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I. Introduction

The linear quadratic inventory model has been one of the mainstays of

empirical work in inventories since its formulation by Molt et al. in 1960.

It has recently been applied to inventory movements in much U.S. data,

including those for two digit manufacturing (West (1986), Eichenbaum

(1989), Raisey (1991)), for a number of industries with physical product

data (Krsne and Braun (1991)) and for the automobile industry both pra- and

post-World War II (Blanchard (1983), Kashyap and Wilcox (1993)).

Instrumental variables estimates of a first order condition from the

model are, however, rather sensitive to what seem to be minor changes in

specification or sample period. One illustration of this is the dispersion

of the parameter estimates produced by Eichenbsum (1989), Rsmey (1991) and

West (1986), all of whom applied the model to the same set of two digit

manufacturing industries (but using somewhat different sample periods.

instruments, methods for treatment of unobserved serial correlation, etc.).

Among inventory experts, it is well known that s key parameter (a1, in the

notation of the model introduced in the next section) was found to be

negatively signed by Ramey, positively signed by Eichenbsum and West; as

emphasized by Ramey, the sign of this coefficient is economically important

since it influences whether firms bunch or smooth production.

One possible explanation of the current lack of consensus is that

some of the differences in specification sre important. The model allows

for an unobservsble cost shock, and it may be important whether or not one

allows this shock to be serially correlated (as do Eichenbaum and Ramey but

not West). In addition, while all three authors use instrumental variables

estimators, the instruments vary from author to author; Ramey argues that

the instruments used by others are not valid, and that consistent estimates

can be obtained only with "truly exogenous" instruments of the sort that
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she uses. Thst such differences in technique sre not the entire story is

suggested by s second sense in which instrumental variables estimates seem

to be sensitive to specificstion: estimates sometimes change dramatically

when one does nothing more than chsnge the left hand side vsriable. This

sensitivity is noted by Ramey (1991), Krane and Braun (1991) snd Kashysp

and Wilcox (1993), with the latter two finding that the aign of the key

parameter mentioned in the previous paragraph (a1) tends to be negative

when Ramey's normalization is uaed, positive when another normalization is

used. (Similar sensitivity to choice of left hand aide variables haa been

noted in estimation of the consumption-CAPH (e.g., Hansen and Singleton

(1990)].)

Such sensitivity might well reflect model misspecification, in all

these papers. While we recognize the need to consider such a possibility,

in the present paper t'e focus on examining finite sample performance

assuming a correctly specified model. In line with the papers cited above,

we work with a simple linear quadratic model in which costs are quadratic

functions of production, of changing production, and of the deviation of

inventories from a target proportion of sales. We assume that the first

order condition, or Euler equation, of the model is estimated by

instrumental variables using lags of inventories and sales as instruments.

We generate data in accord with the model, under the simplifying assumption

that sales are exogenous.

Given a data generating process, we use conventional asymptotic

theory to solve analytically for an approximate finite sample

variance-covarisnce matrix of the parameter estimates. We find that for

plausible cost parameters and sales processes, the implied dispersion of
.4,

parameter estimates sometimes is large, with substantial areas of the

probability distribution falling on both sides of zero; this suggests
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substantial probability of obtaining s wrong-signed estimate of a parameter

from any given realization of the data. In one extreme case, we conclude

thst if the asymptotic approximation accurately describes the finite sample

distribution, roughly 30,000 observationa on monthly data (i.e., about 2500

years) would be required before a certain parameter estimate would have a

95 percent probability of having the correct sign.

The large dispersion of parameter estimates raises the possibility

that sampling error accounts for the above-noted sensitivity to

specification, including in particular sensitivity to choice of left hand

side variable. Conventional asymptotic theory does not, however, appear to

be particularly helpful on this score. For this reason, and to establish

more generally the applicability of the conventional asymptotic

approximation, we conduct a set of Monte Carlo experiments.

For each of several data generating processes, we generate 1000

datasets, each with 300 observations, 300 being approximately the number of

monthly observations on real inventories and sales available at the two

digit SIC code level in the United States. Using three different left hand

side variables, we estimate the Euler equation by instrumental variables

and tabulate the distribution of the resulting point estimates.

We find that, in many respects, the asymptotic approximation works

well. In general, confidence intervals constructed from the simulated data

are narrow when the asymptotic confidence interval is narrow, large when

the asymptotic one is large. And usually there is little bias, in that the

median of most parameter estimates is within s fraction of an asymptotic

standard error of the population value.

But for all normalizstions, the estimators tend to be somewhat more

disperse than is predicted by the asymptotic theory, and in a few cases

they have substantial bias as well. (Similar results have been obtained in



studies of finite sample properties of instrumental variables estimators of

asset pricing models (Tauchen (1986), Kocherlakota (1990) , Ferson and

Foster (1991)).) We also find that different choices of left hand side

variable have a nontrivial tendency to produce estimates of different sign.

Moreover, consistent with the possibility raised above, this tendency is

most apparent in those DOP's in which our asymptotic approximation suggests

a relatively large probability of deriving a wrong-signed estimate.

Interestingly, often but not always the normalization that in empirical

work has tended to produce a negative estimate of the parameter we denote

a1 tends to do so in our simulations ss well.

Neither our simulations nor our asymptotic theory are rich enough to

enable us to conclude that one normalization is better than another in this

model, still less to produce guidelines useful for practitioners using

other models. Instead, we take the message of the asymptotic calculations

and Monte Carlo simulations to be as follows. At least for some data, it

will be difficult to obtain sharp estimates of the parameters of this

model, and one should not be surprised if minor changes in specification,

estimation technique, or even choice of left hand side variable cause

parameter estimates to change sign or otherwise shift dramatically.

Two warnings sre appropriate before we turn to the details of the

study. First, we consider in detail only point estimates but not test

statistics, the latter not being central to the question we wish to study.

Second, we do not claim to be comprehensive in our choice of data

generating processes. In particular, we recognize that whatever results we

establish under our simplifying assumption that sales are exogenous might

not hold under a more sophisticated, and, in our view, more plausible,

setup in which sales are endogenous. Nor, of course, is it assured that

our results will obtain if, in contrast to the present study, the model is
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inconsistent with the dsta.

