERVATIONS 420 SKIPPED/MISSING 0
USABLE OBSERVATIONS 420 DEGREES OF FREEDOM 407

ALPHA
0.34547912
0.05482124

ALPHA
0.05327541
0.00769470

0.92058904

0.95636739

BETA
0.611222%4
0.04430997

BETA
0.94455421
0.00690244
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R**2 .14225244 RBAR**2 .11696259
SSR .27958344E-01 SEE .82881674E-02
DURBIN-WATSON 2.00295282

Q( 60)= 36.6313 SIGNIFICANCE LEVEL .992541
DEPENDENT VARIABLE 5 EABSUKG

FROM 1973: 6: 6 UNTIL 1981: 6:17

TOTAL OBSERVATIONS 420 SKIPPED/MISSING 0
USABLE OBSERVATIONS 420 DEGREES OF FREEDOM 407
R¥#*2 12777411 RBAR**2 .10205737
SSR .22111741E-01 SEE .73707939E-02
DURBIN-WATSON 1.98334136

Q( 60)= 40.5622 SIGNIFICANCE LEVEL .974435

D. AR(12) in e(t)**2

DEPENDENT VARIABLE 1 E2CAN

FROM 1973: 6: 6 UNTIL 1981: 6:17

TOTAL OBSERVATIONS 420 SKIPPED/MISSING 0
USABLE OBSERVATIONS 420 DEGREES OF FREEDOM 407
R**2 .01788668 RBAR**2 -.01106998
SSR .34738170E-05 SEE .92386022E-04
DURBIN-WATSON 2.00462169

Q( 60)= 9.69061 SIGNIFICANCE LEVEL 1.00000
DEPENDENT VARIABLE 2 E2FRA

FROM 1973: 6: 6 UNTIL 1981l: 6:17

TOTAL OBSERVATIONS 420 SKIPPED/MISSING 0
USABLE OBSERVATIONS 420 DEGREES OF FREEDOM 407
R¥**2 .09352165 RBAR**2 .06679502
SSR .34819148E-04 SEE .29249057E-03
DURBIN-WATSON 1.99921420

Q( 60)= 52,2613 SIGNIFICANCE LEVEL .751031
DEPENDENT VARIABLE 3 E2GER

FROM 1973: 6: 6 UNTIL 1981: 6:17

TOTAL OBSERVATIONS 420 SKIPPED/MISSING 0
USABLE OBSERVATIONS 420 DEGREES OF FREEDOM 407
R¥**2 .11641248 RBAR**2 .09036076
SSR .63289013E-04 SEE .39433648E-03
DURBIN-WATSON 1.98712955

Q( 60)= 37.1952 SIGNIFICANCE LEVEL .990932
DEPENDENT VARIABLE 4 E2JAP

FROM 1973: 6: 6 UNTIL 1981l: 6:17

TOTAL OBSERVATIONS 420 SKIPPED/MISSING 0
USABLE OBSERVATIONS 420 DEGREES OF FREEDOM 407
R#**2 .05469587 RBAR¥*2 .02682449
SSR .47371604E-04 SEE .34116293E-03
DURBIN-WATSON 2.00251115

Q( 60)= 32.3521 SIGNIFICANCE LEVEL .998669
DEPENDENT VARIABLE 5 E2UKG

FROM 1973: 6: 6 UNTIL 1981: 6:17

TOTAL OBSERVATIONS 420 SKIPPED/MISSING 0
USABLE OBSERVATIONS 420 DEGREES OF FREEDOM 407
R**2 .05186329 RBAR**2 .02390840
SSR .26232018E-04 SEE .25387424E-03
DURBIN-WATSON 1.99853815

Q( 60)=  34.3075 SIGNIFICANCE LEVEL .996907

ITA. Ljung-Box Statigtics for e(t)/sqgrt(h(t}}

DEGREES OF FREEDOM
COUNTRY SAMPLE MODEL 10 50

90



Canada

France

Germany

Japan

U.K.

IIB. Lijuna-Box Statistics for e(t)**2/h(t)

COUNTRY

Canada

France

Germany

Japan

U.K.

1-432

1-432

1-432

1-432

1-432
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GARCH(1,1)
IGARCH

GARCH(1,1)
IGARCH

GARCH(1,1)
IGARCH

GARCH(1,1)
IGARCH

GARCH(1,1)
IGARCH

21.87
25.69

44.06
41.77

37.95
45.53

36.08
38.22

24.53
21.39

SAMPLE

1-432

1-432

1-432

1-432

1-432

MODEL

GRRCH(1,1)
IGARCH

GARCH(1,1)
IGARCH

GARCH(1,1)
IGARCH

GARCH(1,1)
IGARCH

GARCH(1,1)
IGARCH

IIC. GARCH(1,2) estimates

COUNTRY

Canada

France

Germany

Japan

U.K.

