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1. ln&zmt.uml

Uniform laws of large numbers (ULLNs) are important tools for developing
asymptotic theory in econometrics and statistics. For example, consistency
proofs of estimators in nonlinear econometric models frequently employ ULLNs.
In the early seventieths Hoadley [7] introduced a ULLN that applies to
non-1.1.d. data processes. This ULLN (or some version of it) has been used
widely in the econometric literature, see e.g. Bates and White (3], Domowitz
and White [5), Levine {9], White [17] and White and Domowitz [18]. However,
Andrews (2] and Pétscher and Prucha [12,13] point out that the equicontinuity
assumption maintained by Hoadley’s ULLN is severe and precludes the analysis
of many estimators and models of int:erest.2 These observations motivate
interest in alcern;tive ULLNs.

Consider the sum anz_l[qt(z‘,a) - eq(zt,o)], where (zt) denotes a
stochastic process that takes its values in a set Z, § is an element of a
parameter space 8, and qt:2x8 — R. ULLNs then provide conditions under which
the above sum converges to zero uniformly over the parameter space. Ideally,
ULLNs should be applicable to a wide range of problems. They should be able
to handle temporal dependence and heterogeneity of the stochastic process (zc)
as well as heterogeneity in the functions q,. ULLNs that are aimed towards
that goal have been introduced recently by Andrews [2] and Pdtscher and Prucha
[13,15]. Those ULLNs are generic in the sense that they transform pointwise
laws of large numbers (LLNs) into corresponding uniform ones.

The proofs of most ULLNs, including those mentioned above, are based on
an approximation technique that dates back to Wald [16], see also Jennrich
[8). This technique reduces the proof essentially to the verification of a

single condition. Several authors refer to that condition (formulated within




contexts of varying generality) as the first moment continuity condition, see
e.g. Amemiya [1], Andrews [2], Hansen (6], and Newey [11]. Therefore, ULLNs
that are based on Wald’s approximation technique differ in essence only in the
way how this first moment continuity condition is verified from basic
assumptions on the functions qt(zt,e).3 For example, Andrews [2] imposes a
Lipshitz-type smoothness condition which enables him to verify the first
moment continuity condition by essentially separating the stochastic component
from the parameters. Alternatively, Hoadley [7] imposes an almost sure
equicontinuity condition, which - together with a standard domination
condition - Iimplies the first moment continuity condition. We note that it is
precisely this almost sure equicontinuity condition that is restrictive in
general.

The present paper is a revision and extension of Pdtscher and Prucha
[13]. In the latter paper we introduced a generic ULLN by (i) truncating the
(argument z, of the) functions qt(zc,a) appropriately, (ii) by applying
Hoadley's almost sure equicontinuity condition to the truncated functions to
obtain a ULLN for the latter functions, and (iii) by recovéring a ULLN for the
untruncated functions from the ULLN for the truncated funct;ons. The crucial
point is that the almost sure equicontinuity condition is not restrictive when
applied to the truncated functions. We note further that this truncation
approach was also used implicitly in the proof of a recent ULIN given in
Pdtscher and Prucha [15].

In Section 2 of the present paper we first show that this truncation
approach can be applied to any ULLN (and not only to Hoadley's ULLN). More
specifically, we introduce a lemma that gives sufficient conditions under
which a ULLN for the untruncated functions can be recovered from a ULLN for

the truncated functions. Second, we derive a basic generic ULIN that unifies



Andrews’ [2] separation approach and Hoadley’s [7] equicontinuity approach.
We note that combining the lemma and this basic ULLN gives a general ULLN that
contains a generalization of Andrews’ [2] ULLN as well as Pdtscher and
Prucha’s {13,15] ULLNs (and hence Hoadley’s (7] ULLN) as special cases. In
Section 3 we now derive Péotscher and Prucha’s [13] generic ULLN as a special
case and provide various simple sufficient conditions that imply the
assumptions of this ULLN and also provide further interpretation to those
assumptions. We also illustrate how specific ULLNs can be obtained from this
generic ULLN by presenting a ULLN for a-mixing and ¢-mixing processes.
Various further points of discussion are provided in Section 4. 1In Section 5
we give an example for which it is possible to establish a ULLN under weaker
conditions based on Ehe results of this paper than is possible based on the
results given in Andrews [2] and Pétscher and Prucha [15]. All proofs and

some technical remarks are relegated to the appendices.

2.  The Truncation Approach and a Basic Uniform Law of Large Numbers

Let (0,4,P) be a probability space, let (Z,3) be a (non-empty) measurable
space and (8,p) a (non-empty) metric space with metric p.a Let (zt_)LGN be a
stochastic process defined on (Q,H,P) taking its values in Z. Let qt:er — R
be such that qt(z,o) is 3-measurable for each #€® and teN. We refer to © as

the parameter space. We shall make use of the following assumption.

Assumption 1l: O is compact.

It proves helpful to introduce the following definitions: For a sequence

c
of sets (K.)nd with K-ES let qt'n(z,ﬂ) - qh(z,ﬂ)l‘ (z) and qt’-(z,ﬂ) -

. - ¢ -
qt(z,ﬂ)lz«.(z), also let db’n(z) sup&ee|q"-(z,0)|, dt"(z)




SUPyee,q: _(Z.a)l and d (z) = Supaeelqt(2.9)|, which may take on the value

<
+ o, (Note that dc‘n(z) - dt(z)lx (z) and dcvn(z) - d:(z)lz_x(z) if we adopt
m

the convention «.0=0.) Furthermore, the sequence (qt(zt,a): teN) is said to
satisfy a (strong) ULLN if and only if supgee|n-lz:_1[qt(zt,0)-eq(zb,9)]| —
0, P-a.s., as n — =. Note, that in this definition it is implicitly"
understood that Eq‘(zt,ﬁ) exists and is finite for all telN and #€8.

We now introduce a basic lemma that makes 1t possible to generalize
existing ULLNs via a "truncation principle”. More specifically, the lemma
gives basic conditions under which ULLNs for the sequences of truncated
functions (qt'n(zc.ﬂ): telN) can be carried over into a ULLN for the sequence
of untruncated functions (qt(zb,o): teN). A discussion of these conditions
and, in particular, several sets of more primitive sufficient conditions will
be given in the next section. We emphasize that the point of the lemma is
that it will be typically easier to verify the conditions of a given ULLN for
the truncated functions then for the original functions. This fact will also

be illustrated in more detail in the next section.

