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spectral distribution function of the first differences. Under the null
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function space, is too erratic to be attributable to sampling error. These
tests are consistent against all moving average alternatives. The testing
procedure possesses the additional advantage that it eliminates discretion in
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Introduction

The martingale hypothesis has a long and distinguished history in
economic theory. Perhaps the oldest example is the random walk theory
of stock prices. The efficiency of the stock market in aggregating
information has frequently been equated with conditions requiring that
stock price changes be unpredictable. Intuitively, arbitragers will
eliminate any predictability in excess holding returns which could be
detected empirically.

More  recently, dynamic  equilibrium  approaches  to
macroeconomics have imposed martingale restrictions on numerous time
series of interest. Hall [1978] is a fundamental paper which demonstrates
circumstances where the marginal utility of consumption is a martingale.
Similar results have been obtained for tax rates by Barro [1981] in the
context of the optimal allocation of deadweight efficiency losses
generated by distortionary funding of government spending.

This paper seeks to provide a general framework for testing
whether a time series can be described as a martingale. The testing
framework will unite various approaches which have become popular in
applied work.  Unification of these various procedures will permit
explicit discussion of test power and the role of the researcher’s priors in
accepting or rejecting the null.

Several procedures for testing the martingale hypothesis are
currently popular.  One procedure, employed in the original Hall
formulation, is to examine whether the time series under question follows
an AR(1) with the lagged dependent variable coefficient equalling one.
This procedure is essentially equivalent to exploring the properties of
some of the elements of the autocorrelation function of the first

differences of the data.




An alternative approach, explored in detail by Cochrane [1988],
Lo and MacKinlay [1988] and Poterba and Summers [1987], examines the
variance of the martingale difference (under the null) z, versus the
variance of Iilz,_‘. Under the null, the variance of the latter should
equal k time‘szzhe variance of the former. Some evidence exists that this
test possesses excellent power properties relative to conventional
autocorrelation tests, particularly in uncovering long run mean reversion.

A limiting form of the variance ratio test will be subsumed in our
more general testing framework. In fact, the martingale null permits
construction of an infinity of distinct tests, each of which is consistent
against some class of alternatives. One advantage of our approach is
that it tests all second moment implications of the martingale
hypothesis. The testing framework we analyze avoids the need for the
researcher to possess prior information on the alternative hypothesis.
From a classical perspective, this feature is valuable as no uniformly
most powerful test exists. From a Bayesian perspective, the test
corresponds to a diffuse prior over all fixed martingale deviations. Our
testing framework avoids the problem that a particular rejection may
correspond to the maximum deviation within a large class of tests of the
null.

The testing framework developed here analyzes the properties of
the shape of the spectral distribution function estimates of the
martingale difference sequence under H;.  All testable implications may
be summarized in the statement that, under Hy, the spectral distribution
function is a diagonal line. An asymptotic theory is developed to
measure deviations of different sample spectral distribution estimates
from a diagonal. The type of test we propose is thus analogous to a
goodness-of-fit test for a probability distribution function.

There is a long standing literature on using the spectral

distribution shape to test various hypotheses. Bartlett [1955] is an early



source of the idea that the sup of the cumulated normalized periodogram
of white noise will converge to a Kolmogorov-Smirnov statistic.
Grenander and Rosenblatt {1953, 1957] rigorously obtained quite similar
results in the case where the variance of the time series is known. Their
methodology represents the basis of our asymptotic theory. In the
context of identically and normally distributed innovations, Durbin
[1967] has obtained finite sampling results for one of our tests, the
Kolmogorov-Smirnov statistic.

Our results extend this literature, which has concentrated on a
single test statistic, to the more general question of analyzing the
spectral distribution deviations from a diagonal as a problem of weak
convergence in a random function space. A general asymptotic theory
for the spectral distribution function will permit the construction of
many test statistics of the martingale hypothesis. These tests possess
different size and power properties. In addition, the robustness of the
asymptotics to many forms of data heterogeneity will be established.
The previous literature required either i.i.d or normal innovations.

Section 1 of the paper derives an asymptotic theory for the
periodogram-based spectral distribution function as well as an array of
martingale tests. Section 2 shows that this asymptotic theory carries
over to a broad class of window estimators. Section 3 discusses spectral
shape tests in the context of alternative approaches to uncovering
deviations from the martingale null. Section 4 applies the tests to stock
prices. The tests provide some evidence against the random walk
hypothesis, confirming recent work of Lo and MacKinlay [1988] and
Poterba and Summers [1987].  Section 5 contains summary and

conclusions. A Technical Appendix follows which contains all proofs.

