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I. Introduction

This paper derives the asymptotic distribution of a vector of sample
autocorrelations of regression residuals from a quite general linear
regression model. The model is allowed to have a regression error that is a
moving average of order q=0 with possibly conditionally heteroscedastic
innovations; to have strictly exogenous, predetermined, and/or endogenous
regressors; and to be estimated by a variety of Generalized Method of Moments
estimators, such as ordinary least squares, two-stage least squares, or two-
step two-stage least squares.1

One important use of the distribution derived here is to form the basis for
a simple test of the null hypothesis that the regression error is a moving
average of known order gq=0 against the general alternative that
autocorrelations of the regression error are non-zero at lags greater than q.
The test - denoted the £ test - is thus general enough to test the null
hypothesis that the regression error has no serial correlation (q=0) or the
null hypothesis that serial correlation in the regression error exists, but
dies out at a known finite lag (gq>0). This paper both describes how to
implement the £ test and uses Monte Carlo simulations to evaluate its
performance in finite samples.

The £ test is especially attractive because it can be used in at least
three, frequently-encountered situations where such popular tests as the
Box-Pierce (1970) test, Durbin’s (1970) h test, and the Lagrange multiplier
tests described by Godfrey (1978b) either are not applicable or are costly to

compute.,

E See Hansen (1982) for a description of Generalized Method of

Moments estimators. Cumby, Huizinga, and Obstfeld (1983) describe the
two-step two-stage least squares estimator.
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The first situation is when the regression contains endogenous variables.
The three popular tests listed above are not valid when the regression has
been estimated by instrumental variables, and the Box-Pierce test is further
restricted to having only lagged dependent variables.2 In contrast, the
£ test can be used with not only with ordinary least squares but also with a
wide class of instrumental variables estimators.

A second situation is when g>0, which arises in studies of asset returns
over holding periods which differ from the observation interval and in
studies where time aggregated data are used.3 In this situation, existing
tests that investigate the serial correlation of the regression error require
estimating the parameters of the moving average error process, and therefore
necessitate nonlinear estimation,4 In contrast, the £ test described and

analyzed in this paper avoids the use of nonlinear estimation because it is

2 Godfrey (1978a) describes a test that is valid with some
instrumental variables estimators, but the test is not valid in the
presence of conditionally heteroscedastic errors or with instrumental
variables estimators such as two-step two-stage least squares. The test,
like Durbin’s h test, is also restricted to testing the significance of
the first autocorrelation of the regression error.

See, for example, work on returns in the foreign exchange market by
Hansen and Hodrick (1980), the study of real interest rates by Huizinga and
Mishkin (1984), the investigation of stock returns by Fama and French (1988),
and work on the term structure of interest rates by Mishkin (1990). Hall
(1988), Hansen and Singleton (1988), and Christiano, Eichenbaum, and Marshall
(1987) address the issue of time aggregated data.

4 This is true of the Box-Pierce test, the likelihood ratio test,

and, as discussed in Godfrey (1978c), the Lagrange multiplier test. It
is also true of a GMM approach that jointly estimates the parameters of
primary interest and the residual autocorrelations. A procedure that
would not require full maximum likelihood estimation of the moving
average parameters is to implement a C(a) test. Such a test would be
asymptotically equivalent to the likelihood ratio and Lagrange multiplier
tests and would only require that the derivatives of the likelihood
function be evaluated at initial consistent estimates. See Godfrey
(1989) pp. 27-28.



based solely on the sample autocorrelations of regression residuals and a
consistent measure of their asymptotic covariance matrix. The £ test thus
reflects a desire for simplicity, and for ensuring that regression
diagnostics do not become more costly or more difficult to compute than the
original regression.

The third situation is conditional heteroscedasticity of the error term, a
situation that is frequently detected in empirical studies. Monte Carlo
simulations presented in this paper indicate that the presence of conditional
heteroscedasticity may seriously undermine tests for serial correlation of
regression errors that ignore its presence. The £ test can be used with
either conditionally heteroscedastic or homoscedastic errors.

The outline of the paper is as follows. In section II, we derive the
asymptotic distribution of the sample autocorrelations at lags q+l to q+s of
regression residuals from a model where the regression errors are a qth order
moving average with possibly conditionally heteroscedastic innovations. The
regression is assumed to be estimated by instrumental variables, with
instruments that are predetermined, but not necessarily strictly exogenous. We
note how the distribution simplifies when the regression errors are
conditionally homoscedastic and when all regressors are predetermined or
strictly exogenous variables so that ordinary least squares is appropriate.
Based on this asymptotic distribution of the sample autocorrelations of
regression residuals, a test of the hypothesis that the true regression errors
are a qth order moving average process is presented in section III. Monte
Carlo results presented in section IV illustrate how well the asymptotic
distribution theory works in finite samples. Section V contains summary

remarks.



II. Distribution of Sample Autocorrelations of Regression Residuals

The regression equation to be considered in this paper is

(1) Y, = XS+ e t=1,...,T

t

vhere Ve and £, are scalar random variables, Xt is a 1xk vector of the k
scalar random variables Xl,t’ X2,t’ . Xk,t’ and § is a kxl vector of
unknown parameters. The vector of regressors, Xt’ may include jointly
endogenous variables (those contemporaneously correlated with zt),
predetermined variables (those uncorrelated with £t+j for j z0 but are
correlated with Et-j for some j >0), or strictly exogenous variables (those
uncorrelated with £t+j for all j.).

