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ABSTRACT

Recent work by Said and Dickey(1984,1985), Phillips(1987), and Phillips
and Perron{19B8) examines tests for unit roots in the autoregressive part of
mixed asutoregressive-integrated-moving average (ARIMA) models (tests for
stationarity). Monte Carle experiments show that these unit root tests have
different finite sample distributions than the unlt root tests developed by
Fuller(1976) and Dickey and Fuller(1979,1981) for autoregressive processes. . In
particular, the tests developed by Phillips{1987) and Phillips and Perron(1988)
seem more sensitive to model misspecification than the high order auteregressive

approximation suggested by Sald and Dickey(1984).
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1. INTRODUCTION
Fuller(1976) and Dickey and Fuller{1979,1981) develop several tests of

wvhether a pth order autoregressive (AR} process,

P

Yt-n+2 ‘1 Yt-i+“t‘ (1)

i-1
is stationary. Stationarity implies that the roots of the lag pelynomial
#(L) = (L - L - ... ¢pr) lie outside the unit circle (see Box and
Jenkins(1976) for a discussion of statlonarity in the context of AR
processes). The null hypothesis in these tests 1s that the AR process
contains one unit Toot, so the sum of the autoregressive coefficlents in (1)

equalzs 1, Dickey and Fuller estimate the model

(p-1)
Y matp, Yo g+ 1§1 #, PY, , +u, . (2)

=Y - Yo g

except the coefficient Py should equal 1.0 1f there is a unit rcot. Dickey

where D‘It which 15 equivalent to the AR model in (1),
and Fuller use Monte Carlo experiments to tabulate the sampling distribution
of the regression "t-statistic,” 'p - (3“‘1)/5(.3‘.). where 9(3“) is the
standard error of the estimate ,'6“ calculated by least squares. The
distribution 1s skewed to the left and has too many large megative values
relative te the Student-t distribution. See Dickey, Bell and Miller{1986) for
& recent discussion of autoregressive umit root tests. Plosser and
Schwerr(1977) discuss a simfilar problem that arises when there Is a uwit root
in the moving average polynomizl. This can occur when differencing is used to
' remove nonstationariry and the true model iz a stationary end invertible ARMA
model ltol.lnd-l time trend.

This paper analyzes the sensitivity of the Dickey-Fuller testa to the

assumption that the time series 1s generated by a pure autoregrescive process.



In particular, when & variable is generated by a mixed ARIMA process, the
critical values lmplied by the Dickey-Fuller simulations can ba misleading. |
Section 2 describes recent extensions of the Dickey-Fullar test procedure
suggested by Sald and Dickey(1984, 1985), Phillips(1387), Phillips and
Parron({l1988), and Paerron(l986a,b) that attempt to account for mixed ARIMA
processes as well as pure AR processes In performing unit root tests. Seetion
3 contains results of a Monte Carle experiment that calculates the gize of the

Dickey-Fuller and the related test statistics when the true process is ARIMA

rather than AR. Section 4 contains concluding remarks.

2. EXTENSIONS OF THE DICKEY-FULLER TESTS

Sald and Dickey(l984) argue that an unknown ARIMA{p,l,q} process can be
adequately approximated by an ARIMA(k,0,0) process, where k~o(T'/>). Given
this approximation, the limiting distribution of the unlt root test based on a
high order AR approximation will be the sane as the Dickes'-l-‘uller
distribution. Of course, for & given epplication this argument does not
fndicate the appropriate number of lags k.

To understand why a finite order autoregressive process may not provide an
adequate spproximation to & mixad ARTIKA process, it is useful to consider the
infinite order autoregressive process implied by an ARIMA(G,1,1) process for
different values of the moving average parameter f. The autorsgressive

coefficients are calculated by matching coefficients of ‘the lag operator L in

the relations
«{Ly = (1 - LY/(1l - 8L}y => (1 - #L) =(L) = (1 - L},

where n, is the autoregressive coefficient at lag 1. The autoregressive

i

coefficients decay slowly for large mbyolute values of the moving average



parameter. The sum of the coefflcients is equal to unity (the value for the
infinite sum of all autoregressive coefficients for this nonstatlonary
process) to four decimal places after 24 lags for # equal to .5 or -.5. For
values of # equal ta .8, .9 and .95, however, the sums of the coefficients to
24 lags are equal to .%953, .920Z, and .7080, respectively. This suggests
that the approximation error caused by estimating a finite order AR process 1s
large for moving average parameters greater than .8. Such merlas have
autocorrelations for tha lavels of the series that decay slowly, and first
order mutocorrelations for the first differences clese to -.50 (see
Wichern{1973) and Schwert{l1987}).

Sald and Dickey(1985) show that the unit root estimator from an

ARIMA(1,0,1} process,
Yt - + ,p“ Yt-l + u, - [} ut-l' (E))

has the asymptotic distribution tabulated by Dickey and Fuller when one Gauss-
Newton step ;s taken from initial wvalues ’F-l and ¢ equal to a consistent
estimator conditional en le-l' They provide limited Monte Carlo evidence that
shows the effect of estimating the moving average parameter # on the unit root
test statistle r“.

Puller{1976, p. 371) presents fractiles of the distribution of T(ﬁﬂ-l) vhan

,p”-l and =0 for an ARIMA(1,0,0) process,

Yt -a + pp Yt-l +u, t=l, ... T. . (4)
This normalized measure of blas providae another test of the unit root
hypothesis. Dickey and Fuller(197%) show thatr tests based on thls statistic
are more powerful against the alternative hypothesls that p“(l than the test

based on the r“l statistic,




The discribution of the estimator ﬁ“ depends on the structure of the ARTMA
prucess that generated the data. As noted by Fuller(1976, pp. 373-382), the
statietic Tc(ﬁ#-l) from a general ARIMA model has the same distribution as
T(ﬁ“-l) from the AR(1) model, where the conatant ¢ 18 the sum of the
coafficlents ‘51 from the moving average representation of the errors from (4).
¥(L)=8 (L) /4({L). One strategy for estimating the constant c¢ iz to use the
additional coefficients from the ARIMA{p,0,0) model in (2), or from an
ARIMA(p,D,q) model, where ¢i are the (p-1) autoregressive coefficlents for
DYt-i'
Phillips (1987} and Phillips and Perrom(198E} also show that the Dickey-
Fuller tests are affected by autocorrelatlon In the errors from (4}. They
devalop modifications of the test statistics r# and T(,‘-?F-l) that have.the
as.ymptotic digtributions tabulated by Dickey and Fuller, when the data follow
an ARIMA(p,0,q) process, In fact, these papers sllovw for more general
dependence in the error proecess, including conditional heteroskedasticity.
These adjustments involve the autocovariances of the errors from an

ARIMA(L,0,0) model in (4). They modify the test statistic T(ﬁ”-l).

