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Recent work by Said and Dickey(1964,1965). t'hillips(1957). and Phillips

end Perron(1988) esslEines tests for unit roots in the autoregressive part of

ndxed autoregressive-integrated-sioving average (ARIMA) models (tests for

stationerity). Monte Carlo experisents show that these unit root tests have

different finite sample distributions than the unit root tests developed by

Fuller(1976) and Dickey and Fuller(1979,198i) for autoregressive processes. In

particular, the tests developed by Phillips(1987) and Phillips and Perron(1988)

seem more sensitive to usodel stespecification thsn the high order autoregressive

approxi.Estioo suggested by Said and Dickey(1984).
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1. INTRODUCTION

Fuller(1976) and Dickey and Fuller(1919,1981) develop several tests of

whether a th order autoregressive (AR) process

— . Y1 + Ut. (1)

is stationary. Stationarity implies that the roots of the lag polynomial

4(L) — (1 - - ,.. 41?) lie outside the unit circle (see Box and

Jenkins(1976) for a discussion of stationarity in the context of AR

processes). The null hypothesis in these tests La that the AR process

contains one unit root, so the sun of the autoregressive coefficients in U)

equals 1. Dickey end Fuller estimate the model

(P)
— a + p + i DY + u, . (2)

where DYti — - which is equivalent to the AR model in (1),

except the coefficient should equal 1.0 if there is s unit root. Dickey

and Fuller use Monte Carlo experiments to tabulate the sampling distribution

of the regression •t-statistic, r — (-l)/s(?). where is the

standard error of the estimate calculated by least squares. The

distribution is skewed to the left and has too many large negative values

relative to the Student-t distribution. See Dickey, Nell and Miller(1986) for

a recent discussion of autoregressive wait root teats. Plosser and

Schwert(l971) diecuss a similar problem that arises when there is a unit root

in the moving average polynomial. This csn occur when differencing is used to

remove nonststionsrity and the true model is a stationary end invertible ANNA

model around a time trend.

This paper analyzes the sensitivity of the Dicksy-Fuller tests to the

assumption that the time series is generated by a pure autoregressive process.



In particular, when a variable is generated by a mixed ARrMA process the

critical values implied by the Mckay-Fuller simulations can be .sisleading.

Section 2 describes recent extensions of the Dickey-Fuller test procedure

suggested by Said and Dickay(1984, 1985), Phillips(1987), Phillips and

Perron(l988), end Perron(1966e.b) that attempt to account for mixed AEtNA

processes as well as pure AR processes in performing unit root tests. Section

3 contains results of a Monte Carlo experiment that calculates the size of the

Dickey-Fuller and the related test statistics when the true process is ARIMA

rather then AR. Section 4 contains concluding remarks.

2. EXTENSIONS OF TUE DICKET-FULLER TESTS

Said and Dickey(1984) argue that an unknown ARIMA(pl,q) process can be

adequately approximated by an ARIHA(k,O,O) process, where k—o(T1"3). Given

this approximation, the limiting distribution of the unit root test based on a

high order AR approximation will be the same ss the Dickey-Fuller

distribution. Of course, for a given application this argument does not

indicate the appropriate number of lags k.

To understand why a finite order autoregressive process may not provide an

adequate approximation to a mixed AETNA process, it is useful to consider the

infinite order autoregreacive proceaa i.pliad by an AZIMACO,l,l) process for

different value, of the moving average parameter S. The autoregressive

coefficients are calculated by matching coefficients c� the lag operator L in

the relations

r(L)—(l-L)f(l-eL)—>(l-IL) r(L)—(l-L),

where xi is the autoregressive coefficient at lag 1. The autoregressive

coefficients decay slowly for large absoluta values of the moving average
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parameter. The sum of the coefficients is equal to unity (the value for the

infinite sum of all autoregressive coefficients for this nonstationary

process) to four deciisal plates after 24 lags for 8 equal to .5 or -.5. For

values of 8 equal to .81 .9 end .93, however, the sums of the coefficients to

24 lags are equal to .9953. .9202, and .70801 respectively. This auggests

that the approximation error caused by estimating • finite order A?. process is

large for moving everage parameters greater than .8. Such series have

sutocorrelations for the levels of the series that decay slowly, and first

order eutocorreletione for the first differences close to - .50 (see

Wichern(l973) end Schwert(l987)).

Said and Dickey(1985) show that the unit root estimator from an

A1114&(l.0,l) process,

Yt — 0 + p + - 8 u1, (3)

has the asymptotic distribution tabulated by Dickey and Fuller when one Cause-

Newton step is taken from initial values p—l end 8 equal to a consistent

estimator conditional on p—1 They provide limited Monte Carlo evidence that

shows the effect of estimating the moving average parameter on the unit root -

test statistic ap
Fuller(l976. p. 371) presents fractiles of the distribution of T(-l) when

end a-'O for an ARIMACI,0,0) process,

Y_e+PY1+u. t'-l, ... F. (4)

This normalized leasure of bias provides another test of the unitroot

hypothesis. Dickey end Fuller(l979) show that teats based on this statistic

are more powerful against the alternative hypothesis that p<l than the teat

based on the r statistic.
1



The distribution of the estimator depends on the structure of the ARIKA

process that generated the data. As noted by Fuller(1976, pp. 373-382), the

statistic Tc(-l) froa a general ARIKA aodel has the same distribution as

T(?-l) from the AR(l) model, where the constant c is the aiim of the

coefficients from the moving average representation of the errors from (4).