The paper is structured as follows. The second section presents the

model and solves for the reduced form. The third section presents our data

generating processes. The fourth section descrihes our instrumental

variables estimators. The fifth section considers an asymptotic

approximation to the distribution of our parameters. The sixth section

presents simulation evidence on this distribution. The seventh section

concludes. An Appendix contains some algebra, as well as some results

omitted from the body of the paper that are likely to be of interest mainly

to a specialist interested in conducting a closely related study.

II. The Model

The model follows Holt et al. (1960). A representative firm

maximizes the expected present discounted value of future cash flows, with

a cost function that includes linear and quadratic costs of production and

of changing production and of holding inventories. Let Pt be real price,

St real sales, Qt real production, Nt real end of period inventories, C

real costs, b a discount factor, Osb<l, Et mathematical expectations

conditional on information known at time t, assumed equivalent to linear

projections, and ut a coat shock that is observable to the firm but

unobservable to the econometrician. The objective function is

max lim f-c EtEJ_obi(Pt+St÷jCt+j) (2.1)

s.t. Qt+j — 5+j +
Ht+j

- Ht+j1.
C÷j — .SaoAQ+j + lQ+j + .5a2(Ht+j1-a3st+J)2 +

+ linear terms + (linear x trend) terms

For the moment, the si's are all assumed to be positive. Our omission of
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shocks that shift the marginal cost of production or of changing production

(i.e., terms of the form shock x or shock x AQt+j) is for notationsl

economy and without economic substance.

As in West (1986), Eichenbauzs (1989), Ramey (1991), Krane and Braun

(1991) and Kashyap snd Wilcox (1993), the instrumental variables technique

that we consider works off a first order condition, or Euler equation. An

optimizing firm will not be sble to cut costs by increasing production by

one unit this period, storing the unit in inventory, and producing one less

unit next period, holding revenue unchanged throughout. Formally,

differentiating (2.1) with respect to Ht gives

Et( ao(Qt.2bQt+i+b2aQt÷2) + a1(Q-bQt+i) + ba2(Ht-a3St+1) (2.2)

+ deterministic terms + ut ) — 0,

where the deterministic terms result from the linear and (linear x trend)

terms in the cost function (2.1).

We aim to evaluate instrumental variables estimators of the

parameters of (2.2). Our estimators are described in the next section of

the paper. The remainder of this section describes how we generate the

artificial data necessary to evaluate the estimators.

For simplicity, we generate data assuming that sales are exogenous to

the firm. The equilibrium decision rule implied by the Euler equation

(2.2) is (West (1992))

)

— (A1-2)Mt_1 - A1A2Ht2 + (2.3)

bAlA2(Al_A2)E!_o((bAl)34(bA2)JJEtOt+j + deterministic terms,

— - (St-2bA5t÷l+b2St+2) - 561a1(St-bSt÷l) + ao'ba2a3St÷1

- ao'ut,



A1, A2 the two smallest (in modulus) roots of:

A4 b2aa1(ba1+2aob(l+b)1A3 + b2a61(ao(l+4b+b2)+ai(l+b)+ba2]A2
- b2ao1[a1+2a0(l+b)}A + b2 — 0.

The above assumes for simplicity that A1sA2. If A1 and A2 are complex,

they are complex conjugates, so that A1+A2 and A1A2 are real.

We assume that S is forecast from a trend-stationary AR(2) and that

the cost shock is white noise:

St — *ll + *25t-2 + constant + trend + ESt. (2.4)

(ut,St) — i.i.d. N(0,Z), S positive definite.

In cloaed form, (2.3) is then

— (A,+A2)H - A1A2Ht2 ÷ 615t + 625t-1. (2.5)

+ constant + trend +

for certain 6i' and a certain that depend on b, A1, A2 and the

parameters in (2.4). Exact formulaa are given in the appendix. Equationa

(2.4) and (2.5) can then be combined to obtain a reduced form data

generating proceas

— (A1+A2)M.j, - A1A2Ht2 + '15t-1. + '25t-2 (2.6a)

conatant ÷ trend +

— 6j$&. 2 — l2 EHt
— ut+slcSt.

St — #lStl + #25t.2 + constant + trend + €, (2.6b)

where (2Gb) simply repeats (2.4).
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III. Generating the Synthetic Data

In all data generating proceaaes, the discount factor b was set to

0.995 (appropriate if the data are assumed to be monthly). We experiment

with four sets of cost parameters, given in Table IA. All are based on

studies using U.S. data of one sort or snother. Parameter set A is roughly

consistent with the estimates for post-war aggregate data in West (1990)

and those for automobile data in Blsnchard and Melino (1985) , parameter

sets B and C with those for post-war two-digit manufacturing in Ramey

(1991) and West (1986) respectively, parameter set 0 with those for auto

data from the 1920's and 1930's in Kashyap and Wilcox (1993). See Ramey

(1991) for an 4rgument for the reasonableness of the negative values for a1

in parameter sets B and 0.

Table IS reports parameters for exogenous processes. The

autoregressive coefficients of 0.7 and 0.25 were chosen to match roughly

the estimates of an AR(2) sround trend fit to real sales of nondurable

goods manufacturing industries, monthly, 1967-1990. The sales innovation

variance of 0.120833 was chosen so that the implied unconditional variance

of sales is 1 (a harmless normalization). The variance of the cost shock

ut and its correlation with the sales shock ESt were chosen so that, in

conjunction with the cost parameters of parameter set A (Table IA), the

implied ratio var(Ht)/var(St) and the implied correlation p(Ht,St)

approximately matched that of monthly nondurables manufacturing industries,

1967-1990, with Ht total inventories. Coefficients on trend terms were

chosen so that the implied coefficients of variation of and tHt

approximately match those of monthly nondurables manufacturing, 1967-1990;

because different choices of the cost parameters imply different

autoregressive coefficients in (2.6a), the coefficient on the trend term in

(2.6a) varies from data generating process to data generating process.
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A complete data generating process (QQ.) is specified by combining a

given set of cost parameters (A, B, C or 0) with the sales and Cost shock

processes. Given a DC?, we generate data as follows. As indicated in

(2.4), the vector of shocks (ut,€St) is assumed to be iid normal. This

implies that Hr and St are normally distributed. We first draw a vector of

initial values from the unconditional normal distribution of the 4xl vector

(H0, H1, S0 S1)' We then use (2.6) to generate 10,004 observations.

