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j,. Introduction

The use of psnel data sets has increased dramatically since the

pioneering research of Mundlak (1961), Nerlove (1971) and Maddala (1971),

among others. An important benefit of pooled cross section and time series

date is the possibility of controlling for unobservable individual specific

effects. If these unobserved variables are correlated with right hand side

variables in the regression, ordinary least squares (OLS) estimates of the

coefficients will be biased and inconsistent. In the presence of correlated

individual effects, first difference or fixed effects (within) estimators

yield consistent estimates of the regression parameters. However consistency

comes at a cost: ignoring the between groups information may substantially

reduce the efficiency of the estimates. As a result, a good deal of research

has been undertaken to derive tests to detect this possible correlation (e.g.

Hausman (1978), Hausman and Taylor (1981), chamberlain (1983), and Holtz-Eakin

(1988)).

However, none of the tests allow for the possibility that some of the

right hand side varisbles are correlsted with the random error (aside from the

individual effect). This is perhaps not surprising. Little work hms been

done on estimation of panel data models in a simultaneous system.1 Below, I

extend the results of Hausman (1978) and Hausman and Taylor (1981) to the case

where right hand side variables are assumed to be endogenous (specifically,

correlated with the time varying component of the error structure). It turns

out that the IV analogous specification tests for correlated fixed effects

given in Hauamsn and Taylor (1981) are applicable in this context. However,

1 cornwell, Schmidt and Wyhowski (1991) review the limited literature and
provide results which extend the results from the single equation literature
in a limited information context (2SLS) to a full information context (3SLS)
They do not discuss the issue of specification testing in the context of
instrumental variable estimation.
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it is important to specify the instrument set appropriately for the

specification test. I then consider the small sample properties of the test

statistic under different assumptions about the quality of the instrument and

the degree of correlation between the fixed effects and the instrument.

Perhaps surprisingly, the appropriate test statistic in many cases uses an

inefficient estimator. Asymptoticelly, while the variance used to construct

the test statistic will be greater than the variance associated with using a

more efficient estimator, its asymptotic bias will also be greater as the null

hypothesis of no correlation is violated, The increase in bias more than

offsets the increase in variance thereby leading to a more powerful test

statistic.

The degree to which the test statistic using an inefficient estimator is

an improvement over the statistic using the efficient estimator depends on the

relative amounts of the variance of the explanatory variables and the

instruments which is due to variation across individuals versus across time

(the "between" versus the "within" variation). If the ratio of the variance

components is the same for the explanatory variables and the instruments, then

the two test statistics are equally powerful. However, in small samples the

test statistic using the more efficient estimator often performs better as I

show below.

The next section shows that the test statistic as suggested by Hausman

and Taylor (1981) carries over to the 2SLS case. I discuss the appropriate

construction of the instrument set given various assumptions about the type of

correlation between the instruments and the individual effects. The following

section presents results from a simple Monte Carlo experiment. Finally there

is a brief conclusion.
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th Th M1 end In

The model under consideration is

(1) Y_Xfl+m®eT+c

where Y is an NT x I vector, X an NT x k matrix, a an N x 1 vector of

individual effects (a iid with mean 0 and variance a) and an iid random

vector with mean 0 and covariance matrix a2i. The vector e is a T x 1

vector of ones. The data are stacked hy individuals over time. That is, Y' —

(Y' F . . . F] where Y is a T x I vector of observations on the

individual. This equation is part of a simultaneous system and by aaaumption

some columns of X are correlated with c. It is aaaumed that some (possibly

all) columns of X are also correlated with the individual effecta. There is a

set of instruments Z, a matrix NT x L, L t k, valid in the sense that 1 ia

correlated with X but uncorrelated with c. It is easumed that columns of X

which are uncorrelated with c are contained in 1. The present purpose is to

test whether 1 is correlated with the individual effects, Specifically, I

consider the hypotheses:

H : plim( S Zo/N) — 0
N- 1.1 V t

N: plim( S Z'o/N) 0 0
s-c i—i

An alternative null hypothesis which appears less restrictive is that
N

plim S t.a/N — Owhere Z is the average over time of the observations of
fl-)C jj

Z. However, Amemiya and McCurdy (1986) note that the two sets of

assumptions are equivalent if one also assumes that the estimator for fi

continues to be consistent when estimated using any T-l of the T time periods.

While there may be circumstances in which thia second set of T-l assumptions

fails to hold while the assumption that plirn S Z'.o/N — 0 holds, it seems
i—i

reasonable to believe this is an unusual case. Hence I argue that for our

purposes the null hypothesis as constructed above is not overly restrictive.
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Given the loss of information resulting from the use of the within or

first difference estimators to eliminate correlated fixed effects, there is a

large gain possible if one can assume the null hypothesis. In this case, the

GLS-IV estimator will be an improvement.

