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1.. Introduction

Let y, t—l I be a n-dimensional cointegrated stochastic process. In

theory, the Gaussian maximum likelihood estimator (MLE) of the unknown

coefficients of the cointegrating vectors can be found by parameterizing the

covariance matrix of (y1 y1) and directly computing the Gaussian

likelihood. In practice, however, this entails inverting the nTxnl covariance

matrix and so is computationally impractical. This has led various

researchers to compute the MLE using factorizations of the likelihood that

reduce computational demands, typically to the level of nonlinear simultaneous

equations regression. Research so far has focused on the case that each

element of y individually is integrated of order 1 (is 1(1)), typically with

no drift term. Johansen (1988) and Akin and Reinsel (1987) independently

derived the asymptotic distribution of the MLZ when the cointegrated system is

parameterized as a vector error correction model, and Johansen (1989) extended

this result to the case of nonzero drifts. Phillips (l988a) derived

asymptotic representations for MLE's in a cointegrated ARMA model. Phillips

and Hansen (1989) considered a two-step zero frequency seemingly unrelated

regression estimator, and Phillips (l988b) used spectral methods to factor the

likelihood and to compute the MLE in the frequency domain.

This paper adopts an alternative factorization of the likelihood that

permits the derivation of a computationally simple MLE that readily extends to

systems with deterministic components and with higher orders of integration

and cointegration. The empirical problem motivating this research is the

analysis of a standard four variable macroeconomic system involving the
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logarithms of money, prices, real output and the level of interest rates

(respectively m, p, Q, and r). For the postwar U.S., a plausible empirical

description of these series is that money and prices are doubly integrated

(1(2)) processes with no drift in inflation or money growth, output is 1(1)

around a linear trend, and the interest rate is 1(1) with no drift (see for

example King, Plosser, Stock and Watson (1987] or Hoffman and Rasche [1989)).

There sre two possible cointegrating relations among the data: first, real

balances, m-p -- or perhaps rn-9,p -- are possibly 1(1), and second, there

could be a stable money demand relation for which m-&pP-$QQerr would be 1(0).

This system involves variables that are integrated of different orders, have

different deterministic components, and are related by a system of

cointegrating vectors.

The factorization of the likelihood is discussed for 1(1) variates in

Section 2 and for 1(d) variates in Section 3. The properties of the MLE's and

test statistics are examined in Section 4. Section 5 presents a brief example

and Section 6 summarizes the results of a Monte Carlo experiment. Section 7

àoncludes.

2. Gaussian Estimation: The 1(1) Case

Suppose that each element of is 1(1), that EAyt—O and that the nXr

matrix of r cointegrating vectors a is a — (-0 1r'' where 9 is a rx(n-r)

submatrix of unknown parameters. The task is to obtain the Gaussian MLE of 9.

Our starting point is the triangular representation,
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1 1
(2.le) — u
(2.lb) y — + u

where y is partitioned as (y, y), where y is (n-r)xl and y is rxl

and where u — (u' u')' is a stationary stochastic process with full

rank spectral density matrix. The key feature in (2.1) is that the levels of

> appear in only the final r equations. Bewley (1979) derived a

representation with this feature for an error correction system under the

assumption that y is strictly exogenous in (2.lb) and not necessarily 1(1).

Hylleberg and Mizon (1989) assumed that y is 1(1) and generalized Bewley's

formulation to the case where y is not strictly exogenous in (2.lb), a

generalization which they termed the Bewley representation. Campbell and

Shiller (1987,1989) and Campbell (1987) used the form (2.1) in applications

where they parameterized u as an unrestricted VAR. This representation has

been used extensively by Phillips (1988a,1988b), typically without parametric

structure on the 1(0) process u.

For the development of the MLE it is assumed that u is Gaussian. In

general, and u will be cross-correlated at leads and lags; only when

this cross-correlation is zero is the GLS estimator of 9 in (2.lb) the MLE.

The factorization adopted here addresses this cross-correlation by making the

disturbances in the y equation independent of the entire sequence (y).

Let — u-E[uI(ufl — u-d(L)u — u-d(L)y, where d(L)

is in general two-sided and where the conditional expectation is linear in

(u) because u is Gaussian. By construction is independent of
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(y). Because u and are stationary and Gaussian with finite

second moments, they have one-sided Wold representations u'c11(L)€ and

where and are independent and normalized so that

1 2,
Ett—I where — ( ) . Thus

(2.2)
u —

u — c2(L) + c22(L)E

-1.
where c11(L) and c22(L) are one-sided and in general c21(L)—d(L)c11(L) is

two-sided. Thus (2.1) can be written,

(2.3a) — c11(L)
(2.3b) y — 9y + d(L)y + c22(L)E

where is NIID(O,I) and (€) is independent of (y).

