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1. Introduction

Suppose that a fractional variable y (0 g ¥y S 1) is to be explained in
terms of a 1xK vector of explanatory variables x = (xl,xz.,..,xx), with the

convention that X, = 1. Rarely does & model of the form

E(y|x) = By + Byxy + ...+ Byxy = 28, (1.1)

where 8 {s a Kxl vector, provide the best description of E(y[x). The primary
reason is that y is bounded between 0 and 1, so that the effects of any
particular xj cannot be constant throughout the range of x (unless the effect
is zero or the range of xj {s very limited). To some extent this problem can
be overcome by estimating a linear model in nonlinear functions of x, but the
predicted values from an QLS regression can never be guaranteed to lie in the
unit interval. Thus, the drawbacks of linear models for fractional data are
quite analogous to the drawbacks of the linear probability model for binary
data.

In statistics and econometrics the most common alternative to (l.1) is
to model the log-odds ratio as a linear function. If 0 < ¥y <1, then a

linear model for the log-odds ratio is

E(logly/(1-y)]|x) = x8. (1.2)

Equation (1.2) is attractive because log{y/(1-y)) can take on any real value
as y varies between 0 and 1, so it is natural to model its population
regression as a linear function. Nevertheless, there are two potential
problems with (1.2), the first of which {s well-known: Model (1.2) cannot
strictly be true if y takes on the values 0 or 1 with positive probability.
Consequently, given a sequence of independent observations

((xl.yi):i-l,Z,....Nl, if any Yy equals 0 or 1 then an adjustment must be



made to Yy before computing the log-odds ratio. When the ¥y are proportions
from a fixed number of groups with known group sizes, various adjustments are
available in the literature. Then estimation of the log-odds model
corresponds to Berkson’s minimum chi-square method.

Unfortunately, the minimum chi-square method for a fixed number of
categories is not applicable for certain economic problems. First, the
fraction y may not be a proportion from a known group size -- for example, it
could be the proportion of a geographic area -- in which case any adjustments
to handle the extreme values of zero and one are suspect. Second, the number
of categories -- which is essentially determined by the number of different
values that the vector of explanatory variables can take on -- is often very
large. 1In the empir;cal example we have in mind the fractional variable Yy
is the proportion of eligible employees at firm { contributing to a 401(k)
plan, and the primary explanatory variable of interest is the plan’s matching
rate (essentially a continuous variable). It seems more natural to treat
such examples in a regression-type framework than in a minimum chi-square
framework,

Another problem that arises is that (1.2) alone dces not allow one to

recover E(ny), which is our primary interest. Write (1.2) as

log[y/(1-y)]) = x8 + u, E(u|x) = 0. (1.3)
Then
E(y|x) = J {1 :xsgex; I)V)Jf(le)dv, (1.4)

where f(-|x) denotes the conditional density of u given x. Even L{f u and x

are assumed to be independent, so that f(-|x) - £(-),

exp(xg)
E(YI!) o T_I—Eiﬁf;ET' (1.5)

although E(y|x) can be estimated using, for example, Duan’s (1983) smearing



method. If u and x are not independent, (l.4) cannot be estimated without
estimating £(-|x). This is either difficult or nonrobust, depending on
whether a nonparametric or parametric approach is adopted. Given that £ %)
is rarely of central importance it would be better to have methods of
estimating E(y[x) without having to estimate the density of u given x.

Of course it is always possible to estimate E(y|x) by directly assuming
a particular distribution for y given x and estimating the parameters of the
conditional distribution by maximum likelihood. One plausible distribution
for fractional y is the beta distribution. Unfortunately, the estimates of
E(y|x) that one obtains are known not to be robust to distributional failure
(this follows from Gourieroux, Monfort, and Trognon (1984); more on this
below). And it is easy to see that in certain applications standard
distributional assumbtions can fafl. For example, the beta distribution
implies that each value in [0,1] is taken on with probability zero. This is
difficult to justify in empirical applications where at least some portion of
the sample is at the extreme values of zero and one. For example, in our
application about 40 percent of the Yy take on the value one.

In the next section we discuss quasi-likelihood methods for estimating
E(y|x) directly. These estimators circumvent the problems raised above and
are easily implemented. Section 3 covers methods that can be used when Yy is
a proportion obtained from a known group of size ny . Some new specification
tests are offered in section 4, and section 5 contains an empirical
application relating 401(k) plan participation rates to the generosity of the

plan’s matching rate and other firm characteristics.



2. Estimating the Conditional Mean Directly Using a Quasi-Likelihood

We assume the avallability of an independent sequence of observations
((xi,yi):i-1,2,...,N), where 0 ¥y S 1 and N is the sample size. (We allow
the observations to be non-identically distributed, so that the procedures
apply to stratified sampling.) The asymptotic analysis is carried out as N »

©. Our maintained assumption is that, for all i,
ECyilx) = 6(x,8), (2.1)

where G(-) is a known function satisfying 0 < G(z) < 1 for all z € R. This
ensures that the predicted values of y lie in (0,1), and the equation is
well-defined even if y; can take on 0 or 1 with positive probability,
Typically, G(-) 1is chosen to be a cumulative distribution function (cdf), the
two most popular examples being G(z) = A(z) = exp(z)/[1 + exp{z)] -- the
logit function -- and G{(z) = #{z), where &(-) 1s the standard normal cdf.
But G(-) need not even be a cdf in what follows.