Our experiments employ a sample size of 300, so we use observations 1 and 2

for lags, observations 303 and 304 for leads, and discard the final

10,004-304 — 9700 observations. These 9700 additional observations were

reserved for some additional experiments that have yet to be concluded.

1000 samples were generated for each data generating process.

Table IC displays the implied values of the parameters of the

inventory equation (2.6a) for each of our DCP's. The values of and

the coefficients on inventories lagged once and twice, are similar

for A, C and D, and suggest slow adjustment of inventories to shocks; the

values for B suggest quick adjustment, which may be counterfactual for much

inventory data. (If the cost shock is serially correlated, as is assumed

by Ramey (1990) and by us in a specification presented Appendix Table A2,

adjustment will be slow.)

Table ID displays the second moments of inventories and sales that

are implied by the various DCP's. As noted above, the values of

var(Ht)/var(St) and of p(Ht,St) for DGP A are approximately those for

monthly nondurables in manufacturing, 1967-1990. The values of

var(Ht)/var(St) and of p(Ht,St) for DGP's B, C and D are rather different,

but no doubt are representative of other inventory data! Across

DGP's, the values of first order autocorrelation coefficients are similar

for inventories and are of course identical for sales.
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IV. Estimatine the Parameters

A. Choice of Left Hand Side Variable

Given the deterministic terms present in our data generating

processes, (2.2) becomes

Et( + al(Qt-bQt+l) + ba2(H.a3St+1) (4.1)

+ d + St + ut) — 0.

We include d+St only to make clear exactly what we did; our interest is in

the aj's, and we will not investigate the sampling distribution of

estimates of the coefficients on the constant and trend terms.

In (4.1), note that the parameters a0, a1, a2, d and & are identified

only up to scale: if (a0,a1,a2,a3,d,&) set u orthogonal to the instrument

set, then so does (aa0,aa1,aa2,a3,ad,a&) for any nonzero a. Thus by

estimating (4.1) alone, one cannot recover absolute magnitudes of the

parameters but only their magnitudes relative to some linear combination of

themselves. Given a choice of "denominator" (a choice of linear

combination), values of any two of a0, a1 and a2 relative to this

denominator determine the value of the third relative to the chosen

denominator. Our aim, then, is to analyze three parameter estimates:

(i)two of a0, a1, and a2 relative to some "denominator," and (ii)a3.

In reporting parameter estimates, we follow much empirical work and

(l)let choice of left hand side variable dictate which parameter estimates

to report, with the coefficient on the variable moved to the left hand side

being the "denominator" used in reporting, and (2)repor a3 regardless of

left hand side variable. To illustrate our approach, focus for the moment

on the normalization that puts ba2Ht on the left hand side and then divides

both sides of the equation by ba2. This normalization was used by Ramey
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(1991) and, in part, by Krane and Braun (1991) and Kashyap and Wilcox

(1993). In the tables below this is called the RH normalization:

Ht — (ao/a2)Xo+2 + (a1/a2)X1+1 + a3S+1 + (4.2)

(d/ba2) + (8/ba2)t + vt+2,

— X'fi + Vt+2,

a -b*tQt-2btqt+1+b2aQt+2),

—

Vt+2 — -(ha2)(u + bao(Xot+2-EtXot+2) + bai(Xit+i-EtXit÷i))

- a3(St+i-EtSt+1)

— (Xot+2,X1t+1,St+1,l,t)'

fla (a0/a2,a1/a2,a3,d/ba2,&/ba2)'.

As is typical in empirical work, we impose a value of b; the value chosen

was that used in generating the data, b—.995. With a value of b imposed,

we can construct and X1, and estimate fi linearly with a conventional

instrumental variables technique described in detail in section B below.

For this normalization, a2 is the "denominator" referenced above, and in

our tables below we report the small-sample distribution of estimates of

s0/a2, a1/s2 and a3.

In this context, choice of left hand side variable is irrelevant

asymptotically, provided the "denominator" is nonzero in the population.

But as was noted in the introduction, Ramey (1991), Krane and Braun (1991)

and Ksshysp and Wilcox (1993), using various dstasets, found that estimated

parameters sometimes varied widely for different choices of left hand side

variable. We therefore consider two alternative choices of left hand side

variable, in order to evaluate the possibility thst such vsriation is

likely even when the model is correctly specified.
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The first of these alternatives is the Legendre-Clehsch or J

normalization used in Kashyap and Wilcox (1993) and experimented with in

Ramey (1991). Define tt as the present value of future costs,

ctaEtlS_oCt+j . This normalization puts (82ct/3H)Ht —

[ao(1+4b÷b2)+ai(l+b)+ba2]Ht a cjH on the left hand side and then divides

both sides of the equation by c1. Then (2.2) may be rewritten

Ht — (ao/ci)X2t+2 + (si/cj)X3t+i + (a2s3/ci)(bSt+1) (4.3)

(d/c1) + (6/c1)t + v2t+2,

+ (1+4b+b2)Ht

a bXlt+l + (l+b)Ht

v2t+2 a -cj1(ut + so(X2t+2-EtX2t+2) + si(X3t+i-EtX3t+i)

+ bs2s3(St+i-EtS÷1)),

c1 a a0(1+4b+b2)+a1(1+b)+ba2.

Here, the "denominator" is c1, and in our tables below we report estimates

of a0/c1, a1/c1 and a3. We obtain a3 using a3 a b(a2a3/c1) /

[l-(1+4b+b2)(s0/c2)-(1+b)(a1/c2)].

The third and final normalization is that used in West (1986) and

Krane and Braun (1991), which puts [(1+b)ao+a1](bQ+1-Q) a c2(hX1t+i) on

the left hand side and divides both sides of the equation by bc2. We call

this the Q normalization since c2 is the slope of the marginal Lost of

production Q. In this case the regression equation is

a (a0/c2)X2 + (a2/c2)(bH) + (a2s3/c2)(-bS+1) + (4.4)

Cd/c2) + (8/c2)t + v3t+2,

a (b2X1t+2+bXit),

v3t+2 a bXit+i-EtbX1t+i +
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ca'( Ut
- ao(X4t+2-EtX4t+2) + ba2a3(St+l-ESt÷i)

c2 — (l+b)a0+a1.