The representation (2.3) leads to a factorization of the Gaussian

likelihood that differs from the usual prediction error factorization in an

important way. Let A1 denote the parameters of c11(L), let A2 denote the

parameters of d(L) and c22(L), and let Yi denote (y y), i—l,2. Then

(2.3) implies that the likelihood can be factored as

(2.4) f(Y',Y21e,A1,A2) —f(Y21Y1,9,A2)f(Y11A1)

If the mapping from the original parameters to (A1,[8,A2]) is variation free,

the factorization (2.4) is a sequential cut (see Engle, Hendry and Richard

[1983]); that is, if there are no cross-restrictions between A1 and (O,A2), Y1

is weakly exogenous for (9,A2). (This is a slight modification of Engle,
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Hendry, and Richard's definition of weak exogeneity since they write the

likelihood in predicition error form, i.e. conditional on past data.) Thus

maximum likelihood estimation of 9 can be implemented by maximizing

f(Y2jY1,9,A2), which reduces to estimating the parameters of the regression

', equation (2.3b) by GLS. In fact, because the regressor y is 1(1), an

asymptotically equivalent estimator of 9 can be obtained by estimating (2.3b)

by OLS, a result discussed in Section 4.

This representation provides considerable insight into the large-sample

properties of the GLS estimator of 9 in (2.3b). Because () is independent

of the regressors, conditional on Y1 the GLS estimator has a normal

distribution and the Wald test statistic has a distribution. Because

is 1(1), the conditional covariance matrix of the GLS estimator will differ

across realizations of Y1, even in large samples; thus unconditionally the GLS

estimator of 9 will have a large-sample distribution that is a random mixture

of normals. Phillips (1988a) provides an insightful discussion of the

intuition behind the property that the MLE of 9 has a locally mixed

asymptotically normal distribution.

We close this section by noting that, although the two-sided triangular

representation (2.2) was developed for a Gaussian time series, it applies to

general stationary stochastic processes with finite second moments. This

result, which provides an alternative to the (one-sided) Wold representation

theorem, is summarized in the following lemma which is proved in the Appendix.

Lemma 2.1. Let u — (u' u')' be a nxl stationary stochastic

process with E(uj)2.(o, with full rank spectral density matrix, and with
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no deterministic component, where u is (n-r)xl and u is rx].. Then

u has the representation (2.2) where c11(L.) and c22(L) are one-sided,

c21(L) is in general two-sided, Eet—O, EEt—I, and for

In addition, C(L) is square summable.

3. Representation in 1(d) Systems

This section presents an extension of the triangular representation (2.3)

to systems in which variables may be integrated and cointegrated of different

orders and in which there are arbitrary polynomial time trends. The 1(d)

generalization of (2.1) is

dl 1
(3.1) — + Ut

d-l 2 d-l d-l 1 2
"t p2,0 + p21t + +

d-2 3 2

Yt_M3O+P3lt+P3,2t+
d-l d-1 I d-2 d-2 1 d-2 d-2 2 3

3 i + Y) + 932(L +

d+l 'd j 'd rd d-i d-ij d+1—
Lj...0 Pd+1,jt + Lj1Li...j9d+1,j( + Ut

for t—1 T, where the y are kxl vectors which form a partition of y,

1 2, d+l
i.e. y—(y y . . y ) . The stochastic process

1 2 d+l . .
Ut(ut u .. . u ) is 1(0) with a full rank spectral density

matrix. Note that not every element of y need be 1(d) for (3.1) to apply.

This representation partitions y into components corresponding to

stochastic trends of different orders. Thus, abstracting from the
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deterministic components, y is a k1xl vector corresponding to the k1

distinct 1(d) stochastic trends in the system, dl2 - 4•(Adlyl)
is a k2xl vector corresponding the k2 distinct I(d-l) elements in the system,

etc. It is straightforward to generalize the representation (3.1) to include

higher order polynomials in t, although in applications many of the

coefficients on t typically will be zero. A derivation of (3.1) from the

Wold representation of an 1(d) system with multiple cointegrating vectors and

drifts is given in the Appendix.

As in the 1(1) case, the likelihood function is parameterized so that the

variables appearing on the right hand side of each equation are potentially

weakly exogenous for the parameters in that equation. By repeated application

of Lemma 2.1, u—(u' u' . .. u'')' has the representation

(3.2) u — C(L)Et

where ' ')', andwhere C(L) is a block lower

triangular matrix partitioned conformably with u, with diagonal blocks c(L)

that are one-sided polynomials in L and with lower off-diagonal blocks c(L)

that are two-sided polynomials in L. The i'th equation in (3.1) can then be

written as:

(3.3) d+lyl - +9'y)
+ •dim(L)[(y) ]+cjj(L)

where the are functions of for m—l 1. Generalizing d(L) in
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(2.3), (dim(Lfl arises from the projection of u onto (u} for

rn—i 1-1. When (y1 is Gaussian, t: NIID(O,I).

Equation (3.3) describes the cointegrating relation between the y

components in the system and higher order integrated components. The Set of

cointegrating vectors characterizing this relation are given by the matrices

appearing in the second term on the right hand side of (3.3). Note

that the equation contains all of the cointegrating vectors for m<1, which

appear in the higher order "error correction" terms making up the third term

on the right hand side of (3.3). For example, in a system with d—2 the

equations describing cointegration in the levels contain any cointegrating

relations between the first differences.