In stating (2.1) we make no assumption about an underlying structure
used to obtain ¥y In particular, if Yy 1s a computed proportion from a
group known size ny the methods of this section ignore the information on
- There are some advantages to this approach., First, one does not always
want to condition on n, in which case ¥y contains all relevant information.
Second, the method is computationally simple. Third, under the assumptions
we impose the method suggested here need not be less efficient than methods
that use information on group size. The next section discusses how
information on n, can be used when one explicitly wishes to do so.

Under (2.1), B can be consistently estimated by nonlinear least squares.
The nonlinear nature of (2.1) {is probably the leading reason a linear model
for the log-odds ratio is much more popular in applied work than estimating

(2.1) directly. Further, the errors in the tautological model



Yy = G(x;8) + u, E(uilxi) -0 (2.2)

are generally heteroskedastic since Var(uilxi) - Var(yilxi). and Var(yilxi)
is unlikely to be constant when 0 < Yy < 1. Obtaining the NLS estimates and
heteroskedasticity-robust standard errors and test statistics requires
special programming, and the NLS estimator does not usually have any
efficiency properties in such contexts. Still, the motivation underlying NLS
is sound because it directly estimates E(ylx).

The alternative to NLS we propose is to use an appropriate
quasi-likelihood method, as in Gourieroux, Monfort, and Trognon (1984)
(hereafter GMT) and McCullagh and Nelder (1989). For fractional data, the

Bernoulll log-likelihood function, given by

is attractive for several reasons. First, maximizing the Bernoulli
log-1likelihood is fafirly simple. Second, because (2.3) i{s a member of the
linear exponential family (LEF), the quasi-maximum likelihood estimator

(QMLE) of B obtained from the maximization problenr

N
max ) ti(b)
b i=l

is consistent for 8 provided that (2.1) holds. (This follows from GMT (1984)
and {s also eas{ly seen by computing the score si(b) - Vﬂli(b)‘ and showing
that E{si(ﬂ)lxi] =~ 0.) In other words, the QMLE ; is consistent and
Vﬁ-asymptotically normal regardless of the distribution of Yi conditional on
T could be a continuous variable, a discrete variable, or have both
continuous and discrete characteristics. For example, Yi could take on the
values zero and one with positive probability and values between zero and one

with probability zerc. As we will see below, in some cases for fractional



data the Bernoulli QMLE is efficlent in a class of estimators containing
QMLEs in the LEF and weighted nonlinear least squares estimators.

A special case of (2.3) -- namely, when G(‘) is the logit function --
has been suggested by McCullagh and Nelder (1989) in a generalized linear
models (GLM) framework. The GLM approach has two drawbacks for economic

applications. First, for the logit QMLE it assumes that
var(y, |x,) = azc(xiﬁ)[l - 6(x.8)] for some o’ > 0, (2.4)

where G(-) = A(:). While we prefer (2.4) as a nominal variance assumption to
the nominal NLS homoskedasticity assumption Var(yi|xi) - d%, imposing any
particular conditional variance when performing inference is too restrictive.

It is easy to write down mechanisms for which (2.4) fails. For example,
- ni
suppose that each Yy 1s a proportion computed as ¥y - ni1 z yij' where yij is
-1

a binary variable with P(yij - llxi,ni) - P(y1J - 1|xi) = G(x;$), and the Yy
are independent across j conditional on (xi,ni). 1f n, is not observed then

all that can be estimated are E(yilxi) and Var(yilxi). But

E(yilxi) - E(yilxi.ni) = G(x,8)
and
Var(yi|xi) - E[Var(yilxi,n1)|xl] + Var[E(yilxi,ni)|xil

- E[G(xiﬁ)ll - G(xip))/ni[xi} + Var[G(xiﬁ)lxI]

= E(n % )6(x,;8)(1 - G(x,B)).

Unless n, and x, are independent (2.4) generally fails. 1If, say, yij is a
binary indicator for whether worker j at firm i contributes to a 401(k) plan,
ny 1s the number of workers at firm i, and x, contains firm characteristics

such as annual firm sales, ng and x, are untikely to be independent in the

population. In addition, (2.4) can fail if yij and Yy 2F® correlated



conditional on (xi'ni) for j » h, as would be the case if there are
unobserved group effects and yij and yih are from the same group . Notice,
however, that neither of these situations necessarily invalidates (2.1),
which is all that {s needed to consistently estimate g using the Bernollt
QMLE.