T
N 2 2 .2 T 42,-1
Zou = TB, L) - Slegys) T (:2(Yt-1 RS UL )
vhere 53‘ is the sample variance of the residuals u,.,
T 2 T

2 -1 2 -1

Ery, =T "2 u +2I "Eo I uu ' (&)
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and the weights wj‘

16 positive (see Newey and West(1987)). Following the Intultion of Said

= [1 - J/{2+1)} ensure that the estimate of the variance

2
"2
and Dickey(1984), they suggest that the number of lags 2 of the residual
autocovariances in (6) be allowved to grow with the sample size T,

Phillips and Perron modify the regression "t-test™ r“,



T

2 2 3 L2, -172
zw - 'y(su,a'[) - .S(SH-Bu) T isg, tfz(‘it_l Y . (7)
vhere o2, s defined in (6).

Dickey and Fuller also consider tests with a time trend included as an
additional regressor, so the alternative hypothesis is a starionary process
around a time trend, Thus, the ARIMA(1,0,0) model in (4) i{s modified so

Yt -a+ f [t-{T+1)/2] + b, Y:-l + v, (8)
the ARIMA(L1,0,1) model in (3) i5s wodiffed so
Y =a+p [L-(T+1}/2) + p ¥,y +u -0 u 4. (9}
and the ARIMA{p.0,0) process in (2) 1ls modifled 50
(p-1} ,
Y a4 B [t-(T+1)/2) + 2, Yt-l + 131 éi DY:-L oy {10}

The regression "“t-tests,” T, are imporcant because Evans and Savin(1984) show
that f” statistics are a function of the unknown intercept a in (2) or (&4).
On the other hand, including s time trend in (8}, (9), or (10), even when the
trend coefficient g=-0, makes the distribution of the autoregressive parameter
ostimate ﬁr independent of o. In empirical applications, whers knowledge of
the value of the intercept a is unavailable, inclusion of a time trend is
probably a prudent decision in performing unit root tests.

Phillips and Perron(l988) develop adjustments to tha Dickey-Fuller tests

T(ﬁr-l) and L where the alternative hypothesis is a statlonary ARIMA(p,0.q)

process around a deterministic time crrend. 'Ihe); show that the test statistic,
zZ -1 -1 - (82,80 (TPr2m_) an
o fe T "u X .

has the asymptotic distribution tabulated by Dickey and Fuller for '1'(3’_—1) in
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the ARIMA(1,0,0) case, where Dxx is the determinant of the regressor cross-

product matrix. Their modification te the statistic r is;
2 2.3 1/2 1-1

L N NG TLR L TR {"u RELY } - (1)

Thie statistlc should have the asymptotic distribution tabulated by Dickey and

Fuller for T, even when the Tegresslon errors in {8) are autocorrelated.

3. A MONTE CARLO EXFERIMENT FOR UNIT ROOT TESTS
The Monte Carlo experiment examlnes the effects of model misspecification
on the size of unit root tests for mixed ARIMA processes. The experiment

constructs the data to follow an ARIMA(D,1,1) process,

Yt - Yc-l +u, - ] U g e=--1%, ... T,

vwhere the errors [ut] are serially uncorrelated standard normal variables.

The data are generated by setting Y oan and Y_zo equal to Q and creating T+20
observations, discarding the first 20 observations to remove the effect of the
initial conditions. Samples of size T — 25, 50, 100, 250, 500, and 1000 are
used in the experiments, Each experiment is replicated 10,000 times to create
the sampling distribution for the test statistics. The moving average
paraneter # is set equsl to .8, .5, 0, -.5, and -.8, which implies first order
autocorrelations for the First differences of these series of -.49, -.40, 0,
.40 and .49. The first order autocorrelation coefficlent for an ARIMA(D,0,1)

process equals -0/(1-52). Higher order autocorrelations equsl ¢.

3.1 Regression "t-tests”
Several tests of nonstationarity are performed on each data series. First,
the regression "t-test” from (4) studied by Dickey and Fuller is calculated to

11llustrste the problems that occur when the data are generated by a process
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ather than AR(l}. Second, two versloms of the Phillips and Perrom(1986} test
are calculated, using dlfferent numbers ¢f lags 2 of the residual

autocorrelations in calculating s:.‘ in (6):

:, - Ines(T/100) M%) 13a)

1.. = Int(12(17100) /%), (13b)

12
B0 IA-A and 112—12 when T=100, (when T=25, IA-Z and .!12-8; when T=1000, .!&-7
and 112-21). Third, an ARIHA{1,0,1) model iz estimated to test whether the
asutoregressive coefficlent y equals 1.0, using the "t-test,”
I"‘ - (3“-1)/5(5#), where s(ﬁy) is the standard error calculated by an
iterative nonlinear least squares algorithm. Note that this is pot the
procadure suggested by Said and Dickey(1985), since their results require only
one; Geuss-Newton step from the unit root. Nevertheless, empirical researchers
who estimate ARIMA(1,0,1) models and discover an estimated autoregressive
parameter close to unity would want to kmow the reliabllity of the "t-test"
for the unit root when iterative least squares is used. Fourth, an AR(.!A)
model is estimated in equation (2) and the regression *t-test" is u-sed to test
whether p” equals 1 Finally, an AR(.Iu) model 15 estimated in equation (2)
to calculate r“. The latter tests follow the suggestion of Said and
Dickey(1984) to use a high order asutoregressive process to approximate -an
unknowm ARIMA process, where the order of the autoregression grows with the
sample size T as in (13a,b).

Table la contains estimates of the sizes of tesrs using the 1% critical
values from the Dickey-Fuller distribution for r”. for the six different test
statistics (AR{1): Phillips-Perron with .!a lags, zﬂ‘ua); Phillips-Perron with

2., lags, Z”‘(.lu).; ARIMA(1,0,1); All(la): and AR(IH)), ‘for the six different

12
sample sizes (T ~ 25, 50, 100, 250, 500, and 1000), and for the five different
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values of the woving average parameter for the true process (6 - .8, .5, 0, -
.5, and -.B), where the alternative hypothesi{s 18 a stationary ARMA process
around & constant mean, Table 1b contains the estimates of the sizes of tests
using the 5% critical values, These tables do not report the upper tail of
the gampling discributions because the usual alternative hypothesis is that
the process 1s stationary (pp < 1). As previously reported by Dickey and
Fuller, the distribution of the i staristics has A negative mean and is
skewed toward negative values for all of the cases considered in these
experiments, Additional informatien about these sampling distributions is
available from the author on request. The simulations were programmed in
FORTRAN using the IMSL subroutine GGNOF to generate pseudo-random normal
wvariates, All rasults were checked using the RATS computer program.