The likelihood function follows directly from (3.3). Let A denote the

parameters of c11(L) and d1(L), rn—i,.. .m11, let 8 denote let
denote ), and let A, 8, and p represent the collection of A1, 81, and

p1. The likelihood function can be written as:

(3.4) f(YT,O,p,A) — f(YlY1T YT.82,63 Od+l,d+l,Ad+l)

x f('41Y1T 'T'82'83 8d,d,Ad)

f('4IY,e2,p2,A2)f('4,p1,Aj)

where '1T'1' Y y)' and 4 —(y', y' y')' for

i—l d+l.

The factorization in (3.4) shows that, for 1>2, in general m for m<1 will

not be weakly exogneous for ei because the likelihood of depends on
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62 621. In this case it will not be possible to condition on Ym for

when constructing these MLE's for the parameters in the l'th equation. Thus

the estimators of parameters in the I'th block of equations will not in

general be conditionally normally distributed and the Wald test statistics

will not have an asymptotic x2 distribution.

An important exception to this situation is when all the cointegrating

vectors making up 9m for m<i are known, for example when there are no such

cointegrating vectors. Thus we consider estimation of the Vth equation when

for m<2 are known. The analysis is facilitated by first transforming (3.3)

to isolate the regressors of different orders in probability:

d-1+l I
(3.5) A — (zt ® 1)6 + e

where e—cjj(L)e, where z=(z' z' . . . z2')' and where 6—(S 8

with 6i6il 6i2 5j1). where 6ij is the vector of

coefficients on z in the j'th equation in the block of equations (3.3). By

construction, E[eI(zt)]—O. The transformed regressors z in (3.5) are the

canonical regressors discussed in detail in Sims, Stock and Watson (1990).

They are constructed so that z is a zero mean 1(0) vector, z is a

constant, z is dominated by a martingale, is a linear time trend, and

so forth. In general 1zz' is O(T1) for i2. Thus,

contains the requisite number of leads and lags of u for m<1 dictated by

the polynomial djm(L) z—1, z is composed of the singly integrated

m 4 5elements of u for m—l,2 2-I, z—t, z is composed of the doubly

integrated elements of u for m—l,2 .2-2, etc.
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4. Estimation and Testing

This section considers the Gaussian estimation of the parameters 6 in

(3.5). It is assumed that y has the extended triangular representation (3.1)

with u given by (3.2). It is also assumed that the conditions hold under

which (3.5) obtains from (3.3). We consider estimation in the case that z

and 6 are finite dimensional, i.e. in which (djm(L)) have finite orders.

Although the motivation for the representation (3.5) is to provide a

convenient framework for computing the Gaussian MLE, as usual the asymptotic

distribution theory is valid under weaker assumptions than Gaussianity. It is

therefore assumed that in (3.2) is a martingale difference sequence with

4
E[EtEktl,€t2...]In and maxsupE[(Ei) I6t1et2,...]<0.

There are two natural estimators of the parameters in (3.5), the GLS

estimator based on an estimator of c22(L) and the OLS estimator. These

estimators are

- - -l - d-1÷1-1
g1s — [Ezz] [Ez 't
ols — 1(zz') ® Ikl][E (zt ®

where t—[ ê(L)'] and — (L)y, where 4'(L) is a consistent

estimator of

Associated with the GLS estimator is the Wald statistic testing R6—r,

Wgls —
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Because the disturbance in (3.5) is serially correlated, the Wald statistic

for o1s must be constructed using a modified covariance matrix. When the

hypotheses of interest do not involve the coefficients on the mean-zero

stationary regressors in (3.5), this modification is the serial correlation

robust estimator of the covariance matrix using the spectral density matrix of

e at frequency zero, That is,

— [R0i5-r]'(R[(Zzzt') ®

Define the scaling matrix to be a block diagonal matrix partitioned

conformably with z, with diagonal blocks TiT1"2I and TiT — T"2I for

1>2. From Sims, Stock, and Watson (1990, Section 2) z can be written as

z — G(L)v, where C(L) is a block lower triangular matrix and

I ' t ' ' t1)' where

—€' ' . . . and where is defined recursively by

for gal. Let r(j) — for any

variable w.

The next four theorems, proven in the Appendix, summarize the asymptotic

distributions of these statistics.

Theorem 4.1 Suppose that y satisfies (3.3) and (3.5) where cjj(L) is

d+l-j summable, j—1 d+l, that (L)c11(L) has known order q<, and

d11(L) has a known finite order. Then (TT ® Ifl)(gl56) —> Q' where

after partioning Q and conformably with 6:
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Q11 — E[(z ® (L)')(z ® EL)')']. — 0, j>2, and

Q — {V ® '(1) (1)] for i,j >2, where V22 — 1,

V —

m—3,5,7 21-I, p—35,7 21-1

V — G(1) [St(m2 2W1)"2(s)'dS]G(1)' —
m—2,4,6 21, p—3,5,6 21-1

V1 — 2/(+m-2)G(l)G(l)' , m—2,4,6 ,..., 21, p—2.4,6 21,

- N(O,Q1)
— Vec((1)[G(1)(js(m2)/2dW2(sY)].), m—2,6 21

— Vec($(1).[G(l)(fW1mU'2(s)dW2(s).)].), m—3,5,7 21-1

where W1 and W2 are independent standard Weiner processes of dimension

and k2 respectively and where is independent of , m>1.