Assumption A: For a sequence of sets (K )mEN with K €3 the corresponding
m m
functions d: -(zt) are P-a.s. measurable with Ed: (zt) finite and
> ,m
i"z.xrt:hez:more:5
-1, ¢ 6
(a) lim (limsup n E:-xEdc,.(z;)’ -0,
(b) The sequences (d: n(zc): telN) satisfy a strong LIN for all meN.
Lemma 1: Let Assumption A be satisfied. Then:
(a) The sequence (qt(zt,O): telN) satisfies a ULLN if for all meN the
sequences (qt (zt,o): teN) satisfy a ULLN.
,m

_1 . -1 .
(b) (n }:_th(zt,ﬂ). nelN) is equicontinuous on 8, if (n :-1ch,n(z:’0)‘



neN) Is equicontinuous on € for each meN and if n-lr;_lEqL(z:,ﬁ) is

continuous on 6 for each neN.

In part (b) of the above lemma it is again implicitly understood that the
expectations eq -(zc.ﬂ) exist and are finite; hence in view of Assumption A

also the expectations eq(zt,a) exist and are finite.

Remark 1: (1) The sequence (K‘) will frequently (but not necessarily) be an
increasing sequence of sets exhausting Z, i.e. K T‘Z.
o
(1i) Inspection of the proof shows that the condition of continuity of

n_IZ:_leq(zh,o) in part (b) of Lemma 1l can be dropped if part (a) of

' '

Assumption A is strengthened by replacing 'limsup’ with ‘sup’.

In preparation of our basic generic ULLN we introduce some further
assumptions. Again, a discussion of those assumptions and, in particular,
several sets of more primitive sufficient conditions will be given in the next
section. We adopt the following notation: Let ft:2x6 — R and r>0, then
* ’
fb(z,o

£(2.0), £,(z,0,7) = £ (2,8).

) = SUP, g giyer inf 4 87y<rfe

Definition 1: The sequence (ft(zn,ﬁ): telN) is said to satisfy a strong LLN
locally at §', if there exists a sequence of positive numbers ('k)kdi’
rx-rk(a'), with T, 0 as k—w, such that for each . the sequences
(f:(zt,ﬁ',rk): telN) and (ft.(z‘,ﬁ’,rk): telN) satisfy a strong LLN, i.e.
ot N , e , - i
lim oL [£(z,,0%,7) - Ef (2,,0",7)] =0, P-a.s., and

-1 ' ’ - -
lim n f:_l[f"(z‘,a ) - Ef (z,,8%,7r)] =0, P-as..
We note that in the above definition it 1is i{implicitly understood that

f:(zc,ﬂ',fk) and f"(zt,ﬂ',rk) are measurable P-a.s. and that the respective

expectations exist and are finite.7




Assumption B: The sequence (qt(z‘,ﬂ):tdi) satisfies a strong LLN locally at

8' for all §'e€8.

We note that Assumption B is satisfied for many stochastic processes (zt).
E.g., it is satisfied for 1.i.d. processes, stationary and ergodic processes,
a-mixing processes, ¢-mixing processes, etc., given standard domination

conditions.

Assumption C: ' : v ro=r (87), wi
C: For all §#'e8 we have: Let (rk)keN T rk(ﬂ ), with L 0 as

x

k—=, be the sequence defined implicitly in Assumption B. Then there exists

a p with 1<ps> and a ko-ko(&') such that p(>6,0')<rk implies
0

|qt(zb,9)-q‘(zt,€’)| < bt(zt,ﬂ’)hh(zt,ﬂ',ﬂ)

for all weO\N P(N0'> = 0, where bt(z‘,ﬂ‘) and hc(zc,ﬂ’ ,0) are finite,

8’
nonnegative and #-measurable (for given §' and all #€8) and satisfy the
following:

(a) sup‘hc(zt,ﬂ',i) — 0 if p(8,8'Yy > 0 for all we]\No,.

(b) The functions h:(zt,W,fk) = sup ht(zh,ﬂ',ﬂ) are P-a.s.

p(8,8 )<rk

measurable for 'xs'x .
o

(¢) sup n”'TT E[b (z,,8')F]<o if lsp<w, and sup b (z,,8")], < = if p=;

furthermore, (n'lf:_lh:(zt,ﬁ' . )q: neN) is uniformly integrable if 1l<ps==,
0

and suptﬂh:(zc,O’ "k)"n — 0 as k—w if p=l, where q.l+p'1-l.8

In the above assumption ""a denotes the essential supremum of |.| w.r.t. P..

We now introduce the following basic generic ULLN:

Theorem 1: Let Assumptions 1, B and C be satisfied. Then:
(a) The sequence (qt(zt,ﬂ): telN) satisfies a ULLN.

(b) (n-lfz_lth(zb,O): nelN) is equicontinuous on 8.



Remark 2: (i) If Assumption C holds for hb(zb,o’,ﬂ) = h(p(8,8')) with h(x)LO
for x¢0 and 1if we put p=1, then Theorem 1 reduces to a recently introduced
ULLN by Andrews {2], which 1s based on a Lipshitz-type smoothness condition.
If Assumption C holds for p==, h (z ,6’,6) = Iqt(zt.v)-qc(zt,o')| and
bt(zc,ﬁ')-l, then Theorem 1 reduces to a generic version of Hoadley's (7,
Theorem A5] ULLN. (In this latter case Assumption C(a) becomes Hoadley's
almost sure equicontinuity condition.) Hence, by applying Theorem 1 to the
functions 1. and then using Lemma 1 we can obtain further generalizations
of both ULLNs. In Section 3 we show exemplarily how we can obtain a useful
ULLN by generalizing the rather restrictive ULLN of Hoadley [7] via this
truncation approach.

(ii) Also the ULiN given in Pétscher and Prucha [15] is essentially a
special case of Theorem 1 combined with Lemma 1; for a more detailed

discussion see comment (iv) in Section 4.

3. Generalization of Hoadley's Uniform Law of Large Numbers and a cussi
of Sufficient Conditions

It is important to recognize that, based on the approach developed in
Section 2, we can obtain a very general ULLN by maintaining that Assumptions 1
and A hold, by postulating Assumptions B and C for the truncated functioms
9 o and by appealing to Lemmg 1 and Theorem 1. In the following we
illustrate the approach further by considering ULLNs corresponding to sets of
sufficlent conditions for the above general catalog of assumptions. In
particular, we derive a rather general generic ULLN that generalizes Hoadley's
{7) ULLN. This generic ULLN was first presented in an earlier version of this

paper, see Potscher and Prucha {13]. In the following we first state the




catalog of assumptions and present the theorem. We then give a discussion of
the maintained assumptions. We will also provide sufficient conditions for
the respective assumptions that can be readily checked. Based on those
sufficient conditions we present two ULLNs for a-mixing and ¢-mixing processes

as corollaries.