SAMPLE

1-432

1-432

1-432

1-432

1-432

10

6.81
20.48

8.28
14.05

6.89
20.91

63.70
16.97

2.64
20.04

CONSTANT(10-5)

.385
( .114
1.053

( .314
1.904

( .538
.189

( .071
1.757

(  1.549

IID. GARCH{2,1) estimates

COUNTRY

Canada

France

Germany

SAMPLE

1-432

1-432

1-432

CONSTANT (10-5)

.383
( .175
1.977
( .380
2.252
( .559

ALPHA

.270
.025

.208
.075

.279
.071

.107
.015

.093
.084

66.71
72.33

71.26
64.57

75.43
84.20

70.26
75.73

70.46
62.33

50

56.35
47.39

48.75
39.95

53.61
48.53

73.62
28,33

32.49
64.58

ALPHA

.328
.038

.239
.076

.284
.070

117.55
154.49
113.83
112.71
116.95
123.71
92.30
112.58
117.80
108.87
90
82.84
58.08
97.07
79.14
84.87
71.98
93.19
43.63
58.19
100.09
BETAl, BETA2
.334 .272
.181 .174 )
.736 .00000152
.318 .250 )
. 640 .00000100
.258 .189 )
.00700 .880
.016 .018 )
.808 .00000107
.898 .766 )
BETAl, BETA2
.00000146 .660
.112 .103 )
.159 .514
.073 .057 )
.037 .578
.083 .073 )
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Jepan 1-432 .163 .055 .00000139 .943

( .074 .040 .042 .012 }
U.K. 1-432 2.254 .069 .071 .678

( .809 .052 .063 .112 )

IIE. LM test for one and two additional coefficients, and t-test for IGARCH

There are two entries under each of the "“one mcre" and "twe more" columns. The
first gives the standard LM test, the second the TR-squared version of the test.

The column labeled "IGARCH" gives the t-statistic for testing alpha+beta=1 in the
GARCH(1,1) model.

COUNTRY SAMPLE MODEL ONE MORE TWO MORE IGARCH
(TR2) {TR2)

Canada 1-432 GARCH(1,1) 2.185 0.845 2.287 0.884 -3.112

France 1-432 GARCH(1,1) 3.543 1.588 3.552 1.592 -1.194

Germany 1-432 GARCH(1,1) 1.394 0.726 1.465 0.762 -2.631

Japan 1-432 GARCH(1,1) 6.477 1.381 6.530 1.392 -0.480

U.K. 1-432 GARCH(1,1) 1.142 0.324 1.213  0.344 -2.548

III. Msan squared errors for additicnal GARCH models, using German data

These are one week ahead out of sample mean squared errors. All estimates used
expanding rather than rolling samples. The estimates for IGARCH duplicates that
given below, and is included for comparison.

Horizon
1 12 24
GARCH(2,0) 25.11 22.38 20.08
GARCH(2,1) 23.67 52.04 290.27
GARCH(1,2) 23.24 24.47 20.78
IGARCH 22.05 23.35 20.42
IV. Estimates with Italian data
Sample mean: -.0011
(.0005)
T m a B
GARCH(1,1) 432 .1141le-4 .4350 .7563
863 .0634e-4 .7452 .2609

V. Additional estimates for nonparametric model, using German data

A. These are one week ahead out of sample mean squared errors. All estimates used
expanding rather than rolling samples. Alternative bandwidths, b=k x sigma x
(N-J)**(=-.2):

Reference:
k=.1 k=.5 k=1.5 k=1.0
27.12 22.78 22.39 22.47

B. Mean squared error, one week ahead forecast, information set = {e(t),a(t-1),e(t-
2),e(t-3)}

33.54

VI. Out of sample RMSPEs, expanding samples
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FOR HORIZON 1 MSPES ARE

CANADA FRANCE GERMANY JAPAN U.K.
HOMO 0.716 5.156 4.701 4.399 5.765
(1,1) 0.706 5.415 4.801 4.370 5.581
1G 0.706 5.150 4.696 4.360 5.643
E2(12) 0.702 5.231 4.848 4.410 5.854
'El(12) 0.707 5.170 4.789 4.407 5.683
NONP 0.749 5.207 4.740 4.453 6.633
FOR HORIZON 12 MSPES ARE

CANADA FRANCE GERMANY JAPAN U.K.
HOMO 0.698 5.212 4.751 4.460 5.816
(1,1) 0.698 5.880 4.934 4.506 5.704
16 0.740 5.274 4.832 4.481 5.765
E2(12) 0.697 5.220 4.755 4.447 5.736
'E!(12) 0.703 5.274 4.798 4.481 5,708
NONP 0.704 5.227 4.756 4.468 5.862
FOR HORIZON 24 MSPES ARE