Theorem 4.2. Under the assumptions of Theorem 1,

(a) (TT ® In)(ois8) —> [V1®Ir]u, where after partioning V and w

conformably with 5:

- N(O,Z), where — [r1(j) @ r(j)].

— Vec(c2j(1){G (1)(Js(m2)h'2dW2(s))]) m—2,6 21

— m—3,5,7 21-1

where is independent of wm, m>1, and where V — [V). i,j — 1,

2..., 21, where V11 — Ezz', V1 —0, j2, and V, i,j > 2 are

given in Theorem 4.1. This holds even if c21(L) has infinite order but

is 1-summable.

(b) Partition 8 — ')' so that 8i denotes the elements of 8

corresponding to z and 8 corresponds to the remaining parameters.
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Similarly partition ols' gls' z—(z' z')', and

Tdiag(T11,T). Then (T*T ® In)(*ois*gis) 2 o.

Theorem 4.3. Under the Assumptions of Theorem 4.1, —> X

Theorem 4.4. Suppose that the first dim(z) columns of R equal zero

and that (l) 2 cjj(l). Then under the assumptions of Theorem 4.1,

Wols - Wgls
2 and W015 —> x.

Note that cj2(L) need not be finitely parameterized to implement the OLS

estimator but c11(l) needs to be consistently estimated to construct Wols

The asymptotic equivalence of the dynamic OLS and the feasible GLS

estmators (Theorem 4.2(b)) for the coefficients on the integrated regressors

is a consequence of the trending properties of these regressors. That is, for

m>2 the GLS-transformed regressors are asymptotically colinear with their

untransformed counterparts. This result extends the familiar result for the

case of a constant and polynomial time trend (Grenander and Rosenblatt [1957])

and extends the results of Phillips and Park (1986) to the general integrated

regression model with regressors of various orders of integration.

The result concerning the asymptotic distribution of the Wald test

statistics applies whether or not the integrated regressors have components

that are polynomials in time. However, the limiting distribution of the

estimator itself will differ depending on whether time (say) is included as a

regressor and whether some of the regressors have a time trend component. For

example, suppose that y is bivariate 1(1), y has nonzero drift, and time
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is excluded from the CLS or dynamic OLS regression. West (1988) showed that

the static OLS estimator from the regression of y onto y has a large

sample normal distribution with a nonrandom variance, a result that extends to

the MLE computed by either CLS or dynamic OLS. Moreover, the test statistics

are asymptotically Although the asymptotic distribution of changes

depending on whether ty has a nonzero mean, the distribtuon of the test

statistic does not. Precisely which elements of contain deterministic

components and which polynomials of t are included in (3.3) determine the

transformation to the canonical regressors, z.

It is useful to identify two circumstances in which the assumptions

underlying the results in this section are violated and the asymptotic x2

result does not obtain. To simplify, consider the d—l case. The first

circumstance is when constraints are imposed on 2,o in (3.1). The constant

term in (3.3) is — M20d21(l)P10, so that restrictions on s0 impose

cross-equation restrictions between the coefficients in (3.3) and the first

block of equations in (3.1), implying that y is not weakly exogenous for 9.

The second is noted by Phillips (1988a) who points out that if the unit root

in the y process is estimated rather than imposed a priori, the asymptotic

x2 distribution for the Wald statistic will not obtain. This follows from

(2.3) since (y) fails to be weakly exogenous for 6 because Ay is

replaced by (1-pL)y, imposing a cross-equation constraint.

These theorems apply to the case that there are a fixed number of

regressors. Conceptually, one could' view this estimator as semiparametric by

embedding this parametric regression in a sequence of regressions where the

number of regressors increase as a function of the sample size. A formal
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treatment of this extension would entail generalizing the univariate 1(0)

results of Berk (1974) and the univariate 1(1) results of Said and Dickey

(1984) to the 1(d), vector-valued case, an extension beyond the scope of this

paper.

5. An Example

The motivating empirical problem stated in the introduction was estimating

the parameters (Or. and 8r of a cointegrating money demand relation. In

Engle and Granger's (1987) terminology, money (mt) and prices are

cointegrated of order (2,1), i.e. m-9P is 1(1). Were known to be I,

and 9r could be estimated in the 1(1) framework of Section 2, with y —

r) and y — m-$P. If is unknown, or if one wishes to test 9—l, the

MLE of p' ' °r can be obtained using the framework of Section 3. The

equations corresponding to (3.1) are

2 1
.2—1:

2
(5.1) .2—2: '2 0 + Ut

1—3: m — p3,o +9pt + 9Qt + 6rrt + Ut

so that d—2, re), and Thus inflation has zero

drift (this could be relaxed), has nonzero drift, rt could have zero or

nonzero drift, and the money demand cointegrating vector implies that mt is

1(2) and inherets any deterministic components of p, and rt.