Assumption 2: (a) For all melN and all §'€6 we have: (q: n’(zn,é): telN) is
equicontinuous at §', P-a.s..

(b) For all teN and §'€6 we have that qt(zt,ﬂ) is continuous at §', P-a.s..

A slightly stronger assumption (where the exceptional null set is now not

allowed to depend on §’) is the following:

Assumption 2‘': (a) For all meN we have: (qr. I”(zt,ﬂ): teN) is equicontinuous
on 8, P-a.s..

(b) For all teN we have that qt(z‘,ﬁ) is continuous on 6, P-a.s..

Assumption 3: The function dr.(z:) is P-a.s. measurable with Edt(zt) finite.
Furthermore:
= c
@ 1 (g 2T 5 ) - 0
(b) The family of functions (n-lzz_ldc m(zt): neN} is uniformly integrable,

for each melN.

Assumption 4: . For all meN:
(a) The sequence (q‘ n(ze"): teN) satisfies a strong LLN locally at §', for
all 6'e® and all meN.

(b) The sequence (d: .(z‘): teN) satisfies a strong LLN for all meN.9

We introduce the following generic ULLN.



Theorem 2: Given Assumption 1, and given Assumptions 2, 3, and 4 are
satisfied for some sequence (K) with K €3. Then:
' meN 0
(a) The sequence (q‘(zt,o): teN) satisfies a ULLN; and

(b) (anZqeq(zt,ﬂ): nel) is equicontinuous on 8.

Remark 3: (1) We note that for KE-Z Theorem 2 reduces to a (slightly
generalized) generic version of Hoadley's (7] ULLN. The equicontinuity
condition in Hoadley [7] is identical to Assumption 2’ for Ki-Z. As explained
in more detail in Andrews [2] and Pétscher and Prucha [13], Hoadley's
assumption is, loosely speaking, restrictive since it will typically be
violated if there is unbounded variation in the variables z,. The basic idea
behind Theorem 2 is to avoid this restrictiveness by requesting only that this
condition holds for certain approximations to the functions q‘(zc,o), i.e. for
the functions q%.(zc,ﬁ). For simplicityvof the argument assume for a moment
that 2-R°. If the Kn are chosen as increasing bounded sets, then those
approximations are obtained by truncating the funccions qh(z‘,a) for "large”
arguments z . We note that for these truncated functions the effective domain
of the argument z, is bounded. Consequently, and as demonstrated in more
detall below, we find that the equicontinuity condition is not restrictive,
when applied to the truncated functions.

(11) We note that for the proof of part (a) of Theorem 2 part (b) of
Assumption 2 has not been used. Also, if the sets K_ exhaust Z, {.e. U:qKn-
Z, it is readily seen that part (b) of Assumption 2 is already implied by part

(a). (The same is also true for Assumption 2'.)

' '

(i1i) Furthermore, if ‘limsup’ in Assumption 3(a) is replaced by ’sup
then Theorem 2 in its entirety also holds without postulating part (b) of

Assumption 2, cp. also Remark 1(ii).




In the following remarks we discuss simple sufficient conditions for

Assumptions 2,3 and 4.

Remark 4: (Sufficient conditions for Assumption 2) The following discussion
is based on Lemma A3 in Appendix A. As remarked above, Assumption 2 clearly
holds if Assumption 2’ is satisfied. A stronger condition, that is often
easier to verify, and implies Assumptions 2 and 2’, is the following:

(1) (a) suptsupzex|ql(z,€)-qc(z,0')| — 0 if p(8,6') — 0, for all #'e€l®, meN,

(b) qt(z,ﬂ) is continuous on 8 for each ze€Z and teN.
(Of course, if Kmﬁa the supremum In I(a) is to be interpreted as zero.) If
the Kn exhaust Z then part (b) of condition (I) is implied by part (a).
1f z-R" (or more generally, Z is a metrizable space), then condition (I)
is implied by:
(11) (qt(z,ﬂ): teN}) is equicontinuous on Zx6, and the sets I(ln are compact.
We note that in condition (II), in contrast to Hoadley’s equicontinuity
condition, the arguments of q, do not depend on t. Hence this condition is
(in a practical sense) far less restrictive, evenso q, is‘gssumed to be
jointly continuous in both arguments. For the important special case 9,4
condition (II) reduces to the condition that q(z,#) is continuous on Zx8 and
that the sets K' are compact. As a point of interest, we note that both
conditions (I) and (II) do not refer to properties of the stochastic process
(zt). Therefore, both conditions (I) and (II) imply that Assumptions 2 and 2'

are satisfied, regardless of the nature of the stochastic process (zb).

Remark 5: (Sufficient conditions for Assumption 3) This discussion 1s based
on Lemma A4 Iin Appendix A, and proceeds under the assumption that dc(zc) is
P-a.s. measurable.

(1) The following two conditions are sufficient for Assumption 3 to

10



hold; they can be checked quite easily:

(111) supnn-lz_lE[d‘(zh)“‘s] < = for some 6>0,

() lim (lmsup n') P(z,€K)) = O.

Condition (III) is a domination condition typical for ULLNs. Condition (IV)

is a kind of asymptotic tightness condition for the average distribution of

z,, i.e. for anz_lﬂc, where H is the distribution of z . Condition (IV)

is, e.g., implied by either ome of the following three simple conditions

(Va), (Vb) or (Ve):

(Va) Z-R’, K.TR' is a sequence of Borel measurable convex sets (e.g. a
sequence of closed or open balls), and limsup ndE:th("Zc") <
where h:[0,©) — [0,») is a monotone function such that %32 h(x)—m.10

(Vb) ZAR', K_TR"is a sequence of Borel measurable convex sets (e.g. a
sequence of closed or open balls), and (zn) is asymptotically
stationary in the sense that nﬂzz_gk converges weakly to some
probability measure H.

(Ve) (z,) is identically distributed and xfz.

More general formulations of (Va) and (Vb) are given after Lemma A4.

(i1) We note that Assumption 3 is also implied by, e.g.,

-1
(V1) lipsup n :_lEdn(z‘) =0, or
(VIT)  (z,) is identically distributed, 12, d=d and Ed(z) < =.

Furthermore, Assumption 3(a) is trivially satisfied in the case zteKo, P-a.s.,

for all t and K.-Ko for all m.