The first thing to note about Tables la and 1lb is that the simple AR(L)
test 1s severely affected by the presence of moving average components in the
data generation process., The estimated size fer this test Is positively
related to the moving average parameter 6, being too large for #=.5 or .B, and
too small far #=--.5 or -.8. Of course, this preblem is exactly what motivates
the tests proposed py Said and Dickey and by Phillips and Perren.

Second, the Phillips and Perron teste do not have distributions that are
clese to the Dickey-Fuller distributien, especlally for #=.5 or .B. At both
the 1% and 5% levels, the size of the Phillips-Perron tests are much larger
than the nominal size of the test, even for samples as large as T-1000. As
the number of lags of the residual autecorrelations used in (§) increases from
‘& to 112 the size estimates become farther away from the Dickey-Fuller
results., The Phillips-Perron tests are much closer to the Dickey-Fuller

distributicn fer ﬂegative moving average parameters f=-.5 and -.8, although



the size 1s too small for these cases.

The second thing to mote about Tables la and 1b is that estimating a moving
average parameter along with the unit reot changes the behavior of the
sampling distributfon for the test statistic. This is interesting because
pickey and Fuller show that asymptotically the unit root test r“ is not
affected by estimation of higher order sutoregressive parameters. 5ald and
Dickey(1985) show that the asymptotic behavior of the unlt root test should
not be affected by the estimation of moving average parameters vhen only one
iterative step 15 taken from the unit root. For positive values of the moving
average parameter #, the size of the ARIMA(1,0,1) test iz above the nominal
size based cn the Dickey-Fuller distributfion, This difference is largest for
both small (T=25 or 50) and large (T=500 or 1000) sample sizes, with the size
being closest for moderate sample sizes (T=100 or 250). The apparent lack of
convergence to the Dickey-Fuller statistic as the sample size grows contrasts
with the results of Said and Dickey(1925) who examine samples of 49 and 99
observations. Apparently, the distinction between the one-step method
propesed by Sald and Dickey versus the iterative estlmation used in these
experiments is fmportant.

The tests based on the .l‘.-ordet autoregressive model are close to the
Dickey-Fuller results for values of the moving average parameter ¢ equal to
.5, 0, =.5, or -.8. With ¢ equal to .8, however, the AR(.!‘.) approximatlom is
deficient in that the size of the test 18 well above the nominal size using
the Dickey-Fuller distribucion, although this problem seems to be reduced as
the sample slze grows.

The size estimates based on the llz-order autoregressive model are closer

te the nominal size than for the AR(.!“) model. The only. notable departurs



from the Dickey-Fuller results ls for # equal to .8. In this case, with swmall
sample sizes (T-25) the size of the AR(IIZ) test 1s below the nominal size
based on the Dickey-Fuller distribution,

Tables 28 and 2b contain estimates of the size of unit root tests at the 1w
and 5% levels, respectively, where the alternative hypothesis is & stationary
ARMA process around & time trend. As noted by Dickey and Fuller, including a
time trend causes the criciesl walues of T, to be lowver than TP {i.e., the
regression t-statistic must be more negative to reject the unit root
hypothesis). Nevertheless, the relative pattern.é in Tables la and lb are
repeated In Tables 2a and 2b, For example, the sizes of the ARIMA(1,0,1) test
and of the AR(IA) test are above the nominal size based on the Dickey-Fuller
eritical values for #=.8. As in Tables la and 1b, the higher erder
autorepressive approwximation AR(lu) has size clese to the nominal level for
sample sires greater than 50, The Phillips-Perron tests have sizes that are
furthest from the nominal size, with the largest departures for cases where #
is positive, 1In fact, with #-.8, the Phillips-Perron tests reject a unit root
over $9% of the time for a nominal 1w level test for sample sizes greater than
50,

Thus, a low order sutoregressive approximation can lead to misspecification
of unit root tests when the moving average parsmeter is large. Higher order
AR processes seem to mitigate the problem (although the order of the AR
Process Mecessary to provide an adequate approximation can be quite large for
#=_8 or higher). Unit root tests based on the mixed ARIMA({1,0,1) model

require moderate sample sizes before the Dickey-Fuller fractiles are accurare.
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3.2 The Distribution of the Normslized Unit Root Eatimator

Tables 3a and 3b contaln estimates of the eize of tests based on the
normalized unit root estimator T(}”-l) at the 1% and 5% levels, respectively.
Six different tests are consldered (AR(1l); Phillipa-Perron with 11‘ lage,
ZH‘(IA); Phillips-Perron 312 lags, Zw(!u); ARIMACL1,0,1); AR(,!“) corrected
using the estimated value of the autoregressive parameters; and A.R(!l?)
corrected using the estimated value of the autoregressive paraneters), for the
six different sample slzes (T = 25, 30, 100, 250, 500, and 1000}, and for the
five different values of the moving average parameter (¢ - .B, .5, 0, -.5, and
-.8), where the alternative hypothesis 1s & statlonary ARMA process around a
constant mean.

In many ways the results in Tables 3a and 3b are easier to summarize than
the results in Tablas la, lb, 2a and 2b. For the AR(l) model, the estimated
size 1s above the nominal level for # equal to .B and .5, and the difference
increases with the sample size. The correctlons suggested by Phillips and
Perron(1988) do not reduce this problem much, and the use of more lags 112
harms the performance of the test in this case.

The results for the ARIMA(1,0,1) model are interesting. For negative
values of #, the size is close to the nominal size from the Bickey-Fuller
distribution for all sample sizes. For positive values of #, the estimated
size i5 higher than the nominal size for all sample sizes. Unfortunately, I
did not compute the 'corrected’ version of this test, 1.'(1-3)(3#-1). but such a
correction would probably have improved the performance of this test
substantially.’

‘ The AR(.!A) test yields estimates of the size that are systematically

related to the mn\;:l.ng average paramster, #. Higher values of # yleld lower
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estimates of the unit root, so the AR(IH) size estimates are well ahave the
nominal size based on the Dickey-Fuller distributlon when # equals .B. The
AR(f,) slze estlmates are togo low when # equals -.5 or -.B8, These prableus
are reduced for larger sample slzes.