The error triangularization (3.2) yields the regression,
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(5.2) m p3,o + 9pPt
+

BQQ
+ Brrt

+ d31(L)A2pt + d32;Q(L)Qt + d32;r(L)rt + c33(L)E

where d31(L) and d32(L) are two-sided and finitely paranieterized. Because

there are no cointegrating vectors with unknown coefficients itt the .2—2

equation and because there are no restrictions on p30 (so that there are no

cross-restrictions on the drifts), r) are weakly exogenous for (9.

0o' 8r Thus GLS or dynamic OLS on (5.2) asymptotically yields the MLE.

6. Monte Carlo Results

This section summarizes a comparative study of the sampling properties of

six estimators of cointegrating vectors in two different probability models.

The six estimators are: the static OLS estimator (Engle and Cranger [1987]

Stock [1987]), the dynamic OLS estimator ols and the GLS estimator

introduced in Sections 2-4., the zero frequency band spectrum estimator of

Phillips (1988b), the fully modified estimator of Phillips and Hansen (1989)

(essentially this is a zero frequency ST.JR estimator), and Johansen's (1988)

VAR ma.ximum likelihood estimator. All of the estimators except static OLS are

asymptotically equivalent for the data generation processes considered, at

least when they are interpreted as semi-parametric estimators.

The Monte Carlo experiments study bivariate models in which x and y are

each 1(1) with no drift and is 1(0). The two models and the results

are summarized in Tables 1 and 2. Two sample sizes were used in the
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simulations, T—160 (40 years of quarterly data) and T—360 (30 years of monthly

data).

Model 1. The two equivalent representations for this model, presented in

Table 1, correspond to the usual prediction error decomposition (A in Table 1)

and to the two-sided triangular representation of Sections 2 and 3 (6 in Table

I). None of the estimators correspond to exact maximum likelihood for this

model. For example, the GLS estimator is constructed assuming that w follows

an AR rather than an MA process and the Johansen estimator uses a VAR for the

x, process.

The first column shows that the dynamic OLS and GLS estimators have no

significant bias. The other MLE's have small biases, approximately one-fifth

the bias of the static OLS estimator. The distribution of the t-statistics is

shifted to the right for the OLS estimator. The exact 5% critical values for

the Wald statistics differ somewhat from 3.84, the value appropriate for the

x distribution, less so in the larger sample. The largest descrepancy is

for the dynamic GLS estimator, where the asymptotic 5% critical value leads to

tests with sizes of 1.6% (T—160) and 2.6% (T—360).

Model 2. The second model that we consider has been used by Engle and

Granger (1987), Banerjee et al (1988) and Phillips and Hansen (1988). Here

and follow a cointegrated VAR(l) process so the Johansen estimator

corresponds to exact maximum likelihood. The other estimators provide

alternative approximations to the MLE.

The results are shown in Table 2. Not surprisingly the Johansen estimator

has the best performance, the static OLS estimator the worst. It is

interesting to contrast the dynamic OLS, CLS, Phillips and Phillips/Hansen
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estimators to the Johansen estimator on the one hand and the static OLS

estimator on the other hand. The Phillips and Phillips/Hansen estimators have

biases on the order of 30%-50% of the the magnitude of the bias in static OLS;

the bias in the dynsmic OLS and GLS estimators is somewhat less. The

distributionof the Wald statistics for these (approximate) MLE's are sharply

shifted to the right, albeit much less so than the static OLS estimator. The

rightward shift in the distribution of the t snd Wald statistics is more

severe for the Phillips and Phillips/Hansen estimators than for the dynamic

OLS and GLS estimators. Compsring the results for T—l60 and T—360 suggests

the convergence of the estimators implied by the asymptotic theory. The

reason for the relatively poor performance of these estimators can be traced

to the relatively poor estimates of the relevant spectra at frequency zero

constructed using relatively short lag windows.

7. Conclusions

The two new asymptotic MLE's are easy to implement in practice and can be

applied to a wide range of problems. The Monte Carlo simulations indicated

that the performance of the various MLE's can vary substantially in finite

samples. For the first design, all the MLE's exhibited reasonable

performance, perhaps with the exception of the CLS estimator. For the second

design, all the MLE's (except the exact MLE for this design) behaved

relatively poorly. When performance is poor, it is linked to poor performance

of estimators of the spectral density matrix of the errors at frequency zero.
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Appendix

Proof of Lemma 2.1.

The proof is a modification of Anderson's (1971, Theorem 7.6.7) proof of the

Wold decomposition. Let denote the Hubert space spanned by (ut, u1

u2,. . .1, let P(uIW) denote the linear projection of u onto $, and

let e—u-P(uJ1). Then u—c11(L)e is the Wold representation of

u. The assumption that u has a nonsingular spectral density matrix implies that

c11(L) is invertible (Anderson [1971], Theorem 7.6.9). Let W—U_,W so

21 - 1 1 - -1 2
P(utIW,) — c2i(L)u — c21(L)et, where c21(L)—c21(L)c11(L) . Now

P(uI*) has the Wold representation u-P(uIW)—c22(L)e, where

—u-P(ujW1®*). By construction, Ee4'—O, EEE'Inr.

by appropriate normalization of c11(O) and c22(O), and EeteO for

t's. Finally, c(L) is square summable because Euu< by assumption. 0

Derivation of (3.1).