#(L)—8(L)/#(L). One strategy for estimating the constant c is to use the

additional coefficients from the ARIMA(p,O.O) model in (2), or from en

ARIKA(p,O,q) model, where are the (p-i) autoregressive coefficients for

DYt -

Phillips(1987) end Phillips end Perron(198S) also show that the Dickey-

Fuller tests ere affected by autocorrelation in the errors from (4), They

develop modifications of the teat statietics r end T(-1) that have-the

asymptotic distributions tabulated by Dickey and Fuller, when the data follow

an AXIMA(p.O.q) process. In fact, these papers allow for more general

dependence in the error process, including conditional heteroskedasticity.

These adjustments involve the autocovariancea of the errors from an

ARIMA(l,O,O) model in (4). They modify the test statistic T(?-l),

Z — T(-l) - . 5(4_a) T2 tE(Y_1 - Y_1)2), (5)

where s is the sample variance of the residuala u
u t

2 2
T

z1—T Xu+2T Lw41 I (6)
t—l J—l ' t—J+l

and the weights — (1 - j/(1+l)) ensure that the estimate of the variance

is positive (ace t4ewey and Weet(l987)). Yellowing the intuition of Said

and Dickey(1984), they suggest that the number of lags 1 of the residual

autocovariancea in (6) be allowed to grow with the sample size T. -

Pbillips and Perron modify the regression etteatt r.
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1tp — - .S(4.s2) I (4 2ç_ - Y)2I1/2 (7)

where 4 is defined In (6).

Dickey and Fuller also consider tests with a tine trend included as an

additional regressor, an the alternative hypothesis is a stationary process

around a time trend. Thus, the ARII4A(1,O,O) model in (4) is modified so

— a + p (t-(T+1)/2) + t-l + u, (9)

the AItIMA(1,O,l) model in (3) is modified so

— a + fi (t-(T+l)/2J + p + u - C u1, (9)

and the ARIMMp.O.O) process In (2) is modified so

(p-fl
— ° ÷ It-(Tl)/2] + . 4 i DY_i + u. (10)

The regression "t-tests," r,, are isporcant because Evans and Ssvin(1984) show

that r statistics are a function of the unknown intercept a in (2) or (4).

On the other hand, Including a tine trend in (8) • (9), or (10), even when the

trend coefficient fl—O, makes the distribution of the autoregressive parameter

estimate independent of o. In empirical applications, where knowledge of

the value of the intercept e is unavailable, inclusion of a tins trend is

prohshly a prudent decision in performing unit root tests.

Phillips and Perron(1988) develop adjustsients to the Dickey-Fuller tests

T(-l) and t where the alternative hypothesis is a stationary ARIMA(p,0,q)

process around a deterministic tine trend. They show that the test statistic,

— TO,-l) - (41-s) (T6/24D). (11)

has the asymptotic distribution tabulated by Dickey and Fuller for T(-i.) in
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the AR114A(l.0.O) case, where is the determinant of the regressor cross-

product matrix. Their modification to the statistic is:

Z —
TV(5U5TJ)

- (s-s) {T1 4(30)1'2 }_
(12)

This statistic should have the ssyisptotic distribution tabulated by Dickey and

Fuller for r, even when the regression errors in (8) are autocorrelated.

3. A MONTE CARLO EXFERIXENT FOR UNIT ROOT TESTS

The Monte Carlo experiment examines the effects of model misspecification

on the size of unit root tests for mixed ARIMA processes. The experiment

constructs the data to follow an ARIMA(O,l,l) process.

— + Ut - 6 t—-19. ...

where the errors (u} are serially uncorrelated standard normal variables.

The data are generated by setting u20 and 20 equal to 0 and creating Tt20

observations, discarding the first 20 observations to remove the effect of the

initial conditions. Samples of size I — 25, 50, 100, 250. 500, and 1000 mrs

used in the experiments. Each experiment is replicated 10.000 times to create

the sampling distribution for the test statistics. The moving average

parameter I is set equal to .8, .5, 0. -.5, and -.8, which implies first order

autocorrelations for the first differentea of these series of - .49, -.40, 0,

.40 and .49. The first order autocorrelation coefficient for an ARIMA(0,0,1)

process equals 6,(l.I2). Higher order autocorrelations equal 0.

