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This paper integrates models of atemporal risk preference that

relax the independence axiom into a recursive intertemporal

asset-pricing framework. The resulting models are amenable to

empirical analysis using market data and standard Euler equation

methods. We are thereby able to provide the first

non-laboratory-based evidence regarding the usefulness of several

new theories of risk preference for addressing standard problems in

dynamic economics. Using both stock and bond returns data, we find

that a model incorporating risk preferences that exhibit first-

order risk aversion accounts for significantly more of the mean and

autocorrelation properties of the data than models that exhibit

only second-order risk aversion. Unlike the latter class of models

which require parameter estimates that are outside of the

admissible parameter space, e.g., negative rates of time

preference, the model with first-order risk aversion generates

point estimates that are economically meaningful. We also examine

the relationship between first-order risk aversion and models that

employ exogenous stochastic switching processes for consumption

growth.
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1. INTRODUCTION

The expected utility model of decision making under risk, and

particularly its cornerstone the independence axiom, have come under attack

recently. The empirical evidence upon which this criticism is based consists

mostly of behavioral/experimental studies where subjects' choices amongst

hypothetical and/or small scale gambles are observed (e.g., Kahnesan and

Tversky (1979), Chew and Wailer (1986), Camerer (1989a, 1989b) and

Conlisk (1989)). Hachina (1982) surveys much of the evidence and argues that

violations of the independence axiom are both systematic and widespread. A

number of new theories of choice under uncertainty have been developed in an

attempt to explain the evidence which contradicts expected utility theory.

Those upon which we focus here are due to Chew (1983, 1989), and Gul (1991).

In this paper we use the general intertemporal asset—pricing model

developed in Epstein and Zin (1989) and aggregate monthly U.S. time-series

data for consumption and asset returns as the basis for an empirical

examination of the generalized theories of Chew and Gui. In common with much

of the empirical literature on aggregate consumption and asset returns, we

assume the existence of a representative agent, the homotheticity of

preferences and the rationality of expectations. We Inquire whether, given

these assumptions, relaxing the independence axiom in the directions defined

by Chew and Gui can help account for the time—series data. To our knowledge

this is the first evidence available regarding the usefulness of these newly

developed theories of choice for explaining market data, Of course, tests of

a theory based on behavior In the field (as opposed to the laboratory) are

prone to potentially serious problems such as errors In data measurement and

unavoidable joint hypotheses. Laboratory—based methods, however, also have

well—known drawbacks and the behavioral evidence Is inconclusive. Some

recent behavioral studies (e.g., Conlisk (1989), Camerer (1989b) and

Harrison (1990)) have cast doubt upon the extent and systematic nature of



violations of expected utility theory. Thus we feel that an analysis based

upon market data would provide an important complementary piece of evidence

regarding the usefulness of the generalized theories of choice. Moreover, we

suspect that many economists would attach greater importance to the question

of whether these new theories do (or do not) help to resolve some of the

standard problems in economics, than to their consistency with laboratory

behavior. The explanation of asset returns clearly qualifies as such a

standard problem.

Representative agent models, with preferences represented by the

expected value of the discounted sum of within—period utilities, have not

performed well In explaining the behavior of consumption and asset returns

over time (e.g.. Hansen and singleton (1982, 1983) and Mehra and

Prescott (1985)). This In part motivates the work In Epstein and Zin (1989)

which formulates a class of intertemporal utility functions which are

recursive but not necessarily additive or consistent with expected utility

theory. Recursive utility permits some degree of separation in the modelling

of risk aversion and intertemporal substitution. In Epstein and ZIn (1991),

generalized method of moments estimation procedures are applied to the Euler

equations implied by a particular parametric member of this class of utility

functions. The results are mixed though some support is provided for the

generalized specification. The functional form used in that study does not

conform with intertemporal expected utility. However, it satisfies the

independence axiom for the set of so—called timeless wealth gambles——those

for which all uncertainty is resolved before further consumption/savings

decisions are made. Since these are precisely the sort of gambles that are

considered in the experimental literature, the specification of Intertemporal

utility that is estimated in Epstein and Zin (1991) is inconsistent with the

cited evidence against the independence axiom. This paper focuses on the

empirical gains from further generalizations of intertemporal utility to



specifications in which orderings of timeless wealth gambles conform with the

theories of Chew and Gui and not necessarily with the independence axiom.

The Euler equations implied by a representative agent's consumption/

portfolio selection problem form the basis for the empirical analysis. We

first make graphical comparisons of the mean/variance properties of the

stochastic discount rates, I.e., the marginal rates of intertemporal

substitution, that are implied by the Euler equations for each model. In

addition, these mean/variance properties can be used as in Hansen and

Jagannathan (1991), to form an informal test of these asset pricing models.

Second, we provide a more formal statistical analysis based on the

generalized method of moments, Finally, we explore the relationship between

the general preference-based models and standard expected utility models in

which consumption growth rates are subject to exogenous stochastic process

switching.

The paper proceeds as follows: The next two sections lay the groundwork

for the empirical analysis by summarizing and applying the most relevant

material from the two literatures on decision theory and intertemporal asset

pricing. In section 2, the Chew (1983, 1989) and Gul (1991) utility

functions are described. Section 3 outlines their integration into a

recursive model of intertemporal utility based on Epstein and Zin (1989) and

presents the implied model of asset returns. Section 4 contains the

empirical analysis. Section 5 concludes and summarizes the paper.

2. CERTAINTY EQUIVALENTS FOR TIMELESS WEALTH GAMBLES

In this section we summarize the relevant aspects of the Utility
functions proposed by Chew (1983, 1989) and Gui (1991). These functions

represent preferences over atemporal or one—shot gambles. Integration into a

multiperiod setting is described in the next section.

Consider a utility function i defined on a subset of D(R1). the set of
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cumulative distribution functions (cdf's) F on the positive real line. If

x > 0, then , represents the gamble in which the outcome x is certain;

(y) = 0 if y < x and (y) = 1 if y a x. Similarly, F = p1 represents
1=1 I

the gamble in which the outcome x is realized with probability p,

1=1,2 n.

Only the ordinal properties of i are relevant. Without essential loss

of generality, therefore, we can assume that

(2.1) p(s) = x. for all x > 0.

As a result, assigns to any cdf F its certainty equivalent, i.e., that

wealth level x much that receiving x with certainty is Indifferent to the

gamble represented by F. Thus we refer to as a certainty equivalent

function.

Consistent with the relevant empirical literature on intertemporal asset

pricing and consumption, we assume that M exhibits constant relative risk

aversion. That is, for any random variable x with cdf

(2.2) 1(Fx) = Xi(F—), for all A>O.

The functional forms for gi considered in this paper are all special cases of

the following, which represents the constant—relative—risk—averse members of

the family of semi—weighted utility functions studied by Chew (1989):

(2.3)
J

(x/M (FfldF(x) = 0,

where has the form

I w'(x)(v(x)l), xml
(2.4) (x)

I,
wL(x)(v(x)_l), xal.

Under suitable assumptions for the valuation function, v, and for the lower

and upper weight functions w1 and w0, equation (2.3) defines (F) implicitly
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for each cdf F. Note that i defined in this way satisfies the certainty

equivalent condition (2.1) if •(1) = 0.

Though the general form of (2.2) has an intuitive interpretation, (See

below), we find It instructive to restrict our attention initially to the

parametric specializations we will use in our empirical investigation.

Accordingly, restrict the vaiuation and weight functions to have the forms:

( (Xel)/5 . S * 0.
v(x)

tiog(x), u=0.
(2.5)

L 6 u .5w(x)=x and w(x)=Ax.

Consider the further parametric restrictions:

(2.6) 0<Aaianda+26<1.