Here, the "denominator" is c2, and in our tables below we evaluate

estimates of a0/c2, a2/c2 and a3 — (a2a3/c2)/(a2/c2). Table II lists the

three sets of coefficients.

B, Estimation Technique

We use (4.2) to illustrate the estimation technique. Let be a 6x1

vector of instruments consisting of the variables that appear in the

reduced form (2.6),

— (Htl,Ht2,Stl,5t2,l,t)'. (4.5)

(Because cost shocks are present, period t values of Ht and St are not

legitimate instruments; see (2.4) and (2.5).) Let T be the sample size,

where T—300 in our experiments. Let Z be a Tx6 matrix whose t'th row is

X — [Xe'] be the Tx5 matrix of right hand side variables, Y — [He] be

the Txl vector of the left hand side variable. In the Monte Carlo

experiments, we follow much recent empirical work and use the instrumental

variables estimator that has the smallest possible asymptotic

variance-covariance matrix given the set of instruments used,

— (X'ZWZ'X)X'ZWZ'Y, (4.6)

where W is a qxq matrix that is an estimate of the inverse of the spectral

density at frequency zero of the 6x1 vector Ztvt+2, i.e., the inverse of

Zj_..EZZtj'v+2v+2j. Since the cost shock ut is iid in our data
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generating proceasea, vt÷2 and Zv2 are MA(2) and thia infinite sum

collapses to

W — (E}.2EZZtj'vt+2vt÷2j)* (4.7)

Two technical notea: First, given trend stationarity of Ht and St (as

opposed to stationarity around a constant mean), the expectation

EZtZtj'vt+2vt+2 depends on t, and so W as defined in (4.7) varies with

t. Technically, the asymptotic theory requires scaling the elements of

(and Xt) by certain diagonal matrices whose elements are functions of T,

after which the relevant probability limits do not vary with t (West

(1988)). For the sake of simplicity, we slur over such complications in

our discussion here and in the definitions of r and V (equations (4.8) and

(5.1) below).

Second, since Ztvt+2 is not white noise, more efficient estimates

would be obtained if additional lags of Ht and S were uaed, even though

such lags do not appear in the reduced form. See Hansen (1985) for a

general statement, West and Wilcox (1993) for discussion in the context of

the linear quadratic inventory model.

To construct W given our choice of Z, let vt+2 be the two stage

least squares residual, and let

— T'E+lzZtj'vt+2vt÷2j (4.8)

for j�O. Let

m — mm (10, (;T1/3J)

where

— l.1447(sO.)/s(0))2/3, ;(1) — 2;1+402, (O) —
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;—w'rw. w—(1,l,l,l,1,lY.

We set

— + E7_l[1-j/(m+1)1(rj+rj'))* (4.9)

The weights l-j/(m+l) guarentee that is positive definite. Newey and

West (1992) provide analytical and simulation evidence on this technique

for estimating W (although that peper did not consider truncating m at 10

or at any bound less than the sample size; we do that here to speed

computation).

Equations (4.3) and (4.4) were estimated in analogous fashion, with

appropriate changes in left and right hand side variables, but with the

same instruments and estimation technique.

V. Asymptotic Anoroximation to Distribution of Parameter Estimates

In this section, we use conventional asymptotic theory to approximate

the sampling distribution of the parameter estimates. To explain this

asymptotic theory, we focus on the HI! normalization (equation (4.2)). As

in (4.2), let flbe defined as the vector of coefficients on the right hand

side under this normalization, X be the vector of right hand side

variables, Z be the vector of instruments. Also let W be defined as in

(4.9), end let ft be a sample estimate computed as in (4.6). For a

sufficiently large sample size T, we interpret Hansen (1982) as showing

that

ft = N(ft,V/T), (5.1)

V — (tZt'WEZtXt')1.
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(In the definition of V, we once again alur over the complications induced

by trend stationarity.) Let V be the i'th diagonal element of the (5x5)

mstrix V. The square root of Vii/T is the asymptotic atandard error for

the i'th element of fi, for a sample aize of T. In normalizations LC and

RH, in which a3 is obtained as a nonlinear function of the regression

coefficients (see section IV), we obtain an asymptotic standard error using

the conventional delta method.

Table III presents asymptotic standard errors for each 1)0? for the RH

normalizstion. Results for the other two normalizations are similar; see

the Appendix. (Exception: for QC, DC? B, standard errors for a0/c2 and

a2/c2 are far larger [and implied t-statistics far emaller[ than the

comparable figures for RH, apparently because the "denominator" in this

case is very small relative to the coefficients on the right hand aide

variables [for DC? B, c2 — (1÷b)a0+a1 — -.005[.)

According to the asymptotic approximation, the distribution of some

of the parameter estimates is very diffuse. Consider the case of a1/a2 in

DC? A. Taken literally, (5.1) implies that there is only a 57 percent

chance that a1/a2 will have the correct sign (since the probability is .57

that a N(1,(5.7)2) random variable is positive). In order to have a 95

percent chance of estimating a1/a2 with the correct sign, an investigator

would need roughly 30,000 monthly observations (since a sample over 101)

times bigger than that assumed in Table III is required to get the standard

error to fall to about 0.50). Similar but less extreme statements apply to

a3 in DCrs A and D and to all three parameters in DC? C.

A small amount of experimentation suggests that the distribution of

parameter estimates often is diffuse even when one departs dramatically

from the parameter settings assumed so far. In particular, such dispersion

still obtains if St and ut are difference-stationary, or if one makes large
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changes in the variance-covariance matrix of (Ut.ESt). Details are in the

Appendix.

Moreover, even if one uses not instrumental variables but full

information maximum likelihood and estimates (2.6a) and (2.6b) jointly,

imposing the cross equation restrictions (e.g., Elanchard (1983)), aome of

the parameter estimates remain diffuse (although less so, of course). In

DGP A, for example, the asymptotic standard error for the full information

maximum likelihood estimator of a1/a2 is about 2.2 for a sample size of

300. While the 2.2 figure is much less than the 5.7 in Table III, it is

still big enough thst, according to (5.1), more than 5000 monthly

observations would be required before an investigator would have a 95

percent probability of calculating s positive estimate.