3.1. Regression t-tasts"

Several tests of nonstationarity are performed on sach data series. First,

the regression •t-test' from (4) studied by Mckay and Fuller is calculated to

illustrate the prblems that occur when the data are generated by a process
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other than piR(i), Second, two versions of the Phillips and t'erron(lS&C) test

are calculated, using different numbers of lags I of the residual

autocorrelations in calculating s in (6):

14 — Int(4(T/100)V4) (13a)

l2 — Intpjl2(T/100)), (13b)

so 144 and 112_12 when T—100, (when 7—25, 142 and l2 when 7—1000, 247

and 112_Il). Third, an AR1MA(l,O,l) model is astimeted to test whether the

autoregressive coefficient p equals 1.0, using the •t-test,

— (?.1)/s(). where s() is the standard error calculated by an

iterative nonlinear least squares algorithm. Note that this is nt the

procedure suggested hy Said and Dickey(l985), since their results require only

one Ceuss-Newton etep from the unit root. Nevertheless, empiricel researchers

who estimate ARIMA(l,0,l) models end discover an estimated autoregressive

parameter close to unity would want to know the reliability of the "t-test

for the unit root when iterative least squares is used. Fourth, an AR(14)

model is estimated in equation (2) and the regression t-test" is used to test

whether p equals 1. Finally, an AR(112) model is estimated in equation (2)

to calculate r. The latter tests follow the suggestion of Said and

Dicksy(1984) to use a high order autoregressive process to approximate an

unknown ARIMA process • where the order of the autoregression grows with the

seiaple sire T as in (13a,b).

Table la contains estimates of the sisea of teats using the 1.1 critical

values from the Dickey-Fuller distribution for v • for the six different test
p

atstistics (AR(l); Phillips-Perron with £4 lags, Z(14); Phillips-Parron with

l2 lags, Z (112L;
ARfl4A(l,0,l); AR(14); and A1t(1l2)) for the sit different

aample sires (7 — 25, 50, 100, 250. 500, and 1000), and for the five different



values of the moving average parameter for the true process (6 — .8. .5. 0. -

.5. end -.8). where the alternative hypothesis is a stationary APJ4A process

around a constant mean. Table lb contains the estimates of the sizes of teats

using the 5'. critical values. These tables do not report the upper tall of

the sampling distributions because the usual alternative hypothesis ie that

the process is stationary (p < 1). As previously reported by Dickey and

Fuller the distribution of the r statistics has a negative mean and is
p

skewed toward negative values for all of the cases considered in these

experiments, Additional information about these sampling distributions is

available from the author on request. The simulations were programmed in

FORTRAN using the IMSL subroutine COIIOF to generate pseudo-random normal

variates. All results were checked using the RATS computer program.

The first thing to note about Tables la and lb is that the eimple AR(l)

test Is severely affected by the presence of moving average components in the

data generation process. The estimated size for this test ie positively

related to the moving average parameter 6, being too large for 8—.S or .8, and

too small for 6—- .5 or - .8. Of course, this problem is exactly what motivates

the tests proposed by Said and Dickey end by Phillips and Perron.

Second, the Phillips and Patron tests do not have distributions that are

close to the Dickey-Fuller distribution, especially for 9—.5 or .8. At both

the 1% and 5% levels, the size of the Phillips-Perron teats are much larger

than the nominal size of the test even for samples as large as T'-lOOO. As

the number of lags of the residual autocorrelations used in (6) increases from

14 to l2 the size estimates become farther away from the Dickey-Fuller

results. The Phillips-Perron tests era much closer to the Dickey-Pkller

distribution for negative moving average parameters I—- .5 end - .8, although



the size is too smell for these cases.

The second thing to note about tables la and lb is that estimating a moving

average parameter along with the unit root changes the behavior of the

sampling distribution Lot the test •tatistic. This is interesting because

Dickey and Fuller show that asymptotically the unit root test r is not

affected by estimation of higher order autoregressive parameters. Said and

Dickey(1985) show that the asymptotic behavior of the unit root teat should

not be affected by the estimation of moving everage parameters when only one

iterative step is taken from the unit root. For positive values of the moving

average parameter 9. the size of the AItIMA(l.0.l) test is above the nominal

size based on the Dickey-Fuller distribution. This difference is largest for

both small (T25 or 50) end lstge (T—500 or 1000) sample sizes, with the size

being closest for moderate sample sizes (1—100 or 250). The apparent lack of

convergence to the Dickey-Fuller statistic as the sample size grows contrasts

with the results of Said end Dickey(l985) who examine samples of 49 and 99

observations. Apparently, the distinction between the one-step method

proposed by Said and Dickey versus the iterative estimation used in these

experiments is important.

The tests based on the 14-ordar autoregressive model era close to the

Dickey-Fuller results for values of the moving average parameter 9 equal to

.5, 0. -.5, or - .8. With 9 equal to .8, however, the AR(14) approximation is

deficient in that the size of the test is well above the nominal size uaing

the Dickay-Fliller distribution. although this problem seems to be reduced as

the ssmple size grows.

The size estimates based on the 112-order sutoregressive model era closer

to the nominal size than for the AR(14) model. The only. notable departure

9



from the Dickey-Fullet results is for 8 equal to 8. In this case, with seal!

sample sites (T—25) the size of the AR(112) test is below the nominal size

based on the Dickey-Fuller distribution.