Letting u — a®e + c, then

2 2(2) E(uu' ) — U — Ta P + a Imy EtC

or

(2') E(uu') — a2P + a2Q

where a2 — Ta2 + a2 P — (I 0 e e' )/T and Q — I - P . For future reference,
1 C C V H TT v v

I use the fact that U'12 - 'I' + atQ and denote U112 by H.

replaces the observations for each column of X by the average of the

observetions for each individual over time. QX replaces the observations by

the deviations from the time averages.

First note that the Hausman type specification test comparing the GLS-IV

estimator with the fixed effects (within) estimator can be constructed using

the within and the between estimators. Define the operator A5 as the

projection operator: A'1 — A(A'A)'A' If Z is a set of variables uncorrelated

with e, there are different possible instrument sets that I can use.

Following the general approach of Gornwell, Schmidt and Wyhowski, I consider

instrument sets of the form F — [QZ,PB] where B is defined as a matrix of

potential instruments. The GLS-IV estimator is given by

(3) — (X'H'HXY'X'H'2'1HY.

Some simple slgebrs shows that the GLS-IV estimator is a matrix weighted

average of the within IV estimstor (fi) and the between IV estimator

That is,

(4) fiIV
- A $' +

where
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(5) A -
[a;2x(Qz)5x + TU2X.BhtXJa2r(QZ)7rX

(6) —
[x' (QZ)'X][X' (Qz)Y]

(7) fitV
—

In equations (5) and (7), X — [X'X'. . . where Lis the mean of

the T observations on X for the individual (and similarly for B, '1, and

Z). That equation (4) holds should not he surprising as it is simply the IV

analog to the result forOLS estimators derived in Maddala (1971).

Under the null hypothesis, and fiIV are consistent estimators of fi

with the more efficient estimator while under the alternative, fiIV is
GL5

consistent and fl" is inconsistent. A Hausman test statistic of the form
GL5

(8) c — (fiIV fitS)

can be constructed. Under the null, c is distributed as a Chi-square

statistic with k degrees of freedom. Simple algebra using equation (4) shows

that c can be written as

(9) c — (plY - flIY) (V + V5) '(fi" - 1V)

One advantage of the latter formulation of the test statistic is that the

covariance matrix of the difference between the between and within estimators

is easier to compute. While the Cov(fi"' - plY) is equal to V V if fi"'CL, W C

is asymptotically efficient, the estimated difference of the covariance

matrices may not be positive definite in small samples. This equivalent

formulation of the Chi-square test statistic generalizes a result of

Hausman-Taylor (1981) to allow for IV estimation.

To this point, I have considered instrument sets of the general form

[QZ.PYB] . Now I turn my attention to the choice of B. An obvious choice

for B is Z itself. Then 2 — [ Z,P Z] . In other words, the instruments Z are
V V

used twice: first as deviations from their time means and then as the time

means themselves. This is essentially the Hausmsn-Taylor (NT) estimator



discussed in Breusch, Hizon, snd Schmidt (1989). However, since the values of

Z are uncorrelated with the individual effects for each t under H , then
it 0

each of the T NxL matrices Z , where Z [V ,...,Z' , can be used as
t t it St

instruments for X. As a result, more instruments are available which cannot

decrease the efficiency of the GLS-IV estimator. Under the null hypothesis

that individual values of Z are uncorrelated with the individual effects for

all values of t, then the instrument set 8 — provides more efficient

estimates of ft where Z'' is formed as in Breusch, Mizon, and Schmidt (1989)

That is, Z is an NT x TL matrix:

z ...z '1

T times

—
Z . . . Z

1 .1
Si ST

z ...z
Ni ST

Note that QZ* — 0 and PZ — Z. Hence, — [QZ, Z) and constructed

*
using Z will be more efficient than if constructed using PZ.

This suggests that the appropriate specification test should employ the

more efficient OLS estimator to obtain greatet power. However, this will not

turn out to be the case. The next section considers the asymptotic efficiency

for a particular class of data processes to illustrate the issue.

III. Asymototic Efficiency

I consider data of the following fotm for the model described in

equation 1:

(lOa) X —yX +i'
it 0 it—i it

(lOb) 1 —7Z +it 2 it—i it

(bc) plim( —u'n) —

(lOd) plim(— Vu) — I
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(be) p1im(-_T n'n) — S

(lOf) <1 i—1,2

where S is a kxk positive definite metrix. S is en LxL positive definite

matrix and S is a kxL non-zero matrix. I will occasionally refer to S and
till

5

S , which equal S and , respectively. I assume that 17 is
£

l--y 1-7
'

uncorrelated with c. However, it may be correlated with a, this correlation

noted by

(11) plim(--- S'o) — S

where S will be an Lxl zero vector under the null hypothesis and non-zero

otherwise.