The AR(IIZ) test Is better than the AR(‘A) test for larger sample sizes,
but worse for smaller sample sizes. For amall sample sizes (25 and 50}, the
larger number of parameters thart must be estimated in the AR(jlz) model
apparently bias the unit root estimator downward. Note that even wvhen the
moving average parameter § eguals zero, so the true process is a random walk
as originally assumed by Dickey and Fuller, the estimared size for the AR(!lz)
test is well above the nominal size of the test. For large samples (T=250 or
above), the sizes are closer to the nominal level of the tests, although they
are still too high,

Tables 48 and 4b contain estimates of the size of tests based on the
normalized unit root estimator T(ﬁr-l) at the 1t and 5% levels, respectively,
where the alternative hypothesis is a stationary ARMA process around a time
trend. The relatjve patterns in Tables 4a and 4b are virtually jdentical to
those in Tables 3a and 3b. As noted by Fuller(1%976), the size of the Dickey-
Fuller tests is related to the moving average parameter §. When é=.B, the
estimeted size {s far above the nominal level of the test. The carrections
suggested by Fuller stabilize the behavior of the statistic for different
values of #, although the size of these tests iz sbove the nominal size using
the Dickey-Fuller distribution., The cerrections suggested by Fhillips and
Perron(1988) do not work as well, since the estimated size remains well above
the nominal size for positive values of &,

The effects of ;odel misspeclfication are clesarer in the noTmalized blas
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tests (Tables 3a, 3b, 4a and 4b) rhan in the “t-tescs" (Tables la, 1b, 28 and
2b}. When the data are generated by an integrated moving average process,
high order autoregressive approximations yield biased estimates of the unit
root coefficient. With positive moving average parameters the unit root
coefficients are too small, and with negative moving average parameters the
unit root coefficients are too large. Even though the results of Dickey-
Fullar(1979) suggest that T(Bp-l) provides a more powerful tesr than the rﬂ
statistic when pﬂ(l, the results above suggest than the 'y and L statistles
are less sensitive to model misspecification. The corrections to the
normalized unit root estimator suggested by Phillips(1987) and Phillips and
Perron(1988) do not work well {n the cases examined hare. The corrections
suggested by Fuller(1976) improve the behavior of the normalized unit root
test for high order autoregressive models with very large sample sizes, but

they distort the size of the test in small to moderate samples.

3.3 Further Analysis of the Phillips and Perron Tests

The Phillips(1987) and Phillips and Perron(1988) tests perform poorly in
cases vwhere the true data are generated by an AﬁIHA(O.l.l) processes with §=.5
or #~.8. This has been documented earlier by Monte Carlo sxperiments in
Perron's dissertation(1986a), although the extent of the problem was net as
clear in his work. Phillips and Perron(1988), in Monte Carlo work that
postdated this paper, find results that are similar to the resulrs above. It
1s surprising with sample sizes as large as 500 or 1000 thar these tests are
not close to the Dickey-Fuller distribution, as they should be in *large
samples. ’ )

To provide further insight into this problem, additipnal Monte Carle
experiments are performed to analyze the Phllllps-rerrnq tests, zp#(l) and
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Zr”(l). The procedure dlscussed shove 16 used, except only the case with é=.8
15 considered. Sample sizes of Tw=1,000 and T=10,000 are used. The number of
residual autocorrelations £ used to calculate the variance si} in (6} is
varted from 0 (no adjustment) to 112 (1&-7 =nd 112-21 when T=1,000; £a-12 and
!12-37 «hen T=10,000}. Table 5a contains the 5% and 1% fractiles of the
sampling distributions from 10,000 replications for the Philllps-Parron cest,
ZPF(I). Table 5b contalns the 5% and 1% fractiles of the sampling
discributions f£om 10,000 replications for the Phillips-Ferren test, Zr#(!).
Tables 5a and 5p also contain the astimated size of the 5% and 1% level tests
in parentheses Lelow the estimated critical values.

There sre tuo guestions about the best way to do the Phillips-Perron tesis.
First, there is a guestion of che number of lags of the residual
autocorrelations £ to use. Second, there 1z a question about the way to
estimate the variances si and s%!'

1f the unlc root escimate is equal to its True value, pp—l, the residual
autocorrelations should equal -0.49 at lag 1 and 0.0 at the remaining lags.
For the data generating process used in these simulations, a relatiQely law
number of lags should work best. Thus, Tsbles 5a and 5b show values of the
Phillips-Ferron tests based om 2=0, 1, 2, 3, 4, !h and 112, vhere f=0 is the
original Dickey-Fuller statistie.

Phillips and Perron suggest two strategies for estimating the varlances
si and sil. The technigue used in the sipulations ab;;; i1s based on
yvesiduals from the estimate of (4}, which 4s the procedure recommended in the
first draft of the Phillips-Perron paper. The alternative procedure 1s teo

agsume the gutoregressive parameter p# equals one, and use the differences DY:

to calculate the variance estimates (a procedure aleo discussed by Phillips
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and Perron). This distinction is important because the sutocorrelations of
the residuals are not similar to the autacorrelations of the differences when
§=.8. Because the estimate of the unit root ﬁ# is well below one in most
cases when §=.B, the residual autocorrelation at lag 1 averages -.367 when
T=1,000, and the remaining autocorrelations are positive and decay very slowly
(from .071 at lag 2 to .060 at lag 21}. This 1s typical of a mixed
ARIMA(1,0,2) process with an autoregressive coefficient close to unity. For
an ARIMA(1,0,2) model, che kth autocorrelation py = pzdk-z. where L {s the
autocorrelation at lag k and ¢$ is the autoregressive parameter, Based on the
estimates T, = .071 and Ty 060, the implied value of ¢ 1s .99. These
positive residual autocorrelations cause the Fhillips-Perron tests to ETOW
farther from the Dickey-Fuller distribution as more lags are 1n:1uded: Thus,
the two-step procedure recommended by Phillips and Perron seems to have an
important flaw: the estimate of the auteregressive root ﬁp In (4) is biased
substantially below one when f=.8, so the residuals from (4) retaln wuch of
the nonstationarity from the original series.

In contrest, the average suteocorrelation of the differences equsls -.486 at
lag 1, and equals .000 at all remaining lags when T=1,000. Nevertheless, the
performance of the Phillips-Perron tests based on differenqes in Tables 5a and
5b seems to {mprove as the number ofrlags increases. This is probably due to
the Newey-West weighting scheme used to calculate the variance estimate s;l in
(6), vhich gives greater weight to the autocorrelatiori ‘at lag 1 as the number
of lags increases.