Remark 6: (Sufficient conditions for Assumption 4) 1In this remark we show
that Assumption 4 is satisfied if the underlying process has a sufficiently
short memory. This is expressed by mixing properties. In particular wve

consider processes (zt) that are a-mixing or ¢-mixing. (For a definition of

11




a-mixing and ¢-mixing processes see e.g. Domowitz and White [S5]; for a

definition of size see McLeish [10].) We introduce the following assumption:

Assumption 5: The process (zt) is ¢-mixing [a-mixing] with mixing
coefficients of size -r/(2r-1) where rzl [of size -r/(r-1) where r>1] and ,

supr[dh(zc)ﬁs] < = for some §>0.

Of course it Is implicitly assumed in Assumption 5 that dc(zh) is P-a.s.
measurable. In Lemma A5 in Appendix A we show that, given Assumption 1 and

2'(a), Assumption 5 implies Assumption 4.

From Remarks 4, 5, and 6 we can put together various sets of sufficient
conditions that imply the assumptions of Theorem 2. We illustrate this by two

corollaries:

Corollary l: Suppose Assumptions 1, 2' and 5 hold. If furthermore }})5
(l.})gsup n_l):_lP(zhe Km)) = 0, then the conclusions (a) and (b) of Theorem 2

hold.

Corollary 2: Suppose Z=R" and Assumptions 1 and 5 hold. If qt(z,ﬂ) is
equicontinuous on Zx8, and if limsup n_IZ‘:_IE(”zb"P) < = for some p>0, then

conclusions (a) and (b) of Theorem 2 hold.

Hoadley’s [7] ULLN is a special case of Corollary 1 for K_-Z (which, of
course, implies that P(zhe K.) = 0.) Corollary 2 is related to a ULLN

reported in Pdtscher and Prucha [15].

4. Additional Commentsg

(i) In situations where we wish to apply the above ULLNs to functions

12



that depend on leads and/or lags we can think of the vector z, as already
containing those leads and/or lags. Cp. also Pdtscher and Prucha [14],
Section 5.

(i1) The assumption that Z does not depend on t can be made without loss
of generality. Since no particular structure was postulated for Z in the
general discussion (apart from being a measurable space) situations where the
range space for the varilables z, depends on t can always be accommodated by
defining Z as the Cartesian product of the respective range spaces and by
redefining z, and q, in an obvious way.

(1i1i) Clearly any finite linear combination of functions individually
satisfying a ULLN also satisfies a ULLN. One practical implication of this
observation {s the fgilowing: Although a function qt(zt,ﬁ) may not satisfy the
assumptions of an existing ULLN, it may be possible to decompose that functicn
such that existing ULLNs can be applied to each of the summands in the
decomposition. For example, there may exist functions ft(z‘) and gt(ﬂ) such
that ft(z‘) satisfies a LIN and are such that qL(zt,ﬁ) - ft(zt) - gt(d) can be
readily shown to satisfy a ULIN. C(Clearly, then also qL(zt,ﬂ) satisfies an
ULLN. As an illustration consider the case where gt(o) - eq(zb,ﬂ) is a trend
increasing with t. Then the dominance condition may be violated for q, but
not for qt-eq. It may also prove useful in certain circumstances to subtract
the value of q, at a certain parameter 90, i.e. ft(zt) - qt(zc,ﬂo), or a
finite linear combination thereof. Of course one has then to prove a LLN for
qt(zt,ﬂo), but this is a much simpler task.

(iv) In Pétscher and Prucha [15] we prove a ULLN for functions of the
form qt(zt,ﬂ) - E:_lrkc(zc)skt(zt.ﬂ) where rk‘ is measurable and sn jointly
equicontinuous. This ULLN can be viewed as a special case of the results of

Section 2 of the present paper (abstracting from the slight differences in the

13




maintained local LIN conditions). We note that Assumption 3(il) of Pétscher
and Prucha [15) can be replaced by the slightly weaker but more complex

assumption supnn_]'Z:_lE[|rn(zt)|lK (zc)] < = for all meN without changing the
m

proof. We note further that if the functions T, satisfy the stronger

condition supL!rn(zt)llK (zc) < = P-a.s. for all meN, then the ULLN of
-3

Pdtscher and Prucha [15] can also be obtained as a special case of Theorem 2
of the present paper (again abstracting from the slight differences in the
maintained local LIN conditions).

(v) In this paper we give conditions under which nﬂﬁz_l[qt(zb,o) -
eq(zt,ﬂ)] converges uniformly to zero. For a further discussion of
conditions such that not only a ULLN holds, but such that also rflzz_lqt(zb,é)
converges uniformly to a fixed limit, see e.g. Pétscher and Prucha {12,13,15].

(vi) Lemma 1, Theorem 1 and Theorem 2 remain valid if q, and z, also
depend on n, given the following modifications are made: Assumptions A and B
are to be applied accordingly to the triangular array, say, q:(z:,a); in
Assumption C the functions b; and hc may now also depend on n and the 'sup;
in Assumptions C(a) and C(c) is to be replaced by 'SuPnsuéﬂ&,. In Section 3
the equicontinuity conditions postulated in Assumptions 2(a) or 2'(a) have now
to hold for the families (q:n(z:,ﬂ): tsn, neN). Similarly the continuity
condition in Assumptions 2(b) or 2’(b) has now to hold for q:(z:,ﬂ).
Assumptions 3 and 4 must again be applied to the triangular array q:(z:,ﬂ).

Of course, sufficient conditions similar to the ones presented in Remarks 4-6
can again be derived in a completely analogous way. We note further that the
situation where a norming factor c;1 other than n™* is used can be immediately

incorporated into the framework of this paper by redefining the functions q:

as (n/cn)q:.

14



(vii) "Weak" ULLNs corresponding to the above "strong" ULLNs can be
readily obtained by replacing almost sure convergence by convergence in
probability. (Of course one must then either assume that supe|n_12[qb(zh,€) -
eq(z:,ﬁ)]| i{s P-a.s. measurable or formulate convergence of probability in

terms of outer probability.)

5. Example

We next give a simple example for which by using Theorem 2 it is possible
to establish a ULLN under weaker conditions than is possible by using the ULLN
in Andrews [2] based on a Lipshitz-type condition or the ULLN in Pétscher and
Prucha [15].

Let 8 = (-a,a) with a>0, let Z = R* and z, = (yt,xc), let qb(z,ﬂ) -

q(z,8) = min{c,]y - g(x)d|)s([x]) with c¢>0 and where g:R—R with [g(x)| =
g(|x|) monotonically increasing to infinity as |x|—= and s:[0,»)—>[b,b] with
O<b<b<= are Borel measurable functions. Assume that (yt) is generated from
the model Y, = g(xc)ﬁ0 + u, with 0068, x, and u, (contemporaneously)
independent, and where the distributions of x, and u put positive probability
on every nondegenerate interval. Assume furthermore that the process (zt) is
a-mixing with mixing coefficients of size -r/(r-1) for some r>l, and that (zJ
is asymptotically stationary.