We therefore interpret the dispersion exhibited in Table III as

reflecting two factors. First, sample realizations from some plausible

DGP's may not be very informative about the values of the underlying cost

parameters, as evidenced by the inability of even the FIML estimator to

deliver precise estimates of those parameters in some cases. Second, the

instrumental variables estimator that we study sometimes is not very

efficient relative to maximum likelihood at extracting such information

about the cost parameters as is embedded in the data.

That the cost parameters may sometimes be ill-determined

statistically does not necessarily imply thst they are ill determined

economically; it is conceivable that the economic implications of a given

parameter might not be very sensitive to a one- or two-standard deviation

perturbation in the assumed value of that parameter. The following example

indicates that such perturbations in parameter values do, however, have

economically important implications in at least some contexts.

Suppose, for example, that one is interested in using the cost
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parameters to derive the implications of the model for the ratio of the

variance of production to that of sales. Blinder and Maccini (1991) point

out that estimates of this ratio typically are greater than one, maintain

(as do many others) that it is central that an inventory model explain thia

stylized fact, and argue (as do some but not all others) that a plausible

explanation should hold even in the absence of cost shocks. With no cost

shocks, the conditions that allow such an explanation include: a1/a2

negative and sufficiently large in absolute value, and/or a3 positive and

sufficiently large. (See West (1992).) Would plausible perturbations in

the cost parameters give rise to economically meaningful variations in the

implied variance ratio? We investigate this question for l/2 for DC? A.

The first line of Table IV indicates that with a1/a2 set at its

population value, DC? A implies a ratio equal to 1.00 (by coincidence, not

by design). It is the positive value of a3 that explains why this ratio is

not below 1. When, however, the value of a1/a2 instead is -6 (about 1.2

asymptotic standard errors below s1/a2—l, according to Table III), the

implied ratio is 1.19 (line (2) of Table IV), roughly the median value

reported for two-digit data by Blinder (1986). Thus, given an estimate of

-6, as well as estimates of a0/a2 and a3 that are at or (by continuity)

close to their population values, one might well interpret the model as

adequately explaining the stylized fact; as indicated in line (5), given a

comparable overestimate, one probably would not. Lines (3) and (4)

indicate that 0.8 standard error under- or overestimates also imply

variance ratios that some observers might consider qualitatively different.

We read Table IV as suggesting that sampling variation in point estimates

might lead to qualitatively different interpretations of the underlying

economic environment.
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VI. Simulation Evidence on Distribution of Parameter Estimates

The previous section indicates that the estimates of the instrumental

vsriables estimator are quite diffuse for some plausible specifications.

This diffuaeness suggests that sampling error might account for the

sensitivity to choice of left hand side variable that was noted in the

introduction (along with sensitivity to some other seemingly minor changes

in specification). To investigate this possibility, and, more generally,

to investigate the accuracy of the asymptotic approximation, we conduct a

set of Monte Carlo experiments.

Table V presents some Monte Carlo results on the distribution of the

parameter estimates. The top three panels summarize results of estimating

the cost psrameters using each of our three normalizations and four DGP's.

The panel labelled "asymptotic" gives the corresponding asymptotic

quantities. These are independent of DCP by virtue of the way we report

results: we standardize each estimated parameter by subtracting the

population parameter value and then dividing by the population asymptotic

standard error. (We used a population rather than estimated standard error

because our interest is in the distribution of parameter estimates and not

test statistics.) According to the asymptotic theory, the resulting

quantity should be approximately H(0,l).

For each of the three parameters, the column labelled "50% CI" gives

a 50 percent confidence interval constructed by dropping the largest 250

and smallest 250 of the 1000 parameter estimates, or, for "asymptotic", the

values appropriate for a N(0,1) variable. The difference between the upper

and lower bounds of these confidence intervals is the interquartile range.

"Median" give3 the median of the 1000 estimates, "Trimmed MSE" a mean

squared error computed by (l)dropping all entries greater than 3.0 in

absolute value, (2)calculating the average squared value of the remaining
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observations, and (3)dividing by 0.9735, which ia the variance of a N(0,l)

variable doubly truncated at -3 and +3 (Johnson and Kotz (1970, p83)). We

trimmed before computing the MSE because the simultaneous equations

literature suggests that second moments of our estimator may not exist,

since our equation has only one more instrument than right hand side

variable (e.g., Phillips (1983)). The decision to truncate at 3.0 was

arbitrary, and similar conclusions follow if one instead trims at 2.0. The

number of observations excluded typically was fewer than 25 for a0/()

a1/Q and a2/Q, and between 100 and 200 for a3.

We read Table V as indicating that in some respects the asymptotic

theory works reasonably well. The upper and lower bounds of the 50 percent

Cl's generally are close to the theoretical values, and usually have

roughly the predicted width (median width is 1.5, as compared to the

asymptotic width of 1.4). The median of the "trimmed MSE" column is 1.16,

indicating that in half the entries the FISt is at moat 16 percent bigger

than the asymptotic theory would predict. Aaymptotic theory thus often

provides good guidance to how disperse parameter estimates will be. Also,

the median of the absolute value of the "median" column is 0.20, indicating

that for half of the 36 parameters, the median of the 1000 estimates is

within 0.20 asymptotic standard errora of the true parameter value.

On the other hand, we also read Table V as indicating some departures

from the asymptotic approximation. While the 50% CIa generally look

reasonable, 7 of them do lie entirely on one or the other aide of zero.

This means that at least three-fourths of the parameter estimates in these

7 cases fell on one side of the true value. All such instances occurred

with normalization HR. Another indication of bias is that 5 of the median

estimates are between .5 and I asymptotic standard errors away from the

true parameter value (a0/a2: C; a1/a2: A, C; a3: C/HH, B/QC), 3 more than
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one asymptotic standard error away (a0/a2: A, D; a1/a2: D).

In addition, the MSE's do tend to be greater than 1.00, the value

predicted by the asymptotic approximation. While, as noted above, the

median value is 1.16, only 8 of the 36 are below 1.00, and 2 of these 8

occur in QC, DC? B (which, recall, had huge asymptotic standard errors).

The FISt is between 1.5 and 2.0 in 4 cases (s0/a2: A; a3: 8/1*1, B/LC, D/QC),

and is greater than 2 in three cases (a0/a2: D, a1/a2: D; a3: B/QC).