CANADA FRANCE GERMANY JAPAN U.X.
HOMO 0.696 5.086 4.494 4.454 5.791
(1,1) 0.701 5.908 4.534 4.560 5.741
16 0.758 5.075 4.519 4.516 5.831
E2(12) 0.696 5.081 4.492 4.445 5.748
'E! (12) 0.702 5.130 4.529 4.493 5.776
NONP 0.703 5.128 4.545 4.461 5.969

VII. Bandwidths used in estimation of variance-covariance matrices

Bere are the values of k {in the notation of section II of the paper):

TABLE 4
Canada France Germany Japan U.K.
Horizon = 1
Ha 10 1 4 4 8
Hb 10 4 6 6 8
He 10 0 4 4 8
Horizon = 12
Ha 9 3 1 3 8
Hb n.a. n.a. n.a. 2 9
Hc 9 3 1 3 7
Horizon = 24
Ha 9 1 1 4 8
Hb n.a. 1 2 3 9
He 9 0 0 3 8
TABLE 5
Canada France Germany Japan U.K.
homo 12 4 6 6 9
{(1,1) 2 8 17 8 20
ig 7 0 7 6 10
e2AR 6 3 2 2 9
le| AR 8 4 7 3 6
nenp 4 4 5 6 10
TABLE 6
Canada France Germany Japan U.K.

11 15 14 15 15
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VIII. Chi-squared statistics for tests of model in which h{t) = e{t)**2

Hd: RMSPEs are the same for all 7 models (degrees of freedom = 6)
He: RMSPE from this model = that of next worst model

Horizon=1

HD 16.88[0.010] 9.55[0.145] 14.39[0.026]22.75 [0.001]111.86[0.065]
RE 5.31{0.021] 5.73[0.017] 3.98[0.046]16.40 [0.000] 2.08[0.150]

Horizon=12

HD 20.50[0.002] 15.06[0.020] 9.02(0.172]27.58 [0.000]12.24(0.057]
HE  6.34[0.012] 5.28[0.022] 4.28[0.038] 5.32 [0.021] 4.51[0.034]

Horizon=24

HD 23.69[0.001] 21.34[0.002] 21.92[0.001]14.14 [0.028]16.64[0.011]
HE 8.61[0.003] 3.79[0.052] 4.02[0.045] 6.45 [0.011] 9.67[0.002]

IX. Reqression Tests of Efficiency, 12 and 24 Week Horizons

As in Table 5, for each model, the first row gives: b0, bl, R2, chi-squared(2); the
second row gives the asymptotic s.e.s on b0 and bl and the asymptotic p-value for
the test. For the horizons of 12 and 24, k=11 and 23.

HORIZON = 12

Canada
homo 1.031107 -2.086976 0.004045 2.720807
0.635373 1.935881 0.256557
(1,1) 0.239761 0.306861 0.002823 3.130597
0.138759 0.395703 0.209026
ig 0.325918 0.070601 0.000641 21.860954
0.081591 0.200034 0.000018
©2AR 0.635848 -0.857535 0.004974 7.458198
0.244076 0.684274 0.024014
ie!AR 0.941119 -2.087409 0.011682 10.628475
0.297204 0.951702 0.004921
nonp 0.778693 -1.278986 0.014399 14.128027
0.245351 0.656947 0.000855
France
homo 3.954564 -0.700857 0.0040990 12.516717
1.117870 0.491569 0.001914
(1,1)
3.013126 -0.131535 0.002664 110.636750
0.563462 0.124768 0.000000
ig 3.252295 -0.259269 0.002222 25.576913
0.787861 0.257790 0.000003
eZAR 4.471275 -0.889827 0.010840 27.636828
0.946556 0.367142 0.000001
‘e AR 4.755856 -1.115419 0.014636 24.963501
1.011162 0.426645% 0.000004
nenp 3.529092 -0.469122 0.004009 18.214883

0.907890 0.350131 0.000111



homo

(1,1)

ig

a2AR

homo

(1,1)

ig

homo

(1,.1)

ig

homo

{1,1)