The results for samples of 10,000 cbservations in Tables 5a and 5b are
closer to the Dickey-Fuller distribution than the results for samples of 1,000

ohsarvations, but_the rate of convergence seems very slow. Finally, with
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samples of T=10,000, using residuals to calculate the varlance estimates, the
Phillips-Perron test based on £,-12 lags exhibits unusual behavior. For
example, the .05 critleal values for zpy(l) 1s sbove the Dickey-Fuller
critical value, although the .01 eritical value i below the Dickey-Fuller
value,

Based on the results in Tables 5a and 5h, the size of rhe Phillips-Perron
tests is better specified when using differences to caleculate the variance
estimates 1f #=.B, although the Said-Dickey tests are closer to the Dickey-
Fuller distribution. One should be cautlous, however, before concluding that
one ghould always use differences in the Phillips-Perron test. In discussing
the ;ultivariste analeg to the Phillips-Perrcn test Zpy(l), Stock and
Watson(1987) show that this test is not consistent versus some stationary
alternative hypotheses when using the differences to calculate the variance
estimates. Thus, the Phillips-Perron tasts using residuals behave poorly
under the null hypothesis, but the tests based on the differences behave

poorly under some plausible alternacive hypotheses.

4, STMHARY

The ARIMA(1,0,1) process used 1n the Monte Carlo experiments spproaches &
stationary randem process 85 the moving average parameter # approaches the
autoregressive parameter pp. For cases wheTe p# is ¢lose to or egual to one,
and # is less than but close to PH' the autocorrelations of the data are smzll
positive numbers that decay very glowly. These cases occur frequently in
‘ecﬁﬁomic data. For example, Nelson and Schwert{1977) find the monthly C.P.I.
ifnflation rate for the U.5. follows such a process; Huberman and Schwert{1985)
£ind that the nontply Israeli G, P.I. inflatlon rate follows such a process;
French, Schwert and Stambaugh(1987) find that the log of monthly stock market
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volat{lity follows such a process, Schwert(19a87) applies the unit root tests
discussed in this paper to 17 important U.$. macroeconomic tilme series and
concludes that many of the tests would falsely reject the unit root hypothesis
using the Dickey-Fuller critical values. 1In guch cases, the common argument
tﬂnt the unlt root in the avtoregressive part of the model dominates the
asymptotic behavior of the process is misleading for large finite samples.

The simulations in this paper show that the tests for unit roots developed
by Dickey and Fuller are sensitive to the assumption thatr the data are
generated by a pure sutoregressive process. When the underlying process
contains a moving average component, the distribution of the unit root test
statistics can be far different from the distributions reported by Dickey and
Fuller. Moreover, the tests recently suggested by Sald and Dickey(19§&.1985),
Phillips(1987) and Philllps and Perron(1988) to correct the model
misspecification problem do not seem to work well when the moving average
paramater 1s large. In particular, the tests proposed by Phillips and Perron
do not come close To thelr asymptotic distribution for samples as large as
10,000 observations. The best test, in the sense that it has size close to
its nominal level for all values of the moving average parameter #, is the
Said and Dickey(1984) high order autoregresaive “t-test™ for the unit root.

Given the many veasons to believe that aconoﬁic time series contain moving
average components, these simulation experiments provide warning against the
broad application of unit root tests in economles. Tt is important to
consider the correct specification of the ARIMA process before testing for the

presence of & unit root in the autoregrassive polynomial.
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Table la. Empirical EBles for 1% Lavel Tast

Based on Dickey-Fullar Distribution of ' for pp—l

Sample
Sire, T Moving Avg
{DF cric, Parameter

value) ¢ AR(LY 2 (1) MU ARNA(L,1) AR(L) AR(L) )
.8 122 719 L2745 061 227 .007
.5 196 193 .213 .053 040 008
25 .0 .00% 010 013 022 .00 008
(-3.75} ..5 007 006 .01& 015 .023 010
-.8 007 D04 012 . 031 012
B 952 .98 975 068 .220 009
.5 .312 277 .78 024 ,020 007
50 .0 010 .01l .o11 .0os 009 .op?
(-3.58) ..5 007 005 008 .010 008 008
-.B 006 004 006 032 ,005 .009
N 982 962 .988 .037 .216 011
.5 374 291 417 005 014 008
100 .0 011 012 o012 008 o1l 010
(-3.51) -5 .B05 005 004 010 1z 010
.8 .o08 607 .oo7 _01% .0z1 .00%
.8 992 952 981 021 \1%4 .01
-] 422 247 =111 048 014 ,oo9
50 0 Lol1 .011 012 029 009 QOB
(-1.46) -.5 ,a0s .005 .005 .0z0 - .00% .009
-.8 .oo8 Q07 006 023 609 009
.8 ,993 815 968 .107 k)1 012
.5 837 185 286 .050 .ol 009
500 .9 011 012 .012 028 .010 ,009
{-3.48) -.5 005 007 607 019 009 010
-.8 .06 .007 006 .0z2a 007 009
B 994 .BB? .94l 1% J100 .olo
.5 b2 139 218 .055 011 . .910
1000 .0 009 .09 o010 L024 009 .009
(-3.43) -5 005 .008 007 021 .010 ,60%
-.8 006 .009 .007 .023 009 010

HOTE: the proportion of statlstics lezs than the 1y critical value frem
Fuller[1976, p. 372, Table 8.5.2] for the regressicn =p-tagt® for 4 unit reot
" against the alrarnative ‘hypothu!.; that thu. process ia stationary around a
constant mean, Bazed on 10,000 replicatiens of an ARIRA{0,1,1) proceu,—

(Yt - Y:-l) - - ! LY wl1,...T.
The Dickey-Fuller eritical values are in parentheaes undar the saopla slze.
The AR(1) test im basad on equation (&); the Fhillips cortu?:lm to tha AR(l)
test, z”‘, use squations (£) and (7): the ABMA(1,1) test usesm squation (1)}
the AR(.!,.) and AR(.!H) cesty uae equatlen (2) with !‘. and 112 laga,
respactively, where !" and .!12 are defined in (13a,b). The standard error for

thase ssrimates of the size of the tests is .001.