Assume that the nxl vector y has Wold representation dy — + Fd(L)at, where

(i) a is a martingale difference sequence with E(aat'Iati,at2,...) — a and

maxjsuptE(4t)<, (ii) a5—O for sO, (iii) Fd(L)__0FLi, with

(iv) Fd(e) is nonsingular for w'O, and (v) rank[Fd(1)]_k1n.

The triangular representation (3.1) is constructed by repeated application of the

following Lemma:

Lemma A.1. Assume that the nxl vector x is generated by

— 7it3 + F(L)a, where a satisfies (i) and (ii), F(L) is -summab1e,

- 19



satisfies (iv), and rank[F(1)]—ksn. Without loss of generality assume that

is ordered so that the upper kxn block of F(l) has full row rank. Then x can

be represented as:

— _0p1,t + D(L)a
— + 9x + D2(L)a

where xt—(x' x')', where 4 is 10<1, 4 is (n-k)xl, and

D(L)—{D1(L)' 02(L)']' is (1-1) summable. When lies in the column space of

F(l),

Proof, The result holds trivially for k—n, so consider k<n. Order x so that F(L)

can be partitioned as F(L)—[F1(L)' F2(L)']' where F1(L) is kxn, F2(L) is (n-k)xn,

and F1(l) has full row rank. By definition m'F(l)—O. Because F1(l) has full row

rank, F2(l)—a'F1(l) for some 10cr matrix t. Now partition p as ",i)'

so that

(Al) - 'x — I7_021-;'l,t' + [F2(L)-&'F1(L)]a.

Accumulating (A.l) yields 4 - &'x — + D2(L)a, where D2(L)

* - * * -l— F2(L)
- a'F1(L), where Fi(L) — (l-L) (Fi(L)-Fi(l)) i—l2. Because F(L)

is ,2 summable, F*(L) is (i-I) summable. If lies in the column space of F(l),

then 2 m1m0 2,m+l' The Lemma follows by setting 1i —

(i—O m) and D1(L)—F1(L). C
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To construct the triangular representation (3.1), apply Lenuna A.l to x — dly
to yield he decompostion:

d-l — + F1(L)a
d-l-2 - - d-l d-l-l d-l

't — 2,O + '2,l + 021(4 + F2 (L)at

where has been partitioned into k1xl and (n-k1)xl components and

ow assume that F1 (l)—[F1(l) F1(l)'j' has rank k1+k2n, and apply the

d-l-l, d-2-2 d-l d-2-l -
lemma to x — [ ( Y-9i Continuing this

process until has full rank spectral density matrix at frequency zero yields the

triangular representation (3.1), with u—Dj(L)a. j—1 d+l, where rank

[D(1)]_k. 0

Proof of Theorem 4.1.

First consider the infeasible CLS estimator 6gls constructed using '(L) —

Note that (TT®I)(gls6) — TT' where T —

and T — (TøI)Zzy. with — [z®(L)'J and

— •(L)y. The convergence of 11T to follows from a standard

application of the weak law of large numbers. For ljT with i or . 2:

iT — (TjI)t[Y_O(Z.m ® i —O4-h ®

— e mh)TjTøJ
— • •)](Tøt) + o(l)
—> (V1 ®

where the last two lines follow from Lemma 1 of Sims, Stock and Jatson (1990) (SSW).

For miT' i 2:
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*iT — (Ti t[Z_o(4.m •

— (TjI)(ze $(l)')]t + o(l)
— vec($(l) [Tittztct I

1Vec(t(l)[Gn(l)(Ss(m2)/2dw2(a))]), m—2,6 22

—> lVec(t(l)[Cn(l)(fWfm1v2(s)dW2(a))]), m—3,5,7 22-1

where the last line follows from Lana 1 of SSW. The joint convergence and

distribution of * follows from SSW Lemmas 1 and 2. To prove that the feasible GLS

eatimator has the same limit, as usual let

— (tj1®t)E[E_0(Z 4) I [Z_o(zth ® '(T@I)

— (T+1øI)Et[o(Ztm •

ao (T1SI)(Sgla!gla) — + Assume that 2 for

j—l q. Evidently T T 2 0 and -
#T

2 0, from which asymptotic

equivalence of GLS and feasible GLS follows. C

Proof of Theorem 4.2.

(a) By assumption, c(L) is d+l-j aummable for j—l,2 d+l. This implies that

the diagonal entries G(L) of G(L) corresponding to the stochastic elements,

in u from equation (3.7) are j summable. The theorem then follows from Lemma 1 of

ssw. :

(b) Theorems 4.1 and 4.2 imply that Tjzz'T 2 0. First consider

the infeasible OLS estimator gla' defined in the proof of Theorem 4.1. Theorem

4.1 implies that
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(T*T 0 ')(*gis*) — s;[(T; 0 I)E(z 0 t(L)')c] + o(l)

where — (T0I)[E(40.(l)')(z'0t(l)))(T;0I). Now

—

so — [(T;oI)I(4or)(4'oI)(T;oI)]'rIot(l)'.(l)]'. Also,

(T*tOI)(S*0j5-&*) —

x (T0I)E(z0I)c,,(L)C + o(l)
— + o(l)
— + o(l)