2.856675
0.983517

3.516629
0.638720

2.397748
0.440861

2.964122
0.472303

3.417485
0.760616

2.563571
0.733208

3.036565
1.418420

1.828322
0.82414¢

1.877058
0.978864

1.716029
0.753440

1.395504
0.747720

1.850532
0.645056

3.795168
1.204796

1.518268
0.377649

1.431124
0.574939

1.643902
0.900187

1.153074
0.946938

3.098772
0.631164

1.044784
0.713870

0.498992

-0.140829
0.432525

-0.373886
0.189023

0.063889
0.167530

-0.178361
0.159319

-0.415819
0.312536

-0.000120
0.285712

-0.380043
0.716212

0.201602
0.335469

0.203426
0.424832

0.279284
0.356621

0.482387
0.406798

0.218355
0.274249

-0.520904
0.474912

0.443546
0.119811

0.519181
0.249774

0.463512
0.383171

0.744758
0.455275

-0.174430
0.179535

-2.146363
2.168065

-0.424593
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Germany

0.000165

0.004351

0.000227

¢.000814

0.002155

0.000000

Japan
0.000591

0.001376

0.001263

0.001609

¢.005937

0.001224

0.002444

0.036217

0.023400

0.016752

0.022204

0.000815

HORIZON = 24

Canada

0.004287

0.002829

8.807277
0.012233

62.679105
0.000000

33.606139
0.000000

54.762376
0.000000

20.968764
0.000028

12.649732
0.001791

5.479012
0.064602

5.673686
0.058610

3.685731
0.158363

5.287437
0.071096

5.368715
0.068265

8.552924
0.013892

10.309707
0.005771

24.192541
0.000006

6.345943
0.041879

3.829037
0.147413

4.052592
0.131823

44.379059
0.000000

2.157743
0.339979

39.868374



homo

(1,1)

ig

homo

(1,1}

ig

e2AR

homo

(1,1}

ig

0.121621

0.378053
0.076067

1.047510
0.505369

0.707019
0.567396

0.511663
0.140400

3.645760
1.145648

1.421710
0.527811

1.762603
0.655154

3.497705
1.18478%

3.193164
1.080187

3.544731
0.932468

2.442757
0.965627

2.099971
0.731753

1.632552
0.418656

2.239759
0.699890

1.911209
0.695115

2.531624
0.459384

2.193381
1.557754

2.406710
0.638799

2.357051
0.879299

2.278134
1.377205

1.874575

0.254102

-0.089148
0.098691

-2.133744
1.484385

-1.293817
1.994728

-0.52039%4
0.355605

-0.556886
0.504704

0.260133
0.129706

0.284765
0.246662

-0.467882
0.509745

-0.359209
0.517417

-0.484216
0.363921

0.022702
0.429929

0.154788
0.292273

0.330894
0.168766

0.116155
0.292640

0.297094
0.348887

-0.019580
0.201048

0.041427
0.777924

-0.055748
0.208558

-0.040506
0.357531

-0,001711
0.651277

0.226185
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0.001024

0.006223

0,.001763

0.003564

France

0.002706

0.023519

0.002808

0.002061

0.001271

0.004382

Germany

0.000005

0.000431

0.006760

0.000184

0.001007

0.000010

Japan

0.000007

0.000118

0.000050

0.000000

0.000310

0.000000

176.278541
0.000000

4.553071
0.102639

2.631784
0.268235

19.689142
0.000053

10.137907
0.006289

62.522168
0.000000

8.411464
0.014910

8.716246
0.012802

9.800441
0.007445

17.067878
0.000197

€6.816709
0.033096

8.559282
0.013848

16.809337
0.000224

10.249447
0.005948

9.835476
0.007316

31.031218
0.000000

2.800451
0.246541

30.332684
0.000000

8.636156
0.013325

2.933709
0.230650

6.136690



nonp

homo

(1,1)

0.906833

1.681275
0.393200

3.842574
1.382245

1.354690
0.375641

2.250555
0.547917

1.972567
1.031143

1.848324
1.065496

3.121600
0.587645
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0.491861

0.291734
0.173606

-0.561865
0.547753

0.476903
0.108220

0.180471
0.207882

0.327213
0.469124

0.439689
0.555244

-0.194439
0.141139

U.K.

0.002343

0.002865

0.055629

0.002850

0.002997

0.002452

0.002357

0.046498

20.068651
0.000044

8.133512
0.017133

26.092876
0.000002

17.956412
0.000126

4.862904
0.087909

6.546378
0.037885

88.465924
0.000000
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X. Monte Carlec Experiment

We generated 100 samples of size 863, according to a process described in the
next paragraph. We generated only 100 samples because of computational constraints;
even this small experiment required nonlinear, iterative estimation of 40,800 GARCH
models and 40,800 IGARCH models. For each of the 100 samples, we repeated the Table
4 calculations, fitting and then forecasting with all six models 408 times, fitting
our models first to observations 1 to 432, then to observations 2 to 433,..., and
finally to observations 408 to 839. We then computed RMSPEs and x? statistics.