The second drawback to the GLM approach is related to the first: |f
(2.4) fails, McCullagh and Nelder (1989, p. 330) reject the logit
quasi-likelihood and suggest using more complicated quasi-likelihoods. But
this begs the {ssue of whether the conditional mean model (2.1) is
appropriate. Further, if (2.4) {s in fact violated, standard specification
tests and inference cannot be usged to analyze the conditional mean
specification. Here we are primarily interested in the conditional mean.
Rather than abandonihg the Bernoulli QMLE because (2.4) fails, it is
straightforward to conduct asymptotically robust inference by computing
robust standard errors and test statistics. This is likely to be
satisfactory in applications with moderately large sample sizes.

To find the asymptotic variance of the Bernoulli QMLE, define g(z) =
dG(z)/dz, 61 - G(xi;) - ;1, and ;1 - g(xis). Then the estimated information

matrix is

N ;zx’x
A= §1i1 (2.5)
=1 [G, (1 - 6]

A

Normally, the standard error of ﬂj reported from standard binary choice

analysis would be obtained as the square root of the jth diagonal element of

A-l‘ Under (2.1) only, this is not a consistent estimator of the true

asymptotic standard error. To obtaln a valid estimator we also need the

outer product of the score. Let uy o=y G(xlﬁ) be the residuals

(deviations between Yy and its estimated conditional expectation). Define



N GZAZ .
- 181%1%y

B = ;- (2.6)
i=1 [GI(I - Gi)]
Then a valid estimate of the asymptotic variance of A is
AT'BAT. (2.7)

The standard errors are obtained as the square roots of the diagonal elements
of (2.7); see GMT (1984) and Wooldridge (1991b).

Interestingly, the robust standard errors from (2.7) in the context of
logit and probit are computed almost routinely by certain statistics and
econometrics packages, such as STATAo and SSTO. Unfortunately, the packages
with which we are familiar automatically transform the dependent variable
used in logit or probit inte a binary variable before estimation, or do not
allow non-binary variables at all (S'IATAo and SSTo fall into the first
category). With the very minor change of allowing for fractional y in
so-called binary choice analysis, standard statistics and econcmetrics
packages could be used to estimate the parameters in (2.1) and to perform
asymptotically valid inference. Alternatively, programming the estimator in
a language such as GAUSSo is fairly straightforward; this is what we do for
the application in section 5.

If the GLM assumption (2.4) is maintained in addition to (2.1) then o’

is consistently estimated by

A N
ot = - K Gi, (2.8)
i-1
where G[ are the wejghted residuals
- to 172
u, - ui/[Gi(l - Gi)] . (2.9}

(It is standard practice in the GLM literature to use the degrees-of-freedom

adjustment in (2.8).) Then the asymptotic variance of # is estimated as



A A

_ At In addition, because the first two moments are correctly specified
under (2.1) and (2.4), the Bernoulli QMLE is efficient in the class of QMLEs
in the LEF by the rasults of GMT (1984); this is essentlally the same as the
class of all weighted NLS estimators, and so it is a nontrivial efficiency
result.

To summarize, we have chosen a quasi-likelihood function that leads to a
relatively efficient estimator under a popular auxiliary assumption --
namely, (2.4) -- but we guard against failure of (2.4) by using (2.7) as the
variance estimator. In section &4 we suggest specification tests that are

valid without (2.4).
3. Hethods for Proportions with Known Group Size

Suppose that each proportion Yy is obtained as
-1 ni
Y=o Loy (3.1)
i 11_1 14

where yij is a binary variable such that P(yij - llxi,ni) - G(xiﬁ).

j-1,2,...,ni. Then it is easily seen that

E(y =) = 6(x,8). (3.2)
Note that (3.2) differs from (2.1) {n that we are conditioning on ng in
addition to x, . In applications where it is inappropriate to condition on n,
-- in econometrics this might occur because n, is "endogenous" -- the methods

of section 2 should be used. Here we assume that (3.2) holds. Note that n,

and functions of it can be elements of xi.

If we add the assumption

Yij+ Yip are independent conditional on (xi,n all h » j, (3.3)

Y



then

Var(yilxi,ni) = G(x, A1 - G(x;8))/n,. (3.4)

Given assumptions (3.1) and (3.3) it seems reasonable that knowledge of n;

can increase efficlency of estimation., In fact, these assumptions are enough

to perform (conditional) maximum likelihood estimation. In this context

the distribution is typlically defined in terms of the number of successes s
n

i

i
- ) yij - ny, out of n, trials, but for comparison purposes we define the
]

likelihood in terms of the proportions Y Under (3.1) and (3.3), s, given

i
(x.n) has a Binomial(ni,c(xiﬂ)) distribution. Thus, the density of ¥y

given (xi,ni) is

" ny ng(1-y)
£(y|x;.,n) - ngy [G(x,8)) = [G(x /)1 - G(x;8))} . (3.9)
y =0, l/ni, 2/n1, ..., 1.