The regression errors €  are assumed to have mean zero and satisfy two
other conditions. First, though they are allowed to be conditionally
heteroscedastic, they are assumed to be unconditionally homoscedastic.
Second, for a known qz0, their autocorrelations at all lags greater than q
are required to be zero.

It is also assumed that there exists a lxh vector of instrumental
variables Zt’ comprised of h>k scalar random variables Zl,t’ zZ,t""’ zh,t’
each of which are uncorrelated with £ Zt is required to be predetermined,
but not necessarily strictly exogenous, with respect to £ These assumptions

are summarized by,

(@) Ee) =0, E(cD = o,
G E( 2.

) ce . /00 = b,
and



(%) ECe |2, 2 100nes Ceoqel’ ftege2r ) = O

Furthermore, the hxh matrix

(5) 0 = lim (1/T) E(Z'ec’'Z)
T-+o0

is assumed to exist and be of full rank.
It is assumed that kxl parameter vector § in equation (1) has been
estimated using a root-t consistent estimator of the form,

(6) d- (x'2 A%l 2 %z A%l z'y,

for some observable matrix AT' This formulation is general enough to include

= (X'X/T) and Z=X, two-stage least squares, A, =

ordinary least squares, A, T

T

(Z'Z/T), and two-step two-stage least squares, AT is a consistent estimate of

Q). The asymptotic covariance matrix for the estimator d is denoted Vd’ with

(7 Vd =D Q D'

and the kxh matrix D given by,

(8) D = plim T (X'2 Ail z'X)'1 X'z A%l.

The objective of this section of the paper is to derive, within the
framework of the model described by equations (1) - (8), the asymptotic

covariance matrix of the sample autocorrelations of the regression residuals,
S Xtd' In the following section we show how a consistent estimate of
t

this covariance matrix can be used to test the hypothesis that the sxl vector

p = (pqﬂ, pq+s) -0
Let ¥ = [rq+l’ rq+2, e, rq+s] and
5



9 r =

By the mean value theorem,

1) fr-fr+E s,

where the sxl vector r = [rq+l, rq+2, . rq+s] ,
T
Y oe.e,
(11) r = E:Eil_f_f;j
n T !
2
L oep
t=1

and the jth row of the sxk matrix 4r/8§ is evaluated at d;, which lies between
d and §. Equation (10) shows that the asymptotic covariance matrix of £ (the
vector of sample autocorrelations of the regression residuals) can be derived
as the asymptotic covariance matrix for the sum of r (the vector of sample
autocorrelations of the true disturbances) and dr/ds (d-6). Only when 8r/36§
can safely be ignored will the sampling variation in the estimation of § mnot
affect the sampling variation in the estimation of p.

Let the sxk matrixz B have i,jth element,
A2)  BGLD) = - [BGe, X, O + B X )]/ B(eD)

t-q-i"j,t tj,t-q-1

We show in the appendix that B = plim dr/36 and thus that BVdB’ is the

asymptotic covariance matrix of 3r/8§ (d-§). In most models, the implication

of equation (4) that E(Etlzt—q-l’ Et-q-?’ ) = 0 will be sufficient to

6



ensure X,
j,t-g-1

term of the sum in equation (12) is zero.

is predetermined with respect to £ and thus that the second

To complete the notation, let §i for i=1,...,s,

- . . - Z_
0 ftregei “5,6 7 % e

for j=1,...,h, the ijth element of the sxs matrix Vr be given by

4 4
13 v .(1.3) —e b E( (£ ).
q

tj -
= i,t*j,t-n
.. th : ;
and the 1ij element of the sxh matrix C be given by

. -2 4
s cij) = o, ) E(gi,twj,t-n
n—-q

).

In the appendix we show that Vr is the asymptotic covariance matrix of r and
that the asymptotic covariance matrix of r with dr/3§ (d-§) is BDC’.
Proposition 1 combines these findings in giving the key result of this

. 5
section.

Proposition 1. Given equations (1) through (14) and the regularity conditions
stated in the appendix, JT ; 4 N(O, V;), where V; =V, + BYB’ + CD'B’ +
BDC'.

Proposition 1 states that, in general, having to estimate the residuals
will affect the asywptotic distribution of their sample autocorrelations. The
following special cases of the general model provide further insight into
proposition 1 and help clarify the relationship between tests based on the

asymptotic distribution of r and tests of residual autocorrelation proposed

elsewhere in the literature.

3 The proof of proposition 1 can be found in the appendix.

7



Gase (i): Strictly Exogenous Regressors.
Since B = 0 when the regressors are strictly exogenous, V; = Vr and one

can safely ignore the fact that the true residuals are unavailable.

Case (ii): Conditionally Homoscedastic Residuals.
We show in the appendix that when the residuals are conditionally

homoscedastic, Vr and C can be rewritten as

q
(15) V(i3 = } Pr-i+iPn
n=-q
and
. Py q
(16 ci.n = =¥q Pr Blee goi%y o)

The well known result that the sample autocorrelations of a serially
uncorrelated series are independent and asymptotically normal with variance
1/T follows from (15) with q=0. When g>0 the sample autocorrelations are mot

independent and, though asymptotically normal, do not have variance 1/T.