Our data generating process assumed e, - iid N(0,03) for observations 1 to
432, e, ~ iid N(0,0}) for observations 433 to 863. We allowed for two distinct
variances in part because of evidence presented below that the unconditional
variance in these data appears to have drifted upward during the sample, in part
because estimates of our GARCH models did not converge in an initial attempt to use
a constant variance model. Recall that the conceptual experiment that underlies our
asymptotic inference is one in which the number of observations used for estimation
(=432, in the sample that we have} and the number used for forecasting (=408) both
go to infinity. Here, we further assume that there is a one-time shift in the
variance in the first observation that is forecast. Intuition suggests that our
estimators might then yield equal out-of-sample RMSPEs in a large sample. (We have
not, however, proved this formally.)

The standard deviations o, and o, were set tc match estimates for U.K.
exchange rates, o,=1.093 (3/14/73-6/17/81), o0,=<1.663 (6/14/81-9/20/89). The choice
of the U.K. was arbitrary.

The attached has the results. The first part of the table repeats the ranks
and RMSPEs reported in Table 4. Beneath the RMSPEs are 95 percent confidence
intervals, for which the lower bound is the third smallest RMSPE, the upper bound
the 98th smallest. The point estimates all fall within the 95 percent confidence
intervals.

The bottom of the table repeats the x? statistics and asymptotic p-values from
Table 4, and adds the Monte Carlo p-values. The Monte Carlo p-value of 0,99~
figure for H, for the one week horizon, for example, indicates that 99 of the 100
samples yielded a x’ statistic larger than the 3.76 produced in our actual data.
Seven of the remaining eight Monte-Carlo p-values alsc are higher than those derived
from the asymptotic chi-square distribution, confirming a pattern of a small sample
bias towards undersized tests that we have seen in related Monte Carlo work (Newey
and West (1992)). There does not, then, appear tc be a tendency for these tests to
reject too infrequently.
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Monte Carlo Results, U.K. Data

95 percent confidence intervals around point estimates of RMSPEs, from Mente Carlo:
Twaelve Week Horizon

One Week Horizen Twenty Four Week Horizon

Rank RMSPE Rank RMSPE Rank RMSPE

homo 4 5.745 5 5.794 4 5.770

(4.284,7.536) (4.152,7.557) (4.142,7.443)
{1,1) 2 5.632 4 5.756 1 5.708

(4.267,7.785) (4.129,8.011) {(4.136,8.031)
ig 1 5.563 2 5.692 5 5.834

(4.278,7.514) (4.136,7.561) (4.131,7.410)
eZAR 5 6.033 3 5.726 2 5.721

(4.321,7.804) {4.158,7.792) (4.133,7.639)
|8 AR 6 5.726 1 5.674 3 5.729

(4.336,7.649) (4.170,7.653) (4.186,7.529)
nonp 3 6.537 6 5.841 6 5.943

{4.309,7.723) {4.319,7.594) (4.188,7.750)
Hypcthesis tests:

x? p-value x? p-value X2 p-value
Asymp- Monte Asymp- Monte Asymp- Monte
totic Carloe totic Carlo totic Carle

H, 3.76 [0.584] [0.99)] 8.49 [0.131] [0.89] 5.82 [0.324} [1.00]
H, 1.52 1[0.217] 1[0.13] 1.29 [0.256] [0.26] 0.07 [0.789} [0.91]
H, 3.59 [0.310] 10.84) 5.66 [0.129] [0.84) 1.95 [0.583}% [1.00]
Notes:

1. The entries in the "Rank" column and the point estimates of the RMSPEs are
repeated from the Table 4 entries for the U.K., as are the x? statistics and
asymptotic p-values for H,, H, and H..

2. parameters for the Monte Carlio simulation were chosen to match U.K. data in
certain respects. Details are described on the previcus page. For a given model
and horizon, the numbers in parentheses are interpreted as: 2.5% of the artificial
data sets had RMSPEs smaller than the first number, 2.5% had RMSPEs higher than the
second number.

3. The Monte-Carlo p-value gives the fraction of artificial data sets for which the
x? statistic was higher than the one computed from the actual data.
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XI. RMSPE for prediction made using average forecast

(Comparable to Table 4)

horizon Canada France Germany Japan U.K.