Up tc an additive constant which does not depend on the parameters the

conditional log-likelihcod for observation i is
ti(b) = n/ly,log[G(xB)] + (1 - y,)log[l - G(x,;b}]), (3.6)

which is simply n, times the conditional log-likelihood for observation i

i
used in section 2. Thus, we simply weight the conditional log-likelihood for

observation i by the group size n This will be identical to the estimator

L
in section 2 when n, is the same for all i~-1,2,...,N.

As In section 2 we prefer to view (3.6) as a quasi-log likelihood
function because (3.4) might fail (that is, s

cond{tional on (x i) need

i "
not have a binomial distribution) even though (3.2) can hold. This happens
if we allow for yij’ Yy O be dependent (conditional on (xi,ni)). This kind

of clustering can certainly happen in the empirical example of interest here,

10



as a worker's decision to contribute to a 401(k) plan can be related to other
wvorkers’ decisions within the same firm.

Under (3.2) only, the QMLE 1s consistent and Vﬁ-asymptotically normal;
this'again fellows because the conditional log-likelihood (3.6) is a member
of the linear exponential family. Only minor changes are needed in the
formulas from section 2 for estimating the asymptotic variance of B. In the
sum defining ; (see equation (2.5)), summand 1 is multiplied by n,; summand i

in the sum defining B {s multiplied by ni. If an estimator of ¢ under the

assumption

Var(y, |x;,n,) = o’G(x p)(1 - G(x,8))/n, (3.7)

{s desired, then it {s computed as {n (2.8) except that summand { in (2.8) is

multiplied by n, (equivalently, each weighted residual u, in (2.9) is

i
multiplied by VEI). Under (3.2) and (3.7), Avar(g) is estimated as ;z;q:
under (3.2) only, the robust form ;q;;q should be used.
We should emphasize that the binomial QMLE {is not necessarily more
efficient than the Bernoulli QMLE studied in the previous section without
assumptions (3.1) and (3.3). In other words, without additional assumptions,

conditioning on the group size n need not increase the efficiency of the

QMLE.
4. Specification Testing

Specification testing in this framework can be carried ocut as in
Wooldridge (199la,b). We discuss two forms of the test. The first is valid
under (2.1) and (2.4) or (3.2) and (3.7); these are nonrobust tests because
they maintain that the nominal variance assumption is in fact true. A robust

form of the test requires only (2.1) or (3.2). We explicitly outline the

11



tests for the setup of section 2, and then discuss the simple adjustment
needed for the situation in section 3.

We focus primarily on Lagrange multiplier or scere tests that nest
E(y|x) -~ G(xf) within a more general model. Let m(x,z,A,y) be a model for
E(y|x,z), where z is a 1xJ vector of additional variables, which could be
nonlinear functions of x (in which case E(ylx) - E(ylx,z)), or variables not
functionally related to x, or both. The vector v is a Qxl vector of
additional parameters. The null is assumed to be HO: v - 70 for a specified
vector 1o (e.g., Yo = 0). Then by definition,

G(xp) = m(x,2,8,7,). (4.1)

A A

Given the estimates under the null, 8, define the 1xK vector V.m, =

gi
am(xi,zi,ﬁ,70)/aﬁ - gixi and the 1xQ vector V1mi - am(xi.zi,ﬂ,yo)/ay; these
are simply the gradients of the regression function with respect to 8 and 7,

A

respectively, evaluated under the null hypothesis. Given the residuals u, =

i
Yy - G(xiﬂ), define the weighted quantities
- N A ) 1/2
U o= /16,01 - 6] (4.2)
~ t NV T . Sy 12
Vﬂm1 Vﬁmi/[Gi(l - Gi)] - glxi/[Gi(l - Gi)] (4.3)
v m -v;/[é(l-&)]l’z (6.4)
v i y it i ’ :

Note that.the weights are proportional to the inverse of the nominal standard
deviation (see (2.4)). As mentioned above, a valld test of HO: L

depends on what is maintained under the null hypothesis. Under the

assumptions

E(yilxi,zi) = G(x,p) (4.5)
and

Var(y, |x ,z,) - ozG(xiﬂ)ll - G(x 8], (4.6)

a valid test statistic is obtained as NRz from the OLS regression

12



u, on Vﬁmi, vai. i-1,2,... .8, (4.7)

where R: is the constant-unadjusted r-squared. Under (4.5) and (4.6), NRz is
distributed asymptotically as x: -- see Wooldridge (1991a).

For binary choice models, Engle (1984) and Davidson and MacKinnon (1984)
suggest a test based on regression (4.7) for logit and probit. Gurmu and
Trivedi (1993) present results for a class of models that allows testing the
logit function against a more general index function. For fractional
dependent variables it is important to use the NRi form rather than the
explained sum of squares form suggested in Davidson and MacKinnon (1984):
the latter test requires e - 1, vwhich is always the case for binary reponse
variables but is too restrictive for fractional response variables.
Alternatively, as in Gurmu and Trivedi (1993), each term fn (4.7) can be
divided by ; and then the explained sum of squares can be used.