Another respect in which asymptotic theory does not hold is that

different normalizations perform differently. Some evidence to this effect

has just been noted, in that RH's confidence intervals are more poorly

centered than are LC's or QC's. In addition, its variability (as measured

by the trimmed FISE) is more erratic.

Additional evidence on differences across normalizations is given in

Tables VI and VII. These are contingency tables giving the probability

that the signs of the estimates of a1/() agree for each pair of

normalizations, where C.) — a2 for HIt, () — c1 for LC, () — c2 for QC.

We focus on a1 because a number of authors have noted that in

empirical work the sign of thia parameter changes with normalization,

tending to be negative for HR (Krsne and Braun (1991), Rsmey (1991),

Kashyap and Wilcox (1993)). And, as discusaed above, the aign of this

parameter has key economic implications, since a negative value tends to

induce production bunching, a positive value production smoothing.

Table VI presents the contingency table for the differences between

estimated and true parameters, Table VII for the raw estimates themselves.

Each panel in these two tables compares the estimates of a1/() from two

normalizations. We consider three normalizations, so there are 3!/2! — 3

panels. Within each panel, the 2x2 blocks present the results for the

different DCP's. To see how the 2x2 blocks are calculated, consider the
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2x2 block in the upper left hand corner of Table VI. The "0.564" indicates

that in 564 of the 1000 simulations, the point estimates of both a1/a2 and

were less than the true values (—I and .16), the "0.299" that in 299

simulations, the point estimate of a1/a2 was less than the true value, the

point estimate of a1/c1 greater than the true value, the "0.137" that in

the remaining 137 simulation the point estimates of both were greater than

the true values. Thus, HH's estimate of a1/a2 was less than the true value

in 863 — 564+299 of the simulations. If both normalizations were median

unbiased, the sum of the entries in each row and column would be 0.500.

If, further, an overestimate from one normalization were invariahly

atcompanied by an overestimate from the other, and similarly for

underestimates, the diagonal elements would each be 0.500, the

off-diagonals 0.000; if, on the other hand, both normalizations were median

unbiased but an overestimate from one were accompanied by an overestimate

from the other exactly half the time, and similarly for underestimates,

each of the four elements would be 0.250.

Consistent with what one might have guessed from Table V, Table VI

indicates some tendencies of the different normalizations to produce

parameter estimates that are biased in different directions. Panels A and

B suggest that, as compared to either LC or QC, I{H produces mote estimates

that are (l)negatively biased for DCP'a A and C, (2)poaitively biased for

DCP D. (Panels B and C indicate an even more substantial conflict for QC,

DCP B, which presumably is an artifact of the numerically small value of c2

for that DCP.)

Table VII suggeata that substantively different ecnnoaic iaplicationa

might be drawn from different normalizations. As discusaed above, in DCP

A, the asymptotic theory indicates that a1/Q is likely to be estimated

imprecisely, in the sense that there is likely to be a substantial
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probability of an incorrectly signed (negative) estimate. It may be seen

that while this happens for LC in 48 percent of the samples, and for QC in

41.4 percent of the samples, it happens for HH in 80.6 (— 48.0 + 32.6)

percent of the samples. In about a third (= .326 or .392) of the

replications, 1W yielded a negative estimate while LC or QC yielded a

positive one. A similar pattern obtains in DGP C. In DCP 0, there is

little difference across the normalizations, as one might expect, given the

esymptotic standard errors presented in Table III. (In DGP 8, QC tends to

spuriously yield positive estimates, which we once again consider

uninteresting.)

VII. Conclusions

Asymptotic and Monte Carlo results indicate considerable dispersion

in estimates of the parameters of the Holt et al. (1960) linear quadratic

inventory model, when the estimates are obtained by applying instrumental

variables to a first order condition of the model. Alternative

normalizations have substantial probability of delivering differently

signed estimates of the parameters of the model. A priority for future

work is investigation of alternative estimators, such as ones that pool

data from various industries.
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Appendix

This appendix presents:

1. The parameters in (2.6).

2. Asymptotic t-statistics for all three normalizations, T—300 (Table Al).

3. Asymptotic standard errors alternative parameters for exogenous

processes (Tables Al and A2).

1. The parameters in (2.6).

Define the scalars Pi P2 Wi, W2, W3, and w4, the (1x2) vector e' and

the (2x2) matrices . and D as

— Ar*-2, P2 —

— b2p2, w2 — -p2[b2I-2b+b(a1/a0)+(ba2a3/a0)],
— p2t21(a1/a0), w4 — P2' C' — (1 0),— (i)

(1 0 ),

D — [I-bp1Z'-bp2''2]4.
Then

—

— e'D(w1'3+w2''2+w3+w4I),
— r2/2, 62—,r1-611,

2. Asymptotjc t-statjstics for all three normalizations, T—300

Norm, DC? a0/a2 a1/a2 £3

NH A 2.15 0.20 0.26
B 2.69 -1.46 25.36
C 1.17 0.63 0.66
D 2.63 -6.61 1.26

Norm. DGP a0/c1 a1/c1 a3

LC A 6.13 0.20 0.26
B 2.36 -1.23 25.36
C 2.44 1.58 0.66
D 13.25 -2.02 1.26

Norm. DC? a0/c2 a2/c2 a3

QC A 3.95 1.48 0.26
B -0.006 -0.006 25.36
C 1.92 0.86 0.66
D 7.14 1.95 1.26



Table Al

Asymptotic Standard Errors, 1—300, Alternative Trend Stationary
Specifications

A. Parameters of Exogenous Processes

Mnemonic var(ES) var(u) p(E5,u) cv(B) cv(S)

none .75 .20 .120833 3.5 - .5 .2 .2

3 .75 .20 .120833 1.0 - .2 .2 .2

4 .75 .20 .120833 7.0 - .8 .2 .2

5 .75 .20 .120833 1.0 - .8 .2 .2

6 .75 .20 .120833 7.0 - .2 .2 .2

7 1.70 -.72 .120833 3.5 - .5 .2 .2

8 .10 .05 .120833 3.5 -.5 .2 .2

B. Asymptotic Standard Errors, 1—300

Parameter
DGP a1/a0 a2/a0 a3

.10 .10 .10

A (.53) (.05) (.38)
A3 (.51) (.05) (.43)
A4 (.51) (.05) (.43)
A5 (.65) (.06) (.32)
A6 (.49) (.04) (.52)
Al (.31) (.03) (.13)
A8 (.54) (.05) (69.)