1. Spectral distribution function estimates and hypothesis testing




Consider the time series z,. The null hypothesis of interest is that
z, is a martingale difference sequence. With respect to the projections
onto the Hilbert space generated by the history of z,, this is equivalent
to the statement that the autocovariance function of =z, os(j), is
identically equal to zero at all leads and lags. As will be seen, the
analysis will focus on the autocorrelation function pz(j). In order to
develop an asymptotic distribution theory, it is necessary to place some
restrictions on the properties of the martingale differences. These

requirements are summarized in

Definition 1.1. HO: Null Hypothesis.

The following properties hold for z,

i B(z,|¥,_,) = p where T ; is the o-algebra generated by x; for k<j.
ii, E(rf) = o’

T
i lim T‘Z;E(zﬂgj_,) = 02 > 0 almost surely.
=

1. There ezists a random variable W with E(W*')<oo such that
P(lz;|>w) <cP(W]>u) for some 0<c<oo and all §, all u>0.

v. E(z?zj_rrj_,) = k(n,s) finite and uniformly bounded Y7, r>1, s>1.
vi. Tlimw T"IZ zj_rz:j_,E(xﬁlﬁ'j_l) = k(r,s) almost surely.
j=l+min(r,s)

vii. E(z?) is uniformly bounded V j.



The first condition is, of course, the null hypothesis of interest.
Notice that a nonzero mean for z, is permitted. This extends the tests to
the case where the time series of interest is a random walk with drift.
Conditions 4. through vi. place restrictions on the admissible degree of
heterogeneity in the process. Condition wvii. is required for characterizing
the behavior of the periodogram but is not necessary for developing the
asymptotics of the individual autocorrelations. The condition is
necessary to prove tightness of the sample spectral distribution function
estimates in a random function space. With the exception of wii., these
conditions are essentially as restrictive as the requirements imposed on
innovations in order to develop functional central limit theorem
arguments. (See Phillips [1987].)

The complete null hypothesis contains the weakest conditions
presently known in the time series literaturc for developing limit laws
and central limit theorems for sample autocorrelations. Hannan and
Heyde {1972] prove

Theorem 1.1. Asymptotic propertics of sample autocorrelations.

Let

T =T") g (1.1)

pa(i) = —2Z (1.2)

for all i>1. If HO holds, then




1. pz(i) 2o 0.

1. TI/Z;:) =w N0, I), I = kak identity matriz, for any k-length vector p of

distinct autocorrelations. (=w denotes weak convergence.)

In the frequency domain, all testable implications of the
martingale null are summarized by the requirements placed on the shape

of the spectral density

@) = £ 3 ou(et = 20 (1.3)
]1=—

Under the null hypothesis, the spectral density is a rectangle.

Equivalently, the spectral distribution function is a diagonal line.

Fa(A) = /:/;.(u) = 2004 (1.4)

The analysis of spectral shape means that the asymptotic theory
will center on the couvergence of random functions which cstimate the
complete spectral density, or equivalently the spectral distribution
function. The random spectral density and distribution estimates
throughout this paper, when normalized, are all (almost surely) elements
of C{0,1], the space of continuous functions defined on the interval [0,1],

endowed with the sup metric.

Periodogram estimates

The computation of the asymptotic properties of spectral shape
estimates will initially concentrate on the periodogram estimate of the

spectral density



T-1 .
Ip(w) = &> da(pe (1.5)
j=—(T-1)
The deviations of the periodogram from the white noise spectral

density

I = S
yo) = L (=§_1)“’(’)C ) 1.6
would appear a natural object for measuring deviations from the null.
However, the periodogram deviations are not directly interpretable since
the periodogram will not, of course, converge pointwise to a rectangle
due to the inconsistency of the individual frequency estimates. An
alternative approach, though, will render this function useful. The
cumulated deviations will, under the null hypothesis, converge to zero
due to the law of large numbers introduced by the averaging of the
individual frequency estimates through the integration of 7(w). This
insight is the basis of the seminal work of Grenander and Rosenblatt
[1953,1957] on the asymptotics of the cumulated periodogram.