It is often useful to have a likelihocod-based statistic, especlally for
testing exclusion restrictions. Under the same two assumptions (4.5) and
(4.6), a quasi-likelihood ratio (QLR) statistic has a limicing chi-square
distribution. Let !;(;,10) denote the log-likelihood evaluated under the
null, and let Zﬂ(b,;) denote the log-likelihood from the unrestricted model
(that is, the Bernoulli log-likelihood with m(x,z,8,7) used in place of
G(xiﬁ))’ Further, define ﬁi - m(xi,zi.é,;). and let the variance estimator
based on the unrestricted estimates be

.2 -1 N N .
6" = (N-K-Q) i§1(5ri SRR (L - ) (4.8)
(note that the summation is simply the sum of weighted squared residuals from

the unrestricted model). Then the QLR statistic, defined by

QLR = 2(£,(8,7) - £ (8.7 1/F, (6.9)

13



i1s distributed asymptotically as x: under the null hypothesis, provided (A;G)
holds in addition to (4.5). The validity of this statistic follows because
the usual information matrix equality holds up to the scalar 0° when the
conditional mean and conditional variance are correctly specified.

A form of the LM statistic that is valid under (4.5) alone requires an

additional regression. First regress Vv m, on V,m_ and save the 1xQ

v i i
residuals, ri - (ril’r12""'riQ)' i=1,2,...,N. (This is the same as
regressing each element of V7ﬁi on the entire vector Vﬂﬁi, and collecting the
residuals.) Next, obtain the 1xQ vector u{ri - (uiril'uirLZ""'uirIQ)' The

robust 1M statistics is obtained as N - SSR, where SSR is the usual sum of

squared residuals from the auxiliary regression of unity on Gi;i:

1 on uiri, i=1,...,N. (4.10)

0 »
procedure is discussed further in Wooldridge (1991a,b). Briefly, N - SSR

Under H which is (4.5) in this case, N - SSR a2 x:. The validity of this

from (4.10) is a quadratic form in the vector N /2 ¥ Eiﬁi,
i=1

with a weighting
matrix that is the inverse of a consistent estimator of its asymptotic
variance whether or not (4.6) holds.

In testing for omitted variables, one can use the QLR statistic or LM
statistic under (4.5) and (4.6) or the robust LM statistic under (4.5). (Of
course, Wald statistics can also be defined for these two cases, but they are
computationally more cumbersome than the QLR and IM statistics.) For omitted

-~ ~ A
variables tests, m(xi,zi,ﬁ,y) - G(xiﬂ + ziy), V,rmi - 842y - g(xiﬂ)'zi, and

1/2

V751 - gizij[Gi(l - Gi)l One way to test for functicnal form is to

define z, as polynomials or other functions of x,.
A general functional form diagnostic is obtained by extending Ramsey's

(1969) RESET procedure to index models. For example, let the altermative

model be

14



E(y,|x,) = G(x,B + 1,(x,8)" + 7,(x,)) (4.11)

where, again, G(-) is typically the logit or probit function. The hypothesis

that (4.5) holds (with z, = xi) is stated as

i

HO: 11 =0, 12 - 0,

This is easily tested using the LM procedures outlined above. (By contrast,
the QLR statistic is computationally difficult and nonrobust.) First,

estimate the model under the assumption LIl Pl 0, as is always done.

Define 8, Gi' Byr Yy» vﬁﬁi' and Gi as before. The gradient with respect to v

- (71,12)' is easily seen to be
Um - g, (x,8) g, (x,5°)
AL TR L TR Lo
and V m, is defined in (4.4). The statistic obtained from the regression

v i
(4.7) is distributed approximately as x: under (4.5) and (4.6). The robust

form is obtained from regression (4.10).

Little changes if we instead use the methods of section 3. 1In the

-

expectation and varfance in (4.5) and (4.6) we now condition on n, as well as

Xy and z,- Let 8 now denote the QMLE from section 3. The statistics from

regressions (4.7) and (4.10) are valid i{f we multiply each of ﬁi, VBEL’ and
v761 in (4.2), (4.3), and (4.4) by VEI. For the QLR statistic, in addition
to using the (3.6) as the conditional log-likelihood, we also multiply
summand 1 in (4.8) by ni.

[
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5. Empirical Application: Participation in 401(k) Pension Plans

401(k) plans differ from traditional employer-sponsored pension plans in
that employees are permitted to make pre-tax contributions and the employer
may match part of the contribution. Since participation in these plans is
voluntary, the sensitivity of participation to plan characteristics -
specifically the employer matching rate -- will play a critical role in
retirement saving.

Pension plan administrators are required to file Form 5500 annually with
the Internal Revenue Service, describing participation and contribution
behavior for each plan offered. Papke (1993) uses the plan level data to
study, among other things, the relationship between the participation rate
and various plan characteristics, including the rate at which a f{rm matches
employee contributions.