In the Appendix it is shown that given (2.4)—(2.6), we can find an interval

Ia,b), depending on a and 6, 0<a<l<b, such that equation (2.3) defines p(F)

implicitly for all cdf's on the positive real line which have support in

(a,bJ. Furthermore, on this domain, M is strictly monotone in the sense of

first—degree stochastic dominance, implies risk aversion in the sense of

strict aversion to mean preserving spreads and exhibits constant relative

risk aversion. Finally, under some auxiliary assumptions. gi is well—defined

and well-behaved in the above sense for all cdf's having finite mean and

support in the positive real line. Those assumptions are:

(i) .5 = 0 and a < 1, or

(2.7) (ii) 6 < 0 and 0 < a+8 ( 1, or

(iii) 0<6<1 and a+6<0.

Turn to some speciai cases. For greater ease of interpretation, we

express the functional forms for cdf's having finite support.
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Expected Utility (5 0. A 1)

With these parameter restrictions we obtain the linearly homogeneous

expected utility certainty equivalent:

a I/a
((Epx) a0,

(2.8) =

1 i exp( p1log(x1)), a = 0.

The Arrow—Pratt measure of relative risk aversion equals I—a.

Weighted Utility (A = 1)

The constant—relative—risk—averse form of Chews (1983) weighted utility

theory is given by

i.e 1/a
E px

(2.9) p( p5 ) =
S

px1og(x1)
exp • a0.

PIXI

Note that is a single—parameter extension of (2.8). The connection

between expected and weighted utility is clarified by reference to their

implied indifference curves in the probability simplex for the case of

three—outcome gambles (n = 3). (See Figure 1). It is well—known that the

indifference curves of Mw are parallel straight lines. For

indifference curves remain linear but if S * 0 they emanate from a finite

point, Q, In the plane; Q recedes to infinity as 540.

In the triangle shown, indifference curves corresponding to higher

levels of utility are steeper. Such indifference curves are said to fan out.

Machlna (1982), via his Hypothesis II, points out the close connection

between fanning out and consistency with Allais—type behavior and the

empirical patterns that have come to be known as the common consequence
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effect and the common ratio effect. But recent behavioral evidence regarding

fanning out is inconclusive (see the papers by Camerer and Conlisk).

Fortunately, if 8 > 0, weIghted utility also admits fanning in, where the the

point Q lies to the north—east of the triangle and higher Indifference curves

are flatter. In Section 4 below we are able to exploit this flexibility of

weighted utility to Investigate whether fanning in or fanning out Is

indicated by financial market data.

The degree of risk aversion implicit in is of interest. It follows

from Chew (1983. p.lO83) that the risk premium for a random variable with

mean x and a small variance o'2x2 is approximately xc2(1—a-26)/2. Thus

(1—a—28) is a measure of relative risk aversion for small gambles about

certainty. Risk aversion increases as a or 8 falls.

Disappointment Aversion (8 0)

If we set 8 = 0 in (2.4) then (2.3) Implies the following functional

form, which is the constant—relative—risk—averse specialization of the

utility functions axiomatized by Gul (1991): PDA(t p18 ) is the unique

solution to

pa/a E p1x'/a + (A1-1) p1(x — MDA)'a. a * 0,
x <p

(2.10)
DA

p1iog x1 + (A1—1) E p1(Iogx1—iog MD). a 0.

x <p
I 0*

This functional form provides an alternative single parameter extension

of expected utility for which A = 1. The generalization to A < 1 admits the

following psychological interpretation. Refer to an outcome x1 as

disappointing if It is worse than expected in the sense of being smaller than

the certainty equivalent of the gamble according to p0k. In (2.10),
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disappointing outcomes generate negative values for the second summations on

the right sides, if A1—1 ) 0. Thus the certainty equivalent Is smaller than

It would be If A = 1, reflecting an aversion to disappointment.2

The indifference curves for in the two—dimensional simplex are shown

in Figure 1. They are linear and emanate from two distinct points Q and Q',

both of which recede to infinity as A - 1. Thus Indifference curves fan out

in the lower part of the triangle and otherwise fan in. It Is interesting to

note in this regard, that the behavioral evidence supporting fanning out is

weaker In the upper triangle than in the lower region. (See Conlisk, for

example.

Say that individual 1 is more risk averse than individual 2 If any

gamble that is rejected by 2 In favor of a certain prize is also rejected by

individual 1. With greater risk aversion defined accordingly, Gui shows that

risk aversion increases as s or A fails. An important feature of the risk

aversion embedded In gz is portrayed in Figure 2, which shows the

indifference curves in outcome space for binary gambles with fixed

probabilities p1 and p. For the expected utility functions p, the

corresponding indifference curves are tangent at the certainty line to the

actuarially fair market line of slope —p/p. Thus is risk neutral to

the first order (Arrow (1965)) and the risk premium for a small gamble is

proportional to its variance. In contrast, the tangency fails for p if

A < 1, in which case the risk premium for a small binary gamble is

2 There is a similarity in spirit between the structure of and the

hypothesis of Markowitz (1953) and Kahneman and Tversky (1979) that
individuals evaluate risky prospects in terms of gains and losses relative to
a reference position. Here the reference position is the certainty
equivalent of the gamble and the gains and losses are treated differently in
computing the utility of the prospect. Since the reference point is
endogenous and depends on the gamble in question, one obtains an ordering
based on final wealth positions. In the cited sources, an exogenously
specified reference position is taken to apply to all gambles under
consideration and the preference ordering Is defined on deviations from that

position.
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proportional to the standard deviation and we say that i exhibits

first—order risk aversion. (See Segal and Spivak (1990) for a general

treatment of first—order risk aversion and Epstein and Zin (1990) for an

application to asset pricing.

The most general specification considered in our empirical analysis is

(2.3)-(2.6). These functional forms represent a two-parameter, 6 * 0 and

A * 1, extension of expected utility which contains both weighted utility and

disappointment—averse utility. The semi—weighted certainty equivalent,

p6 ), satisfies

(2.11) px(x' — ia)/a + (A1-1) p1x(x - )/c = 0, a * 0,
x <LI SW

and similarly for a = 0.

It is straightforward to provide a disappointment—aversion

interpretation for A < 1 and also to show that the latter implies first—order

risk aversion. Risk aversion Increases as a, 6 or A falls. Finally, a

probability simplex indifference map for is shown in Figure 1. (Other

configurations for Q and Q are possible, though in all cases they are

collinear with the vertex p2 = 1). All of the above certainty equivalents

share the property that indifference curves in the three—outcome probability

simplex are straight lines and more generally are hyperplanes in higher

dimensional simplices. Thus they satisfy the axiom of betweennesm, which is

a weakening of the independence axiom proposed and studied by

Fishburn (1983), Dekel (1986) and Chew (1983, 1989).

There exist in the literature alternative generalizations of expected

utility which can explain some of the accumulated behavioral evidence. Two

such alternatives are prospect theory (Kahneman and Tversky (1979)), and

rank-dependent or anticipated utility theory (Quiggin (1982), Yaari (1987)

and Segal (1989), for example). But in each case, there are serious
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difficulties associated with adopting the corresponding functional forms in

the analysis to follow. For example, prospect theory violates first—degree

stochastic dominance unless potential violations are eliminated in a

preliminary editing phase, but a satisfactory specification of the latter is

not apparent to us. On the other hand, the central role played by the rank

ordering of outcomes in the structure of rank—dependent theory makes it

computationally intractable in our multiple asset portfolio choice context.

In contrast, there are no such difficulties associated with the

betweenness—conforming utility functions adopted here. Whether alternative

generalizations of the independence axiom and expected utility can help to

explain the data we study, must remain a subject for future research.