This is a particularly simple structure for the data generation process

but it has the appealing property that as -y increases from 0 towards 1, an

increasing fraction of the variance of the random variable is due to the

variation across individuals.2 Since panel data are often slow moving over

time, the performance of the specification test at high levels of y is of

considerable interest. I exclude the possibility that -y — 1. In the context

of this model, -y — 1 would mean that none of the explanatory variables (or

instruments) have any "within" variation and I would be unable to estimate

A more general model would allow some variables to be non-stationary.

However, the greater model complexity would obscure the essential results

without adding much in the way of insights. Define the between estimator using

the means of the inatruments as fi and the between estimator using S as fl2.

Under the null hypothesis, the asymptotic covariance of is given by

2 For example, the between variance for X as a fraction of the total variance

equals (25a-T)/T2 where a—E11. This fraction varies between l/T and 1

as y increases from 0 to 1.
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(12) b))2
where a — and b — E-y1. The asymptotic covariance matrix for

ia given by

(13) V —

[

FB'F'

. I_i

where F — [a +b -1 a +b -1 a +b -1] and B is the TxT matrix
2 1 1-2 2 1 1

2 3 1-12 2 77
2 1—2B— 'y 1

2 2 2 2

1—1 2—2 1—3 2—4
2 2 2

Consider local alternatives of the form 0 and IN 4 i as N

approaches . Under the null hypothesis, the ptobability limit (as N 9 ) of
A

A2V- is zero and c is Chi-square with Ic degrees of fteedom. Under the

alternative hypothesis, c is distributed as a non-central Chi square random

variable with Ic degrees of freedom end non-centrality parameter & where 82 —

q is the probability limit of VN(8"- DIV) and M is the asymptotic

covariance of VNq (see Scheffe (1959)). Let q equal q with substituted

for (i—l,2). The asymptotic biases for the two estimators using the

different set of instruments are

(14) -
E(m+b) - T xz:'zo

and



(15) 2 -
TF&'e

[. :' :r
If — y, it is straightforward to show that V— V and that 4— q

leading to the following proposition:

Proposition k Given the model in equations (10) - (11) and the assumption

that 12' the two estimators and are equally efficient asymptotically

and the power of the specification test of the hypothesis that the
instrumental variables are uncorrelated with the individual effects is
unaffected by the choice of instrument set.

Proof: see appendix.

As -y - ; diverges froa zero, the variances and power of the

specification test begins to differ. Since V-V2 is positive definite, it

would appear that the power of the specification test should increase using Z

as the set of instruments. However, it will turn out that q1 may also be

greater than 4 which will increase the power of the test using the means of Z

as instruments. For y > 0, this result is formalized in the following

proposition.

Proposition L. If >0 and —0, then the asymptotic power of the test

statistic using as instruments is greater than the power using Z as

instruments.

Proof: see appendix.

I now turn my attention to the case where — 0 and > 0. Some

tedious algebra shows that the asymptotic bias for the test statistic under

the alternative hypothesis is greater when Z is used as the set of

instruments. Again, the variance of the between estimator is greater when 1

is used. In this case it is difficult however to show that the power of the

*
test is greater when 1 is used as the instrument set rather than Z . In the

simple case where k—b-I a grid search shows that the test statistic using 1 is

more powerful than when is used.



The increase in power is quite dramatic as illustrated in figure 1.

Again, k—L—l and the covariance of Z and o is set equal to half the variance

of Z. At p — .8 and T — 7, the increase in the number of rejections is 41%

(power equals .14 versus .10) and declines to 26% at T—16 (power is .33 versus

.26). At p — .9, the test using the mean of the instruments rejects nearly

twice as often as when the instruments for each time period are used

separately. Note that at p — .9 and T — 7, 80% of the variation in the data

occurs across individuals rather than for individuals across time. It is

quite typical for many panel data applications to lose 80% of the variance in

the data when using the fixed effects estimator.

Figure 2 graphs the efficiency gains from using the means of the

instruments for k—b-i when T—5 and p and p vary between .1 and .9. As

pointed out above, the tests perform equivalently when p—pa and the test

using the means of the instruments performs better as the two autocorrelations

move apart. However, the improvement is not dramatic with a maximum

improvement of less than 32%. This raises the issue of the performance of the

tests in small samples. We turn our attention to this issue in the next

section.