Thus

(T*T0I)(*ols6*gls) —

- t(40t(1_)')6) + o(l)
— s;(T;oI)x((zoG(l)')(Io.(l))[c,1(l)€ +

- (40(l)')c + [z0((l)-G(L))']c) + o(l)
— z;(AlT + A2t)

where the final equality follows from •(l)c11(l)—I, and where

c1(L)—(l-LY1(cgj(L)-cgj(l)), and

AlT —

A2T
— (T0I)Etjz0(G(l)t(L))'IE
— cT;oI)zt(zo.*(L))e

Because B —> Q (the (*,*) block of Q given in Theorem 4.1), the result follows if
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AlT 0 and A2T 2 0. Because has a finite order by assumption and

standard telescoping arguments imply that AlT 2 0 and A2T 2 0. o

Proof of Theorem 4.3.

The result follows from Theorem 4.1 above and Theorem 4 of Johansen (1988) or

alternatively from section 4 of Phillips (l988a). C

Proof of Theorem 4.4,

This follows directly from Theorem 4.3 and the proof of Theorem 4.2. 0

- 24 -



References

Aim, and G. Reinsel (1987), "Estimation of Partially Nonstationary Multivariate
Autoregressive Models," forthcoming, Journal of the American Statistical
Association.

Anderson, T.W. (1971), The Statistical Analysis of Time Series. Wiley: New
York.

Banerjee, A., J.J. Dolado, D.F. Hendry, and G.W. Smith (1986), "Exploring
Equilibrium Relationships in Econometrics Through Static Models: Some
Monte Carlo Evidence," Oxford Bulletin of Economics and Statistics, 48,
253-277.

Berk, K.N. (1974), "Consistent Autoregressive Spectral Estimates," Annals of
Statistics, 2, 489-502.

Bewley, R.A. (1979) , "The Direct Estimation of the Equilibrium Response in a

Linear Model," Economic Letters, 3, 357-361.

Campbell, J.Y. (1987), "Does Savings Anticipate Labor Income? An Alternative
Test of the Permanent Income Hypothesis," Econometrica, 55. 1249-1274.

Campbell, J.Y. and R.J. Shiller (1987), "Cointegration and Tests of Present
Value Models," Journal of Political Economy, 95, 1062-1088.

Campbell, J.Y. and R.J. Shiller (1989), "The Dividend-Price Ratio and
Expectations of Future Dividends and Discount Factors," The Review of

Financial Studies, 1, 195-228.

Engle, R.F. and C.W.J. Granger (1987), "Cointegration and Error Correction:
Representation, Estimation, and Testing," Econometrics, 55, 251-276.

Engle, R.F. , D.F. Hendry, and J.F. Richard (1983), "Exogeneity," Econometrica
no. 2, 277-304.

Grenander, U. and M. Rosenblatt (1957), Statistical Analysis of Stationary Time
Series, John Wiley and Sons: New York.

Hansen, BE. and P.C.B. Phillips (1988), "Estimation and Inference in Models of
Cointegration: A Simulation Study," Cowles Foundation Discussion Paper
No. 881.

Hoffman, D. and R.H. Rasche (1989), "Long-Run Income and Interest Elasticities
of Money Demand in the United States," NBER Discussion Paper no. 2949.

Hylleberg, S. and G.E. Mizon (1989), "Cointegration and Error Correction
Mechanisms," Economic Journal, March 1989.

- 25 -



Johansen, S. (1988), "Statistical Analysis of Cointegration Vectors," Journal
of Economic Dynamics and Control, 12, 231-255.

Johansen, S. (1989), "Estimation and Hypothesis Testing of Cointegrating
Vectors in Gaussian Vector Autoregression Models," manuscript, Institute
for Mathematical Statistics, University of Copenhagen.

King, R., C. Plosser, J.H. Stock, and M.W. Watson (1987), "Stochastic Trends
and Economic Fluctuations," NBER Discussion Paper No. 2229.

Phillips, P.C.B. (1988a), "Optimal Inference in Cointegrated Systems," Cowles
Foundation Discussion Paper No. 866.

Phillips, P.C.B. (1988b), "Spectral Regression for Cointegrated Time Series,"
Cowles Foundation Discussion Paper No. 872.

Phillips, P.C.8. and BE. Hansen (1989), "Statistical Inference in Instrumental
Variables Regression with 1(1) Processes," forthcoming, Review of Economic
Studies.

Phillips, P.C.B. and J.Y. Park (1986), "Asymptotic Equivalence of OLS and GLS
in Regression with Integrated Regressors," Cowles Foundation Discussion
Paper No. 802.

Said, S.E. and D.A. Dickey (1984), "Testing for Unit Roots in Autoregressive-
Moving Average Models of Unknown Order," Biometrika, 71, 599-608.

Sims, C.A., J.H. Stock, and M.W. Watson (1990), "Inference in Linear Time
Series Models with Some Unit Roots," forthcoming, Econometrica.

Stock, J.H. (1987), "Asymptotic Properties of Least Squares Estimators of
Cointegrating Vectors," Econometrica, 55, 1035-1056.