Grenander and Rosenblatt recognized that the sup of the
cumulated periodogram will, with certain restrictions placed on the
moments of the time series, converge to the sup of a Brownian motion.
To see the heuristic argument, observe that the deviations of the sample
spectral distribution function generated by the periodogram defined over

Ae[0,7] will equal

x (0
() = L(IT(w) - 2Oy a7
which may be expressed as the sum

T-1 f
5=(52(0) = o= (0)A + F 302 ()*H (1.8)
=1




It is helpful to renormalize this expression by mapping A onto =, te[0,1],
and multiplying the entire function by V2. As T=oo, a nondegenerate
asymptotic distribution will exist for

[ 2 singm
Wrlt) = =100 - ou(o)e + R Y10 IT )
=1

if this expression can be arbitrarily well approximated by

T_IQ—TVZ(&I(O) — (0t + 2 ZTW&:(]}%@ (1.10)
for large k and if an asymptotic theory is developed for the individual
autocovariances. Convergence of the normalized deviations of the
spectral distribution function to a process proportional to Brownian
motion follows from three arguments: 1) A sequence of iid. N(0,1)
random variables, {¢;}, may be employed to construct a dense

approximation of Brownian motion through the transformation

eot +i,,—2—;ejs"?” = B(t) 1€ [0,1] (1.11)
(where convergence occurs as k=>co.)
2) The sample spectral distribution function and the above construction
of Brownian motion may be arbitrarily well approximated by a finite
number of terms, and 3) The normalized autocovariances,
T*(62())—02(j)) (which equal T%6.(j) for j#0), converge to
uncorrelated normal random variables under the null hypothesis.

There are, however, several problems with the Grenander and
Rosenblatt formulation from the perspective of econometric
implementation. Grenander and Rosenblatt developed only a limited
testing framework as they proved convergence of a function (the sup) of

the cumulated periodogram rather than convergence of the cumulated



periodogram considered as a random function. They thus derived the
behavior of a particular mapping of a sequence of elements of C[0,1] to
R. Second, these authors derived their results under the assumption of
stationarity. It is well established that many time series which are
predicted by theory to be martingales, such as stock prices, exhibit
considerable heteroskedasticity. Third, these authors only considered the
case where the null hypothesis concerning f:(w) is completely specified a
priori.  The martingale hypothesis, however, does not restrict the
variance of the process. The null says nothing about the particular
values of the spectral distribution function, only that the shape is a
straight line. Therefore, tests of the spectral distribution need to be
normalized to eliminate dependence on the population variance. This
modification has the additional implication that unlike previous work,
our asymptotic theory does not depend upon .the fourth cumulant of the
data, which affects the sampling properties of the variance of z.

Alternatively, we develop an asymptotic theory for the sample
spectral distribution function as an element of a random function space.
This permits many different aspects of the null hypothesis to be
examined. The asymptotic theory in turn permits the construction of a
comprehensive array of specification tests based upon the spectral
distribution function. These additional tests are quite important from
the perspective of finite sample size and power (See Bernard [1989] and
Durlauf {1990] for more details.) Further, this asymptotic theory relies
only on the properties of the sample autocorrelation function. As a
result, the theory is robust to many forms of heteroskedasticity and is
unaffected by nuisance parameters. This feature contrasts our work with
Durbin {1967, 1969] who developed some results by assuming the data
were both stationary and normal.

In order to develop a general theory of martingale testing, we

follow the insights of Grenander and Rosenblatt and consider the




periodogram-based estimate of deviations of the spectral distribution
function from its theoretical shape when the periodogram is normalized

by the sample variance.

Up(t) = @TJ/ZJ:' ( {rT:E:)) _ %)dw ;i tef0,1]

T-1 .
= B P50 e o,y (112)
=1

These cumulated deviations will provide the basis for hypothesis
testing, in that the normalized deviations will converge only under the
null hypothesis.  The hypothesis tests will not be subject to the
difficulties outlined above. By normalizing by the sample variance, the
limiting distribution is determined by the asymptotics of the normalized
(by T'*) sample autocorrelations. This renders the asymptotics robust
to substantial data heterogeneity. In addition, the shape of the
normalized spectral distribution is completely characterized for the null
hypothesis that the time series is a martingale difference.

In normalizing the 'periodogram by the sample variance, the
cumulated deviations are forced to sum to zero. In fact, the normalized
spectral distribution function relates to the original spectral distribution
function through

Up(t) = %’)Wﬂ (1.13)

This transformation ties down the limiting Brownian motion discussed

earlier. This idea is formalized in
Theorem 1.2. Spectral shape asymptotics.

If z, fulfills HO’ then
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Ur(t) = U(t) ont € [0,1]
where U(t) is the Brownian bridge on t € [0,1].

Testing the martingale hypothesis requires determining whether
the cumulated deviations of Up(t) are too large to be attributable to
sampling error. In fact, several statistics are available which map the
random function into a scalar random variable. The Continuous

Mapping Theorem (CMT) immediately implies
Corollary 1.1. Asymptotic behavior of spectral shape tests.