IV. Small Samole Characteristics a Phi ThaC

Specification test statistics in general have been criticized for having

low power (e.g. Holly [1982], Newey [1985]). One might expect that the power

of the test would deteriorate further as s result of the additional noise from

the instrumenting of variables in X. To consider how well the test works in

practice, I present results from a Monte Carlo experiment. I consider a

simple model with k—b-I, set ,8 equal to 1 in equation (1) and take draws from

m normal distribution for X , Z , e , and o , each with mean 0. The first
It It it i

three variables have variance 1 and a has variance 1/I'. The covariance of Z
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and is zero while the other covatiances vary from experiment to experiment.3

After generating the data, I compute the within and between estimates of Th

their variances, and the Chi-square test (which has 1 degree of freedom).4 I

repeat the process 1000 times for each model.

For the first set of results, I set -1-.—O. With these assumptions, 2

is given by the formula

(16) —
*2T2(

r-l

The asymptotic power of the test increases with more time periods, and with a

higher correlation between the time means of the instruments and the

individual effects. Note that the tests should perform equally well based on

the results from the last section. Table 1 presents Monte Carlo results with

N—200 and T—5. Cov(X ,c ) — 0.4 and a and a vary from 0 to 0.06 and 0.1
it it zo zi

to 0.7 respectively. The numbers in each cell show the fraction of times the

null hypothesis is rejected due to c in equation (9) exceeding the 5% critical

value for a Chi-square random variable with 1 degree of freedom. The- top

number in each cell presents results using the mean of 1 as the instrument set

while the bottom number uses the set 1. For future reference, call the first

test statistic c and the second statistic c . The first column in the table
t 2

shows the computed size of the test. Note that neither of these tests has a

computed size near 5% at very low levels of correlation between 2 end X. This

is suggestive of the results of Nelson and Startz (l990a, l990b) who have

shown that the distribution of IV estimators diverges dramatically from the

asymptotic distribution in the presence of poor instruments.

I have also experimented with varying the variance of o. The results are

not qualitatively different.

Equivalently, I could take the square root of the statistic and uae the
standard normal distribution. Constructing the experiment with one degree of
freedom allows me to avoid issues of direction in defining the local
alternatives which affect the power of the teat.
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The remaining columns in table 1 show the power of the test in the face

of increasing correlation of Z with a. In nearly every case, the power of c2

is higher than that of c1. The increase in power can be significant,

particularly with poor instruments. These results are striking given the

number of individuals in the data set (N'-200) as well as the fact that c has

the same distribution asymptotically as c. Clearly, in the case where y —

— 0, the main advantage of c over c lies in its performance in the

presence of poor instruments.

These results show that in the case where asymptotically the two

formulations of the Chi-square test should give equivalent results, the test

statistic using the more efficient estimator is a more powerful test

statistic. However, Proposition 2 states that in cases where y > 0 and —

0, then the test statistic using the less efficient estiaator is more

powerful. Table 2 presents Monte Carlo results in the case that y = 0.9 and

— 0. Recall that this implies that 80% of the variance in X is lost when

the fixed effects estimator is used. In all other respects, the model is the

same as in the first experiment. Table 2 shows the power of the two test

statistics. The clear advantage of c over c is evident here. While both
1 2

test statistics have the correct size at moderate levels of correlation

between Z and X, the power of c is greater than the power of c in every case

conditional on the alternative. The increase in power can be quite

substantial even in the presence of good instrumental variables. The power of

the test using the inefficient between estimator in the case where a .7

and a = .18 is .942 compared to a power of .791 when the efficient between

estimator is used to construct the Chi-aquare test. This suggests that in

cases where there is significant time variation for the instrumental variable

while there is little time variation for the explanatory variable, one should

use the inefficient between estimator to conatruct the Chi-square statistic to

12



test for correlation between the instrumental variables and the individual

effects.

The final set of Monte Carlo results in Table 3 provides guidelines for

a generalizing the results of Propositions 1 end 2 along with the Monte Carlo

results of Tables 1 and 2. In table 3, I fix the convariance of Z and a at

.09, the covariance of Z and X at .70 and the covariance of X and at .40 and

vary y and y from 0 to .90. In all cases where > y, c has higher power

than c2. Again, the increase in power can be quite dramatic (e.g. -y — .9, y

— .25). This suggests that where there is more time variation in the

instrumental variables than in the explanatory variables, the test statistic

should be computed uaing the inefficient between estimator. Where y equals

there is no clear result with both test statistics performing about the

same, as Proposition 1 auggeats they should. As becomes larger than y, it

becomes more likely that the c out performs c though the improvement is not

large until y is much greater than -y.