Case (ii1): Conditionally Homoscedastic Residuals,
Predetermined Regressors, and q=0.

When the regressors are predetermined, ordinary least squares yields
consistent estimates of §, we can set Z = X, AT = X'X/T, and the second term
of B will be zero. Combining this with the assumption of conditional
homoscedasticity (so that equation (16) is valid) and g=0 (so that Pn = 0 for

n = 0) yields C = -ais. Furthermore, V. = ai plimX /1) L = ai D so that BDG'

d

= -BVdB'. Finally, it follows from equation (15) that in this case Vr =1, and

thus V. = I - BV B'.
r d



Unlike the case of strictly exogenous regressors, when regressors are
merely predetermined one camnot safely ignore the use of regression residuals
rather than the true disturbances in estimating autocorrelations. The
expression V; -1 - BVdB’ can be used to derive the well-known Durbin'’s
(1970) h-test. Durbin (1970) considers testing whether the autocorrelation of
the error term at lag one is zero in a model with lagged dependent variables
and strictly exogenous variables as regressors. In this case B will contain
all zeros except a single value of minus one in the position corresponding to

the dependent variable lagged once. Using V to denote the estimated variance

dl
of the coefficient on this variable, the asymptotic variance of the first
autocorrelation of the regression residuals is seen to be 1/T - le, which
matches the formula given by Durbin (1970).6

Case (iv): Conditionally Homoscedastic Residuals,
Only Lagged Dependent Variables, and q=0.

When the regression error is conditionally homoscedastic, Xt contains only
k lagged values of Yo and q = 0, we have a special case of the model
considered by Box and Pierce (1970), who propose testing the hypothesis of
zero correlation in the regression error by comparing QS - ;’; to the critical
value of a chi-squared random variable with s-k degrees of freedom.
Understanding the logic behind the Box-Pierce test and why the test in general

fails when regressors other than lagged dependent variables are present

becomes quite simple using the result from case (iii) that V; -1 - BVdB’.

6 Godfrey (1978b) also comsiders the case of lagged endogenous
and/or strictly exogenous regressors, conditionally homoscedastic errors
and q=0. Among other things, he extends Durbin (1970) by showing that the
asymptotic covariance matrix for a vector of sample autocorrelations of
regression residuals is I - BVdB’, the formula derived above.

9



Specifically, it can be shown that when Xt contains only lagged values of
Yer Vd approaches (B’B)-l as s increases. It follows that as s increases, V;
approaches I - B(B'B)-lB’, an idempotent matrix of ranmk s-k. Hence, for both
large s and large T, Qs will be approximately distributed as a chi-square with

s-k degrees of freedom.7’8

I1f, however, Xt contains any variables other than
lagged dependent variables, Vd will not in general approach (B’B)-1 and it is

unlikely, though not impossible, that I - BVdB’ will be an idempotent matrix.

ITI. Testing Residual Autocorrelations Equal to Zero

The results presented in section II can be used to develop a Wald test of
the null hypothesis that the regression error in equation (1) is uncorrelated

with itself at lags g+l through q+s.9 Proposition 2 presents this result,

A A A

~ ~
Proposition 2. Let Vr, B, G, D, and Vd be consistent estimates of Vr, B, G, D,

and Vd. Then, given the conditions of Proposition 1,

A PN PUNIN AAA
2 = T £'[V_ + BV
q,s r d

B’ + CD'B’ + BDc'jl 2 Al >Z( (s)

7 . 5 . .
If W is an nxl random normal vector with mean 0 and nxn covariance

matrix V whose trace is nonzero, then W'W is distributed as a chi-square
random variable with n-m degrees of freedom if and only if V is idempotent and
has rank n-m. See Johnson and Kotz (1970), pages 177-178.

8 Ljung (1986) investigates how large s must be before the Q_ statistic
approaches the chi-square distribution. She finds that in samples of 50 or 100
observations, s = 10 is sufficient for all AR(1) models examined and that s >
2 is sufficient for AR(1l) models with the autoregressive paramter below .9.

In many instances, instrumental variables are chosen as lagged
endogenous variables so that rejecting the null hypothesis may call into
question the validity of equation (4). In such cases it may be preferable to
think of the null hypothesis being tested as a joint hypothesis concerning the
serial correlation of the residuals and the validity of the instruments.
Viewed in this way, the test described in this paper becomes an alternative to
the J-statistic proposed in Hansen (1982).

10



Proposition 2 states that if Vr’ B, C, D, and Vd can be estimated

consistently, then the £ s statistic will be asymptotically distributed as a

chi-square random variable with s degrees of freedom.lo In the remaining part

of this section we discuss how consistent estimates of Vr’ B, ¢, D, and Vd can

be formed.