Under the null hypothesis, for any Q, a closed Borel subset of [0,1]

[ Ur(®)? u(t?
" .[Q -nt T Jm(l—t)‘“

1y (t)2 1 U(t)2 . _
— T -
ADp = ,[o 76 t)dt =y Jo 1 t)dt Anderson- Darling statistic.

>

. JQ Up()2dt =, JQ U(2)*dt

1 1
CVMyp = J UT(t)Zdt EX J' U(t)zdi a Cramer-von Mises statistic.
0 0

il sup [Up(t)] =w sup [U(D)]
teqd teQ

KSp = sup |Up(t)| =w sup | U(Y)] a Kolmogorov-Smirnov statistic.

[0,1] te[0,1)

11




iv. sup [Ur()—Up(s)| =w sup [ U(t)— U(s)]

[s€Q;; teQ)] [s€Q;; teq)]

Krp=sup (Ur(t)—Up(s)| 2w sup | U(t)— U(s)]| 4 Kuiper statistic.
[0<5,¢<1] 0<s,t<1]

Subsequent discussion will focus on the ADg, CVMy, KSp, and
Ky statistics, as the various significance levels of their asymptotic
distributions are tabulated. (See Shorack and Wellner [1987].) Tests of
the null using any of these statistics will possess asymptotic power one
against any stationary non-white noise alternative. This occurs due to

the 7'/% term blowing up the deviations.
Corollary 1.2. Consistency of spectral shape tests.

ADL, CVMy, KSr, K, all diverge if z; 15 any other MA process fulfilling
T T T I,

requirements i1. to vii. of the null hypothesis.

Frequency interval analysis

An alternative testing framework for the martingale hypothesis
may be developed by considering point estimates of the spectral
distribution function. This approach may be appropriate when the
researcher has some prior information on the location of the alternative.
For example, if a researcher believes that the alternative to the
martingale model is long run mean reversion, maximizing test power
might dictate an examination of the behavior of the low frequencies.

More generally, one can formulate the spectral implications of a
martingale difference through the Crameér representation of a random

variable

12



T, = /rcos(wt)du(w) + /rsin(wt)dv(w) (1.14)
o 0

where at each fixed w, du(w) and du(w) are zero mean orthogonal random
variables. This orthogonal decomposition in turn identifies a measure of
how different intervals of frequencies contribute to the total variance of a
time series. The percentage contribution of interval [A;,A;] to total

variance 1s

A
Q/Ajf,(w)dw

o 2(0) (1.15)

Under the null, lﬁ% = t—s.

Specific alterznatives will place precise restrictions on this ratio.
For example, mean reversion implies that the percentage contribution of
[0,A] is small when X is small. Testing whether the power within an
interval is consistent with white noise can be achieved in a
straightforward application of Theorem 1.2. Noting that Upn()—Ur(s)
corresponds to deviations of spectral power over [s,rf] relative to the

null,

Corollary 1.3. Asymptotic behavior of point estimates of the spectral

distribution function.

Under Hy, for s<t, Uj{(t)—UT(s):wN(O, (t—=s)=(t=5)?).  Under any
nt

. ,, w )
alternative such that —a’z(o—)—¢t—s, Up(t)—-Uyp(s) diverges.

2. Window estimates of the spectral density

13




In empirical work, the periodogram is normally not directly
analyzed due to the inconsistency of the individual frequency estimates.
Spectral windows are typically applied to smooth the periodogram so as
to generate consistency at a countable set of frequencies.  These

smoothed, normalized spectral estimates take the form

hp(w) = J ing;wT(u 6)ds (2.1)

where the window Wr(0) equals
T-1
A N =i .
wr(6) £ % > bp(e (2.2)
j=~(T-1)

Since some martingale tests are interpretable as window estimators at
the zero frequency, it is useful to understand the asymptotic properties
of window-based spectral distribution function estimates.

We work with windows that fulfill
Definition 2.1. Admissible spectral window.
The sequence of weights §7(7) fulfills
i. 6 p(1) is uniformly bounded mn jand T.
i1, liT'm___>°o §p(D)=1 for fized j.