1 1 0.696 1 5.155 2 4.695 2 4.335 2 5.687
12 3 0.698 2 5.237 2 4.760 1 4.416 1 5.652
14 4 0.699 1 4.997 1 4.474 2 4.423 1 5.662

XII, RMSPE for the split samples, One -week

(Comparable to Table 4, Panel A)
A, 6/17/81 - 9/18/85

Canada France Germany Japan U.K.
homo 5 0.617 2 5.224 3 3.781 6  3.262 4  6.249
(1,1 1 0.582 6 5.454 4 3.792 2 3.141 2 6.059
ig 2  0.599 1 5,219 1 3.731 1 3.119 1 5.955
e2AR 3  0.600 5 5.316 5 3.882 3 3.155 5 6,413
|e|AR 4 0.603 4 5,283 6 3.899 4 3.156 3 6.152
nonp 6 0.634 3 5.261 2 3.779 5 3.250 6 7.516

B. 9/18/85 - 4/5/8%

Canada France Germany Japan U.K.
homo 2 0.814 2 5.097 1 5.602 2 5.412 3 5.085
(1,1) 4 0.821 6 5.225 5 5.737 1 5.396 2 5.082
ig 3 0.815 1 5.091 3 5.625 3 5.445 1 5.061
e2AR 5 0.825 5 5.221 6 5.925 6 5.539 6 5.552
|e| AR 1 0.807 3 5.100 2 5.622 4  5.498 5 5.177
nonp 6 0.842 4  5.129 4  5.64] 5 5.530 4  5.144



Figure 1: Basic Data

A. Time Series of Levels B. Histograms of Log Differences
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Notes:

1. In panel A, the vertical axis is measured in cents per unit of
foreign currency.

2. In panel B, the vertical axis of the histograms is the relative
frequency of the data falling in every .1 interval from -8 to 8.
The corresponding densities were computed in the same way for each
country using the normal density with the sample mean (row (1) in
Table 1) and the sample variance (row (2)) for each country.
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2
B. et

Canada France Germany Japan U.K.
(13)Mean 0.305 1.983 2.147 1.854 1.978
(0.030) (0.148) (0.190) (0.166) (0.223)
(l4)Standard 0.809 4.196 4,395 4.001 4.446
Deviation (0.213) (0.598) (0.763) (0.513) (0.768)
(15)L-B(10) 34.27 37.82 56.72 51.92 98.12
[.000] [.000] [.000] [.000] [.000]
(16)L-B(50) 52.50 129.59 134.75 101.16 322.19
1.377] [.000] [.000] [.000] [.000]
(17)L-B(90) 65.41 178 .42 166.25 138.44 337.07
[.976] [.000] [.000] [.000] [.000]

Notes:

1. The variable e, is the percentage change in the weekly exchange rate. The sample
includes 863 weekly observations from March 14, 1973 to September 20, 1989.

2. In rows (1)-(4), (13) and (14), heteroskedasticity and autocorrelation consistent
asymptotic standard errors are in parentheses.

3. Rows (5) to (7) and (15) to (17) contain Ljung-Box statistics of order given in
the header to the row. In rows (5) to (7), the statistics are computed as in
equation (2-4) to allow for possible conditional heteroskedasticity in e.. The
p-values of the asymptotic chi-squared statistics are given in the lower halves of
the rows.



Table 2

Models
(L) (2) (3
Model Formula for h, Acronym
Homoskedastic Medel
1. Homoskedastic hy = w homo
GARCH Models
2. GARCH(1,1) h, = v + aef + phy, (1,1
3. IGARCH(1,1) hy = ae2 + (l-a)hyy ig
Autoregressive models
4, AR(12) in el h, = v + Z%ael 4y e2AR
5. AR(12) in |ey] hy = (n/2)(Elew )% |e|AR

12
E.lew | = @ + ZiZiaglep- sl
Nonparametric Model

6. Gaussian kernel h, ; = E(edijle); nonp
ﬁb,j = Sdwen, sedsy .
Wen,s = Cen,5 / Zs=lCan,s)
CeN,j = expl-.5(ex-e,)2/b?],

b= bandwidth defined in text



Table 3

A. GARCH (1,1) Estimates, Sample = 3/14/73 to 6/17/81

w (x10%) a B
1. Canada 0.5 0.26 0.54
(0.1) (0.02) (0.06)
2. France 1.3 0.35 0.61
(0.2) (0.05) (0.04)
3. Germany 2.0 0.30 0.61
(0.4) (0.05) (0.04)
4. Japan 0.07 0.05 0.94
(0.03) (0.01) (0.01)
5. U.K. 1.9 0.11 0.73
(0.7) (0.05) (0.10)

B. Population Root Mean Square Prediction Errors,
Homoskedastic Relative to GARCH (1,1)

(1) (2) (3 (4) (5
Horizon a=.26,8=.54 a=.35,8=.61 a=_30,p=.61 a=.05,8=.94 a=,11,8=.73
1 1.09 1.60 1.23 1.06 1.02
12 1.00 1.15 1.02 1.05 1.00
24 1.00 1.05 1.00 1.04 1.00
Notes:

1. The numbers in parentheses in panel A are asymptotic standard errors.

2. Panel B presents the ratio of RMSPEs for the indicated horizons, computed
assuming that the data are driven by a GARCH(1,1l) model with the indicated
parameters, and abstracting from sampling error in estimation of the model
parameters. The ratio is invariant to w. The RMSPE for the homoskedastic model is
constant for all horizons. The ratio asymptotes to 1 as the horizon approaches
infinity, for each pair of a and 8.



homo
(1,1)
ig
e2AR
|e|AR
nonp

homo
(1,1
ig
e2AR
|e|AR
nonp

Hy

homo
(1,1
ig

eZAR
|e | AR
nonp

Canada
Rank RMSPE
5 0.714
1 0.702
3 0.706
4 0.712
2 0.704
6 0.737
9.70 [0.084]
1.24 [0.265]
4.24 [0.237]
Canada
Rank RMSPE
1 0.695
2 0.697
6 0.731
3 0.700
4 0.701
5 0.704

16.71 [0.005]

n.a.

5.96 [0.114]
Canada
Rank RMSPE
1 0.695
5 0.703
6 0.743
2 0.695
3 0.697
4 0.702

18.95 [0.002]
n.a.
3.35 [0.340]

Table 4

Root Mean Squared Prediction Errors

A. One Week Horizon

France Germany Japan
Rank RMSPE Rank RMSPE Rank RMSPE
2 5.167 2 4.704 3 4,380
6 5.351 5 4.783 1 4.323
1 5.161 1 4.695 2 4.343
5 5.273 6 4.925 5 4.411
3 5.200 4 4.767 4 4.388
4 5.201 3 4,724 6 4 4472
8.91 [0.113] 8.23 [0.144] 6.42 [0.268]
0.01 [0.918] 0.01 [0.912] 0.77 [0.380]
8.99 [0.029] 4,13 [0.247] 2.86 [0.413]
B. Twelve Week Horizon
France Germany Japan
Rank RMSPE Rank RMSPE Rank RMSPE
1 5.219 1 4.754 3 4,435
6 5.696 6 4.831 5 4.451
5 5.268 5 4.817 6 4.454
3 5.251 4 4.796 2 4.433
4 5.267 3 4,785 1 4.430
2 5.250 2 4.762 4 4,447
15.06 [0.010] 7.32 [0.198] 1.08 [0.956]
n.a. n.a. 0.01 [0.921}
13.60 {0.004] 5.83 [0.120] 0.39 [0.943]
C. Twenty Four Week Horizon
France Germany Japan
Rank RMSPE Rank RMSFPE Rank RMSPE
3 5.094 3 4,500 2 4.424
6 5.694 1 4,490 6 4.498
1 5.060 5 4.509 5 4.483
2 5.087 2 4,498 1 4.422
4 5.109 4 4.505 4 4,441
5 5.131 6 4.535 3 4,436
18.08 [0.003] 3.80 [0.578] 6.05 [0.301]
0.25 [0.619] 0.11 [0.741] 0.12 [0.728)
17.64 [0.001] 1.07 [0.785] 5.82 [0.121]

U.K.
Rank RMSPE
4 5.745
2 5.632
1 5.563
5 6.033
3 5.726
6 6.537
3.76 [0.584]
1.52 [0.217]
3.59 [0.310]
U.K.
Rank RMSPE
5 5.794
4 5.756
2 5,692
3 5.726
1 5.674
6 5.841
8.49 [0.131]
1.29 [0.256]
5.66 [0.129]
U.K.
Rank RMSPE
4 5.770
1 5.708
5 5.834
2 5.721
3 5.729
6 5.943
5.82 [0.324]
0.07 [0.789]

1.95 [0.583]



Notes:

1. The "RMSPE" columns present the out of sample root mean squared error in
predicting eiﬁ for horizon j (j=1, 12 or 24) and the indicated country and model.
The "Rank" columns index the relative size of the RMSPEs for a given country and
horizon, 1 indicating the smallest RMSPE, 6 the largest.

2. The H,, Hg and H; rows present x? statistics (asymptotic p-values in brackets) for
the following hypothesis: A: equality of MSPEs of all 6 models (x2(5)); B: equality
of MSPEs of best and homo models (x2(1)); C: equality of MSPEs from homo, (1,1),
e2AR and |e|AR models (x2(3)). The statistics are computed as in equation (2-3).