Table 1b, Enpirical Eize for 5% Level Test

Based on Dickey-Fullar Distribution of " for p“-l

Sample
Size, T Moving Avg
{DF crit. Paramater

valua} [ AR(L) Zru(lk) zru(llz) ARHf(l.l) AR(lq) AR(llz)
.4 .923 .919 .925 0% .522 .06
.5 418 400 436 .06 Bk .038
25 0 .050 .051 .055 L0a7 .052 .0ag
(-3.00} -.5 .as0 028 .039 049 -090 046
-.8 .029 024 .035 .085 A1l .051
L3 .989 980 9% .098 471 .046
.5 323 iS4 .557 .038 .082 .035
50 .0 .051 .053 04g .020 L047 .03¢6
(-2.93) -.5 .027 .028 .027 .032 .038 .039
-.8 L0235 026 .026 .069 .029 044
-997 .985 .996 053 &34 055
5 .573 L4435 339 024 .06%9 .02%
100 0 051 .058 .058 .036 049 043
{-2.89) -3 024 0N .026 L043 058 046
.8 .028 035 .028 062 078 050
.8 .99¢9 .97 .993 L0869 L3371 054
.5 604 .378 489 .076 .058 .045
250 .0 049 052 058 .065 047 044
(-2.88) -.5 .024 .03% 035 063" 048 047
-.8 027 037 .042 .06% .037 064
.8 .999 .961 .984 .153 4R .058
.5 -610 .32 402 .0BL .057 .04t
500 .0 .033 054 .0s58 069 .052 Nt
(-2.81) -] 024 .037 .037 062 044 046
-.8 .021 -036 .035 065 035 045
B .9%¢ .93z L¥67 - 163 L229 .051
.5 24 .254 332 .0%6 056 .050
1000 .0 04 .050 -055 069 049 047
(-2.86) .3 024 043 044 . 066 .051 .48
-.8 024 04k 045 .070 J0ag .051

_ BOTE: the proportion of statistics lese than the 5% critical value from
Fullerf1976, p. 373, Teble 8.5.2] for the regreassion "t-test” for a unit reoot
" against the altern‘tiv; hypnhhe;£; that the process iz atationary around a
constant mesn. Based on 10,000 raplications of an ARIHA(0,1,1) process,

NI SULL S S e !
The Dickey-Fuller critical values ara in parentheses under the saiple aire.
The AR{1) test is based on squation (4); the Phillips corracticns to the AR(1}
test, Zrn, u:a-tqul:lons {6} and (7); the ARMA(Ll,1) test usas aquation (J);
tha AR(JA) and Ak(!lz) tests uss aguation (2) with ‘# and !12 lage,
respectivaly, wvhare l& and 112 are defined §n {13a,b). The standard error for

thesa agtimates of the size of the testa {s 007,



Table 2a- Enpirical 6iss for LV Lavel Teet

Bazed on Dlekey-Fuller Distributien of . for pr-l

Sanple
Slze, T HMoving Avg
(DF crit_. Parameter

value) ’ AR() Z () 2 (4)5) ARMA(L, L) AR(1) AR(A,)
.8 669 .669 .670 ,033 182 .007
.5 261 .21 ,251 041 046 .007
25 K 010 010 016 .027 .010 Doy
(-4.38) -.5 002 002 008 024 ,036 .013
-8 .002 002 008 030 049 015
.B .989 .987 993 .04y 32 009
.5 470 452 .531 021 025 .007
50 .0 010 011 .Q08 003 008 .007
(-4.15} -5 .01 .002 002 .007 006 008
-.8 001 .00 .002 025 .003 .010
N 1.000 999 1.000 033 307 014
.5 612 537 703 003 020 007
100 .0 .00% .011 ,008 ,002 010 .008
{+4.04) -5 002 .0t 002 .008 .0l4 .Doe
-.8 002 .02 .001 ,015 027 .008
.8 1.000 1,000 1.000 .004 an 012
.5 . 683 485 676 .003 015 .009
250 .0 011 013 K 006 .010 . 008
{-3,99} -.5 002 004 .00z 009’ 008 .0g9
-.8 001 004 .002 014 .005 009
a 1.000 .999 1.000 .020 L399 012
.5 709 .385 .575 016 016 .009
500 .0 .012 ,012 .04 013 010 009
(-3.98) .5 001 ,004" 003 .01} 007 Kl
-.2 .00l 004 .003 .016 .005 L]
.8 1.000 .98 1,000 067 .169 ,013
.5 720 .00 Y] .03 013 010
1000 .0 .010 012 .01% 020 010 093
(-3.96) -.5 ,002 .007 .006 .020 010 .010
-.8 .002 606 ,005 .026 007 010

NOTE: the propertion of statistica less than the 1% eritical value from
Fuller[1978, p- 373, Tsble B.5.2] for the :e;teuion “g-test” for a unit root
r, against the al:emtivla hypn:he;!.s that the process ls stationery arcund a
time trend, Bazed on 10,000 veplicationsz of an ARIMA{0.1,1) procass,

[t AL S I e thae-Te
The Dickey.Fuller critical values are in parsatheses under tha sample-slze.
The AR(1) test {s bazed on egquation (8}; the Phillips cor.nutim to the AR(L)
tent, z", use squations (12} and (633 the ARMA(1l,1) tast uses aquarion {(%};
the ARU“) and A.R(.!u} tests use squation (10) with £, and !12 laga,
respectively, where 1“ ard .l.12 are defined in (13a,b). The standard errer for

these estipates of the slze of the terts is .001.



Table 2b. Empirical Bize for 54 Leval Test

Baged on Dlckey-Fuller Pistribution of . for p'-l

Sample
Size, T Moving Avg
{DOF cric, Parsoeter

value) L AR(1) Z"(lq) Z'I(llzl ARMA(L.1) AR(‘A) AR(llz)
L} -900 ., 902 .867 .052 b6 .033
.5 514 .509 484 056 166 -034
25 .0 050 .051 .048 042 052 .04l
{-3.60) -.3 .013 .013 .022 043 .120. 047
-.B .01l .009 019 -062 .159 059
1 1.000 .999 1.000 070 .518 L04s
.5 .109 669 .753 .033 .099 032
50 .0 .032 -058 .038 010 L0045 034
(-3.50) -.5 - .009 .013 .010 026 033 039
-.B 009 .010 .060% .058 .020 044
.8 1,000 1.000 1.000 047 .568 .0i5
.5 i 754 704 .831 .006 .079 039
100 .0 .054 .080 050 .015 04k 040
{-3.45) -.5 011 .020 011 03 061 040
-.8 007 .016 .00% Qa7 096 043
.8 1,000 1,000 1.000 -009 . 551 056
- L84 . 640 .76% 014 064 042
250 0 051 .062 085 .032 .050 Lou?
(-3.43) -.5 .008 .026 .016 042 .042 042
-.8 .008 028 014 .051 .030 .043
8 1.000 1.000 1.009 JGhé .613 .057
.5 .853 545 704 .041 065 046
300 .Q .052 .057 L0867 057 -04% 048
{-3.42) -.5 .0od 030 .028 -061 042 046
-8 .007 .027 .026 063 029 048
8 1.000 .999 1.090 100 L350 051
.3 .B58 433 -600 071 053 047
1000 .0 .053 .056 063 072 051 046
{-2.41) -.5 008 .035 037 -069 L0ug 049
-.8 .08 .039 .038 073 J041 .051