These requirements are weaker than those necessary to prove that
individual frequency estimates are consistent. The relevant issue for

hypothesis testing concerns the Interpretation of spectral shape tests

which employ a smoothed, normalized estimator,

14



¥ = B byt - 5 Yo 3

Despite the pointwise inconsistency of the periodogram, the
employment of a consistent window estimate in its place will have no
effect on the asymptotics of the cumulated spectral shape. This was
originally recognized by Parzen [1957]. Intuitively, this occurs because
the cumulated sample spectral density estimates already average over
individual frequencies so as to produce estimates of proportions of the
total variance of the time series. This idea may be extended to show
that standard windows used in the construction of the sample spectral

distribution function asymptotically wash out.

Theorem 2.1 Asymptotic equivalence of window generated and

periodogram generated spectral shape tests.
Under H,y, for any window fulfilling Definition 2.1
U () =w U®).
Corollary 2.1. Asymptotic behavior of window based spectral shape tests.

For any window fulfilling Definition 2.1, all asymptotic results in Corollaries

1.1 to 1.3 will still hold if UY (1) replaces Ur(1).
This asymptotic equivalence does not, of course, imply that the

window choice is irrelevant in finite samples. Window choice can in

particular affect finite sample test size.

3. Relationship to other tests

15




Recent work on the testing of the martingale null has focused on
the question of the behavior of the variance of long differences in various
time series. Cochrane [1988] is an early source of this methodology.

This approach centers on the variance ratio

k=1
Var( 3 7,:)
{=0

AR = ety (3.1)

Under Hy, A(k)=1.
As recognized by Carhpbell and Mankiw [1988], since the sample
variance ratio equals

k S
Ap(k) = ZL(k kljl)i’z(J) (3.2)

the statistic is proportional to the Bartlett estimate of the zero
frequency.  Varlance ratio tests, as k=voo, therefore examine the
rectangular null at the zero frequency.

The spectral shape tests may therefore be contrasted with the
variance ratio methodology in terms of the way in which the alternative
hypothesis is formulated by the researcher, The various spectral shape
tests examine how on average the entire range of frequencies [0,x]
deviate from the H, population values. This computation is appropriate
when the researcher has a diffuse prior over the entire class of
alternatives. In the time domain, this is analogous to testing the entire
autocorrelation function to see whether the percentage of statistically
significant autocorrelations is too great to be attributable to sampling
variation.

The variance ratio tests, alternatively, focus on the zero frequency

16



in isolation and correspond to a researcher’s prior that the high
frequency deviations of the alternative from the null are small relative to
the low frequency deviations. This test will naturally not be consistent
against all alternatives, such as z,=¢,+¢,_,—¢,_,. The test can only be
justified if the researcher’s prior on H, is concentrated on the low
frequencies.

The complex relationship between the variance ratio test and
spectral shape tests may be seen in the window based Cramér-von Mises

statistic

cvMy = zTJ’ O"(IIT(Q))_%)dw) at (3.3)
1] Q

For the Bartlett window, h;(0)=A,(0). The CVM test thus employs
information in the vé’ry low frequencies. The mapping of individual
frequencies into the spectral shape tests is, however, quite nonlinear.
This occurs because the zero frequency affects all terms in the integrand.

In comparing the tests, note that there is some information in all

frequencies for processes with long run mean reversion. For example, if
“xlzet—et_mo, then the frequencies 0 and = both provide equal
information as fo(v)=f:(0)=0. Even with a prior belief that the values of
the low order autocovariances are zero, this does not imply that high
order frequencies do not contain useful information. General spectral
shape tests will exploit information at high frequencies. Ignoring the
information available at these frequencies can only be justified by a very
specialized prior.

It i1s also possible to modify the spectral shape tests so as to
1maximize power against long run mean reversion. By choosing Q=[0,}]
for A near zero, Corollaries 1.1 and 2.1 allow inferences to concentrate on
low frequency deviations in a way similar to the variance ratio tests.

Further, examination of point estimates as suggested in Corollary 1.3

17




permits the identification of whether low frequencies exhibit a deficiency

of power relative to the random walk null.

4. Application to stock prices

This section presents an application of the spectral shape tests to
some time series of excess holding returns on stock portfolios. Recent
authors, most notably Lo and MacKinlay [1988] and Poterba and
Summers [1987] have challenged the conventional view that stock price
returns are unpredictable-d.e. do mnot form a martingale difference
sequence. These authors, using variance ratio tests, have concluded that
stock prices exhibit some mean reversion.

As Section 3 has suggested, the spectral shape tests may be
interpreted as searching over all frequencies of the spectral density for
martingale difference violations whereas the variance bounds tests may
be interpreted as examining the zero frequency in isolation. The Lo-

MacKinlay and Poterba-Summers papers are therefore a natural place to

explore the importance of the researcher’s beliefs concerning the location :
of alternatives in affecting the outcome of a hypothesis search. We

concentrate on periodogram estimates.  Different Bartlett window

estimates generated similar results.