Notes:

This presents information analogous to Table III, when the parameters of
the exogenous processes are varied as indicated in the table. DGP A is the
one studied in the text.



Table A2

Asymptotic Standard Errors, T—300, Difference Stationary Specifications

A. Parameters of Exogenous Processes

Mnemonic #1 #2 var(S) var(u) p(ES,u) cv(ilH) cv(S)

2 - .2 .1 .941111 7.0 0.4 .2 .2

B. Asymptotic Standard Errors, T—300

Parameter Parameter
DGP a1/a0 a2/a0 a3 DGP a1/a0 a2/a0 a3

A2 .10 .10 .1 A .10 .10 .10
(.53) (.05) (35.5) (.53) (.05) (.38)

52 -2.0 6.0 .5 5 .2.0 6.0 .50
(1.0) (2.7) (.7) (0.9) (2.2) (.02)

C2 2.0 .10 1.0 C 2.0 .10 1.0
(2.0) (.06) (86.3) (2.1) (.08) (1.5)

02 - .50 .10 .5 D - .50 .10 .50
(.20) (.04) (20.2) (.21) (.04) (.40)

Notes:

1. The left hand half of panel B presents information analogous to that in
Table III, when (1)(2.4) is replaced by: — constant + #1Sj. +
+ u—u+u, (ut,5t) — i.i.d. N(0,), positive definite, with the
panel A values for #1, #2 roughly calibrated to estimates for monthly

nondurables manufacturing, 1967-1990; (2)the regression equation is in
differences rather than levels; (3)the instrument vector is

Zt—(}ttl,AHt2,St..l,St2,l)'

2. The right hand half of panel B presents information analogous to that in
Table III, and is included for comparison.



Table I

Data Generating Processes

A. Parameters of Cost Function

Mnemonic a0 a1 a2 53

A 1. .1 .1 .1
B 1. -2.0 6.0 .5
C 1. 2.0 .1 1.0
0 1. -.5 .1 .5

B. Parameters of Exogenous Processes

#1 #2 var(ES) var(u) p(S,u) cv(}I) cv(S)

.75 .20 .120833 3.5 - .5 .2 .2

C. Implied Coefficients of Inventory Equation

DGP 1A2
A 1.22 -0.42 0.14 -0.12
B 0.24 -0.14 0.38 0.05
C 1.07 -0.22 0.10 -0.09
O 1.43 -0.69 0.33 -0.15

0. Implied Second Moments

DCP var(St) p(Ht,St) p(H,Hti) p(St,St.i)

A 2.5 0.23 0.86 0.93
B 0.3 0.91 0.81 0.93
C 0.6 0.27 0.88 0.93
D 10.7 0.35 0.86 0.93

Notes:

1. The cost function (2.1) includes .5a0Q + .5a1Q + .5a2(H1-a3S)2; #1
and #2 are the autoregressive parameters of the sales process defined in
(2.4); is the sales shock defined in (2.4); u is the Cost shock defined
in (2.1); A1+)2, -A12 rl, and 2 are the coefficients of the reduced form
inventory equation (2.6a).

2. 'var" denotes variance, 'p" correlation, "cv coefficient of variation.



Table II

Parameters to be Estimated, Alternative Normalizations

Normalization Parameters to be Estimated

(1) 1111 a0/a2 a1/a2 a3

(2) LC a0/c1 al/cl

(3) QC a0/c2 a2/c2 a3

Notes:

1. The cost function (2.1) includes .5a0Q + .5a1Q + .5a2(Ht.l-a3St)2.

2. In row (2), c1 — (a0(1+4b+b2)+a1(l+b)+ba2). In row (3), c2 —

(l+b)a0+a1.
3. The corresponding equations in the text are: NH: (4.2); LC: (4.3); QC:

(4.4).



Table III

Asymptotic Standard Errors, NH Normalization, T—300

DC? a0/a2 a1/a2 53

A 10.0 1.0 .10

(4.7) (5.7) (.38)

B .16 - .33 .50

(.06) (.23) (.02)

C 10.0 20.0 1.0

(8.6) (31.9) (1.5)

D 10.0 -5.0 .50

(3.8) (0.8) (.40)

Notes:

1. The cost function (2.1) includes .5a0AQ + .5a1Q + .5a2(Ht.i-a3St)2.

2. The parameter values are repeated from Table II, for convenience.

2. In parentheses are the standard errors implied by the asymptotic theory,
for a sample of size 300. assuming instrumental variables estimation as
described in the text.



Table IV

Implied Ratios of Variance of Q to Variance of 5, No Cost Shocks

a0/a2 a1/a2 a3 var(Q)/var(S)

(1) 10. 1. .1 1.00

(2) 10. -6. .1 1.19
(3) 10. -4. .1 1.05
(4) 10. 6. .1 0.98
(5) 10. 8. .1 0.97

Notes:

1. The cost function (2.1) includes .5a0tQ + .5a1Q + .5a2(Hl-a35)2.
2. Q is production; S is sales.

3. The implied variances of Q and S are solved for under the assumption
that there are -no cost shocks (u—0), that a2—.1 and that the cost

parameters a0/a2, l/2 and a3 are as indicated: Line (1) presents results
for DCP A. Lines (2) through (5) consider values of a1/a2 that are
approximately -1.2, -0.8, 0.8, and 1.2 asymptotic standard errors away from
1.; as indicated in Table III, this standard error is 5.7.

t

)



Table V

Distributions of Standardized Parameter Estimates From Simulations

A. Normalization HN

DCP 50% CI Median Trimmed
MSE

A (-1.8,-0.6) -1.11 1.87
B (-0.6, 0.7) 0.04 0.88
C (-1.1, -0.6) -0.95 0.89
D (.2.0, -0.4) -1.10 2.28

(4) - (a0/c1)
DCP 50% CI Median Trimmed

MSE
A (-0.7, 0.8) 0.14 1.14
B (-0.6, 0.9) 0.21 1.10
C (-0.7, 0.8) 0.10 1.13
O (-0.6, 0.8) 0.15 1.1.4

-(a/c)
DCP 50% CI Median Trimmed

MSE
A (.0.8, 0.7) -0.00 1.15
B ( 0.0, 0.0) 0.01 0.00
C (-0.8, 0.7) .0.08 1.12
O (-0.8, 0.7) -0.03 1.21

('>)-(a1/a2)
50% CI Median Trimmed

MS E

(-0.7,-0.3) -0.54 0.46
(-0.9, 0.3) -0.42 1.05
(-0.7, -0.5) -0.64 0.49
0.2, 2.2) 1.14 2.62