NOTE: the propertion of statisties less than the 5% eritical value from
Fuller{1976, p. 373, Table £.5.2] for the regrassion "c-test" For a unit reot
L against the nltetnntiv; hypnthe;ll that the process ias statfonary around a
time trend. Based on 10,000 replications of an ARIMA{0,1,1) process,

Oy - Yo ) =g - ¥ e i1, '
The. Dickey-Fuller critical values are fn parenthesas undar the ssmple size,
The AR(1l) test is basad on aquation (#); the Phillips cortactioms to the AR(L)
test, er, us.-equlticnn {12} and {6}; tha ARMA(L,1) test uses squation (9);
the AR(.!,‘) md m(lu) teats uge aquation (10) with .!_‘I and !12 lags,
Tadpectively, vhere "t. and "12 are defined in (13a,b). The standard errar for

these sstimates of the size of the teats is 007,



Table 4s. Emplrical Eice for 1% Level Tedt

Bassd on Dlckay-Tullar Distribution of ‘:(j.-l) for p'-l.

Sample
Slza, T Moving Ave
(DF crit. Parametar

value} ] AR[L) 2, (L) I, 04)5) ARMACLL) ARCL) ARLLL)
.8 11 LT .370 186 ML oan

.5 ETTE ) .156 .145 06 122

25 .0 008 .00% 603 057 106 117

(-22.8)  -.5 LooD 000 000 016 L216 .110
-1 000 000 000 010 a7 LI

.2 994 990 9EL 335 JTAE 245

.5 505 k89 876 ,130 (198 332

50 .0 .ooe  .009 003 ,032 o9 LM

-15.7)  -.5 000 D01 .000 014 060 .21
.8 000 000 .000 010 031 207

.8 1.000 999 1.000 .288 686 372

.5 668 541 745 064 13 260

100 0 009 012 008 020 081 270

(-27.4)  -.5 000 002 000 011 086 271
-8 .00 D01 000 008 176 280

.8 1.000  1.000 1.000 ,130 .s64 195

.5 729 .48 702 028 JO4E 147

250 .0 012 016 018 017 L036 .152

(-28.4) -5 .ooc 003 000 009 ¢ 028 148
-8 .00  .003 000 .01z 017 .14l

.8 1.080 999 1.000 136 532 .09

.5 7u8 385 596 026 03 074

500 .0 016 012 015 013 018 070

(-28.9) -5 060 004 002 011 015 069
-.8 000 004 .002 010 L0 .072

.8 1.000  .9%7 1.000 102 \237 .04

.5 _7a6 298 477 040 019 - .03

1000 .0 009 .o10 014 015 016 033
(-29.3) -.5 T 004 o1 L0146 .04
-8 000 DO 004 ,015 011 .06l

NOTE: the propertion wf statistice lass than the 1% eriticel valua frem
Fuller{1976, p- 371, Tabla 8.5.1] for ths normalized biaw of the unit reat
astimator, !(.‘p,-l). where l'th- l:nn.d is includad a8 an addivional regrasacr
in the sarimated model. Based on 16,000 rapilcations of an ARIHA(D,1,1}
procass, -

“t - Y:-l) - [} feo1t t=l,...T.
The Dlekey-Fuller eriticsl values are in parentheses under the sanple alze.
The AR(1) test is bassd oo squation (8); the Phillips corractions te the AR(L)
tent, z", use squations (11) and (6} the ARMA(1,1) test uses sguation {9):
“tha A!.(.I“) and AE(!H) tests usa squation (10) with .l‘ and 112 Llagd,
raspectively, vhare 1, od £, axe dafined in {13a,b), The lattar tasts ves
Fullar&[1976] corrsction c wultipiisd clses the rvaw cest statlarie, vhare
e-l/(l—il-...-ipj in » Function of the additional AR parsmatatd sstimatad for
that model, The standard erzor for thase sscimatan of tha aize of the teste

1a .001.



Tabla &b. CZapirlcal 8lca for 3% Laval Tast

Based on Dlckey-Tuller Blatrlbutien of 1(3'_-1) for p'—l

Suople
Size, T Moving Avg
{DF c¢ric. Fartameter

value) i M B () 2, () ARMACL L) ARCE) AR(E)
. 927 .91 .652 .266 845 139
.5 546 .531 -3159 234 A5 14
25 N . 040 D46 .014 113 187 138
{-17.9) -.5 .003 007 001 .58 .332 132
-.8 .000 . 004 000 .036 403 113
8 1.000 999 998 .440 858 292
.5 1) .673 176 .208 30 2083
50 .0 045 056 024 .093 ATl a7
(-19.B) -.5 .002 010 .001 .055 AN 1259
-8 00,008 000 ..045 077 251
A 1.000 1.000 1.008 .37 a1 408
5 826 307 .852 139 220 343
100 0 L050 .06l 045 071 &Y 355
-20.7)  -.5 003 016 .002 050 AN s
.8 0L 018 001 046 238 |33
.8 1.000 1,000 1.000 - .26 719,293
.5 868 .&61 .805 09 .128 .23
250 .0 .052 .062 .069 064 097 S48
(-21.3)  -.5 .0l 023 011 053 os2 237
-.0 .001 .025 .011 049 055 L2311
8 1.000 1.000 1.000 213 1L 186
K 879551 .19 080 095 152
500 .o .053 .05% . 0GB .062 .012 151
(-21.5)  -.% 002,030 025 054 062 167
-.8 . 001 027 .023 .050 .037 149
8 1.000  .999 1.000 136 431 1l
.5 A79 4SS .611 .08t 070,099
1000 0 052 .035 .081 058 065 207
(-2L.8)  -.§ 001,035 .08 .053 062,109
-8 .00l .035 .03 .054 J046 101