Lo and MacKinlay explored the weekly fluctuations for two CRSP
NYSE-AMEX aggregate portfolios-one weighted by value, the other
equally weighted across all stocks reported on the exchange. The returns
on these portfolios are based on the one week changes in closing
Wednesday prices. Following these authors, if the exchange was closed
on a Wednesday, the Thursday price was employed. If the exchange was

also closed on Thursday, the previous Tuesday price was used. If the
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Table 1

Spectral Shape Tests of Deviations of Weekly Excess
Returns From White Noise

Periodogram-based Tests
Lo and MacKinlay Data Set

ADy  CVMy KSt Ky

Value Weighted Portfolio

Entire Sample 6.05**  0.86" 1.42° 1.53
First Half 8.31*"  1.33™ 207 213"
Second Half 1.32 0.17 0.74 0.91

Equal Weighted Portfolio

Entire Sample 90.3** 114  4.85"  4.89*
First Half 454" 588"  3.63** 3.64"
Second Half 42.6* 530"  3.51**  3.64*

Asymptotic Critical Values

5% 2.49 0.46 1.36 1.75

1% 3.86 0.74 1.64 2.01

Finite Sample Critical Values

(T=1000)

5% 3.14 0.49 1.16 1.60

* denotes significant at asymptotic 5% level
** denotes significant at asymptotic 1% lcvel




exchange was closed on all three days, the value was treated as missing.
The data consist of 1216 observations running from September 6, 1962 to
December 26, 1985. The sample is also divided in half to see whether
the properties of the returns are stable.

Table 1 reports the various spectral shape statistics for the
periodogram based estimates. These estimates provide reasonably strong
evidence against the martingale difference null. Four basic conclusions
may be drawn. 1) The null hypothesis is generally rejected for both
portfolios over the entire sample. The one exception is the Kuiper
statistic for the value weighted portfolio. 2) The rejections for the equal
weighted portfolio are overwhelming and substantially stronger than for
the value weighted portfolio. 3) The rejections for the value weighted
portfolio disappear in the second half of the sample period.
Interestingly, these results are quite consistent with Lo and MacKinlay.
4) The extremely high values of the Anderson-Darling statistic relative
to the Cramér-von Mises statistic suggest that the low frequency
components of the equal weighted portfolio returns are the source of the
overall rejections. ‘

Table 1 also lists the finite sample critical values generated by
4000 replications based upon i.i.d. N(0,1) errors. The finite sample
critical values do affect inference slightly. The Kuiper statistic over the
entire sample now rejects for the value weighted portfolio. Interestingly,
the Crameér-von Mises statistic performs quite well in that the finite
sample 5% confidence level is quite near its asymptotic counterpart.
Durlauf [1990] confirms that for independent normal errors, the size of
the CVM test is 5% for as few as 40 observations.

The differences between the behavior of value and equal weighted
portfolio returns affects the sorts of economic interpretations suggested
by violations of the null. For example, the equal weighted portfolio

requires many more transactions across time than the value weighted
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Table 2

Spectral Shape Tests Deviations of Monthly Excess
Returns From White Noise

Periodogram-Based tests

Poterba and Summers Data Set

ADt  CVMy KSy Kt

Value Weighted Portfolio

11.1**  1.86*  2.57" 2.75*

Equal Weighted Portfolio

537 092 210 2.24

* denotes significant at asymptotic 5% level
** denotes significant at asymplotic 1% level




portfolio.  This occurs because all capital gains must be followed by
portfolio adjustments to preserve relative weights. Mean reversion may
thus be caused by transaction costs. Further, the equal weighted
portfolio gives substantial weight to small firms in determining holding
returns. Investors may be risk averse with respect to small firms facing
possible bankruptey, particularly over longer horizous.

Poterba and Summers examined the monthly returns on the
CRSP-NYSE value weighted and equal weighted portfolios. The data
run from January 1926 to December 1985. Table 2 explores the spectral
behavior of aggregate cxcess holding returns over the entire sample.

The overall results for monthly holding returns arc inconsistent
with the null hypothesis. Over the entire sample, the periodogram
estimates consistently reject the null for both portfolios for all four
statistics. The results in Table 2 clearly show that the Poterba-Summers
conclusions were not essentially affected by the particular alternative
examined.