Within the above setup we may interpret nﬂiz_lq(zh,ﬂ) as the objective
function of a minimization estimator for EOA For s(|x|)=1 and for c
"large" this estimator reduces essentially to the least absolute deviation
estimator. The function s(|x|) allows different observations to enter the
objective function with different weights.ll

To establish a ULIN for the above example via Theorem 2 we need to check
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the validity of Assumptions 1 - 4. Assumption 1 is trivially satisfied.

Choose K = {(y,x): [y]=m,|g(x)|<m}, then clearly KmTZ and l(.m is convex as |g|
o

{s monotone in |x]. Since |min(b,[v1|) - min(b,[vz[)[ < (]vll-lvzll < [vl-vﬂ

for all VI,VZGR it follows that Sup lq(z,8) - q(z,6")| < mb[f-0'].

Consequently condition (I) and hence Assumption 2’ is satisfied. Condition
(I1I) holds trivially since q is bounded; condition (IV) is satisfied since
clearly condition (Vb) holds. Consequently Assumption 3 is satisfied.
Assumption 5 holds since (yc,xc) is assumed to be a-mixing and q is bounded.
It then follows from Lemma A5 that also Assumption 4 is satisfied.
Consequently the example satisfies all of thé respective assumptiomns of
Theorem 2 and hence (q(zt,ﬂ):tem) satisfies a ULLN.

In order to be able to apply Andrews’ [2] ULLN to the above example the

12

following Lipshitz-type condition must hold instead of Assumptions 2 and 3:

For each §'€8 there is a constant r>0 such that [§-§’'|=<r implies
(L) ]q(zt,ﬂ) - q(zc,B o= Bt(zb)h(lﬂ-ﬁ (D]

a.s., for every t, where BL:Z—a[O,m) and h:[0,»)—{0,») such that Bt(zt)
: . -1
is a random variable, %3gsup n E:_IEBE(Z:)<w, h(n)}h(0)=0 as n—0.
Condition (1) has to hold, in particular, for 0’-90 and any admissible 50

we consider for simplicity the case 0'-80—0. Then
(2) lq(zt,ﬂ) - q(zt,ﬂ o= Imin(c,[ut-g(xt)ﬁl) - mln(c,lutl)[s(|xt|)

and h(|§-6'|) = h(]d]).

For expositional reasons we first analyze the case h({f]|) = [§].
Consider some r>0 and some realization (ut(w),xb(w)) for which (1) holds and
for which c/4<|ut(w)|<c/2 (where t is some given index). Clearly there exists

a § with 0<|d|<r such that |g(xt(w))9|<|ut(w)|. Consequently |q(zb(w),0) -
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q(zt(w),d')| - |g(xb(w))|[€|s(|x‘(w)|) < Bb(zt(w))|ﬂ|, and hence b|g(x‘(w))| <

Bc(zh(w)). This shows that (1) implies b,g(x:)ll(c/4<|un|<c/2) <

Bc(zn)l(c/b<|ucl<c/2) a.s., and therefore bE[]g(xL)l]P(c/b<|ul|<c/2) <

E[Bt(zt)l ] = E[Bt(zc)] < @ in view of condition (1). The

(c/&<|uc[<c/2)
probability on the 1.h.s. of the inequality is positive; consequently for
Andrews' [2] Lipshitz-type condition to be satisfied in the case h(|8]|) = |§]
it is necessary that E[lg(xt)|]<m holds in addition to the assumptions
maintained so far for the example. If, for example, [x{<|g(x)|, as 1is the
case if g(x)=x or g(x)=-g(-x)=i for i-1<x<i, ieN, and g(0)=0, then it is
necessary that E|x‘]<m.

In Appendix B we consider the case of general functions h(|#]). We show
by similar but somewhat more involved argumentation that e.g.

!2[(1/11(c'/|g(x'_)|)]J.('x I>M)] < @ (with c’=c/4) for all M sufficiently large
t

is a necessary condition for Andrews' [2] Lipshitz-type condition to be
satisfied. Observing that l/h(c’/]g(x)|)Tw as |x|—w, this condition clearly
limits in general the class of admissible processes (xt). If, for example,
|x|<|g(x)| and h(|6]|) = |0|7 we obtain E[xt|7<m as a necessary condition.

We have thus demonstrated that in order to be able to apply Andrews’ (2]
ULLN to the example we have to make stronger assumptions concerning the
distribution of X than is necessary if we apply the ULIN presented in this
paper. Furthermore, to apply P8tscher and Prucha’s [15] ULLN we have to
assume that g is continuous. The example thus shows that the ULLN presented
in this paper is neither dominated by Andrews’{2] nor P3tscher and Prucha's
[15] ULLN.I3 The example also 1llustrates how the sufficient conditions

discussed in Section 3 can be conveniently utilized to check whether

Assumptions 1-4 hold in a specific application.
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Appendix A

In the appendix all summations are to be taken over t=l,...,n unless

indicated otherwise.

Lemma Al: Let hn(o) for neN be continuous real functions on the metric space
(8,p). If for each meN the family of real functions (hln: neN} is
equicontinuous on @ and if .1})2 '11 msup supaeelh"n(ﬁ)-hn(ﬂﬂ = 0, then also the

family (h : nelN)} is equicontinuous on 8.
n

Proof: Choose ¢ > 0. Then there exists an m = mo(e) such that }}gsup

supgee|hm0,n(9) - hn(ﬁ)[ < ¢/3; hence, for some n-= no(mo(c),e) we have
supgee|hm°'n(€) - hn(a)] < ¢/3 for all n 2 n. Consider an arbitrary §', then

there exists a positive § = § (m (e),¢) such that sup |h (4) - h (9’)| <
0 [ n mo,n na,n

e/3 1f p(8,8') < 60, since the family (h n: neN) is equicontinuous on 8. It
B,
0

now follows that for all nxn and p(a,o')<6°: ]hn(d) - hn(ﬂ')[ < |hn(€) -

ho ()] + b (&) -h  (6')] +|h  (8) - h(#')] <e. For l<n=n we
oyn 0, O, 01

can find a 61>O such that |hn(5) - hn(a’)[ < € for p(8,6') < 61 since h (§) is
n
continuous. Let § = min(&o,él) then for all neN: [hn(é) - hn(ﬁ')| < ¢ for

p(8,8') < §, which is the desired result. | ]

We note in connection with Remark 1(ii) that the lemma remains valid if the
condition that hn be continuous is dropped but the condition involving the

'limsup’ 1is strengthened by replacing the 'limsup’ with the respective 'sup’.