3. INTERTD(PORAL ASSET PRICING WITH RECURSIVE UTILITY

The certainty equivalent functions of the last section are now

integrated into an infinite—horizon, intertemporal setting. Then we describe

the restrictions Implied for consumption and asset returns by the optimizing

behavior of a representative agent. The reader is referred to Epstein and

ZIn (1989) for the details which support the discussion In this section.

There is a single consumption good in each period. In period t, current

consumption, c, is known with certainty, but future consumption levels are

generally uncertain. Thus intertemporal utility is defined over random

consumption sequences. It is assumed that the intertemporal utility function

is recursive in the sense that the utility U, derived from consumption in

period t and beyond, satisfies the recursive relation

(3.1) Ut = W(c, ii), t a 0,

where p p(U) is the certainty equivalent of random future utility,
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conditional upon period t information.3 The function W is called an

aggregator since it aggregates current consumption. c. with a

certainty—equivalent Index of the future in order to determine current

utility.

We restrict W to have the CES form

[(l-R)c + 0 * p < I,
(3.2) W(c, y) =

'. exp((l-)1og(c) + Riog(y)I, p = 0,

where 0 < 1. The utility of deterministic consumption paths is given by

the CES intertemporal utility function

1/p
= { (l—Ø)cp ]

with the elasticity of intertemporal substitution given by o (l—p)1 and

the constant rate of time preference given by = (l/B)—l. We therefore

interpret p as an intertemporal substitution parameter.

For the certainty equivalent function p we take the semi—weighted form

p. In our earlier work we show that p represents the Implied preference

ordering over timeless wealth gambles. i.e., gambles in which all uncertainty

is resolved before further consumption takes place. Moreover, we have

already noted that all of the behavioral evidence referred to above regarding

individual choice under uncertainty is based on choices amongst timeless

gambles. Thus the preceding discussion of is pertinent. In particular.

risk aversion with respect to timeless wealth gambles is inversely related to

each of the parameters a, A and &

The specializations of p dIscussed above imply corresponding

Here we write p(U ) as shorthand for p(F ), where F is the cdf
U U

— t,1
for U conditional upon period t information.
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subclasses of recursive intertemporal utility functions shown in Figure 3.

Note that the expected utility certainty equivalent specification g.i (see

(2.8)) does not imply the standard intertemporal utility specification

1/a

[(l_13)E ]
, a 0,

(3.3) U0 = {
t=o

expE(1—)E tJog(c)] a = 0.

Rather, p leads to the infinite—horizon generalization of the Intertemporal

utility function of Kreps and Porteus (1978), explored empirically in Epstein

and Zin (1991). The specification (3.3) corresponds to the added restriction

that a = p, leaving only a single parameter to model both intertemporal

substitution and risk aversion. Our earlier work examined the empirical

gains from relaxing this constraint. This paper Is concerned with the

further gains from relaxing the parameter restrictions = 0 and A = 1.

From the perspective of the latter objective, it is interesting to note

the following result due to Duffie and Epstein (1990). When recursive

utility Is suitably formulated in a continuous—time setting with a Brownian

information environment, weighted utility and expected utility certainty

equivalents are observationally equivalent to one another, whereas (and this

is strongly suggested, though not proven by their analysis) they are

distinguishable from p0. Moreover, the essential reason for this difference

between p nd p seems to be that the former alone satisfies first—order
DA WI)

risk aversion. Since in the present paper we are not assuming a

Brownlan—information, continuous—time setting, we cannot rule out the

potential empirical importance of the generalization from p ( 0, A = 1),

to p (A = 1). On the other hand, this result suggests that an empirical

analysis such as ours should include consideration of certainty equivalents

like p that exhibit first—order risk aversion.
DA

We now describe the implications for asset returns and consumption of a
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representative agent having recursive intertemporal utility. The agent is

assumed to operate In a standard competitive environment. There are N assets

and the ith asset has positive gross real return r when held over the

interval tt,t+i1. Denote by M,1 the return to the market portfolio over the

same interval.

In the Appendix we derive the following Euler equations which represent

first—order conditions for the representative agent's consumption/portfolio

choice problem:

(3.4) Eh()IG)( t,t.l = 0, t*j=l N, and

(3.5) E[()] = 0

where: is defined by (2.4)—(2.5),

(3.6) z - '(c /c )'1'M11' p * 0, and
t,I L.l t L.a

x6(xa(l+6/a) — 6/a), a * 0
(3.7) h(x)

x Ll+âlog(x)), a = 0.

Above E is the expected value operator conditional on period t information

and I is the Indicator function,
A

(1, x<l,
I (x) a
A tA, xci.

For these Euler equations to be valid in the general case where A a I we

must restrict the probability distribution of consumption growth and asset

returns as described in the Appendix. Sufficient conditions are that for

each information set at t:

(a) the conditional distribution of Er r I has compact
I,t*I N,t,I

support in the positive orthant and
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(b) the conditional distribution of the random variable

— (p—l)/p—1/p(c Ic ) M has a bounded density function.
t+1 t t+1

According to the model of asset returns represented by (3.4), mean

excess returns are determined by covariances of returns with a function of

consumption growth and the return to the market. Of course, if A = 1 and

= 0 then one obtains the model of asset returns studied in Epstein and

Zin (1991) which has as special cases both the static CAPM when a = 0, and

the consumption CAPM when a = p. This latter restriction corresponds to the

standard expected utility model studied by Hansen and Singleton (1982, 1983).

To obtain a set of restrictions that apply directly to the levels of

Individual asset returns, multiply (3.4) by the portfolio weights and sum

over all N securities to get

r ( r 1
(3.8) C II (z )h(z H l1 = E il (z )h(z )I. i1,..., N.

tL A t*1 t*1 )J t A t*1 t.1 J
t+1

Now use (3.5) to rewrite (3.8) in the form

r

(3.9) E Ii ( )h( )I I = C Ii ( )
tL A t+1 t1 )j tj A t1 t*1

t*1

which is an equation restricting the level of each return, 1=1 N

4. EMPIRICAL ANALYSIS

4. 1 The Marginal Rate of Intertemporal Substitution

The asset pricing model derived in the previous sections has the

geometric structure studied by Hansen and Richard (1987). That is, the model

predicts that equilibrium asset prices are determined by a marginal rate of

intertemporal substitution which discounts future asset payoffs before they

are averaged across states. For example, we can rewrite our model's

asset—pricing equation for excess returns given In (3.4) as

14



(4.1) E (MRS ( - )] = 0,
t t•1,t I,t*1 J.t+1

where the marginal rate of intertemporal substitution of c1 for is

(4.2) MRS = h(z LI ( ),t.1,t. t*1 t1 A t.1

for defined in (3.6). The marginal rate of intertemporal substitution

for an individual asset return, rather than an excess return, is defined in

(3.9) as

h(z )I ( )'
MRS

t*i A t.i
r

E Il (z )z
tL A t*1 t.i

We focus on the properties of MRS rather than on MRS since the latter

involves a conditional expectation which is difficult to compute.4

Figures 4 through 11 plot the ratio of the estimated standard deviation

of MRS to its mean for various parameter values. Consumption is measured as

monthly per capita expenditure on nondurables and services and the monthly

NYSE value—weighted return is used to measure the return on the aggregate

wealth portfolio5 for the time period 1959:3 to 1986:12. Each figure has

five graphs, one for each of the five choices for the first—order risk

aversion parameter, A. These values range from first—order risk neutrality,

A = 1, to first—order risk aversion corresponding to A = 0.3. The elasticity

of intertemporal substitution, a. a (1—pY1, varies across the figures and

takes on the values (0.01, 0.1, 0.5, lO to reflect varying degrees of

substitutability. For Figures 4 through 7 the additional risk-aversion

parameter for the weighted utility specification, & is held fixed at zero.