Define the (ht+s)xl vector N, by

'

A7) g = oy e oy Ey e £ )

Then the (h+s)x(h+s) spectral density matrix at frequency zero of e is,

Q 05 c’
I'¢ -
(18) M of [ Vr ai

BD 0
(19) P = 0 U—2I ,
£
so that
BVdB' BDC'
[
(20) [ IRV 3 CD'B v
r
10

Godfrey (1978b) considers a model with lagged endogenous and strictly
exogenous regressors, conditionally homoscedastic errors and q=0. lle shows
that using £ to test p = 0 is equivalent to the Lagrange multiplier test of
the null hypothesis that the error term is serially uncorrelated against the
alternatives that the error is MA(s) or AR(s) for s>0. Hence, in some models,
the test described in proposition two is equivalent to a likelihood ratio
test. However, Godfrey (1978c) shows that in the same model but with g>0,
computation of the Lagrange multiplier test of the null hypothesis that the
error term is MA(q) against the alternatives that the error is MA(g+s) or
AR(q+s) requires that the moving average parameters be estimated. In this
model the test described in proposition two may not possess all the desirable
properties of a Lagrange multiplier or likelihood ratio test, but will be less
computationally burdensome than those tests.

11




It follows from equation (20) that a consistent estimate of the asymptotic
covariance matrix of ; can be obtained from consistent estimates of & and ¥.
It also follows that if the consistent estimate of ¥ is positive definite, the
resulting Zq’s will be positive.

Consistently estimating ¢ is straightforward. Let g be the Txs matrix,
(21) E(i,j) = ;i-j-q for i-j-q > 0O

0 otherwise

so that the jth column of é is the vector of regression residuals lagged q+j

times. Then,

~ T &

(22) ai -am § e
t=1
A ~ ~g
(23) B = -(E'X/T)o,
and
(24) D=T (X'Z A,i,l z'X)'l X'z A,il,

: . 2 :
are consistent estimates of o B, and D respectively.
Consistently estimating ¥ is also straightforward. Let the (s+h)xl vector

1. be given by,

N A A A

(25) n, = (e, 2 Etzh,t’ Ctzt-q-l""’ Etst-q-s)

and the (s+h)x(s+h) matrix Rn be given by,

T a4
26) R =D T ma.
t=n+1

Then, as described in Anderson (1971), there are a variety of (N+l)x1

weighting vectors wN = (wg,...,wg)’ such that the (s+h)x(s+h) matrix

12



~ N N
¢3)) -y wlann
n=-N
is a consistent estimate of ¥. Not all choices of wN that give a consistent
estimate of ¥ will also give a positive definite estimate, however.
Equations (15) and (16) in the previous section showed how the matrices Vr

and C could be simplified in the case of homoscedastic errors.11 with

conditionally homoscedastic errors, the sxs matrix

~ q A a
28) V(1,5 - ) x

RS 4
n-i+j 'n
n=-q

is a consistent estimate of Vr, where fj - 0 for |j| > q. A consistent

estimate of C 1is given by the sxh matrix

PPN A

(29) 6 - E’VEZ/Tgi , where Gc(i,j) - ;li-jlas )
is an estimate of the covariance matrix of the error term.

While the analysis of this paper centers on the asymptotic distribution of
simple autocorrelations, the results are also relevant for the asymptotic

distribution of partial autocorrelations of regression residuals. Regressing

~ ~ ~ A A
€ on Et—q—l' ey zt-q-s’ yields the estimated coefficient vector b = F r,
~ A A PN

-1 . iy .
where F = ( E'E) e'e converges in probability to a sxs matrix F. As a
result, b converges in distribution to a Normal random variable with mean zero

and covarilance matrix Vb = FV;F’ when the null hypothesis is true, and the

t McLeod (1978) derives the asymptotic distribution of residual

autocorrelations from univariate ARMA models with homoscedastic errors and, as
we do here, suggests using a consistent estimate of the asymptotic covariance
matrix to form a Wald test as an alternative to the Box-Pierce test. Breusch
and Godfrey (1981) describe unpublished work by Sargan (1976) that suggests a
test that is equivalent to the £ test when g=0 and the residuals are
conditionally homoscedastic. '8

13



standard Wald statistic for testing b=0 will be numerically identical to the
2-statistic described in Proposition 2.12 In the special case of q=0, F is an
identity matrix so that even though b will not equal r in finite samples, ome

A

can replace r with b in proposition 2 and obtain a vaild test.

IV. Monte Carlo Experiments

In this section we present the results of Monte Carlo simulations that
examine the finite sample distribution of the £ s statistic in six models,
with six specifications of the error term in each model. The models differ
primarily in terms of whether the regressors are endogenous, predetermined, or
strictly exogenous, though there is some variation in the number of regressors
across models. The first four models, described in Tables 1 - 4, involve only
predetermined or strictly exogenous variables. As a result, we use ordinary
least squares to compute the parameter estimates. Model five, described in
Table 6, is an overidentified, simultaneous equations model and is estimated
by two-step two-stage least squares with the reduced form used to determine
the choice of instruments. Model 6, described in Table 7, is a rational
distributed lag model in autoregressive form and is also estimated by two-step
two-stage least squares.l3 For all models, only the first equation is
estimated and the second term of B is set to zero.

Tn each model we consider three specifications of a serially uncorrelated

2 Since the estimated covariance matrix for b reported by standard
regression packages will not in general be a consistent estimate of V, ,
testing b=0 with the typical F-test reported by these packages is not an
asymptotically valid procedure.

13 Both models five and six were estimated by two-stage least squares as
well as two-step two-stage least squares. The performance of the f-tests was
the same for both estimation procedures, and thus we report only the results
for the two-step two-stage procedure.