The participation rate (PRATE) is constructed as the number of active
accounts divided by the number of employees eligible to participate. An
active account is any existing 401(k) account -- a contribution need not have
been made that plan year. The plan match rate (MRATE) is not reported
directly on the Form 5500, but can be approximated by the ratio of employer
to employee contributions for plans that provide some matching. This
calculated match rate may exceed the plan’s marginal rate because employer
contributions include any flat per participant contribution or any helper
contribution made to pass anti-discrimination tests. While the calculated
match rate exceeds the marginal incentive facing each saver, it may be a
better indicator of overall plan generosity. See Papke (1993) for additional
discussion.

Papke (1993) uses a spline method to estimate models with the

participation rate, PRATE, as the dependent variable. She finds a

16



statistically significant positive relationship between PRATE and MRATE, with
some evidence of a diminishing marginal effect. Here, we allow for a
diminishing marginal effect of MRATE on PRATE by using a conditional mean of
the form (2.1) with G(:) taken to be the logit function. We compare this
directly with linear models where PRATE is the dependent variable.

Table 1 presents summary statistics for the sample of 401(k) plans from
the 1987 plan year. Statistics are presented separately for the 80 percent
of the plans with match rates less than or equal te 1. 1IRS reporting
conventions mean that match rates above unity are structurally different.
This discussion focuses on the subsample with MRATE < 1.

Participation rates in 401(k) plans are high -- averaging about 85
percent in our sample. Over forty percent of the plans (42.73) have a
participation proporﬁion of exactly unity -- all eligible employees have an
active account. This characteristic of the data would make a log-odds
approach especially awkward because an adjustment would have to be made to 40
percent of the observations.

The plan match rate averages about 41 cents on the dollar. Other
explanatory variables Iinclude total firm employment (EMP) which averages
4,622 across the plans. The plans average 12 years in age (AGE). Sole plan
is a dummy variable which indicates that the 401(k) plan is the only pension
plan offered by the employer. These sole plans constitute about 37 percent
of the sample.

Ihe first linear model we estimate is

2
E(PRAT]-:llxi) = By + B,MRATE, + B, log(EMP ) + B, log(EMP ) (5.1)
2
+ ﬁSAGEi + ﬁsAGE1 + ﬂ7SOLEi.
where the variable definitions are given above. This model is estimated by
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ordinary least squares (OLS), Initially using the subsample for which MRATE <
1. The results are given in the first column of Table 2. Because of the
probable heteroskedasticity in this equation, the heteroskedasticity-robust
standard errors are reported in brackets below the usual OLS standard errors.

All variables are highly statistically significant except for the sole
plan indicator. Note that there is very little difference between the usual
OLS standard errors and the heteroskedasticity-robust ones, so it really does
not matter which standard errors we use. The key variable MRATE has a
t-statistic well over 10. 1Its coefficient of ,156 {mplies that if the match
rate increases by 10 cents on the dollar, the participation rate would
increase on average by almost 1.6 percentage points. This i{s not a small
effect considering that the average participation rate is about 85 percent in
the subsample. As mentioned in the introduction, the linear model implies a
constant marginal effect throughout Ehe range of MRATE, which cannot
literally be true.

That the linear model does not fit as well as it should can be seen by
computing Ramsey's (1969) RESET (and its heteroskedasticity-robust version).
Let ;i be the OLS residuals and let ;1 be the OLS fitted values. Then, the

IM version of RESET is obtained as NR’ from the regression

A A -~

2 3
u, on xi, Yy yi, i=1,2,... ,N.

Under the null that (5.1) is true, nr? 2 xz (homoskedasticity is also

maintained). The heteroskedasticity-robust version is obtained as N - SSR

from regression (4.10) given the proper definitions: let Gi = uy and let ;i

See Wooldridge

A ~

be the 1x2 residuals from the regression of (y:,y;) on X,
(1991a) for more details, Using either nonrobust RESET or its robust form,
(5.1) is strongly rejected (the one percent critical value for a xz is 9.21).

Because RESET is a test of functional form, we conclude that (5.1) misses
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some potentially important nonlinearities. (At this point, one should
remember the potential difference between a statistical rejection of a model
and the economic importance of any misspecification.)

We next use the logit QMLE analyzed in section 2 to estimate the

nonlinear model

E(PRATE, |x,) = G(B; + B,MRATE, + B log(EMP) + ﬂalog(EMPi)z (5.2)

+ BGAGE, + psacs; + A,SOLE,),

®
where G(-) 1is the logit function, (The GAUSS code used for the estimation
and testing is available from the authors on request.) The partial effect of

MRATE on E(PRATE|x) is JE(PRATE|x)/3MRATE, or, for specification (5.2),

8(xB)4,. (5.3)

where g(z) = dG(z)/dz = exp(z)/[1 + exp(z)]z. Because g(z) » 0 as z + =, the
marginal effect falls to zero as MRATE gets large, holding other variables
fixed, Column (2) of Table 2 contains the results of estimating (5.2). The
variable MRATE {s highly statistically significant and, with the exception of
SOLE (which is not significant), the directions of effects of all other
variables are the same as 15 the linear model. But unlike the linear model,
the RESET statistic reveals no misspecification in (5.2); the p-value for the
robust statistic is .676, and it is even larger for the nonrobust statistic.
Thus, based on this particular statistic, (5.2) appears to adequately capture
the nonlinear relationship between PRATE and the explanatory variables for
MRATE £ 1.