The metods of Gallant. Hansen and Tauchen (1989) could be used to
evaluate MRS by first fitting a semi—nonparametric estimator for the Joint
distribution of consumption growth and asset returns.

The consumption data (and corresponding implicti price deflator) are from
Cit ibase and the value—weighted return is from CRSP.
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Therefore, these figures pertain to the special case of disappointment

aversion. The parameter a is varied between —29 and 1, so that

(second-order) relative risk aversion varies from 0 to 30. In Figures 8

through 11, a is fixed at —1, and is allowed to vary so that the measure of

local (second—order) risk aversion, l—a—2, still varies from 0 to 30. In

all of the figures, the discount factor. . Is fixed at 0.9975 corresponding

to a 3 percent annual constant rate of time preference.

Hansen and Jagannathan (1991) show that the restrictions on the

covariances between MRS and asset returns implied by equations such as (4.1)

generate an inequality restriction for the ratio of the standard deviation to

the mean of MRS. They estimate this bound using various stock and bond

return data Including two cases that correspond to the data we use in Figures

4 through 11. Using the value-weighted return on the New York Stock Exchange

and the return on one—month Treasury bills.6 they estimate a bound of 0.14.

Using one—month holding period returns for Treasury bills with one to six

month maturities yields a substantially larger lower estimated bound for the

standard deviation—mean ratio of 0.79. It is clear from the sizable

difference in these numbers that term—structure evidence typically provides

more of a challenge for asset pricing models, e.g., Backus, Gregory and

Zin (1989).

The first four figures allow us to identify some special cases as well

as see some patterns in the behavior of the first two moments of MRS as the

preference parameters change. The expected utility hypothesis is depicted by

the point on each A = 1 graph where 1-1/e = a. That Is, the point where

RRA = 10 in Figure 5, RRA = 2 in Figure 6, and BRA = 0.1 In Figure 7•7 None

6
Real returns are computed using the implicit deflator for monthly

consumption of nondurables and services.

In Figure 4, the expected utility model corresponds to a relative risk
aversion parameter of 100 on the A I graph and is not shown.
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of these points satisfies the Hansen—Jagannathan bound which is consistent

with existing empirical rejections of this theory. The Kreps—Porteus model

examined in Epstein and Zin (1991) is the remainder of the A = 1 graph.

Increasing (second—order) relative risk aversion has a small effect on the

standard deviation relative to the mean when deterministic consumption is

highly complementary (Figures 4 and 5) and the Hansen-Jagannathan bounds are

violated for even the most extreme cases of risk aversion. ihen

complementarity is smaller or when deterministic consumption is substitutable

(Figures 6 and 7), increasing relative risk aversion has a much larger effect

and the Hansen—Jagannathan bounds are satisfied for a range of relatively

large values for RRA. Another Important pattern to emerge from these figures

is the impact of smaller values of A on the behavior of MRS. The standard

deviation always gets larger relative to the mean as this parameter

decreases. That is, the MRS gets more volatile relative to its mean and,

hence, closer to the predictions of asset returns data, as A gets smaller.

The Hansen—Jagannathan bounds are satisfied for a large set of values for the

parameters when A < 1. First—order risk aversion, therefore, helps move the

theory closer to observed behavior. In addition, uniike second—order risk

aversion, increases in first—order risk aversion continue to have a large

effect on the ratio of the standard deviation to the mean as intertemporal

complementarity increases.

The next four figures correspond to weighted and semi—weighted utility

generalizations in the 8 dimension. Recall that in these figures the

parameter a is constrained to equal —l and the parameter 6 varies so that

l—a—28 (the local measure or second—order relative risk aversion when A = 1),

varies from 0 to 30. Values along the horizontal axis greater than 2,

therefore, imply fanning out, while values less than 2 imply fanning In. The

most striking feature of these figures is the way they closely mimic the

previous four figures in which .5 = 0. This provides some confirmation of the
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theoretical prediction of Duffle and Epstein (1990) regarding the

observational equivaience of weighted utility and Ereps-Porteus utility.

4.2 GM!'! Estimation

Equations (3.5) and (3.9) form the basis of our statistical analysis of

the models discussed above. We concentrate on two assets, the value—weighted

return on stocks traded on the NYSE, and the return on a one—month treasury

bill.6 The existing body of empirical works suggests that the Joint behavior

of these two securities provides s challenge for any asset pricing model, We

treat the value—weighted return as a measure of the return on the aggregate

wealth portfolio and use equation (3.5) to model its behavior. We restrict

the t—bIll return with equation (3.9). Rewrite ex post versions of these

equations as

(4.4) 1 ( )I (—a —1)/al = , andA t+i t+i t+1 ) t+1

(4.5) 1 G )1 f-a (1+S/a)-S/a]f ] —8 ] =
A t+1 t+1 t+1 ) t+1J t+1

t.i

where z is defined in (3.6). These equations define the vector of

forecast errors, c = It6 which as discussed In section 4.1, has
t+l t+1 t+1

the property that

(4.6) E [ I = 0.
t t+1

Therefore, any variable that Is in the agent's Information set In period t is

orthogonal to the forecast error and can be used to construct an

unconditional moment restriction. These unconditional moment restrictions

can then be used to form a OHM estimator for the preference parameters.

The data span the 1959:3—1986: 12 time period. A complete description of
the data set can be found In Epstein and Zin (1991).
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We use a subset of the conditional moment restrictions implied by (4.6)

summarized by

(4.7)
E[

1, C
]

0.

That is. we impose restrictions on the dynamic behavior of the forecast error

process. The linear restrictions implied by (4.7) can be summarized by ten

unconditional moments, the means, the first and second order autocovariances,

and the first and second order cross covariances, which must all be zero. The

use of lagged forecast errors as instruments is in part motivated by the

diagnostic testing of Euler equation residuals advocated by Singleton (1987).

In addition, the fact that these restrictions retain their precise meaning

for all model specifications, permits a more straightforward comparison

across models than does the more common practice of using arbitrary functions

of cx ante information as instruments.9 Tables 1 through 4 contain GMM

parameter estimates and diagnostic tests for a variety of special cases of

the general specifications in equations (4.4) and (4.5). In each case we use

two different measures of consumption. Consistent estimates are obtained in

a first round by minimizing the unweighted sum of squared errors from the ten

estimating equations. These estimates are used to construct a consistent

estimate of a weighting matrix which is used to obtain the consistent and

(relatively) efficient estimates (and their standard errors) presented In the

tables.10 We turn now to a discussion of these results.

Instrument choice also determines the relative efficiency of GMM
estimators. Optimal instrument choice requires knowledge of the conditional
expectation of the derivatives of the forecast errors with respect to the
model's parameters. Without explicit distributional assumptions, this choice
is typically infeasible. A casual argument for our choice of instruments
along these lines can be made given the exponential functional forms that we
are using. However, as with almost any instrument choice, this type of
argument is necessarily very informal.

The regularity conditions sufficient to yield consistent and
asymptotically normal GMM estimators based on (4.7) when A = I are covered by
Hansen (1982). The fact that the instruments depend on unknown parameters is
of no consequence for these properties. When A * I the functions defining
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Expected Utility

Our starting point for G'f estimation and tests of the over—Identifying

restrictions implied by (4.7), is the standard time—additive expected utility

model. Table 1 contains estimates and asymptotic standard errors for the

rate of time preference parameter, = the elasticity of

substitution/relative risk aversion parameter, u, and Hansen's chi—squared

test of the eight over—identifying restrictions (ten equations less two

estimated parameters). This model corresponds to equations (4.4) and (4.5)

with the additional restrictions of A = 1 (first—order risk neutrality),

= 0 (no fanning in or out), and a = p = 1—1/u (substitution and risk

aversion tied together).