One should certainly not read the results of these empirical
exercises as strongly demonstrating that excess h‘olding returns are not
white noise. The test statistics require the existence of eighth moments,
which may not hold for the data. Pagan and Schwert [1989] provide
some evidence that even second moments may not exist. The important
conclusion from our results is cvidence agaiust the random walk theory
can be deduced which does not depend on examination of a particular
frequency.

The frequency domain methods have provided a number of
interesting empirical results in other areas. Durlauf [1989,1990] uses
spectral shape tests to argue that annual log per capita output can be
well modelled as a random walk with drift. Bizer and Durlauf [1990],
analyzing tax behavior, reject the null hypothesis that tax changes are

unpredictable, casting some doubt on the optimal tax smoothing model
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of Barro [1981].

5. Summary and conclusions

This paper has presented a method of using spectral distribution
estimates to test whether a given time series is a martingale difference.
The tests explore the cumulated deviations of the sample spectral
distribution function from its theoretical shape—a diagonal line—under
the null hypothesis. These cumulated deviations, when scaled, behave as
a Brownian bridge. An asymptotic theory is developed for a broad class
of martingale difference processes.

When applied' to the entire spectral distribution function, the
testing framework is consistent against all fixed alternatives. At the
same time, each test simultaneously analyzes all frequency components
of the data. As a result, the various test statistics correspond to a
diffuse prior over the location of alternative hypotheses. These tests
avoid data mining by embodying «ll implications of the null hypothesis.
The tests can further be adjusted to explore different subsets of
frequencies, which may be appropriate when a researcher has some prior
on the nature of likely alternatives.

Application of the tests to weekly and monthly stock returns
revealed some evidence against the null hypothesis that the holding
returns are martingale differences. This result confirms recent research
demonstrating that stock prices exhibit long run mean reversion.
Violations of the random walk theory appear to be robust to a relatively
diffuse formulation of a researcher’s beliefs concerning the class of
alternatives.

One extension of the techniques in this paper would consist of

21




multivariate generalizations of the test statistics. Most martingale
formulations require that increments in a time series be unpredictable
given all available information, not just the history of the series. In this
way, the more powerful tests of theories such as the efficient markets

hypothesis can be implemented.
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Technical Appendiz

Proof of Theorem 1.2

Let ¢;, j=1..., represent an infinite sequence of N(0,1) random variables.

Standard arguments verify that

() = Tie,“’”“ (0.1] (A.1)

=1

1s a representation of a Brownian bridge. We now consider U, (1)

Up(D) ( ET”” %ﬂ” (A.2)

To prove weak convergence of Ug(t) to 2(t), we nced to show that

the probability measures up associated with the Uq(t) sequence converge

to the probability measure associated with U(t). From Billingsley

Theorems 8.1 and 8.2, necessary and sufficient conditions for this

convergence are i. For any §>0, 3 an £>0 such that P(|U(0)]>6)<¢ V

T>1. ii. The joint distribution of {Up(%)...Up(%)} converges to the joint

distribution of {U(t,)... U(t,)} for any finite sequence t,...1;,. #i. For every

1>0 and 5>0, 3 an ¢€(0,1) and 3 an intcger 7T, such that
P(sup | Up(t)—Up(s)|27)<qy for all T>T,.

lo=tl< “Condition i. is trivial since by construction U,(0)=0V T.

In order to verify Conditions ii. and iii., rewrite Up(1) as

UT(t)——‘(ZTIP sm]rrt + Tz:l 1,1/-_ stn]ﬂrt) (A,3)

j=k+1

By the Hannan-Heyde CLT and the CMT, for any fixed &
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k k ..
o) = BT oy 0 = BY )P (A
=t =t

where T'/?5.(;) converges to a sequence of i.i.d. N(0,1) random variables
prim(7). Convergence requirements . and #i. thus hold for the truncated
estimate U%(t). Next, define

T-1 ..
P t
Ro() = R[5 1% (A.5)
Fya ]
R = 213 ¢ (A.6)
J=k+1

where ¢;’s are defined as above. Suppose for any ¢>0 and ¢>0, there

exists a k and a T such that for all T> T,

P(ft[tpll RE(1) > () (A7)

We claim that if (A.7) is true, then the Theorem is verified. To see this,
note that Condition ii. holds through apphcatlon of the Cramér-Wold
device to

SNV (t) (A.8)
i=1

where (.6 are fixed. Convergence of (A.8) to > \u(y) for

U(ty= U*(2)+ R*(¥) requires that for any v>0 and >0, =
limsup P([i,\,.U(ti)—Xr:/\,-UT(tm >v) <y (A.9)
T= o i=1 i=1