There is other evidence that (5.2) fits better than (5.1). Table 2 alsc
contains an r-squared for each model, which in either case {s defined as
1 - SSR/SST, where SST is the total sum of squares. The SSRs, reported in

A

Table 2, are based on the upweighted residuals, u * Yy for OLS and

1=
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QMLE. Thus, the r-squareds are comparable across apny model for E(PRATE[:).
From Table 2 we see that the r-squared from the logit model is about 6
percent higher than the r-squared for the linear model. This difference is
significant given the large sample size. In addition, while OLS chooses ; to
maximize the r-squared over all linear functions of x, the logit QMLE does
not maximize r-squared given the logit functional form; yet the logit, model
has a higher r-squared than the linear model.

Before directly comparing estimates of marginal effects, there are some
other comments worth making about Table 2. Fir&t, the SERs in the table,
which are estimates of ¢, are not directly comparable. For OLS, ;z is based
on the unwelighted resfduals, while the QMLE ;2 is based on the weighted
residuals ﬁi; see (2.8) and (2.9). Because ; = .438 for the QMLE, this
implies that the usual logit standard errors obtained from the inverse of the
Hesslan, ;-1, are over twice as large as the GIM standard errors that are
obtained as the squared roots of the diagonal elements of ;2;-1. The latter
ones are the appropriate standard errors under the GIM assumption (2.4}
because they do not require o = 1.

We now turn to a direct comparison of estimates of marginal effects for
the linear and nonlinear models for varifous values of MRATE. As we already
discussed, the partial derivative of E(PRATElx) with respect to MRATE for the
linear model is estimated to be .156 regardless of the values of MRATE, EMP,
AGE, and SOLE. For the nonlinear model, we need to choose values for the
elements of x. Thus, set SOLE = 0, and set EMP and AGE at roughly their
sample averages: EMP = 4620 and AGE = 13. Given these values, we evaluate
{5.3) (with B replaced by ;) at three different match rates: MRATE = O,
MRATE = .50, and MRATE = 1.0. The estimated derivatives are .288, .197, and

118, respectively, which {llustrates the diminishing marginal effect as

MRATE increases. Not surprisingly, the marginal effect estimated from the
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linear model is bracketed by the low and high estimates from the nonlinear
model. The differences in the estimated marginal effects are not trivial;
for example, the nonlinear model predicts an increase in participation of
approximately 2.9 percentage points in moving from a zero match rate to MRATE
= .10, rather than the 1.6 percentage point increase obtained from the linear
model. Similarly, at high match rates the marginal effect from increasing
the match rate is estimated to be much lower in the nonlinear model.

One way to potentially salvage the linear model is to use a more
flexible functional form for the match rate. A popular functional form that
allows a diminishing marginal effect 1s a quadratic. Column three contains
estimates of the linear model that includes a quadratic in MRATE. The
squared term is marginally significant (robust t-statistic = -1.98), and this
does give a diminishing marginal effect. But even with this additional
regressor the model in (3) does not fit as well as the logit model without
the quadratic term (the r-squared has only gone up to ,1l44). Further, the
rejection of the model by RESET is almost as strong as it was without the
quadratic. Thus, we conclude that simply adding MRATE® to (5.1) i{s not
sufficient. (The spline approach used by Papke (1993) is more effective in
capturing a diminishing effect in this application, but the ccoefficients are
more difficult to interpret.)

When MRATE® is added to (5.2) it turns out to be insignificant. Thus,
the logit functional form, with the term linear in MRATE, appears to be
enough to capture the diminishing effect, at least for MRATE < 1. This is a
useful lesson: a significant quadratic term im a linear model might be
indicating that an entirely different functional form can provide a better
fit. Model (5.2) is cleaxly the preferred specification thus far.

The basic story does not change when we estimate the models over the

entire sample, except that a quadratic term s now significant in (5.2),
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reflecting a faster diminishing effect at high match rates. Table 3 presents
the same models as Table 2, now estimated over the full sample. First
consfder the models without MRATE’., The discrepency in r-squareds between
(5.2) and (5.1) is even greater than before, but RESET now rejects both (5.1)
and (5.2), although the logit QMLE is rejected less strongly. 1In columns (3)
and (4) we put MRATE® into each equation. Model (5.1) is still soundly
rejected, whereas (5.2) with MRATE2 passes the RESET test with a p-value
above .30. For the full sample, it seems a quadratic in MRATE is needed to
provide a reasonable fit.

The one drawback to putting MRA'I‘Ez into (5.2) is the usual one for
quadratics: it implies an eventual negative marginal effect. 1In this case,
the marginal effect becomes negative at a match rate of about 2.51. This is
a high value for MRATE, but there are some match rates this large in the full
sample. Note that the turning point for the linear model is much lower; the

estimated marginal effect becomes negative at a match rate of 1.37.