Proof of Lemma 1: To prove (a) observe that eq. lm(zt‘J) and Eq: (zb,ﬂ) exist

v "
and are finite by the assumptions of the lemma and hence also ch(zt,ﬁ) exists
and 1s finite. Furthermore for all meN

-1 -1
supaeeln Z[qt(zc,ﬁ) - ch(zt,é)]l SA +B whereA - supoeeln Y
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(4} (z,.0) - Eq (z,.6)]] and B = sup, |0 'Tlq, (z.0) - Eq, (z,.0)]].
Since by assumption a ULLN holds for qmm(zt,ﬂ) we have &32 an - 0, P-a.s..
Since A = n_xZ[d:,n(z‘) - B} (z)] + Zn-liEd;'(zt) it follows from
Assumption A that 0 < limsup limsup A < lim limsup ZnﬂZEd:'(zt) -0,
P-a.s.. This proves part (a) of Lemma 1. Part (b) follows (given the
maintained set of assumptions) from Lemma Al and observing that %&g %$Esup

SuP,q ]n-"Z[EqL"(zc,ﬁ) - Eq‘(zt,a)]l < lim limsup n"ZEdz z,) - 0. n

Proof of Theorem l: The existence and finiteness of th(zc,d) follows from
the existence and finiteness of Eq:(zt,ﬂ,rk(ﬂ)) and ch.(zc,ﬂ,rk(o)), which in
turn is implied by Assumption B and Definition 1. Consider an arbitrary §'e6,
let (rk(o'))keiN be the sequence defined implicitly by Assumption B and
Definition 1, and let NG' be the exceptional null set in Assumption C. We
first show that for rk-rk(O') — 0:

(a.1) A(,r (8)) = sup [n"T(Eq (z,.6",7 (8")) - Eq (z,.8))]] — 0,

(A.2) B(8',7 (8")) = sup [n'L(Eq (20", (87)) - Eq (z,,8)]| — 0.

Upon taking appropriate suprema and upon applying Hélder's inequality twice to

the inequality given in Assumption C we obtain for ST
0
(a.3) A7 (1) < sup 0 'JE(b (z ,8")h (z .07 (£')))

< (supnn'IZE[bh(zt,d’)p])”P(supnanE[h:(zc,ﬂ’,rk(a‘))q])”q.
where for p== the first expression on the r.h.s. has to be replaced by
supt"bt(zt,e’)"n and where for p=1 the second expression on the r.h.s. has to
be replaced by supL"h:(zt,ﬂ',fk(d’))"w. Assumption C(c) implies that the
first expression on the r.h.s. of (A.3) if finite for l<p<w. Hence to prove
(A.1) it is sufficient to show that the second expression on the r.h.s. of

(A.3) goes to zero as rk(ﬂ’) — 0. For p~l this is directly implied by

Assumption C(c¢). Next consider the case l<psw: Assumption C(a) implies that
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supch:(zt,o',rk(a’)) — 0 and hence sup_ n.lzt'x:(zt,r,rk(ﬁ’))q — 0 for

wel\N,, and 7 (8') — 0. The family [n-IEh:(zt,ﬁ’,rk(a’))q: neN, r st ) is
0

uniformly integrable as a consequence of Assumption C(c) since LA for k
0

large enough. Applying Theorem A3 of Hoadley [7] completes the proof of

(A.l).13 A similar argument proves (A.2). Clearly for p(6,6') < rk(ﬂ'):
supnln-IX[eq(z:,ﬁ) - Eq‘(zt,ﬂ')]l < max [A(6',r (67)),B(8",7 (8'))].

Part (b) of Theorem 1 then follows since the r.h.s. goes to zero as rk(o’) -

0. To prove part (a) of Theorem 1 observe that using (A.1l) and (A.2) we can

find for every ¢>0 and §'€8 a r(¢,0') = r )(0’) such that A(8',r(e,0')) <

x(e,8’
e and B(8',r(e,8')) < €. Consequently, for all §e€8 with p(8,6') < r(e¢,8'),
for all neN and weh):
-1 ' ’ - ' !
-2¢ + 0 Jlq (z,,6" (e, 0")) - Eq _(z ,8',7(e,8"))] <
-1 ' ’ . * '
n'Lla,(z,,8".7(e,8')) - Eq(z .8 ,r(e,0"))] =
-1
n Tlq(z,.8) - Eq(z,,0)] s
e,
nllq,
-
t

n'L0q (2,0, 7(e,87)) - Eq(z ,8',7(c,8"))] + 2

(zt,ﬂ',r(e,ﬁ')) - eq.(zh,e’,r(c,ﬁ'))] <

Now cover 8 by the collection of balls (O(8',7(f',¢e)): 6'€8) where O(8',r) =
(#€B: p(8,0')<r). Since 8 is compact there exists a finite subcover of balls
from this collection centered at 9;,...,9;. Let 1‘-1(c,9:), then we have for
all #e®, all neN and all wen:

. -1 ] _ '
2¢ + min"_1 o X[qt.(zt,ﬂl.f‘) eq'(za,ab,rb)] <

-1
nLlq,(z,.0) - Eq(z,,0)] s
max n-lZ[q.(z 8, r ) - Eq'(z 6',r )] + 2¢
3 v e e v e
-1
Because of Assumption B it follows further that %igsup sup, o ]n E[qt(zt,a) -

eq(zb,ﬂ)]| < 2¢, P-a.s.. This clearly implies part (a) of Theorem 1. ]
Lemma A2: Under Assumptions 1 and 2'(b) the functions dt(zb), q: (zt,ﬁ',r),
,m
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+ * ’
qm,(zh.ﬂ 1), a(z,,6'.r) and q (z ,0',r) are measurable P-a.s..