ROTE; the proportion of statistics less than the 58 critical walus from
Fuller[1976, p. }71, Table 4.5.1) for the nu!'-lhud blas of the unit root
estioator, Ttﬁ'-l). 'h'l:l‘l time n:.nd i{e included as an additlonal regressor
in the estimated model. Bassd on 10,000 replications of sn ARIMA(O,1,1)
process, b

LR A E RN PR W
The Dlckey-Fuller critical waluss are in parentheses under the sampla wiza.
The AR(1)} test is bassd on lqu;:im (8); the Phillips corrections to the AR(1l)
test, !.". uss equations (11). amd (§); the ABMA(Ll,1} test uses squaticn {9);
the M(l‘.) and Akt.lu) tasts use squation (10) with "i and ‘12 lags,
t-lp-c:f.v-].y: whars .!& and 112 Ara defined in (13a,b). The kattar tests use
Fullar’a[1976] correction ¢ wultiplisd times ths rav tast statistic, vhers
:-1/(1-}1-..,4’) 1s a function of the additional AR paramstars sstimated for
that modal, Tha standard erxor for those estimates of the wize of the tests

fa 007,



Teble 5a. 5% and 11 Fractiles of the Fhillips-Perron Test,

ZP“(I), for an ARIMA(1,0,1) model with p‘-l, #=.8, and T-1,00C or 10,G00

Sample Sige T — 1,000 _Sagple Sige T - 10,000
__ Residuals _  __ Differences = _  Residuala __ Differepces
Lags 5% 1x 5% 1y F1] I 5 1%

2 Fractile Fractile Fractile Fractile Fractile Fractile Fractile Fractile

0 -366.2 -466.9 -533.5 -730.7
{.999) (.996) (1.00) {.999)
1 -296.2 -401.5 -1B7.4 -239.5 «301.0 -421.8 -274.8 -372.6
{.9B&) {.958) (.983) {.947) (.992) (.970) (.993}) (.96%)
2 -299.8 -418.9 -128.6 -162.8 -232.7 =341.2 -187.2 -259.3
[.987} (.920} (.946) {.B75) (.970) (.910) (.970) (.906)
3 -322.6 -456.6 -98.5 -124.7 +204.5 -310.1 ~143.6 -197.2
(.953) (.90 {.903) (.806) (.936) (.852) (.929) (.B3%)
4  -351.8 -498.3 -80.1 -101.8 ~194.2 -300.7 -116.8 -160.8
(.944) (.B93}) (.860) (.755) {.902) (.807) (.884) (.779)
‘5 -546.1 -Bl17.8 -53.2 -&7.6 24.3 -97.9 -53.7 -73.7
{.710) (.672) (.768) (.647) {.024) (.022) (.611) (.614)
L, -953.8 -1291.5 -24.4 -30.0 -541.0 -975.5 -27.0 - -36.9
{.976} (.954) (.632) (.521) {.851) (.784} (.268) (.120)
DF -14.1 -20.7 =141 -20.7 -14.1 -20.7 -14.1 -20.7
(.050) {.010) {.050) (.010) {.050) (.010) {.050) (.010)

NOTE: the sampling distributlon of the normalized bias statisctie, Zpy(l), against the
alternative hypothesis that the process is stationary around a constant mean. Based on
10,000 replications of an ARIMA(0,1,1) process,

{0

-8 e=1,...T,

e V) T 5 fe-1t
with #=.8 and T=1,000 or 10,000. The Phillips-Perron corrections use equations (5), (6)
and (7) for ! lags of the residusl autecorralations. For T-1,000, IA-T and 112-21; for
T~10,000, Ja-lz and 112-37. The percentage of rejections using the Dickey-Fuller eritical
value is in parentheses under each of the fractiles (il.e., for a 5% level test, this
should be .05 1f the approximation to the Dickey-Fuller distributfon is accurate). The
last row, labeled DF, contains the asymptotic Dickey-Fuller czitical values and rejection

percentages.



Table 5b. 5% and 1% Fractiles of the Phillips-Perron Test,

Z'#(l), for an ARIMA(1,0,1) model with pp-l, #-.8, and T=1,000 or 10,000

e T - Ji[+] Sagple Slze T = 10,000
__ Residusls __Differences __ _Residuale __Diffegepces
Lags 117 1y Sy 1s 5% 1y 5% 1%

2 Fractile Fractile Fractile Fractile Fractile Fractile Fractile Fractil

0 -14.96  -17.43 -16.56  -19.51
(1.00y  (.997) ooy (.99
1 -13.82  -16.55 -11.68  -13.89  -12.60  -15.00 12,06 -14.15
(.992)  (.968) (991 (.960) (.986)  (.953) (.986)  (.951)
2 -13.88  -16.79 -10.41  -12,63 -11.12  -13.60 -10.05  -11.99
(.976)  (.933) (.960)  (.888) (.949)  (.879) (.945)  (.473)
3 .14,25  -17.28 -9.79  -12.08 -10.50  -13,03 -8.92  -10.62
(.962)  (.91D) (.915)  (.804) (.909)  (.825) (.898)  (.B05)
4 -16.73  -17.85 -9.38  -11.71 -10.25  -12.89 -8.19 -9.73
(.955)  (.%02) (.83  (.727) (.868)  (.778) (.B51)  (.736)
%, -17.53  -21.46 891 -11.45 -3.28 -6.75 ~5.87 -7.20
(674} (.644) (.716)  (.528) (.055)  (.048) (.577)  (.409)
By, -22.64  -26.53 -9.00  -12.31  -16.69  -22.40 -4.68  -5.96
(.980)  (.960) (.306)  (.107) C.835) (76N (.329)  (.188)
DF 2,86 -3.43 -2,86 -3.43 -2.86  -3.43 -2.86  -3.43
(.050)  (.010) (.050)  (.010) (.050)  (.010) (.050)  (.010)

NOTE: the sampling distribution of the normalized bias statistic, pr(!). against the
alternative hypothesis that the process is statlonary around & constant mean. Based on
10,000 replications of an ARIMA(O,1,1) process,

(Y, - ¥ ) =e - ¢ t-1,...T,

t fe-1'
with #=.8 and T=1,000 or 10,000. The Phillips-Perron corrections use equations (5), (6
and (7) for ! lags of the residual autocorrelations. For T=1,000, 14-7 and 112—21: for
T-10,000, Ih-li and !12-37. The percentage of rejections using the Dickey-Fuller critica
value 1s-in parentheses under each of the fractiles (i.e., for a 5% level test, this
should be .05 1f the approximation to the Dickey-Fuller distribution Is accurate). The

last row, labeled DF, contains the asymptotic Dickey-Fuller eritical values and rejection

percentages.