The results are not favorable to the model. The over—identifying

restrictions test Indicates that this model can be rejected at almost any

significance level. In addition, the estimated rate of time preference is

negative and significantly so for one of the consumption measures.

The lower part of the table contains the estimated moments (and their

asymptotic standard errors) and the diagonal elements of the weighting

matrix. The former give us an additional set of tests of the restrictions

of the model and the latter provide some information about how each equation

is weighted in the computation of the estimator. These help to identify

the directions in which the model is rejected. The forecast errors exhibit

significant first—order autocorrelation for both the stock and the bond

return equations. Note that the moments involving the bond equation error

have a corresponding diagonal element of the weighting matrix that is much

smaller than do those for the market equation error. The GMM estimator,

the forecast errors are not differentiable, hence, the standard results do
not necessarily apply. We can, however, appeal to arguments from the
empirical process literature that hold for nondifferentiable functions to
establish asymptotic normality of the CNN estimators based on the model with
A 1. These arguments are outlined in part 3 of the Appendix.
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therefore, attaches relatively greater weight to the moments for the market

equation which accounts for the fact that their fitted values are typically

closer to zero than the others.

Kreps—Porteus Utility

By dropping the constraint that a p but retaining the restrictions

A 1 and .5 0, we obtain the Kreps-Porteus model from Epstein and

Zin (1991). The results in Table 2 differ numerically from our previous

study given the different moment restrictions imposed on the estimation

problem, but they exhibit the same patterns. The substitution elasticity is

small as is the coefficient of relative risk aversion. The rate of time

preference is again large and negative. For nondurable consumption, the

chi-squared test of the seven over—identifying restrictions has a p—value of

approximately 13%, so it would not be rejected at, say, the 10% level. The

nondurables and services measure provides a stronger rejection with a p—value

of i.2'/..

The estimated moments for this model have substantially larger standard

errors than for the expected utility model. As a result, marginal t—tests of

the hypothesis that the moments are individually equal to zero do not reject.

The relatively large values of the joint test statistic, therefore, come from

the correlations across these moment eqiations. Even though these moments

are not estimated very precisely, there are a number of changes In the point

estimates from those obtained for the preceding model. The large negative

autocorrelation in the bond equation error in the expected utility model is

now a small positive correlation. In fact almost all of the moments

Involving the bond error have changed sign. The positive average error for

the bond equation in the expected utility model is now a large negative

average error. However, the pattern of attaching relatively more weight to

the moments Involving the stock return equation and, hence, providing a
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better fit for these moments, is still present.

Weighted Utility

Table 3 presents results for a model with risk preferences that exhibit

first—order risk neutrality (A 1). but are allowed to fan out ( < 0) or

fan in ( 0). As one might anticipate given the similarities of the

weighted utility model and the Kreps—Porteus model found in section 4. 1, the

additional parameter introduced by this specification is not well identified.

The value of the objective function typically changes very little with

substantial changes in the values of a and ,. The large standard errors for

the estimates of these parameters is further evidence of this weak

identification. The point estimates indicate fanning out for both data sets,

however, the large standard errors do not allow fanning in to be rejected.

Further the Kreps—Porteus model cannot be rejected using either a t—test of

= 0 or a likelihood—ratio—type comparison of chi—squared values. The

estimate of the rate of time preference Is positive but the estimate of the

elasticity of substitution is significantly negative Indicating convex

utility of deterministic paths. Given these results it is difficult to

consider this parameterization to be much of an improvement over the

Kreps—Porteus model. In addition, our market data seem to impute little

importance to the fanning pattern of indifference curves, which as noted

earlier, has received considerable attention in the experimental literature.

Disappointment Aversion

We now turn to the results for a model with first—order risk aversion.

We were unable to identify the model with all five parameters (, o, a, and

A), unrestricted. This is not surprising given the nature of the results for

the weighted utility model. Thus, we fix 0 and estimate the remaining

four parameters for the disappointment aversion model.

The evidence in Table 4 indicates that allowing for first—order risk
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aversion greatly improves the performance of the model on many different

dimensions. The point estimates of A are roughly three standard deviations

from A 1, hence, are significantly different from first—order risk

neutrality. These values for A indicate that the representative consumer

attaches roughly three times more weight to disappointing outcomes than to

favorable outcomes. That is, a substantial amount of first—order risk

aversion appears to be necessary to rationalize observed consumption and

asset returns data. The estimates of the substitution elasticity are very

small——substantially smaller than in either the expected utility or

Kreps—Porteus models. The rate of time preference is positive even though

the substitution elasticity is small. A negative rate of time preference is

not needed in this model to match the average levels of returns. In other

words, the model appears to be generating sensible results with economically

meaningful values of the parameters.

The over—identifying restrictions test almost never rejects this model.

The potential for a singularity in a system of moment restrictions is always

a concern. However, the matrix in the quadratic form used to construct the

chi-squared test, had a substantially larger condition number (the ratio of

the smallest to largest eigenvalue) in this case than for any of the other

models. It is, therefore, unlikely that the risk of a singularity is greater

than for any of the other models (which typically reject). The estimated

moments and their standard errors indicate that this model generates moments

that are much closer to their theoretical value than any of the other

specifications. The pattern of fitting stock restrictions more closely than

bond restrictions is no longer present. The mean of each error appears to be

receiving approximately the same weight and the same is true for the

autocovariances. Overall the empirical performance of this model appears to

be very good.

The degree of risk aversion implied by the point estimates for the
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disappointment aversion model cannot be summarized by a single number as in

the expected utility model. We can, however, make some risk aversion

comparisons by computing certainty equivalents for simple lotteries for

different parameter values. Table 5 contains some willingness—to—pay

calculations, i.e., the difference between the mean and the certainty

equivalent, for three expected utility certainty equivalents (a = —1, —9, and

—29), and two disappointment aversion certainty equivalents (corresponding to

the estimates from Table 4). The gamble considered is timeless and has two

equally likely outcomes with an expected value of 75,000; the standard

deviation of the gamble increases as one moves down any column of the table.

From these calculations we can see that even for a small gamble, the expected

utility model does not differ much from risk neutrality, even for a 'large'

degree of relative risk aversion, while the disappointment aversion model

displays substantial risk aversion. However, for a range of moderate to

large gambles, the disappointment aversion certainty equivalent corresponding

to A = 0.38 and a = —1, exhibits less risk aversion than an expected utility

certainty equivalent with a 'moderate' value of relative risk aversion,

a = —9. (See Epstein and Zin (1990) for additional comparisons of risk

aversion along these lines.

We note that what constitutes a 'moderate' or 'large' magnitude for the

degree of relative risk aversion (RBA) is not at all clear. While the

conventional wisdom has until recently held that only values of RRA less than

ten are reasonable (e.g.. Mehra and Prescott (1985)), Kandel and

Stambaugh (1990) have raised serious doubts about the validity of arguments

typically invoked to support this view. The disappointment aversion model,

of course, is not immune to this debate. Whether or not one should view the

degree of risk aversion embodied in the results in Table 4 to be implausibly

large, is equally unclear. However, it is clear that since 'large'

second—order risk aversion alone still leads to rejections of the theory, it
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is the 'large' first—order risk aversion that improves the empirical

performance of the model. Although this property is structural in the

context of the representative agent formulation of this paper, there is some

reason to believe that it may be reflecting a feature of the market structure

rather than individuals' preferences. For example, Epstein (1991) presents a

simple example in which an exogenously given, suboptimal risk—sharing rule

leads to community preferences that exhibit first—order risk aversion, even

though all individuals have standard expected utility preferences. There is

also an interesting link between the disappointment aversion model and

stochastic process switching models, to which we now turn.