14
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error (q=0) and three specifications of an error that follows a second-order

. 14 . ‘ps ;
moving average (q=2). The first specification uses errors that are
conditionally homoscedastic and normally distributed. The other two
specifications use errors that are conditionally heteroscedastic. The two
models of conditional heteroscedasticity used are an ARCH process and an
Exponential ARCH process, both with innovations that are conditionally

: . 15
normally distributed.

Each Monte Carlo experiment consists of 5,000 replications. Since every
model we consider contains regressors that follow autoregressive processes, we
set the initial values of these random variables to zero and generate 300
observations. Only the last 50 and 100 observations are used in the
experiments. This should eliminate any impact of the initial conditions on the
results. On each replication £ , 2 2 and £ are computed

P a,1' “q,3" “q,6 q,12 pured
corresponding to the hypotheses that one, three, six and twelve
autocorrelations are equal to zero.

For each model and error specification, we use only one set of parameters.
A prime concern in choosing parameter values for the models was to get roots

close to the unit circle. Not only are roots close to unity frequent in real

world data sets, but we suspect that such roots will present the greatest

Model 6 is the sole exception since estimating the rational
distributed lag model in its autorcgressive form induces a moving average
error.

15 . .

Engle (1982) describes ARCH models and Nelson (1990) describes
Exponential ARCH models. The ARCH parameter is chosen so that the fourth
moment of the regression error will exist, as is required when obtaining the
asymptotic distribution of the residual autocorrelations. Diebold (1986)
presents conditions for the existence of the moments of ARCH processes.

An Exponential ARCH has two advantages over the simple ARCH. First, it allows
us to determine the persistence of shocks to the conditional variance with the
coefficient on the lagged log variance. Second, when the innovations are
normally distributed, all moments of the regression error exist.

15



challenge to acceptable behavior of the test statistics in finite samples.

For all error specifications, both conditionally homoscedastic and
conditionally heteroscedastic, the £q75 statistics we compute are based on
heteroscedastic-consistent estimates. There are two reasons for this. First,
in practice the econometrician is unlikely to know a priori whether a given
data set is conditionally heteroscedastic or not. Therefore, having a test
that works well on both conditionally homoscedastic and conditionally
heteroscedastic data is desirable. Second, when the errors are not serially
correlated, the heteroscedasticity-consistent estimate of ¥ is guaranteed to
be positive definite so that the resulting Eq's statistic is positive.16

When the regression error is serially uncorrelated, ¥ is estimated
according to equation (27) with N=O.17 Three estimators are used to compute ¥
when the error is a second-order moving average. The first uses (27) with the
"Gaussian" weights w? = exp(-iz/2N2) and N=2.18 If this fails to yield a
positive definite estimate of ¥, N is sucessively reduced by one until a
positive definite estimate is obtained.

The other two estimators will necessarily produce positive definite
estimates of ¥. The first is a modified Bartlett estimator (Anderson (1971)

and Newey and West (1987)), which uses equation (27) with w? = (N-i+1)/(N+1)

and N=5. The second of the positive definite estimators is the VAR estimator

16 : ; ; ; ; :
It is of course possible that using an estimate of ¥ which is not

positive definite may lead to £ statistics which are sometimes negative, but
nonetheless have a distribution which closely matches the chi-square
distribution in the crucial right-hand tail region. Our experience, however,
suggests that estimates of ¥ that are not positive definite yield £
statistics with distributions quite far from the chi-square distribution.

17

In all cases where N = 0, wg = 1.

18 See Brillinger (1975), pss.
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proposed by Cumby, Huizinga, and Obstfeld (1983), which estimates ¥ by fitting
## to a second order vector autoregression that is then inverted to obtain the

~

moving average representation of n. The moving average representation is
truncated at lag two and used to compute the spectral density of n.lg

In computing the Eq,s statistics for the least squares residuals, we make
the small-sample adjustment to the sample autocorrelations suggested by Ljung
and Box (1978). That is, fn of equation (9) is replaced by [(T+2)/(T-n)]'5 ;n
when computing the test statistic. For residuals from the instrumental
variables regressions, fn of equation (9) is replaced by T/(T-n) ;n'

Tables 1 - 4 contain the results of the Monte Carlo experiments for the
four models estimated by ordinary least squares. Each entry in the table
provides the percent of the 5000 replications that exceeds the five percent
critical value for a xz(s) random variable. In general, the frequency of
rejection is very close to five percent. The similarity between the results
with samples of 50 and 100 are striking. With both sample sizes, most of the

20

rejection frequencies fall between 3.5% and 6.5%.

There are three exceptions to the generally favorable performance of the

19 : . : :
Other procedures for estimating ¥ were also investigated. One

procedure set N=2 and used weights of unity in equation (27). This estimate of
¥ is not guaranteed to be positive definite and the frequency of not positive
definite estimates was very high. More importantly, the resulting £ statistics
falsely rejected the null hypothesis far too often. A Parzen estimator (Parzen
(1961)), like the Modified Bartlett estimator is guarantced to be positive
definite but performed very poorly, yielding unacceptably small rejection
frequencies when the number of autocorrelations tested is large. We also
experimented with diferent values of N for the modified Bartlett procedure.
These other values of N led to £ statistics with poorer properties than those
we report.