1,. Conclusion

Teating for correlated individual effects has become increasingly

important with the greater uae of panel data seta. Thia paper shows that the

type of apecification test often employed in models where all the explanatory

variables are considered exogenous carries over in a straight forward manner

to models with endogenous explanatory variables. However greater attention

must be paid to the quality of the instruments used for the explanatory

variables if the actual size and power of the teat statistic is to correspond

to the theoretical aize and power.

The between eatimator uaed in the specification test can be constructed

with different sets of instruments. In many caaes, a larger set of

inatrumenta leada to a more powerful test statistic. However, it is often the

case that the more efficient test statistic usea a reduced set of instruments

for the between estimator. While the variance of the test statistic is driven

13



up in this case, so is the asymptotic bias which can more than offset the

increase in vmriance. Such a case happens when the explanatory variables are

slow moving over time while the instruments are not. In this case, there is a

distinct advantage to constructing the specification test using the less

efficient estimator to take advantage of its greater asymptotic bias.
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Appendix

£rQaC of Procosition j: Let -y — — -y < 1. Therefore a — b and S ia

given by

1 --y 0 . . . 0

(Al) B' — - i+2 -7 o ... o

0 --y 1

Then

(A2) YB' — (li') [F -F (1+72) F - (F+F) ... F - iF]

Where F ia the i element of F.

Since a — X it ia easy to show that a - -ya — 1.

Therefore F - F — a -
-(a + 7)

— 1 -

Similarly F - F — 1 -

The expression (l+l')F - .[F÷F) t — 2 T-1 can be written as

+ [a-ia) + 27l72 + (a-ia) -7(a-ia) —
Therefore

(A3) FE' — e

(A4) FB'F' — 2 a - T

(AS) FB'e — T

Substituting (A4) into equation (13) shows V equals V and substituting

(A4) and (AS) into (15) shows equals q2•
0
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Proof of Proposition 2: Define 82 as the non-centrality parameter for the

test using as the instrument set. Similarly, define for the instrument

set Z'. Let V be the variance of the within estimator. First, I note that

V-V is a positive definite matrix, assuming y > 0:

(Al) V -V - T3c F V V V 1_li - _ 1 > 0
1 2 u L L.....L. J L (Ea )2 TEa2

by Chebyshev's Inequality.

It is easily shown that V1 — V1 — (Ea/T)
XZZ: za —

A. Therefore,

(A2) 52 - 2 — A' (R -R )A
1 2 12

and is greater than zero if R-R2 is positive definite, where & equals

[V'VV' + V1]', i — 1,2. R1-R2 will be positive definite if &'- & is

positive definite. But

(A3) R'-R'— (V'-V')V (V'-V') + (V'-V').2 1 2 1 w 2 1 2 1

Each of the bracketed terms in A3 is positive definite, so R-R is positive

definite and 2 > 2
1 2
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Table 1. Computed Power and Size
— —o

This table presents the fraction of rejections of the null hypothesis that0 0 out of 1000 replications. The top entry in each cell uses Z as an

instrument for X while the bottom entry uses Z . The covariance of X and
equals .40, N equals 200 and T equals 5. The nominal size of the test is
.05.

18
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.004

.018
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.170

.184

.457

.475

.754

.744

.045

.050
.174
.196

.697

.512

.786

.775

.051

.063
.181

.205

.459

.489

.803

.807



Table 2. Computed Power and Size
— ' — 0

C

This table presents the fraction of rejections of the null hypothesis that

a - 0 out of 1000 replications. The top entry in each cell uses as an

instrument for k while the bottom entry uses Z. The covariance of X and
equals .40, N equals 200 and T equals 5. The nominal size of the test is .05.
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.1

.3
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.7
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.046 .259 .608 .791



.1z

.00

.25

.50

.75

.90

Table 3. Computed Power varying 'y1 and

11

.00 .25 .50

rejections of the null hypothesis that
a— 0 out of 1000 replications. The top entry in each cell uses Z as an

instrument for 5 while the bottom entry uses Z . The covariance of X and
equals .40, N equals 200 and T equals 5. The nominal size of the test is
.05. a — .09 and a — .70

za is

.75 .90

.979

.980
.967
.962

.942

.929
.837
.748

.606

.430

.991

.990
.976
.972

.969

.956
.899
.847

.730

.583

.987

.983
.981
.978

.984

.973
.913
.877

.806
.695

.975

.977

.848

.957

.963

.854

.956

.953

.814

.879

.861

.745

.770

.682

.550
.961 .938 .926 .821 .670

This table presents the fraction of
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