4.3 Switching Models for Consumption and MRS

When consumption growth exhibits stochastic process switching, expected

utility models generate more plausible asset—pricing predictions (e.g.

Kandel and Stasbaugh (1989) and Cecchetti, Lam and Mark (1989)). This is

similar to the inclusion of so—called "disaster states" in the consumption

growth process (e.g., Reitz (1988) and Backus, Gregory and Zin (1989)). We

now examine an interesting empirical similarity between these models and the

disappointment aversion model.

Figure 12 plots the cx post realizations for the log of the MRS defined

by (4.2) for the disappointment aversion model using nondurable consumption

and the point estimates of the parameters that correspond to this measure of

consumption from Table 4h1 Figure 13 plots a histogram for this series.

From these two figures we can see two obvious properties of this fIRS: it

exhibits substantial negative autocorrelation and its unconditional

distribution is strongly bimodal. A simple reduced form time series

representation with these two properties is a mixture of normal distributions

11

A comparable plot for nondurables and services provides very similar
evidence and is not shown.
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with a two-state Markov chain generating the mixture. That is, a stochastic

switching process of the form considered in the papers cited above. Maximum

likelihood estimates of such a model for the log of MRS are presented in

Table 6 for both consumption measures.12 The parameters in this switching

model are the unconditional probability of being in the high state, p. the

mean and standard deviation in the low state, (g.i, o). the mean and standard

deviation of the high state, 2' and the autocorrelation parameter for

the Markov chain, •13 The negative autocorrelation and bimodality noted in

Figures 12 and 13 are also present in the maximum likelihood estimates in

Table 6. There is substantial separation in the estimates of the two means.

The low mean state is slightly more probable and has a larger variance than

the high state. This pattern is shared by the log MRS for both consumption

measures, though the autocorrelation is not as strong for the nondurables and

services MRS. For comparison the log of the likelihood function is computed

for an i.i.d. normal model as well which has four fewer parameters.

One could construct an expected utility model that would deliver exactly

this behavior in the marginal rate of Intertemporal substitution and, hence,

the same predictions for asset pricing as the disappointment aversion model.

Since the log of the expected utility MRS is a linear function of the log of

consumption growth, applying the inverse of this linear function to the log

of the disappointment aversion MRS produces a consumption growth process that

generates an observationally equivalent expected utility MRS. For example.

postulating a switching process for the log of nondurable consumption growth

12 SInce the discussion in this section is at a somewhat casual level, we
ignore the complications for Inference that may be introduced by the fact
that this series is generated using parameter estimates computed from the
entire sample.

' Without loss of generality, the transition probabilities are parameterized

as
Prob(state

i I state1 = j) =
p1(l—O) + 6O, where

p1
is the

unconditional probability of state I and = 1 when i J and 0 otherwise.
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with p = 0.4342, 8 = —0.2068, 0.0026. p2 = o.iiio,' o = 0.0052, and

= 0.0044. generates an expected utility marginal rate of substitution

process with = .9975and a —9, that exhibits exactly the same behavior as

the disappointment aversion marginal rate of substitution process in the

first column of Table 6.

For comparison, Figures 14 and 15 plot the log of observed monthly

nondurable consumption growth and its histogram. The log of any expected

utility MRS is a linear function of this process. The second and fourth

columns of Table 6 estimate the parameters of the switching model that fits

observed consumption growth. From the figures and the parameter estimates it

is clear that observed consumption growth does not exhibit the persistence

and bimodality properties that could generate an expected utility MRS that is

similar to the disappointment aversion MRS. The evidence from these data for

the type of stochastic switching process for consumption growth used in

previous expected utility studies, e.g., Cecchetti, Lam and Mark (1989), is

quite weak. However, we have shown that the marginal rate of intertemporal

substitution can exhibit switching-type behavior even If consumption growth

rates do not. The requisite persistence and bimodality of the MRS can be

generated instead by the specification of disappointment averse utility.

6. cONCLUSION

We have shown that some recent developments In the theory of choice

under uncertainty due to Chew (1983. 1989). and Gui (1991), that relax the

independence axiom of expected utility, can be incorporated Into a recursive

asset—pricing model without sacrificing either theoretical or empirical

tractability. We are able to provide the first tests of these new theories

using actual market data rather than laboratory experiments. Our evidence

14 Note that the low state for MRS translates into the high state for
consumption growth.

27



indicates that the generalization to weighted utility does not enhance the

explanatory power of our asset—pricing model for the data we consider. On

the other hand, we find that using preferences that exhibit first—order risk

aversion provides a substantial improvement in the empirical performance of a

representative agent, intertemporal asset—pricing model relative to models

that maintain only second-order risk aversion. A model in which the

representative agent's preferences exhibit positive time preference, low

substitutability in deterministic consumption and non—negligible aversion to

small risks, is very difficult to reject. Future research will examine the

robustness of these results by considering other securities such as

individual stock returns and multiperiod bond returns.
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APPENDIX

1. Properties of

Recall the definition (2.3) of where 0 is given by (2.4)-(2.5).

Note that #'(l) ) 0 and '' (1) < 0. Thus 0 is strictly increasing and

concave on an interval (abi containing 1. Note also that •(l) = 0. (Under

(2.7), the preceding is true for gy positive numbers a and b.

Let F have support in [a,m). Then

J (x/a)dF(x) a J (l)dF(x) 0.

On the other hand, if F has finite mean m, then by Jensen's inequality

J Ø(x/m)dF(x)a (l) = 0.

Thus there exists a (unique) A such that $ 0(x/A)dF(x) = 0. We define

= A.

Properties (2.1) and (2.2) are immediate. Consistency with first—degree

stochastic dominance and risk aversion follows from the sonotonicity and

concavity of 0. For example, if G is a mean preserving spread of F, then

J #(x/p (F))dF(x) 0 J 0(x/ji55(G))dG(x)

J #(x/p(G))dF(x) => i5,(F) a

2. Derivation of the Euler equations

Turn to the derivation of the Euler equation (3.4). It follows from

(2.3) and Epstein and Zin (1989. pp. 957—8). that the optimal portfolio share

vector w solves

(A.1) max £01 Bh/PM1/P(c,j/ct) fl/I,

where is the vector of gross real returns. i , the return to
t,1 t,1 t t.1

the market portfolio, and where u
(w1

ø) varies over the simplex

29



{w : waD for all i and w = i}. We will show that, under additional

assumptions, the objective function in (A.l) is differentiable at w end the

associated first-order conditions are given by (3.4). The existence of an

interior optimum is assumed.

Recall the definition (3.6) of z and define

(x(x-i)/a maO,
g(x) .{. xlog(x) , a0.

The optimization problem (A.l) can be written

max f g(z wTr )dF
(I) J tel t+1 t+l t

+ (A—i) I g(z .(1
I )dF

.3
—l I tel t+l tel t

(z M wr al}
t+l t+l tel

where F is the appropriate conditional cdf. Since g is differentiable, the

only potential difficulty arises because the domain of the second integral

depends upon w and because A a 1 in general.

Define

(A.2) i(w) =
J -l T g(z1)dF.{z N wr al}

tel tel t+l

When there is positive probability associated with
— 1, can fail to be

differentiable at to = w. But under Assumptions I and 2 below, 0 is

differentiable there and

(A.3) 0(w) — qt(w) = 0, i,j, = 1 N.

It then follows that (3.4) represents the first—order conditions for (A.l).

Assumption 1: For each information set at time t, the conditional

distribution of r1 has compact support in the positive

orthant.
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Assumption 2: For each information set at t, there exists an c > 0 such that

sup - c1Prob ((5 : 1—c < z < 1+c}) < m.O<cc I 1*1 t.1

A necessary condition for Assumption 2 is that the conditional probability

that z 1 be zero. A sufficient condition is that z have bounded11
t..I

conditional density function.