Tables 2a and 2b contain estimates of the size of unit root tests at tha li

and 5% levels, respectively, where the alternative hypothesis is a stationary

ARNA process around a time trend. As noted by Dickey and Fuller, including a

time trend causes the critical values of r to be lower than c (i.e., the
t p

regression t-stsristic must ba more negative to reject the unit root

hypotheais). Nevertheless, the relative patterns in Tables la and lb are

repeated in Tables 2a and lb. For example, the sizes of the ARIMA(l,0,l) test

and of the AR(14) test are above the nominal size based on the Dickey-Fuller

critical values for 6—. 8. As in Tables la and lb, the higher order

autoregressive approximation AR(212) has aize close to the nominal level for

sample sites greater than 50. The Phillips-Perron tests bsve sizes that are

furthest from the nominal size, with the largest departures for cases where 8

is positive. In fact, with 6—8, the Phillipe-Perron tests reject a unit root

over 99% of the time for a nominal la level rest for sample sizes greater than

50.

Thus, a low order autoregressive approximation can lead to siisspecification

of unit root tests when the moving average parameter is large. Higher order

AR processes seem to mitigate the problem (although the order of the AR

process necesssry to provide an adequate approximation can be quite large for

6—.8 or higher). Unit root tests based on the mixed JiRIMA(l,O,l) model

require moderate sample aizea before the Dickey-Fuller frsctiles are accurate.
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3.2 The Distribution of the Normalized Unit Root Estisator

Tables 3s and 3b contain estimates of the size of teats based on the

normelized unit root estimator TC?M_l) at the 1% and 51 levels, respectively.

Six different tests are considered (AR(l); Phillips-Ferron with 14 lags.

1(24); Phillips-Ferron 12 legs. z<'l2 ARII4A(l.0.1); ARC!4)
corrected

using the estimated value of the autoregressive parameters; and AR(112)

corrected using the estimated value of the autoregressive parameters), for the

six different sample sizes (T — 25, 50, 100, 250. 500, and 1000), and for the

five different values of the moving average parameter (e — . B, .5, 0. - .5, and

-8), where the alternative hypothesis is a stationary ARMA process around a

constant mean.

In many wsys the results in Tables 3m and 3h are easier to summarize then

the results in Tsblae la, lb. 2a and 2b. For the ARC1) modal, the estimated

size is above the nominal level for 6 equal to .8 and .5. and the difference

increases with the sample size. The corrections suggested by Phillips and

Perron(l988) do not reduce this problem much. end the use of more lags 112

harms the performsnce of the test in this case.

The results for the ARIMA(l,0,l) model are interesting. For negative

values of 6. the sire is close to the nominal size from the Dickey-Fuller

distribution for all sample sizes. For positive values of 6, the estimated

aize is higher than the nominal size for all sample sizes. Unfortunately, I

did not compute the 'corrected' version of this test, T(l-I)(-l). but such a

correction would probably have improved the performance of this test

substantially.

The 41(14) test yields estimates of the size that are syatematically

related to the moving average parameter, 6. Higher values of I yield lower

11



estimates of the unit root, so the AR(4) size estimates are well above the

nominal size based on the Dickey-Fuller distribution when equals .8. The

ARC!4)
size estimates are too low when 8 equals -.5 or - .8. These problems

are reduced for larger sample sizes.

The AR(112) tact is better than the AR(!4) test for larger sample sizes,

but worse for smaller sample sizes. For small sample sizes (25 and SO), the

larger number of parameters that must be estimated in the AR(112) model

apparently bias the unit root estimator downward. Note that even when the

moving average parameter 8 equals zero, so the true process is a random walk

as originally assumed by Dickey end Fuller, the estimated size for the Afl112)

test is well above the nominal size of the test. For large samples (T—250 or

above), the sizes sre closer to the nominal level of the tests, although they

ere still too high.

Tables 4a end Ab contain estimates of the size of tests based on the

normalized unit root estimator T(-l) at the 1% end 5% levels, respectively,

where the alternative hypothesis is a stationary ARM process around e time

trend. The relative patterns in Tables 4a and 4b are virtually identical to

those in Tables 3s snd 3b. As noted by FullerCi9l6), the size of the Dickey-

Fuller tests is related to the moving average parameter 8. When 8—.8, the

estimated size is far above the nominal level of the test. The corrections

suggested by Fuller stabilize the behavior of the statistic for different

values of 8, although the size of these tests is above the nominal size using

the Dickey-Fuller distribution. The corrections suggested by Phillips and

Perron(1988) do not work as well since the estimated size remains well above

the nominal size for positive values of I.

The effects of .odel miespecification ate clearer in the normalized bias

12



teats (Tables 3a 3b, 4a and 4h) than in the t-teats (Tables is, lb, 2a and

2b). When the data are generated by an integrated moving average process,

high order autoregressive approximations yield biased eatimates of the unit

root coefficient With positive moving average parametera the unit root

coefficients are too small, and with negative moving average parameters the

unit root coefficients are too large. Even though the results of Dickey-

Fuller(1979) suggest that T(-l) provides a more powerful teat than the r

statistic when pci, the results above suggest than the r and r statistics

are less sensitive to model misspscification The corrections to the

normalized unit root estimator suggested by Phillips(l987) and Phillips end

Perron(l988) do not work well in the cases exaained here. The corrections

suggested by kuller(1976) improve the behavior of the normalized unit root

test for high order autoregressive models with very large eeisple sizes, but
they distort the size of the test in small to moderate sesiplea.