B. Normalization LC

50% CI Median Trimmed
MSE

(.0.8, 0.6) -0.15 1.14
(-0.9, 0.5) -0.30 1.16
(-0.8, 0.7) -0.11 1.14
(-0.8, 0.6) -0.15 1.16

C. Normalization QC

(42�)-(a2/c2)
50% CI Median Trimmed

MSE
(-0.7, 0.8) 0.00 1.31
0.0, 0.0) 0.01 0.00

(-0.7, 0.9) 0.15 1.40
(-0.8, 0.7) -0.06 1.31

0. Asymptotic

a3-a3
Median Trimmed

MSE
-0.31 1.46
-0.12 1.73
-0.33 0.93
-0.43 1.48

50% CI Median Trimmed 50% CI Median Trimmed 50% CI Median Trimmed
MSE MSE MSE

(-0.7, 0.7) 0.00 1.00 (-0.7, 0.7) 0.00 1.00 (-0.7, 0.7) 0.00 1.00

Notes:

1. The cost function (2.1) includes + .5a1Q + .5a2(Htla3S)l.The regression equations are: NH: (4.2); LC: (4.3); QC: (4.4).

2. The differences between estimated and population parameters are standardizedby
dividing by asymptotic standard errors.

2. The "50% CI" is a 50 percent confidence interval constructed using the 250'th and
750'th largest of the 1000 estimates; "Median" is the 500'th largest such entry;
"Trimmed MSE" is a mean squared error computed after dropping observations greater
than 3.0 in absolute value, and is expressed relative to the MSE for a standard
normal similarly trimmed.

a3-a3
Median

-0.20
-0.26
-0.57
-0.02

Trimmed
MSE

1.03
1.63
0.54
1.30

50% CI

(-0.8, 0.4)
(-1.1, 0.7)
(-0.7, -0.4)
(-0.9, 0.7)

50% CI

(-1.2, 0.7)
(-1.1, 0.8)
(-0.7, 0.2)
(-1.5, 0.4)

50% CI

(-1.3, 0.8)
(-2.0, 0.6)
(-0.8, 0.3)
(-1.6, 0.5)

53-a3
Median

.0.29
-0.70
-0.31
-0.45

Trimmed
MSE

1.47
2.07
1.03

1.55



Table VI

Frequency Distribution of Sigr.s of a1/O-a1/O, From Simulations

A. LC vs. RH

RH:
LC: DC? A DCP B DC? C DC? D

/\ 0 >0 0 >0 0 >0 0 >0
(a1/c1)-(a1/c1) 0 0.564 0.000 0.563 0.021 0.540 0.004 0.162 0.387

>0 0.299 0.137 0.081 0.335 0.418 0.038 0.055 0.396

B. QC vs. HR

RH: ()-(a1/a2)
QC: DC? A DC? B DC? C DC? 0

0 >0 �0 >0 >0 0 >0
(a1/c2)-(a1/c2) 0 0.500 0.000 0.644 0.356 0.465 0.004 0.159 0.330

>0 0.363 0.137 0.000 0.000 0.493 0.038 0.058 0.453

C. QC vs. LC

LC: (a'1)-(a1/c1)
QC: DC? A DC? B DC? C DC? D

0 >0 0 >0 0 >0 0 >0
(a1/c2)-(a1/c2) 0 0.500 0.000 0.584 0.416 0.469 0.000 0.489 0.000

>0 0.064 0.436 0.000 0.000 0.075 0.456 0.060 0.451

Notes:

1. The cost function (2.1) includes .5a0Q + .5a1Q + .5a2(Hl-a3S)2.
The regression equations are: RH: (4.2); LC: (4.3); QC: (4.4).

2. Each entry in a given 2x2 matrix gives the fraction of the replications
for which indicated sign pattern occurred. For example, the '.564" in the
first 2x2 matrix in panel A indicates that in 564 of the 1000 replications,
the estimate of a1/a2 from normalization RH was less than the population
value of a1/a2 the estimate of a1/c1 from normalization LC was less
than the population value of a1/c1. In a given 2x2 table, the four entries
sum to 1.

3. For QC, the estimate of a1/c2 was computed as l-(l+b)a0/c2.



Table VII

Frequency Distribution of Signs of a1/Q, From Simulatjor.s

A. LC vs. RH

DGP A
0 >0� 0 0.480 0.000

> 0 0.326 Q..J.2Et

DC? A
0 >0

0 0.414 0.000
> 0 0.392 Q.J2�

DGP A
�0 >0

0 0.414 0.000
> 0 0.066 Qi22

RH:

DC?8 DGPC
0 >0 0 >0

Q.12 0.000 0.060 0.000
0.034 0.077 0.676

B. QC vs. RH

RB:
DCPB DCPC0 >0 0 >0

Q_Q 0.000 0.047 0.000
0.825 0.077 0.489

DC? 0
0 >0

0.000
0.032 0.001

DC? D
0 >0

0.944 0.000
0.055 0.001

DC? D

0. 94L

0.023

1. See notes to Table VI. This table differs from that table only in that
it considers the sign of the estimated parameters, rather than the

sign of
the difference between the estimated and actual.

2. In each 2x2 matrix, the entry that is underlined is the one that would
be 1.00 if both normalizations happened to yield the correct sign in all
1000 simulations.

3. Population values (asymptotic standard error) for a1/a2: DC? A: 1.0
(5.7); DC? 8: -.33 (.23); DC? C: 20.0 (31.9); DC? 0: -5.0 (0.8).

LC:

a1/c1

QC:A

QC:A
Notes:

C. QC vs. LC

LC:

DC? a
sO >0

0.000
0.791 0.111

DCP C
sO >0

0.047 0.000

0.013 Q12

>0
0.000
0.033