6. Conclusion

The quasi-likelihood methods studied here apply in cases where the
response variable takes on fractional values. These methods offer viable
alternatives to linear models using either y or the log-odds ratio of y as
the dependent variable. No special data adjustments are needed for the
extreme values of zero and one, and the conditional expectation of y glven
the explanatory values {s estimated directly. The empirical application to
401(k) plan participation rates illustrates the usefulness of these methods:
while a linear model to explain the fraction of participants is strongly
rejected, the logit conditional mean specification is not. 1In addition, the

estimates of the partial effects are much more plausible for the logit model.
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Table 1: Summary Statistics

FULL SAMPLE

Number of Observations = 4734

Standaxd
Variable Hean Deviation
PRATE .869 .167
MRATE .746 844
EMPLOYMENT 4621.01 16299.64
AGE 13.14 9.63
SOLE .415
RESTRICTED SAMPLE (MRATE < 1)
Number of Observations = 3874

Standard
Variab Mean viatio
PRATE .848 .170
MRATE 408 .228
EMPLOYMENT 4621.91 17037.11
AGE 12.24 8.91

SCLE .373
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Table 2: Results for Restricted Sample

(L) (2) (3) (4)
Variable OLS QMLE oLS QMLE
MRATE .156 1.390 .239 1.218
(.012) (0.100) (.042) (0.342)
(.011] (0.108) [.046] [0.378)
MRATE® _— —— -.087 196"
(.043) (.373)
[.044) [.425]
log(EMP) -.112 -1.002 -.112 -1.002
(.014) (0.111) (.014) (0.111)
[.013] (0.110] [.013) (0.110]
log (EMP)? .0057 .0522 .0057 .0522
(.0009) (.0071) (.0009) (.0071)
[.0009] [.0071) [.0009] [.0071)
AGE .0060 .0501 .0059 .0503
(.0010) (.0087) (.0010) (.0087)
[.0009} [.0089] [.0009) [.0088]
AGE® - .00007 -.00052 -.00007 -.00052
(.00002) (.00021) (.00002) (.00021)
[.00002] [.00021) [.00002] [.00021)
SOLE -.0001 .0080 ,0008 .0061
(.0058) (.0468) (.0058) (.0470)
[.0060) [.0502) [.0060) (.0504)
ONE 1.213 5.058 1.198 5,085
(0.051) (0.427) (6.052) (0,430)
[0.048) [0.421) [0.049) [0.423]
Observations: 3784 3784 31784 3784
SSR: 93,67 92.70 93.56 92.69
SER: 157 .438 .157 .438
R-Squared: .143 .152 .l44 .152
RESET: 39,55 0.606 35.06 0.732
(.000) (.738) (.000) (.693)
Robust RESET: 45.36 0.782 40.08 0.836
(.000) (.676) (.000) (.658)

Notes: The quantities in () below estimates are the OLS standard errors or,
for QMLE, the GIM standard errors; the quantities in {:]) are the standard
errors robust to variance misspecification. SSR is the sum of squared
residuals and SER is the standard error of the regression; for QMLE, the SER
is defined in terms of the welghted residuals. The values in parentheses
below the RESET statistics are p-values; these are obtained from a chi-square
distribution with two degrees-of-freedon.
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Variable

MRATE

MRATE’

log(EMP)

log(EMP)z

AGE

AGE

SOLE

ONE

Observations:

SSR:

SER:
R-Squared:
RESET:

Robust.RESET:

Table 3: Results for Full Sample

(1)
oLS

.034
.003)
.003]

.101
.012)
.012}

.0051
.0008)
.0008]

.0064
,0008)
.0007)

.00008
.00002)
.00002)

.0140
.0050)
.0052]

.213
.045)
.044)

4734
112.70
.154
144
85.22
(.000)
69.15
(.000)

Notes: See Table 2,

(2)
QMLE

542
(.045)
(.079)

-1.038
(0.121)
[0.110)

.0540
(.0078)
{.0071]

.0621
(.0089)
[.0078)

-.00071
(.00021)
[.00018)

.1190
(.0510)
[.0503]

5.429
(0.467)
[0.422)

4734
109.51
.502
.168
50.56
(.000)
9,666
(.008)
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{

1.
(0.

(0

(3)
oLS

143
.008)
.008)

.029
.002)
.002})

.099
.012)
.012]

.0050
.0008)
.0008]

.0056
.0008)
.0007)

.Q0007
.00002)
.00001]

.0066
0049)
.0051)

170
044)
.042)

4734
107.76
.151
.182
83.80
(.000)
98.51
(.000)

(0.
(0.

-1

(0.
(0.

5.
(0.

(¢

(4)
QMLE

.665
089)
104)

.332
.021)
.026]

.030
112)
110)

.0536
.0072)
.0071)

.0548
.0082)
.0077)

.00063
.00019)
.00018]

.0642
,0471)
.0498)

105
431)
.416)

4734
105.73
.461
.197
1.370
(.504)
1.275
(.529)
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