3.3 Further Analysis of the Phillips and Perron Tests

The Phillips(1987) and Phillips and Perron(l988) tests perform poorly in

cases where the true data are generated by an ARIMA(0,l,l) processes with 8—.5

or t—.8. This has been documented earlier by Monte Carlo experiments in

Perron's dissertstion(l9gia), although the extent of the problem was not as
clear in his work. Phillips end Perron(l988), in Monte Carlo work that

postdated this psper, find results that are aimiiar to the reeults above. It

is aurprising with sample sites as large as 500 or 1000 that these tests are
not close to the Dickey-Puller distribution, as they should be in 'large

samples.'

To provide further insight into this problem, additional Monte Carlo

experiments are prformed to enelyze the Phillips-Perron tests, 2(t) and

13



Z(1) . The procedure discussed above is used, except only the case with 0—. 8

is considered. Sample sizes of T—l,000 and T—10,000 are used. The number of

residual autocorrelations £ used to calculate the variance s4, in (6) is

varied from 0 (no edjuetuient) to 112 (14—7 and 1l2_2l when T—1,000 14—12
and

£12_SI when T—l0.000). Table Ia
contains the 5% and 1% fractilee of the

sampling distributions from 10.000 replications for the Phillips-Patron
test.

1(1). Teble Sb contains the 5% and 1% fractiles of the sampling

distributions froe 10.000 replications for the Phillips-Perron test, Z(1).

Tables 5a and Sb also contain the estimated size of the 5% and It level tests

in parentheses below the estimated critical values.

There are two questions about the best way to do the Phillips-Perron tests.

First, there is a question of the number of lags of the residual

autocorrelations I to use. Second, there is a question about the way to

eatieate the variances 2 and s -u TI

If the unit root estimate is equal to its true value, 5M'
the residual

autocorrelations should equal -0.49 at lag I and 0.0 at the remaining lags.

For the data generating process used in these simulations, a
relatively low

number of lags should work best. Thus, Tables Sa and Sb show values of the

Phillips-Perron teats based on 1—0, 1, 2, 3, 4, 14 and 'p12'
where 1—0 is the

original Dickey-Fuller statistic.

Phillips and Parron suggest two strategies for estimating
the variances

2 and a2 . The technique used in the simulations above is based on
u TI

residuals from the estimate of (4), which is the procedure
recommended in the

firat draft of the Pbillips-Perrofl paper. The alternative procedure
is to

assume the autoregressive parameter p equals one,
and use the diffarencas Wf

to calculate the variance estimates (a procedure also diacussed by Phillips

14



and Parron). This distinction is important because the autocorrelations of

tha residuals are not similar to the autocorrelerions of the differences when

9— .8. Because the estimate of the unit root is well below one in most
p

cases when 8—. 8, the residual autocorrelation at leg 1 averages - .36? when

t—1,000, and the remaining autocorrelations are positive end decay very slowly

(from .071 at lag 2 to .060 at leg 21). This is typical of a mixed

ARXMA(l,O2) process with an autoregressive coefficient close to unity. For

en ARIMk(l.0,2) model, the kth autocorreletion — 9k2 where is the

autocorreletion at lag k and is the autoregressive perameter. Based on the

estimates r2 — .071 and r21 — .060. the implied value of is .99. These

positive residual eutocorrelations cause the Phillips-Parrots tests to grow

farther from the Dickey-Fuller distribution as more lags are included. Thus,

the two-step procedure recommended by Phillips end Perron seams to have an

important flaw: the estimate of the autoregressive root in (4) is biased

substantially below one when 9.8. so the residusls from (4) retain much of

the nonstationarity from the original series.

In contrast, the average mutocorreistion of the differences squals - .486 at

lag 1, and equals .000 at all reesining legs when T—l,000. Nevertheless, the

performance of the Phillips-Perron tests based on differences in Tables Be and

Sb seems to improve as the number of lags increases. This is probably due to

thm Nawey-West weighting scheme used to calculate the variance estimate in
(6). which gives greeter weight to the eutocorrelatiosiat lag 1 as the number

of lags increases.

The results for samples of 10,000 observationa in Tables Ba and Sb are

closer to the Dickey.Puller distribution than the results for samples of 1,000

observations but the rate of convergence seems vmry slow. Finally, with
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samples of T—lO,000. using residuals to calculate the variance estimates, the

Phillipa.Petron test based on .1412 lags exhibits
unusual behavior. For

example, the .05 critical values for Z(l) Ia above the Dickey-Fuhler

critical value, although the .01 crItical value is below the Dicksy.Fuller

value,

Eased on the results in Tables Sa and Sb, the sire of the Phillipa.Perron

tests is better specified when using differences tO
calculate the variance

eatisiatee if —.E, although the Said-Dickey teats are
closer to the Dlckey-

Fuller distribution. One should be cautious, however, before concluding that

one should always use differencee In. the Phillips-Perron test. In discussing

the sultivarlate analog to the Phillips.Ferron teat Z(1). Stock and

Wetson(l987) show that this teat is not consistent versus some stationary

alternative hypotheses when using the differences to calculate the variance

estimates. Thus, the rhillips-Perron teats using residuals
behave poorly

under the null hypothesis. but the tests based on the differences behave

poorly under some plausible alternative hypotheses.