Proof: Observe that for w@N, the null set defined in Assumption 2’ (b),
qb(zc(w),O) is continuous on 8. Hence for all w&N and any countable dense set

OOCO we have dt(zb(w)) - supoee°|qb(zh(w),9)|. The latter expression is a

countable supremum of measurable functions and hence it is measurable. Since
dc(zb) coincides with this expression except on a set of measure zero, d‘(zt)

is measurable P-a.s.. The proof for the remaining functions is analogous. u

Proof of Theorem 2: We first show that the assumptions of the theorem imply
that the assumptions of Theorem 1 hold for q;'m for each melN. Assumption B
holds for 9 . because of Assumption 4. To verify Assumption C for q, , put
bt(zb,ﬁ')-l and ht(zt,ﬂ',ﬁ) - ]qt,m(zt,ﬁ) - qC'm(zt,ﬁ')|, let rk(ﬁ’) be the
sequence defined implicitly in Assumption 4 (corresponding to q“‘), put
ko(a')-l and p=o. Then part (a) of Assumption C follows from Assumption 2(a).
To verify part (b) observe that h:(zt,ﬂ' ,rk(ﬁ')) - max(q:’m(z‘,v' ,rk(ﬂ’)) -
qt’m(zt,ﬂ’), qml(zt,ﬂ') - q‘.n.(zt,ﬁ‘,rk(ﬂ'))) is P-a.s. measurable for all

k21 in view of the P-a.s. measurability assumption implicit in Assumption 4.
Part (c) of Assumption C follows clearly from Assumption 3(b) for p—, using
the triangle inequality and bounding h: by 2dn,n‘ Consequently, q .,

satisfies (a) and (b) of Theorem 1. Now Assumption A is satisfied in view of
Assumptions 3(a) and 4(b). Hence part (a) of Theorem 2 follows from Lemma 1
and the just established ULLN for q . Part (b) also follows from Lemma 1 if
we can establish existence, finiteness and continuity of n-XZeq(zt,o). But
since Edt(z‘) < = by Assumption 3 existence and finiteness are obvious; since
qt(zt,ﬂ) is P-a.s. continuous at each #'€8 by Assumption 2(b), we get

continuity of Eqb(zh,e) at each #'€8 using the Dominated Convergence

Theorem.
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Lemma A3: (i) Condition (1) implies Assumption 2' and hence Assumption 2.

(11) If Z is a metrizable space then condition (II) implies condition (I).

Proof: Part (i) of the lemma follows trivially since supclq‘ m(zﬁ,&) -

qhn(z‘,ﬂ')l < supbsupzex'[q‘(z,ﬂ) - qc(z,é’)|. Part (ii) of the lemma

follows from Lemma Al in Pdtscher and Prucha [15] if K » @ and is trivially
m

true if K = &, | ]

Lemma A4: Assume dt(zt) is measurable P-a.s..
(1) Conditions (I11) and (IV) imply Assumption 3.
(i1) Condition (IV) is implied by either one of (Va), (Vb) or (Vc).

(i11) Conditions (VI) or (VII) also imply Assumption 3.

Proof: (1) Condition (III) clearly implies E[dc(zt)hs] < @« and hence Edc(zﬁ)
< ». Since the family of functions in Assumption 3(b) is clearly dominated by
the family of functions (n-lz d:(z:) : nelN) it is sufficient to prove uniform
integrability for the latter. However, this is readily seen since
suan(n-lZdt(zt))h's < supn(n-le[dt(z:)ha]), which is finite as a

consequence of condition (ITI). Next define p = 1+§ and p +q ' = 1, then by
applying Hélder’'s inequality twice we see that n-IZEd:'m(zL) <

0 LELd (2P UEL | (2017 s (0T TE(A ()1 (07 TRz @K )T,

Therefore 0 < limsup (limsup n-IZEd:,m(zb)) < supn(n-lZF.‘.[d"(zz)p])”p (1im
z]l._igsup n_IZP(zteKm))”q = 0 because of conditions (III) and (IV).

(11) Condition (IV) is trivially implied by (Ve). Next consider
conditions (Va) and (Vb). We can then find open balls B(0,r) = (z:[z|<r )
such that r o and B(O,rn) c Km for all large enough m, say m > m . (This

follows since every ball B(0,r) is contained in the convex hull of a finite

22



number of suitably chosen points, since these points will be contained in K
o

for large enough m and since K‘n is convex.) From Markov's lnequality we have

. -t -1 : -
for m large enough: 0 =< limsup n ZP(z‘eKn) < limsup n ZP(zLeB(O,ru))
-1 -1
limsup n ZP("z‘"zrm) < (limsup n ZEh("zhH)]/h(rn). Observing that condition
(Va) implies that the r.h.s. goes to zero as m — = we see that (Va) implies
-1
(IV). Furthermore for m > m: 0 =< x1l_i)gsup n ZP(ZL“_) < r11_1)25up
)(z)d(n‘lzﬂh) < Il

anP(zbeB(O,r‘)) - limsup Jl [(2)dH by

Z-B(0, Z-B(0,r

-] m
Theorem 2.1 in Billingsley [4). Observing that the r.h.s. goes to zero as m
— « shows that (Vb) Iimplies (IV).

(i1i) Condition (VI) clearly implies Ed;(z:) < o and Assumption 3(a).

z

Since db(zt) > 0 holds, condition (VI) is equivalent to Ll-convergence of
n‘Ich(zb). Therefore this sequence is uniformly integrable, which in turn

implies Assumption 3(b). Finally, Assumption 3 is trivially implied by

condition (VII). | §

We note that Lemma A4(ii) also holds if the following generalizations are
made in (Va) or (Vb). In (Va) Z can be taken to be an arbitrary set and the
sequence Km {s taken such that there exists a 3-measurable function g:Z —
[0,»] and real numbers r:m — » satisfying (i) (z€Z: g(z)<rn) c l(m and (ii)
l.}gsup n-leg(zb) < w, In (Vb) (Z,3) can be taken to be a metrizable space
with its Borel field and the sequence Km (e3) 1is taken to satisfy intKNTZ
where i.m:l(‘n denotes the interior of Kw. We also note that given Z is a
metrizable space, condition (IV) holds for some sequence of compact sets K-,
if the sequence n-IZHt is tight. In particular this follows 1if x'\-lf:Ht
converges weakly to a probability measure H and if each measure n‘l):H‘ as well
as H are tight, cf. Billingsley [4, Theorem 8, Appendix III] and Pdtscher and

Prucha [15].
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Lemma AS: Assumptions 1, 2'(a) and 5 imply Assumption 4.