One can apply elementary arguments and the fact that g(l) = 0 to the

difference quotient corresponding to (A.3) to prove the latter. Details are

omitted.

3. Asymptotic properties of the GMM estimator

Turn now to the asymptotic properties of the Gt.4 estimator when A 1.

In this case the objective function is not differentiable. We therefore

employ the results in Andrews (1989a, 1989b) to show how the arguments in

Hansen (1982) can be modified to deal with this nonstandard situation. The

application of these results to our problem is straightforward so we simply

outline the steps involved in deriving asymptotic properties for the GMM

estimator. Note that unlike Andrews (1989a, 1989b), we do not have the added

complication of infinite dimensional nuisance parameter estimation; all of

the parameters In our model are finite dimensional.

For simplicity, Consider first the just—identified case. Let

a f1 f(x,b) be the Sample analogue (for a sample of size T) of the

population orthogonality restrictions based on (4.7), where x1 Is the vector

of variables and b is the vector of parameters. The GMM estimator-, b, is

defined such that f(b) = 0 and the true value of the parameter vector, b,

IS such that Ef1(b) = 0. If a uniform law of large numbers holds for fT(b)

and if b Is IdentifIed, then a standard proof (e.g. , Hansen (1982) or

Andrews (1989a, Theorem 1.1)) of the consistency of b1 can be constructed

when Ef(b) is continuous. The continuity of this expectation follows from
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the discussion in section 2 of this appendix and will be assumed from here

on.

Since the functions defined in (4.4) and (4.5) are not differentiable in

the parameters of the model, the mean value expansion of fT(bI) at b0, which

is typically used to establish asymptotic normality for the GMM estimator.

does not necessarily exist. We can, however, expand Ef1(b0) at bT since this

function Is differentiable. This expansion has the form

âEf (

EfT(bo)
=

EfT(bT)
—

{ 8b ]bT_bO).

where bT is between b1 and b0. This implies that T1"2(bT_bo) is

asymptotically normally distributed If T1"2EfT(bT) ham this property, since

EfT(bo) equals 0 by definition. Note the difference in this result from the

1/2
standard argument which says that I (bT_bo) Is asymptotically normally

distributed if T1"2fT(bo) has this property.

Define the empirical process v1(b) v T112(f1(b) — Ef1(b)l. If this

process has the property of stochastic equlcontlriuity (as defined in

Andrews (1989b)) at b , and if b is consistent for b , then v (I ) is

asymptotically equivalent to T(bQ). This in turn implies that T112Ef1(b1)

is asymptotically equivalent to _T1'2fT(bo). since both Ef1(b0) and fT(bT)

are zero by definition. When a central limit theorem holds for T1'2fT(bo) as

in the standard case, it follows that T1'2(bT_bo) is asymptotically normally

distributed with covariance matrix

Ef(b)-i Ef(b)-i

[
°

] Var[ f(b0)][8 8b

An estimator of the matrix of derivatives in this expression can be

constructed using a finite difference of the sample average (as In Pakes and

Pollard (1989)) evaluated at a consistent estimator for b0, provided the

finite difference converges to zero at an appropriate rate as the sample
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size gets large. The variance of the orthogonality conditions in the middle

of this expression can be consistently estimated in the standard way by using

the sample average of f(x1,b)f(x,b)T, evaluated at a consistent estimator

for b
0

When the model is over—identified, b is defined as the minimizer of the

quadratic form fT(b)TWTfT(b), where W isa positive definite matrix that can

depend on the sample size and has a probability limit of W. As In the

Just—identified case, asymptotic normality follows from an expansion of

Ef (b ) T

EfT(bo) around b1. Premultiply both sides of this expansion by [3
âb

0
] w.

Ef (b ) T
It follows that when [3

8b
0

] WT1"2f(b) is 0(1) and the Stochastic

equlcontinulty condition holds, T112(b—b) is asymptotically normally

distributed with covariance matrix

(DWD0)_1DW[Var [T1'2f (b )J J
WD(DTWDYI.

Ef(b) -1
where D0 = r ab

0
When W = where V is equal to Var[T12f(b)}

the asymptotic covariance matrix of the G'1 estimator Is (DV_lD0Y1. This

defines an efficient estimator In the sense that this covariance matrix

differs from the covariance matrix of an estimator defined for an arbitrary

choice of weighting matrix, WT by a positive semidefinite matrix. Further,

for this efficient estimator, TfT(bT)TV_tfT(bT) has a limiting chi—squared

distribution with degrees of freedom equal to the number of restrictions less

the number of estimated parameters. Note that this result differs from the

Ef (b ) r
Just—identified case by requiring that [3

ôb
0

] WT1'2f(b) converge to

zero in probability as the sample size gets arbitrarily large. When the

objective function is differentiable, the analogous condition to this follows

from the necessary conditions for the optimization problem that defines the
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estimator. Alternatively one can think of the over—identified model as

corresponding to a particular just—identified model (as in Hansen (1982)), by

defining it as the solution to a1f1(b1) = 0, where a1 has column dimension

equal to the number of orthogonality restrictions and row dimension equal to

the number of parameters, i.e., the estimator sets a particular linear

combination of the orthogonality restrictions equal to zero. In the

differentiable case, a1 can be thought of as defining the first—order

conditions. In the nondifferentiable case, when a1 converges to

Ef (b ) T

[3 ôb ° ]
W, the asymptotic results discussed above will hold without any

additional assumptions. Therefore, constructing a Just—identified GNM

estimator for the linear combinations of the orthogonality restrictions given

1.3Ef(b ) T

by a consistent estimator of L 3b J
W results in an estimator that is

asymptotically equivalent to the estimator based on the minimization of the

Ef (b ) T

quadratic form and the requirement that [3 ôb ° ] WT1'2f1(b1)
= o(i).

The results discussed above rely on the stochastic equlcontinuity of the

empirical process. Sufficient conditions for this in a time series context

that can be applied to our model are given in Andrews (1989b). Note that the

functions that we deal with involve his type I and type III functions

(indicator functions and power functions).
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FIGURE 1: Utility Function for Timeless Wealth Gambles
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FIGURE 3: CLASSES OF RECURSIVE INTERTEMPORAL
UTILITY FUNCTIONS
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Table 1: Expected Utility

Parameter Nondurables Nondurables and Services

7 -0.0043 —0.0132
(0.0022) (0.0022)

0 0.2073 0.1217
(0.0094) (0.0093)

a { 1—i/o } ( 1—1/0

6 (0) (0)
A (1) (1)

x2(8) 35.91 28.08
1.000021 (.0005)

Moment Fitted Value Weight (x107) Fitted Value Weight (x107)

E(eM) —0.1355 0.0012 -0.0697 0.0038
(0.0554) (0.0297)

E(c5) 0.1285 0.0001 0.1224 0.0001
(0.0702) (0.0710)

E(cMcM ) —0.0047 12.530 —0.0011 125.71
(0.0011) (0.0003)

E(cmcm ) —0.0483 0. 1595 —0.0292 0. 1909
(0.0089) (0.0062)

E(CMCB ) 0.0180 1.4398 0.0077 4.8541-i
(0.0035) (0.0017)

E(c5cM ) 0.0145 1.3587 0.0055 5.0839-1
(0.0031) (0.0014)

E(cNcN 1 —0.0003 10.464 -0.0001 101.83-2
(0. 0010) (0. 0003)

E(CBCB ) 0.0022 0. 1413 0. 0043 0. 1501-2
(0.0096) (0.0079)

E(eNcB 1 —0. 0027 1.3898 -0. 0004 4. 4613-2
(0.0029 (0.0014)

E(cBcH ) 0.0026 1.3898 -0.0001 4.2351-2
(0.0030) (0.0015)

Notes: Asymptotic standard errors, asymptotic p—values, and constrained
parameter values are denoted by 1'), ('I, and (}, respectively. and C
denote the Euler equation errors for the stock and bond returns. Estimated
moments and their standard errors are multiplied by 100. "Weight' is the
diagonal element of the weighting matrix used to compute the estimator.