4. SUMMARI

The ARINA(l.0,l) process used in the Monte Carlo experiments approaches a

stationary random process ea the moving average parameter I approaches the

autoregressiva parameter p. For cases where p is close to or equal to one,

and B is leas than but close to p, the autocorrelations of
the date are smell

positive numbers that decay very slowly. These cases occur
frequently in

economic date. For example. Nelson and Schwert(lS?l) find the .onthly C.P.I.

inflation rats for the U.S. follows much a process Hubersian and Schwert(l985)

find that the monthly Israeli C.P.I. inflation rats follows such a process;

Franch, Schwert and Stambsugh(199?) find that the log of monthly stock market
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volatility follows such a process. Schwert(1987) applies the unit root tests

discussed in this paper to 11 l.eportant iS, macroeconomic time series and

concludes that many of the tests would falsely reject the untt root hypothesis

using the Dickey-Fuller critical values. In euch cases, the cosason argument

that the unit root in the autoregressive part of the model dominates the

asymptotic behavior of the process is misleading for large finite samples.

The simulations in this paper chow that the tests for unit roots developed

by Dickey and Fuller are sensitive to the assumption that the date are

generated by e pure autoregressive process. When the underlying process

contains a moving average component, the distribution of the unit root test

statistics can be far different from the distributions reported by Dickey and

Fuller. Moreover, the tests recently suggested by Said and Dickey(l984,1965),

Phillips(l987) and Phillips and PerronCl9BS) to correct the model

misspecification problem do not seem to work well when the moving average

parameter is large. In particular, the tests proposed by Phillips and Perron

do not come close to their asymptotic distribution for samples as large as

10,000 observations. The best test, in the sense that it has size close to
its nominal level for all values of the moving average parameter 8, is the

Said and Dickey(l984) high order autoregressive 'ft-teat" for the unit root.

Given the many reasons to believe that economic time series contain moving

average components, these simulation experiments provide warning egeinst the

broad application of unit root tests in economics. It ie important to

consider the correct epecification of the ARIMA, process before testing for the

presence of a unit root in the autoregressive polynoisiel.
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Table 1.. Fapiricek Rise for 1% La..i Test

Iseed on Oirkey-PukiSr otetributino cf C for p —1
P P

Sample
Size, T Moving Avg
(OF nit. Parameter
value) MCi) 2(14) 2(112) A819A(1.l) #.(1) 1.R(liz)

.8 .722 .719 .745 .061 .227 O01

.5 .196 .193 .213 .053 .040 .008

25 .0 .009 .010 .015 .022 .008 .008

(-3.75) - .5 .001 .006 .014 .025 .023 Ol0
- .6 .007 .004 .012 .044 .031 .012

.8 .952 .936 .975 .066 .220 .009

.312 .277 .376 .024 .020 .007

50 .0 .010 .011 .011 .005 .009 .007

(-3.56) -.5 .007 .006 .006 .010 .006 .006

.6 .006 .004 .006 .052 .003 .009

.6 .982 .962 .966 .037 .216 .011

.374 .291 .417 .005 .014 .006

100 .0 .011 .012 .012 .008 .011 .010

(.3.51) .5 .005 .005 .004 .010 .012 .010

-.8 .008 .007 .007 .019 .021 .009

.6 .992 .952 .981 .021 .194 .010

.422 .247 .366 .048 .014 .009

250 .0 .011 .011 .012 .029 .009 .006

(-3.46) . .5 005 .005 .005 .020 .009 .009

-.6 .008 .007 .006 .023 .009 .009

.8 .925 .966 .107 .231 .012

.437 .185 .266 .050 .018 .009

500 .0 .011 .012 .012 .026 .010 .009

(.3.44) - .5 .005 .001 .007 .019 .009 .010

-.8 .006 .001 .004 .020 .007 .009

.6 .994 .887 .941 .134 .100 .010

.442 .139 .218 .055 .011 . .Q10

1000 .0 .009 .009 .010 .024 .009 .009

(-3.43) - .5 .o5 .006 .007 .021 .010 .009

-.6 .006 .009 .001 .023 .009 .010

NOTE: the proportion of statistics lasa than the 1% critical value fret

Fuller[1976, p. 373, Table 8.5.2) for the pagrescion •t-taat for £ unit root

against
the altarnativa hypothesis that the process is •tationary around a

constant Sean. Based on 10.000 replicatiOns of an APiXA(D.1,l) process,

(P . c.l — t - • t11,
t—I... .T.

The Dickey.Tuller critical values are in parentheses under the eaapls size.

the A&(l) teat ip baaad on equation (4); the pisillipa correction to the 81(1)

test. 2.• use •quationa (6) and (7); cbs 8826A(l,1) tast usa. squation (3);

the 11(14) and *1(112)
teats use equation (2) with 14 •d 12 laga,

respectively, where 14 and 212 ate defined in (13a,b). The standard error for

these earisates of the site of the tests La .001.