Proof: Similarly as in the proof of Lemma A2 it follows that
* 1] ' - - - .
qhm(zt,ﬁ ,rk(ﬁ )) ghm(zt), P-a.s., where ghm(z) sup(qhm(z,ﬂ). EEBN
p(ﬂ,&’)<rk(€’)) and eoce is an arbitrary countable dense set. Clearly g, is
o
3-measurable and takes its values in RuU{+«}. By Assumption 5 (zt) is ¢-mixing
[a-mixing]. The measurability of - implies that ghm(z:)-Eng(zt) is
¢-mixing [a-mixing] with mixing coefficients of the same size. Furthermore
suptE|gt (zt)-EgL (zt)lﬁs < . Observing that McLeish's [10] definition of
m .|
mixing coefficients is slightly weaker than the usual definition employed in
this paper it follows from his Theorem 2.10 that gtm(zt) and hence

q: (zt,ﬂ',rk(ﬁ’)) satisfies a strong law of large numbers. Analogously the
,@

same is established for q__ (z ,8',7 (§')) and d: Lz u

We note that part (b) of Assumption 2‘, which was essential in the proof of
Lemma A2 (since q, was involved in the argument), has not been used in the
proof of Lemma A5 which only uses part (a) of Assumption 2’ (since only q .,
is involved). Part (b) of Assumption 2' was only essential for Lemma A2, in
all other instances in this paper where Assumption 2' occurs, part (b) of
Assumption 2’ could be replaced by part (b) of Assumption 2 (but the same is

of course not true for part (a)).

Appendix B
Consider the example of Section 5 and assume that Andrews’ [2] Lipshitz-type
condition (1) holds. As remarked in the text this condition has to hold in
particular for 0’-90-0. Consider some r>0, some M>0 such that c/[4g(M)] < r
and g(M)>0. Let (ut(w),xc(w)) be some realization for which (1) holds for all

§ with |4|=<r and for which c/4<]ut(w)|<c/2 and |xt(w)|>M. Choose § =
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c/[hg(xb(w))] and observe that for this choice 0<|#|<r. Utilizing (2) it is
readily seen that condition (1) implies |q(zt(w),0) - q(z‘(u),ﬂ')] -

e (@)-e/8] = fu @) Is(Ix ()] = (e/)s(ix @)]) =
Bt(zt(w))h(c/|hg(xt(w))|) and hence c, =< Bt(z‘(w))h(c/]bg(xh(w))]) with e -
be/4 observing that s is bounded from below by b. Consequently
(/G148 ) DI o oy (el 1<e/2) S

(1/c')Bt(zc)1(|xt|>M)l(c/4<[ut|<c/2) a.s., and therefore

E[[l/h(c/ldg(xb)l)]l(Ixt|>M)]P(c/A<|ut|<c/2) < (1/¢)E[B ()] < =. That the

first factor on the l.h.s. has to be finite follows since P(c/4<|uL|<c/2) is

assumed to be positive.
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Endnotes

We would like to thank Donald Andrews, Charles Bates, Manfred Deistler, Ian
Domowitz, Ronald Gallant, Nanhua Hu, Harry Kelejian, Whitney Newey, Peter
Phillips, Ching-Zong Wei, Halbert White, Ernest Zampelli and two anonymous
referees for helpful comments. We assume responsibility, however, for any
errors. Some of the results presented in this paper were circulated
earlier in Pétscher and Prucha [13]. The present paper is both an

extension and revision of this earlier paper.

We note that Hoadley [7] does not use his ULLN in his consistency proof,
hence his consistency result is not affected by the restrictiveness of his
equicontinuity assumption. We note further that the proofs of theorems
regarding consistency in the papers by Bates, Domowitz, Levine and White
are such that Hoadley’s ULLN can be replaced by some alternative ULLN.
l.e., the theorems can be rectified and/or restored to their intended
generality by use of an alternative ULLN accompanied by a corresponding
change in the catalogs of assumptions. For a more detailed discussion of

this issue see, e.g., Pdtscher and Prucha [13].

Of course, rather than to specify a set of assumptions that implies the
first moment continuity condition ome could maintain the latter as an
assumption. It seems that the usefulness of such a result is limited,

apart from emphasizing the structure of the proof.

All of the subsequent conditions and results do not depend on the metric
structure of (@,p), but only on the metrizability of the topology on 6.

The choice of a fixed metric is made only for convenience.
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We call a function measurable P-a.s. if it coincides with a measurable
function on a set of P-measure one. Clearly integrals of such functions
remain well defined and every measurable function is measurable P-a.s..

Compare also footnote 9.

We note that the limit on the 1.h.s. of the equation in Assumption A(a)
exists automatically if the sequence (Km) is monotonically increasing. In
fact, (for general sequences (Km)) the formally weaker condition where
‘1iminf’ replaces ’'lim’ in A(a) can always be reduced to the condition as
given in A(a) by passing to a suitable subsequence of Km. We also note
that in this paper often conditions which are satisfied for KIa are also
satisfied for the corresponding monotonized sequence K;- chKx; e.g.
Assumption A(a) holds for K; if it holds for K{

This also implies that f:(zt,ﬁ’,rk) and fv(z‘,v',fk) are P-a.s. finite,
hence the Césaro-sums in Definition 1 are P-a.s. well defined. Note that
these Césaro-sums are even well defined for all wefl if the expectations

exist, are finite and if fh has as its range R, since then the range of f;

and f‘. is, respectively, Ru{+=} and Ru(-=).

We note that also p may depend on #‘. Furthermore, Theorem 1 clearly
remains valid if bt and ht in Assumption C are specified as bb(w,a') and

ht(w,a',ﬁ), respectively, and not as composite functions of z,.
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Note that the existence and finiteness of Eq;m(zt,ﬂ‘,rk),

eqm.(zt,ﬂ’,fk), and Ed:,m(zb), which is implicitly assumed in Assumption

4, 1s automatically implied by Assumption 3. Furthermore, it follows from
Lemma A2 in Appendix A that under Assumptions 1 and 2'(b) the P-a.s.
measurability conditions postulated explicitly and implicitly in
Assumptions 3 and 4 are automatically satisfied. Also, note that under
Assumptions 1 and 2'(b) the functions dt(zt) are measurable P-a.s., but not
necessarily measurable. By modifying dt(zt) on an appropriate w-set of
measure zero, we could always obtain a measurable function of the argument
w. However, this modified function need.not be expressible as a composite

function of z . It is for this reason that we only assume P-a.s.

measurability rather than measurability.
For example h(x) = x*, p > 0, or h(x) = ln(l + x).

As it is of interest to analyze the properties of feasible GLS estimators
under classical (OLS) assumptions, we allow for different weights for
different observations in the objective function defining the estimator,

although the spread of v, is assumed not to depend on X, .

Compare Assumption A4 in Andrews [2, p.1467] or Remark 2 above, and observe

that q,7q and that the zt's are identically distributed.

From the discussion in Andrews [2] and Pétscher and Prucha [13] it is also

evident that Hoadley’'s [7] ULLN does not apply to this example in general.

Theorem A3 in Hoadley (7] is formulated for measurable functions. Since we
apply that theorem only to a sequence of P-a.s. measurable functions, we
can modify them on a common null set so that they are measurable and then

apply Hoadley’s Theorem A3 to the modified functions.

30