Table 2: Kreps—Porteus Utility

Parameter Nondurables Nondurables and Services

-0.0077 -0.0110

(0.0012) (0.0022)

0.1550 0.1416

(0.0736) (0.0632)

a 0.4117 1.7113

(0.2407) (0.6518)

{0} (0)

A (1) (1)

x2(7) 11.25 18.08

(.1281 [.012)

Moment Fitted Value Weight (x108) Fitted Value Weight (xlO°)

E(eM) —0.0949 0.0003 —0.0474 0.0013

(0. 1643) (0.0704)

E(c5) —0.2316 0.00004 —0.2386 0.00004

(0.4584) (0.4319)

E(cMcM ) -0.0038 5. 7739 —0. 0012 17. 674

(0.0074) (0. 0016)

E(c5c5 ) 0.0083 0. 1310 0.0041 0. 1650

(0.0544) (0.0538)

E(cMc8 ) —0.0018 0.8460 —0.0021 5.0732

(0.0203) (0.0094)

E(CBCN 1 —0.0049 0.9062 -0.0039 5.7790

(0.0198) (0.0090)

E(cMcM ) —0.0002 6.7000 —0.0001 17.525
-2 (0.0072) (0.0014)

E(c8c5 ) -0.0039 0. 1334 —0.0063 0. 1477
-2 (0.0526) (0. 0504)

E(cMc5 ) -0.0039 0.9603 —0.0014 5.2289
-2 (0.0195) (0.0086)

E(CBCK 1 0.0013 0.9324 —0.0010 4.9152
-2 (0.0195) (0.0085)

Notes: See Table 1.



Parameter

0•

a

A

1—a—2

2x (6)

Z2(7)—X2(6)

Table 3: Weighted Utility

Nondurables Nondurables and Services

0.0072 0.0067
(0.0055) (0.0038)

—0.3169 —0.3656
(0.0450) (0.0680)

2.4105 8.1409
(9.7503) (8.0639)

—0.6480 -4. 0372

(9.4916) (7.1304)

{l) {l}
-0.1145 0.9335
(9.2563) (6.3154)

11.78 7.28
1.067) (.2961

0.0272 0.7953
(.869] 1.373]

Fitted Value Weight (x107) Fitted Value Weight (x107)Moment

E(cM) 0.0145
(0.0085)

0.0010 0.0453
(0.0234)

0.0011

E(c8) —0.2283
(0.0711)

0.0001 —0.0222
(0.0535)

0.0002

E(ccM
-1

) 0. 0005

(0.0004)

7. 9989 0. 0013

(0.0006)
8. 5998

E(cBeB
-1

) -0.0047
(0.0054)

0.0720 —0.0026
(0.0011)

0.5406

E(eNcB
1
) —0.0019

(0.0020)
0.6876 0.0022

(0.0015)

1.6651

E(e8eM
-1

) —0. 0055

(0.0015)

0. 8933 —0. 0000

(0.0009)

2. 4646

E(cMcM
-2

) 0.0006
(0.0006)

9.2146 —0.0002
(0.0006)

9.8977

E(CBCB
-2

) —0.0023
(0.0069)

0.0694 0.0019
(0.0021)

0.4633

E(CMCB
-2

) -0. 0010

(0. 0021)

0. 8382 0. 0010

(0. 0013)

2. 5605

E(CBCM
-2

) 0.0024
(0.0021-)

0.7633 0.0010
(0.0013)

1.9340

Notes: See Table 1. x2(7)—x2(6) is a likelihood ratio—type test of the
6 = 0 restriction.



Table 4: Disappointment Aversion

Parameter Nondurables Nondurables and Services

00036 0.0094
(0.0030) (0.0028)

a. 0.0048 0.0032
(0.1028) (0.1291)

a —0.9763 —6.4672
(0.5983) (1.0657)

{0} {01

A 0.3800 0.2872
(0.1830) (0. 1687)

x2(7) 2.19 0.15
[.902] [.999)

Moment Fitted Value Weight (x107) Fitted Value Weight (x107)

E(c5) —0.1218 0.0004 —0.0144 0.0004
(0.0300) (0. 0449)

E(c5) -0.1148 0.0002 —0.0011 0.0004
(0.0760) (0.0381)

E(cMcM ) —0.0008 1.0073 —0.0001 1.0137
(0.0019) (0.0027)

E(t8c8 ) 0.0013 0.2282 0.0002 1.9470
(0.0051) (0.0011)

E(cMc8 ) 0.0003 0.4152 0.0003 1.0731
(0. 0035) (0. 0021)

E(c5eM ) —0.0009 0.5218 0.0001 1.6679
-1 (0.0035) (0.0019)

E(cMcM ) 0. 0002 1.3457 0. 0000 1.3624
-2 (0.0022) (0.0024)

E(c6e5 ) 0.0003 0.2187 —0.0003 1.8554
-2 (0.0057) (0.0017)

E(c5c5 ) —0.0005 0.5823 —0.0001 1.8445-2 (0.0037) (0.0022)

E(c5c5 ) —0.0002 0.4978 —0.0005 2.4838-2 (0. 0036) (0. 0022)

Notes: See Table 1.



Table 5: Some "Willingness—to—Pay Calculations

Risk Preferences

c

a
EU

(a=—1)

a
EU

(a=-9)

a
EU

(a=—29)

A,a
DA

(A=.38,a=—1)

A,a
TMOA

(A=.28,a=—6.5)

250 1 4 12 113 140

2.500 83 410 1.091 1,189 1,575

25,000 8,333 21.009 23,791 17,017 23,028

40.000 21,333 37,198 39,153 31,707 38,602

50,000 33,333 47.999 49,395 42.937 49,001

60,000 48,000 58,799 59,637 55,139 59.401

74,000 73,013 73,920 73,976 73,624 73,953

to pay toNotes: Entries give the willingness avoid a gamble with equally
likely outcomes given initial wealth equal to 75,000. Thus, for each i

and a, the appropriate entry is 75,000—M(), where equals 75,000±c with
probability 1/2.



Table 6: Switching Models for log(MRS)

Nondurables Nondurables and Services

Parameter log(HRS) Jog(c/c) iog(flRS) log(c/c)

p 0.4342 1.0050 0.3135 0.9963
(0.0220) (0.1134) (0.0230) (0.0619)

0 -0.2068 0.1444 -0.0959 0.1794
(0.0532) (0.2252) (0.0526) (0.1198)

p —0.0010 0.0011 0.0162 0.0017
1 (0.0039) (0.0004) (0.0052) (0.0003)

0.0467 0.0079 0.0532 0.0045
(0.0027) (0.0003) (0.0036) (0.0002)

-0.9763 0.0014 -1.2791 0.0020
(0.0029) (0.0025) (0.0029) (0.0006)

0. 0400 0. 0016 0. 0434 0. 0010
2 (0.0021) (0.0050) (0.0020) (0.0003)

loglik(switching) 355.4 1,144.4 344.5 1,332.8

loglik(i.i.d.) —231.0 1,142.9 —302.9 1,330.7

Notes: p is the unconditional probability of state 1, 0 is the simple
persistence parameter, p, o are the mean and standard deviation In state I,

1=1,2. Standard errors are in parentheses.