Table 5

Regression Tests of Efficiency, One Week Horizon

by by R2 x2(2) be b, RZ 2 (2)
Canada France

homo 1.34 -2.99% 0.018 8.07 3.92 -0.71 0.004 12.15
(0.53) (1.62) [0.018] (1.13) (0.50) [0.002]

(1,1) 0.15 0.60%x% (.044 6.98 2.26 0.09 0.0009 45 .45
(0.06) (0.17) [0.031) (0.40) (0.14) [0.000]

ig 0.17 0.55%%x 0.037 10.04 2,23 0.10 0.0004 13.53
(0.05) (0.17) [0.007] (0.67) (0.24) [0.001]

e2AR 0.20 0.48% 0.019 4.90 2.86 -0.15 0.001 82.32
(0.09) (0.28) [0.086] (0.41) (0.13) [0.000]

le|aAR  0.16 0.66%% 0,031 5.44 2.38 0.05 0.0001 25.05
(0.09) (0.29) [0.066] (0.48) (0.22) [0.000]

nonp 0.28 0.27%* 0.012 31.66 2.86 -0.16 0.0008 27.63
(0.05) (0.13) [0.000] (0.57) (0.22) [0.000]

Germany Japan

homo 2.65 -0.06 0.00003 14.52 3.40 -0.59 0.001 7.46
(0.74) (0.35) [0.001] (1.37) (0.70) [0.024]

(1,1) 1.95 0.23 0.005 19.85 0.89 0.60 0.023 1.25
(0.44) (0.21) {0.000] (0.79) (0.37) [0.537]

ig 1.56 0.37 0.008 7.93 1.02 0.60%* 0.011 2.66
(0.58) (0.27) [0.019] (0.63) (0.28) [0.264]

e2AR 2.45 0.03 0.0001 92.85 1.56 0.32 0.008 11.09
(0.28) (0.11) [0.000] (0.47) (0.22) [0.004]

le| AR 2.18 0.15 0.001 19.73 1.43 0.40x 0.012 11.39
(0.54) (0.27) [0.000] (0.42) (0.21) [0.003]

nonp 2.48 0.02 0.00001 17.94 2.51 -0.14 0.0006 12.44
(0.59) (0.25) [0.000] (0.73) (0.32) [0.002]

U.K.

homo 3.55 -0.42 0.002 % .18

9
(0.81) (0.36) 0.000]
(1,1) 1.25  0.53%% 0,045  7.20
(0.48) (0.22) [0.027]
ig 0.95  0.69%* 0.042  3.90
(0.61) (0.30) (0.142)
e2AR  2.40 0,12 0.003  45.07
(0.44) (0.13) [0.000]
le]AR 1.84  0.36 0.010 13.08
(0.51) (0.23) [0.001}
nonp  2.78 -0.03  0.0003 943.63
(0.32) (0.04) [0.000]

Notes: A

1. This reports results of the regression eéu = by, + byhy + €,. For by and by,

heteroskedasticity and autocorrelation consistent standard errors are in
arentheses. The x%(2) tests Hg: bg=0, by=1, with asymftotic p-value in brackets.
2. Fgr b,, "**" denotes significance at the 5 percent evel, "*" at the 10 percent
evel,



Table 6

Subsample Statistics on e

A. Standard Deviation

Canada France Germany Japan U.K.
(1)Standard Deviation, 0.499 1.185 1.309 1.174 1.093
3/14/73-6/17/81 (0.049) (0.097) (0.117) (0.102) (0.076)
(2)Standard Deviation, 0.600 1.603 1.609 1.526 1.663
6/24/81-9/20/89 (0.050) (0.153) (0.149) (0.146) (0.159)
(3) (2)-(V 0.101 0.418 0.299 0.352 0.570
{0.070) (0.181) (0.190) (0.178) (0.177)

B. Modified Range Scale Tests for Constancy of Unconditional Variance

Sample No. of Canada France Germany  Japan U.K.
(1)3/14/73-9/20/89 ggg‘ 1.428 2.238%%  1,901%%x  1.874%%  1.753%*
(2)3/14/73-6/17/81 432 1.413 1.659% 1.540 1.892%%  1.046
(3)4/24/77-7/31/85 432 1.242 1.725% 1.365 1.852%% 1.317
(4)6/24/81-9/20/89 431 1.260 1.226 1.326 1.561 1.667
Notes:

1. In panel A, heteroskedasticity and autocorrelation consistent asymptotic standard
errors are in parentheses. _ _
2. In panel B, let x,=(e,-e)%, where e is the mean of e, in the sample in question,

and let x be the corresponding mean of x;. Let ¥(r) = [Zaq(xt-;)] / (T;)l’z, where
1<r<T, T=431,432 or 863 is the sample size and s is an estimate of the asymptotic
variance of T 25l [(e,-Ee,)? - E(e,-Ee;)?]. The table reports the difference
between the maximum and minimum of %(r).

3. "%%" peans significant at the .05 level, "*" at the .10 level, according to Table
la in Haubrich and Lo (1989).