20 . . ; : .

We also carried out Monte Carlo experiments using estimated partial
autocorrelation and V' when q=0. The performance of the tests based on
partial autocorrelations was substantially worse than the performance of the
s tests.
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test statistic. First, and most striking, is the exceptionally low rejection
percentages that are obtained using the modified Bartlett estimator with s>1.
In many instances, no rejections were found when twelve autocorrelations were
tested. Second, while the rejection percentages obtained with both the
Gaussian and VAR estimators of ¥ are close to the values predicted by the
asymptotic theory, there is a tendency for the test using the VAR estimator to
reject too frequently when s=12 and when the an ARCH process is used to
generate the errors.21 Finally, when the regressors are strictly exogenous
(models II and IV), there is a tendency for the test to reject too frequently
when s=1, regardless of how ¥ is estimated.

Table 5 presents the rejection frequencies obtained when the Q-test
suggested by Box and Pierce (1970) (as modified by Ljung and Box (1978)) is
applied to the same residuals used in the tests in Tables 1 - 4. The
statistics are,

s+j

(32) Q, - I [m2)/(r-m)]

n=1+j

2

with j=0 for the serially uncorrelated errors and j=2 for the second order
moving average errors.
It should be emphasized that the Q test is valid in only two cases. First,

in the univariate autoregressive model with serially uncorrelated,

2 We did not use the VAR estimator with a sample of 50 observations as

fitting the vector autoregressive representation of n would involve

estimating a number of parameters that is large relative to the sample,

especially with s=12. The Monte Carlo experiments were also performed with an

ARCH parameter of 0.9. As the fourth moment of 5 does not exist with this

value of the parameter, it is not surprising that the performance of the test
statistic deteriorates somewhat. The deterioration is substantial with the

VAR estimator but small otherwise. B
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homoscedastic errors (a case originally considered by Box and Pierce), where
QS is approximately distributed as xz(s-l).22 Second, since use of regression
residuals is equivalent to use of the true regression errors when all
regressors are strictly exogenous, the QS statistic in model 2 with serially
uncorrelated, homoscedastic errors will be distributed as X2(s). We report the
results of using QS in the other cases in order to demonstrate the dangers of
applying the statistic in inappropriate circumstances.

The results reported in Table 5 indicate that when the errors are serially
uncorrelated and the data are homoscedastic, the Qs test performs reasonably
well. While the Qs test rejects slightly too often and the Eq,s test exhibits
rejection frequencies closer to five percent, the overall behavior of the two
tests is comparable. The performance of the Qs test deteriorates somewhat
when the data are heteroscedastic, especially in model AAZA When the errors
are MA(2) and residual autocorrelations past lag two are tested, the
performance of the Qs statistic falls substantially. These experiments
indicate that the Qs test is likely to be wildly misleading when used to test
a null hypothesis other than that all residual autocorrelations are zero.

Tables 6 and 7 contain the results from the Monte Carlo experiments for

the two models estimated with instrumental variables. As is the case in

22 Since the Qg test is distributed as xz(s-l), we do not compute the QS

test for s=1.

Since the Q test is not valid in most of the models, it is not clear
which eritical value to choose. We chose to use the critical value from the
chi-square distribution with s-1 degrees of freedom for models I, III and IV
since each included one lagged dependent variable. We chose to use the
critical value from the chi-square distribution with s degrees of freedom for
model II because it is the correct choice with serially uncorrelated,
homoscedastic errors.

24 R

The performance of the Q test when an ARCH parameter of 0.9 is used

is markedly worse than the results reported in Table 5.
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Tables 1 - 4, there is little difference between the performance of the test
in samples of 50 and 100 observations. The frequency of rejection when the
modified Bartlett estimator are again extremely low. Excluding a few cases
where only one autocorrelation is tested, the rejection frequencies for the
simulténeous system (model 5), are generally close to five percent. As is the
case with tests using ordinary least squares residuals, the tests sometimes
rejects too frequently when only one autocorrelation is tested. There appears
to be a tendency for the test to reject too seldom in the rational distributed
lag model (model 6), with the smallest rejection frequencies generally
occurring at s=12.

In closing this section we return to the point made earlier that the
Gaussian estimator of ¥ that we use is not guaranteed to be positive definite
in finite samples. Table 8 provides evidence on the frequency with which
failure to obtain a positive definite estimate occurs in the data sets
generated for models 1 and 6. The results for models 2 through 5 are very
similar to those for model 1. The evidence clearly shows that the likelihood
of obtaining an estimate of ¥ that is not positive definite increases with N
(the number of autocovariance matrices summed), increases with s (the number
of autocorrelations being tested equal to zero), and increases when
heteroscedasticity is introduced, although less so when the EGARCH model is

used than when the ARGH model is used.25

Monte Carlo experiments were also carried out with a sample of
200 observations using the Gaussian estimator. The resulting estimates
of ¥ are positive definite much more frequently than is the case with a
sample of 100 observations.
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V. Concluding Remarks

In this paper we have derived the asymptotic distribution of a vector of
autocorrelations of regression residuals from a quite general linear model.
The model is allowed to have a true regression error that is either
conditionally heteroscedastic or conditionally homoscedastic and is either a
moving average of order >0 or serially uncorrelated. The model can have a mix
of strictly exogenous and predetermined regressors, so that ordinary least
squares is used for estimation, or a mix of strictly exogenous, predetermined,
and endogenous regressors, so that an instrumental variables procedure is
used. In this latter case, the instruments need only be predetermined and not
strictly exogenous.