West, K. D. (1988), "Asymptotic Normality when Regressors have a Unit Root,"
Econometrica, 56, 1397-1418.

- 26 -



Table 1
Monte Carlo Results, Probability Model 1

Probability Model: —

ye — a + + Ut

where v — e + O.5e1
A.

1 u — e + .7e1 + .4e1, e NIID(0,l)

equivalently:

I vt —

B. I

I u — •+l + .l6c + .56i + w,

where w — - .40i - 3SCt2 where NIID(0l.25) and NIID(0,l.03).

A. T—160

Bias Std. Dcv. Empirical Critical Values Frac. Rejections
Estimator E(-6) () t os t95 F (5% Nominal Size)

Static 01.S .010 .024 -1.26 2.02 4.62 .031

Dynamic OLS .000 .019 -1.67 1.66 4.16 .041

Dynamic GLS .000 .019 -1.94 1.93 5.77 .016

Phillips BSR .002 .019 -1.41 1.57 3.45 .063

Phillips/Hansen FM .002 .019 -1.53 1.73 4.02 .045

Johansen VAR-MLE - .003 .021 -- -- 4.68 .031

B. T—360

Bias Std. Dcv. Empirical Critical Values Frac. Rejections
Estimator E(8-9) (8-0) t05 t95 F95 (5% Nominal Size)

Static OLS .005 .010 -1.30 1.98 4.45 .035

Dynamic OLS .000 .008 -1.67 1.72 4.01 .045

Dynamic GLS - .000 .008 -1.87 1.79 4.97 .026

Phillips BSR .000 .008 -1.50 1.63 3.39 .066

Phillips/Hansen FM .001 .008 -1.48 1.70 3.76 .053

Johansen VAR-MLE .001 .009 -- -- 4.69 .030



Notes to Table 1: The first column gives the bias, the aecond column the

standard deviation. The third and fourth columns respectively present the 5%

and 95% ordinates of the empirical distribution of the t-statistic for 9. The

t-statistic for the static OLS regression was computed using tLe usual OLS

formula; the t-statistics for the other estimators were computed by the

appropriate method suggested by asymptotic theory. The fifth column presents

the 5% critical value for the empirical distributions of the Wald test for the

hypothesis 9—9• The sixth column show the percent rejections from the

empirical distribution of the Wald statistic computed using the usual 4 .05
critical value of 3.84. The dynamic OLS estimators were constructed with I

lead and lag of Ax in the regressions and the covariance matrix was

calculated using a Bartlett lag window with 5 (T—l60) and 8 (T—360)

autocovariances. The GLS estimator was constructed with 1 lead and lag of

in the regressions and (estimated) AR(4) GLS corrections. Phillips BSR

denotes the zero frequency band spectrum regression estimator described in

Phillips (1988b) and the Phillips/Hansen FM estimator refers to the fully

modified estimator described in Phillips and Hansen (1988). The estimated

spectra for these estimators were computed using the same lag window and

number of lags as the dynamic OLS covariance matrix. The Johansen VAR-MLE was

computed using s VAR(S) (T—l60) and a VAR(8) (T—360). The Johsnsen procedure

yields an estimator and s likelihood rstio statistic. Thus, there are no

entries in the third and fourth columns for the Johsnsen estimator, snd the

fifth column contains the 95th percentile of the empiricsl distribution of the

likelihood ratio statistic. All results are based on 1000 Monte Carlo

replications.



Table 2
Monte Carlo Results. Probability Model 2

Probability Model: — - 4
1 2— - a

where: 4 — a + 4

a — 0.641 + 4. 4 NIID(O,l)

A. T—160

Bias Std. Dcv. Empirical Critical Values Frac. Rejections
Estimator E(-9) (è-9) t05 t95 F (5% Nominal Size)

Static OLS .087 .070 -0.02 8.27 68.33 .000
Dynamic OLS .018 .058 -2.16 3.03 982 002
Dynamic CLS .027 .061 -1.66 2.65 7.58 .006
Phillips BSR .046 .060 -1.17 3.59 12.90 .000
Phillips/Hansen FM .044 .061 -1.28 3.74 14.01 .000
Johansen VAR-MLE - .000 .054 -- -- 4.32 .041

B. T—360

Bias Std. Dcv. Empirical Critical Values Frac. Rejections
Estimator E(-e) (-8) t05 t95 F95 (5% Nominal Size)

Static OLS .041 .037 -0.42 8.06 64.88 .000

Dynamic OLS .001 .025 -2.09 2.24 6.75 .009
Dynamic CLS .003 .025 -1.70 1.87 4.88 .027
Phillips SSR .016 .026 -1.29 2.79 7.80 .005
Phillips/Hansen FM .014 .027 -1.43 2.83 8.28 .004
Johansen VAR-tILE .002 .024 -- -- 4.14 .042

Notes: For this model Yt is 1(0) with 9—-2. The dynamic OLS and CLS
regression were computed using 5 (T—160) and 8 (T—360) lags in the regressions
with y the left hand variable. The Johansen estimator was computed using a
VAR(1). See the notes to Table 1.