Table 16 EmpirIcal Gist for 5% level Teut

heed on Dickoy-F.otlsr Diutributton of e for p —l
8

Sample
Size, T Kevin5 Av
(SF crit. Fareeeer
value) • 611(1) 1rat843 1(112) 610(6(1,].) AR(S4) 1111(112)

.8 .923 .919 .925 .094 .522 .036

.5 .410 .600 .436 .076 .643 .038
25 .0 .050 .051 .035 .037 .052 .039

(-3.00) - .5 .030 .028 .039 .049 .090 .046
.6 .029 .024 .035 .065 .111 .051

.6 .989 .900 .994 .096 .471 .046
.523 .454 .557 .038 .062 .035

50 .0 .051 .053 .049 .020 .047 .036
(.2.93) .5 .021 .028 .02? .032 .036 .039-.0 .025 .026 .026 .069 .029 .044

.6 .991 .985 .996 .053 .434 .055

.5 .573 .445 .359 .024 .069 .039
100 .0 .053 .058 .056 .036 .049 .043

(-2.69) -.5 .024 .031 .026 .043 .056 .046
.8 .026 .035 .028 .062 .078 .050

.8 .999 .977 .993 .069 .371 .054.5 .604 .379 .469 .076 .058 .065
250 .0 .049 .052 .056 .065 .04? .044

(.2.89) -.5 .024 .039 .035 .063 .046 .047-.8 .027 .037 .032 .069 .037 .044

.9 .999 .961 .984 .153 .405 .056

.5 .610 .312 .402 .061 .057 .046
500 .0 .033 .054 .056 .069 .052 .046

(-2.87) -.5 .024 .031 .037 .062 .044 .046
.6 .021 .036 .035 .065 .035 .045

.6 .999 .932 .961 .163 .229 .051

.5 .624 .354 .332 .096 .056 .050
1000 .0 .049 .050 .055 .069 .049 .047

(-2.86) -.3 .024 .043 .044 .065 .051 .046- .6 .024 .044 .045 .070 .044 .051

NOTE; the proportion of statistics ieee than the St critical value from

FulierEl9l6. p. 313, Table 8.5.21 for the regression et.tssr for a unit root
r against the alternative hypothesis that the process is stationary around a

constant nan. Eased on 10.000 replications of an 811164(0,l,l) process
- Y.1 — c - c; t—1,..

The Dicksy-Fuller critical values ate in parentheses under th. sample sire.
The 81(1) teat ii based on equation (4); the Phillips eecrectiooa to the 611(1)

test, use equations (6) and (7); the 82166(1,1) test uses equation (5);

the 81(14) end *1(112) tests use equation (2) vith 14 end less.

respectively, where 14 and are defined in (13e,b). The standard error for
these aatjsaree of the sire of the test. is .007.



Table 2.- Lapiricsk lisa for LI Lank t.et

flied on Dtckey-Tulist I)i.tributiOfl of c for

Sample
Size. I Moving Avg
(OF crit. Parasoter
veltie) I AE(i) er141 z(113) ABMA(1.1) At(14) AR(112)

.8 .669 .669 .610 .033 .183 .007

.5 .241 .241 .251 .041 .046 .001

25 .0 .010 010 .016 .027 .010 .009

(-4.36) -.5 .002 .002 .006 .024 .036 .013

- .8 .002 .002 .008 .030 .049 .015

.969 .987 .993 .049 .232 .009

.5 .470 .452 .531 .021 .025 .001

50 .0 .010 .011 .008 .003 .008 .007

(-4.15) -.3 .001 .002 .002 .007 .006 .008

- .8 .001 .001 .002 .025 .003 .010

.8 1.000 .998 1.000 .033 .307 .014

.5 .612 .537 .103 .003 .020 .007

100 .0 .009 .011 .006 .002 .010 .008

(.4.04) . .5 .002 .003 .002 .006 .014 .006

- .8 .002 .002 .001 .015 .027 .009

.6 1.000 1,000 1.000 .004 .322 .012

.5 .568 .465 .616 .003 .015 .009

250 .0 .011 .013 .014 .006 .010 .008

(-3,99) -.5 .002 .004 .002 .009 .006 .009

- .6 .001 .004 .002 .014 .005 .009

.8 1,000 .999 1.000 .020 .599 .012

.5 .709 .385 .575 .016 .016 .009

500 .0 .012 .012 .014 .015 .010 .009

(.3.98) ..5 .001 ,004 .003 .013 .007 .006

- .8 001 .004 .003 .016 .005 .009

.8 1.000 .998 L000 .067 .169 .013

.5 .720 .300 .469 .034 .013 .010

1000 .0 .010 .012 .014 .020 .010 .009

(.3.96) - .5 .002 .007 .006 .020 .010 .010

-.8 .002 .006 005 .026 .007 .010

MOTE: the proportion of statistics lees than the 1% critical value Eros

FulIer(1976, p. 313, Table 8.5.2] for the regression st_teet for a unit root

yr against the alternative hypothesis that the proteus 15 .tationarj around a

time trend, laced on 101000 replicationS of an MIftt(0.1.1) procase,

(f . — i—I,.. .T.

The Pickey-Fuller critical value. are in pacenthases under the sample-eisa.