This expression can be bounded by

limsup P(|Z/\iU(ti)—Z/\iUT(ti)l > v) £
T= e i=1 i=1
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limsup
T= o

LOMNL Z,\ UE(1)] + |ZA RE(L) |+|ZA Ra(t)]3v) (A.10)

By the convergence in (A.4), for any v,>0

timsup P(]ZA Uk(t,) — ZA Utz Y < § (A.11)
By construction of the Brownian bridge, for any v,$>0

timsup P(|ZA OIS ES (A.12)
Finally, (A.7) implies that the third term in (A.10) greater than any 3
with probability less than % through suitable choice of k and sufficiently
large T. Therefore, if (A.7) holds, then the sum of the three terms on
the right hand side of (A.10) can be made smaller than any arbitrary
$>0 with probability arbitrarily near 1, for sufficiently large k as T=oo.
Since this holds for any weights A;, the standard Cramér-Wold argument
ensures that all finite dimensional distributions converge.

Condition . follows from a version of the triangle inequality

Plsup (Up(t) = Up(s)] 2 7) <
|=—t|<z

Plsup 1050~ U5 + RS- Ry ()] 2 ) (A.13)
s—1|<¢

To see that this last expression can be made arbitrarily small for
fixed &, consider the two components sup | U5 ()= U%(s)] and
sup |R%(1)— R5.(s)| separately. For all T gleatm Itilan or equal to some
’T_It, sup | U%()— U%(s)| can be bounded below any 2 with probability

greater han 1—2 since the sequence of probability measures associated




with U%(?) is tight. For all T greater than or equal to some T,, the

sup [R5 (1)—R%(s)| is bounded below any % with probability greater

tlﬂztu;cl—g if (A.7) holds. Therefore, choosing T, as the maximum of T,
and T, allows one to make this last probability smaller than any
arbitrary n, implying that Condition iii., tightness, holds if (A.7) is true.

Tedious algebra in Grenander and Rosenblatt [1957] pg. 189
shows that (A.T) holds whenever

Epa()ps(r+1)p=(k)p=(r+k)| (A.14)

is 0p(T"%), which holds whenever E(z) is uniformly bounded. This

verifies the Theorem.
Proof of Corollary 1.3

The CMT ensures that U, (t)— Up(s) =w U(t)—U(s). Further, U#)— U(s)
= B(t)— B(s)—(t—s)B(1), which is distributed as N(0,t—s—(t—s)?).

Proof of Theorem 2.1
The window estimator of the cumulated spectral deviations is
v = 2 TZ_ZIT“Z&T(;)MJ')S—“% (A.15)
=1
We analyse

=1 .
UF O - V) = B 10500~ Doyt
j=1

£ ing =1 2 injm
=QZT”2(6T<J‘>—1>;7¢<J'>“”T?“ + 25 1)~ 102 THAL6)

J=k+1
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We now show that (A.16) converges to zero, which combined with
Theorem 1.2 verifies Theorem 2.1. Consider the first summation, for

fixed k. By the Cauchy-Schwarz inequality

|—QiT1/2<6T<j>—1)p:<j>ﬁ3—?"—‘| <
k /2_ smﬂri e k . 9 v
(J};(Tl ORy ) (;(5T(])_1) ) (A.17)
This upper bound converges to zero as T=>oo since the first summation
on the right of the inequality is an O,(1) random variable and the second
summation converges to zero since 6,(;)=1 for fixed j. This means that
the first summation in (A.16) converges weakly to zero.

Define

RYH( = |Z 2620~ 1)7 () 2 (A.18)

Following the proof of Theorem 1.2, Theorem 2.1 is verified if for
any ¢>0 and ¢>0, there exists a k such that for T> T,

P(sup R;Y’k(t) > C) <€ (A.19)

tc{0,1]
Rewriting R ‘IH( t) as

RyM(y) = |Z 835 () 2 ~E ROL (A20)
I=k+1

eq. {A.7) and the triangle inequality imply that proving (A.19) holds is
equivalent to showing for any ¢>0 and ¢>0, there exists a & such that for
T> T,
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1

Powp 252 P Y 5 §) < (A.21)

te[0,1] i=k+1

By analogy to the proof of Theorem 1.2, this last lirnit holds if
B p (D8 ¢ (r+5)6 p ()8 7 (r+ k) p= () (k1) p(R) pa (4 )| (A.22)
is 0p(77%). Uniform boundedness of the window weights means that any

conditions ensuring that (A.14) is O,(T?) also mean that the same holds

for (A.22), which proves the result.
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