We then use this asymptotic distribution to propose a Wald test of the
hypothesis that the regression error follows a moving average of order q by
testing that the autocorrelations of the residuals at lags g+l through gq+s are
jointly zero. The finite sample properties of the test are examined in Monte
Carlo simulations, using six different models and a variety of specifications
for the regression errors. With sample sizes of 50 and 100 observations and s
ranging from ome to twelve the test is quite reliable. The probability of type
one error is in general very close to the level predicted by asymptotic

theory.
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Appendix

This appendix provides a proof of the main proposition in the text. Let
Yer £p Xl,t’ ) Xk,c’ Zl,t’ . Zh,t be scalar random variables on which
we have observations for t=1,...,T. Define Xt and Zt to be the 1xk and 1xh
vectors (Xl,t‘ . Xk,t) and (Zl,t’ ey Zh,t)’ and define y, X, and Z to be
the Tx1l, Txk, and Txh matrices (yl, e, yT)’, XH, ..., Xi)’, and

' Yy : _ '
(Zl, e, ZT) . Define 1 (wl,t’ AN wh,t’ El,t’ e, Es,t) for
wj,t = Eth,t and §i,t = Etet—q»i’ and let AT be an observable hxh matrix. We

assume that for a known constant q and unknown kxl vector of constants §,

(AL) { X Z £ ) is wide sense stationary and ergodic,

(A2) Yo = XtE + £

(A3) E(st) = 0,

(AL) E(at|Zt, Zo g oo Ceoqel’ ftoqe2 )y = 0.
, . s L
(A5) E(qtnt_i) is finite for i=0,...,q,
3y = ’ ' ' ' i
(A6) ¥ E(ntnt_q) + E(ntnt_q+1) ot E<”t”t+q-1> + E(Yltﬂt+q) is

positive definite,
(A7) (1/T) plim X'Z exists and has rank k,
and

(A8) plim A = A exists and is nonsingular.

T

- 2 2 2 .
Define E(st) =0, E(atct_n)/ag = T, to be the sample autocorrelation

= '
of € at lag n, the sxl vector r (rq+1, rq+2, .y rq+s) , the kxl vector
d = (X'Z A%l Z’X)-l X'z A%l Z'y, r to be the sample autocorrelation of
L=V - Xtd,at lag n, and the sxl vector r = (rq+1, rq+2, e, rq+s)' We

: . -2 .
also define C to be the sxh matrix that has o, times the sum from n equals
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. ..th :
} as its ij element, Vr to be the sxs matrix that

h

-q to q of E(Ei,twj,t-n

-4 ; .
has I, times the sum from n equals -q to q of E(gi,tfj,t—n) as its ij

element, E to be the Txs matrix that has q+j zeros followed by £e
t=1,...,T-q-j as its jth column, and B to be the sxk matrix that has

- [E( X, ) + E(X, t)]/ai as its 1] element.

£ PP : €
t-q-1j,t J,t-g-1

Lemma Al: Given the assumptions (Al) - (A8) and the definitions stated

above, d is a consistent estimate of § and /T (d-§) A N(O,V

where V., = D 2 D', D = plim T (X'Z A%l z'X)’1 X'z A;l and

4

= ’ - n ’ . " ’ t
Q E(wtwt_q) i E<wtwt-q+l) toL Lt E(wtwt+q—1) + E(wtwt+q).

Proof: The proof can be found in Cumby, Huizinga and Obstfeld (1983).

Lemma A2: Given the assumptions (Al) - (A8) and the definitions stated
above, then plim dr/86 = B.

Proof: 3r/86 has as its ijth elument

s X ®t®t-q-1 *
(ari/asj)]5=dj - 53; f——z 2 , vhere e -y, - X d/
t

Z[Xj,tet»q-i PR i . 2 Ce%qoi % ¥l
2

Loy [y ui )?

Therefore, using (Al), the fact that d is a consistent estimate

*
of § (Lemma 1), and the fact that di lies between d and §, we get
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lim 7 I T B A I A2 + 2 EXy et
P 36 . - 02 02 pq+i ‘72
’ §=d; £ e .

Since pj=0 for j>q, the third term in this sum is zero and the lemma is

proved.

The proof of Proposition 1 is now straightforward.
Proposition 1: Given the assumptions (Al) - (A8) and the definitions
C A A
above, JT r = N(0,V)) with V] = V_ + BV.B’ + BDG' + CD'B’.

Proof: By the mean-value theorem,

fr - fer A @- o,

*
where the ith row of 3r/4§ is evaluated at di' which lies between d and 6.
Stacking the terms on the right;hand side of this expression and substituting
the definitions of d and E gives,

7 3r/88 (d-5) ar/a6 T (X'ZA%lZ’X)-1X'ZAé1 0 Z'e/JT
T - -
r 0 ' (s's/r)'l I E'e/JT

where I is an sxs identity matrix. By Lemma 2, (A7) and (A8),

3r/85 T (x'ZA;lz'xi1 X'ZA%l 0 BD 0

plim 1 - -
0 (e'e/T) I 0 o I

and by a central limit theorem in Hannan (1973), (see Hansen (1982)),
A
v,
B /)T <~  N(O,1)
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for

Thus,
ar/3§ (d-$§) ]
T ~ N(0,2 ¥ @)
r
where
BVdB' CD'B'’
VP =
BDC’ v
r

Since /T ; is the sum of the two random vectors that are asymptotically
normally distributed with covariance matrix & ¥ &', it follows that
JT ; is asymptotically normally distributed with covariance matrixz given
by BVdB’ + BDC’ + CD'C’ + Vr and the proof is completed.

In the text, we discuss how the asymptotic distribution of /T ; is

affected when the assumption that £, is conditionally homoscedastic,

(A9) E(e ¢ Z Z

tft.nl %o Ze1r ot fpiqelr Spogegr o) E(Ece

toq)» 0snsq,
is added to assumptions (Al) - (A8) above. In particular, equations (15)
and (16) give forms of equations (13) and (14) which are claimed to be

valid when this assumption is added. To verify that equation (15) is in

fact correct, note that when (A9) holds and -g < n < q,
27




-4 -4
T E(gi,tgj,t—n) -9 E(Et:t:t:-q-i{'t-ngt-n-q-j)
-4
= gc E(Et-q—iit—n»q-j E(Etzt—n|Et-q-i’st—n—q—j))
-4
=% E<£t—q—i£t»n—q—j)E(Etct-n) = pn+j-ipn'

Equation (16) can be verified in a similar manner.
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TABLE 5: EMPIRICAL 5% REJECTION PROBABILITIES FOR Q, STATISTIGCS

MODEL 1 - UNIVARIATE AUTOREGRESSION:

ERROR TERM s =3 s =6 s = 12
HOMOSKEDASTIC  MA(0) 7.52 5.64 6.08
HOMOSKEDASTIC  MA(2) 24.46 29.46 40.58

ARCH  MA(O) 13.84 9.80 8.40
ARCH MA(2) 23.70 28.68 37.10
EGARCH  MA(0) 8.92 7.30 7.22

EGARCH MA(2) 26.44 31.40 40.46

MODEL 2 - SINGLE EXOGENQUS REGRESSOR:

ERROR TERM s =3 s =6 s = 12
HOMOSKEDASTIC  MA(O) 4.78 5.14 6.06
HOMOSKEDASTIC  MA(2) 25.40 34.32 45.12

ARCH  MA(O) 11.98 10.12 8.40
ARCH  MA(2) 25.96 34.18 43,78
EGARCH  MA(O) 7.02 6.72 6.96

EGARCH  MA(2) 27.38 35.38 46,94

MODEL 3 - BIVARIATE AUTOREGRESSION:

ERROR TERM s =3 s =6 s = 12
HOMOSKEDASTIC MA(O) 5.64 5.14 5.00
HOMOSKEDASTIC  MA(2) 17.20 26.42 39.78

ARCH  MA(0) 7.96 6.56 5.68
ARCH  MA(2) 17.12 26.64 38.02
EGARCH MA(0) 6.44 6.18 6.28

EGARCH  MA(2) 17.90 27.72 40.78

MODEL 4 - TRANSFER FUNCTION:
ERROR TERM s =3 s =6 s = 12

HOMOSKEDASTIC  MA(O) 11.56 9.20 8.50
HOMOSKEDASTIC  MA(2) 37.10 43.02 52.00
ARCH  MA(O0) 22.34 16.18 13.24

ARCH  MA(2) 37.06 42.92 49.86

EGARCH  MA(O) 15.32 11.98 10.62

EGARCH  MA(2) 37.44 43.12 52.24

All tests are based on 5,000 replications and samples of 100 used in estimation. The numbers
given are the percent of Q statistics that exceed the 5% critical value for a x%(s-1) random
variable, except in model 2, where a x*(s) random variable is used. With a true rejection
probability of 5%, the 95% confidence interval for the estimates in this table is [4.4%,5.6%].
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Table 8: FREQUENCY OF ESTIMATED ¥ FOUND NOT POSITIVE DEFINITE

Model 1 - UNIVARIATE AUTOREGRESSION

ERROR TERM N s =1 s =3 s =~ 6 s = 12
HOMGOSKEDASTIC 2 0 2 246 2584
1 0 0 0 109

ARCH 2 0 15 395 2905

1 0 0 9 217

EGARCH 2 0 1 352 2792

1 0 0 1 202

Model 6 - RATIONAL DISTRIBUTED LAG

ERROR TERM N s=1 s=3 s =6 s = 12
HOMOSKEDASTIC 2 93 268 641 3078
1 0 0 0 1

ARCH 2 169 419 1034 3580

1 0 2 3 19

EGARCH 2 122 332 824 3363

1 0 0 0 3

The numbers given are the number of times, out of 5000 replications of samples of 100, that a
not positive-definite estimate of ¥ is obtained. Estimates are formed with the Gaussian
covariance method, which uses equation (27) in the text and w§ = exp(-i%/2N%). When N = 0,

wi = 1 and the estimate of ¥ is guaranteed to be positive definite,