The AE(1) testie based on equation (6); the Phillips corrections to the Al(l)

test1 2, use aquatione (12) and (6); the sPkCA(1,1) test uses equation (9);

the 61(14)
and *1(112) tests use equation (10) vith .14 end £12 lags.

respectively, where 14 and l2 are defined in (13a,b). The •tsnderd srror for

these estimates of the sire of the tests is .001.



relic 21. tapirIcel Rigs for 5% Level lest

Based on Ilickey-Fulier Distribution of r for p—i

S.aple
Size, I Moving Avg
(OF crit. Parameter
value) S

ARI1) 2(14) zt12 ARMA(1.l) AR(14) AR(f12)

.8 .900 .902 .867 .052 .466 .033

.5 .514 .509 .484 .056 .166 .034
25 .0 .050 .051 .048 .042 .052 .041

(-3.60) - .5 .013 .013 .022 .043 .120 .041
- .8 .011 .009 .019 .062 .159 .059

.8 1.000 .999 1000 .010 .518 .045

.5 .109 .669 .153 .033 .099 .032
50 .0 .052 .056 .038 .010 .045 .034

(-3.50) -5 .009 .013 .010 .026 .033 .039
-.6 .009 .010 .009 .058 .020 .044

.8 1.003 1.000 [.000 .041 .568 .055

.5 .194 .704 .831 .006 .079 .039
100 .0 .054 .060 .050 .015 .044 .040

(-3.45) -5 .011 .020 .011 .031 .061 .040
-.8 .007 .016 .009 .047 .096 .043

.8 1.000 1.000 1.000 .009 .551 .056

.5 .641 .640 .789 .016 .064 .042
250 .0 .051 .062 .065 .032 .050 .047

(.3.43) -.5 .008 .026 .016 .042 .042 .042
.8 .00! .026 .014 .051 .030 .043

.8 1.000 1.000 1.000 .046 .613 .057

.5 .833 .545 .704 .041 .065 .046
503 .0 .052 .051 .067 .057 .049 .046

(-3,42) - .5 .008 .030 .026 .061 .042 .046- .8 .007 .027 .026 .063 .029 .048

.8 1.000 .999 L000 .100 .330 .051

.5 .838 .453 600 .071 .033 .047
1000 .0 .053 .056 .063 .072 .051 .046

(-3.41) -.5 .008 .036 .037 .069 .048 .049
'.8 .008 .039 .038 .075 .041 .051

No'rg: the proportion of statistics lea, than the Si critical value fro.

Fuller]1916, p. 373, Table 8.5,2] for the regression °t-test" for a unit root
r against the alternative hypothesi, that the proce.. 6. •tatienary around a

tine trend. laced on 10,000 replications of en A&2M&(0.1.1) proc...,

- ;-i — - •
The- Oickey-fullar critical value. are in parenthese. under the seple •ir.e.

The AR(1) teat is band en equation (8); the Phillips corrections to the AR(1)

teat, Z, use equations (12) end (6): the ARMA(l,l) teat uses equation (9);
the 82(14) and 82(812) test. uee equatIon (10) with 1 and lap,
respectively, where £4 end are defined in (l3e,b). The standard error for

these estiaete. of the .Lte of the test. is .007.



65(1) ar'a z(lit) 491(6.61.1) *5(143 AR(ifl)

.721 .721 .370 .166 .721 .121

.261 .259 .556 .145 .304 .122

.006 .009 .003 .051 .106 .111

.000 .000 .000 .016 .216 .110
000 .000 .000 .010 .279 .112

.994 .990 .961 .355 .746 .245

.505 .469 .374 .130 .196 .232

.006 .009 .005 .032 .090 .253

.000 .001 .000 .014 .060 .212
.006 .000 .000 .010 .033 .207

5.000 .999 1.000 .269 .614 .322
.649 .341 .745 .064 .113 .260
.009 .012 .009 .020 .061 .270
.000 .002 .000 .011 .016 .211

.000 .001 .000 .009 .126 .290

1.000 1.000 1.000 .1)0 .544 .193
.129 .466 .702 .029 .046 .147
.012 .016 .016 .017 .036 .152
000 .003 .000 .009 .026 .149

.000 .002 .000 .012 .017 .141

1.000 .999 1.000 .136 .532 .094
.716 .385 .596 .026 .034 .074
.010 .012 .015 .013 .019 .070
.000 .004 .002 .012 .015 .069
.000 .004 .002 .010 .006 .072

1.000 .991 1.000 .102 .231 .045
.746 .296 .417 .040 .019 .029
.009 .010 .014 .015 .016 .039

.000 .006 .004 .015 .014 .040

.000 .006 .004 .015 .011 .041

table 4e. rapiritll Sic, for it Level T.it

Steed on Sititey-Toliut Sistribotton of TO-1) for •—1

Soup 1.
Sir., T N°°s Avo
(SF eric. Parnot.r
value)

25 .0

(-22.51 -.5

(-25.7)

:
(-27.6) '.5

250 :
(-29.4) .5

500
('29.9) -.5

1000
(.29.5) -.5

NOTE: the proportion of utatistirs is-ta than the 16 critical value frau

puflartl9lS. p. 371 Table 9.5.1] for the noraaliotd bit' of the unit root

esrt.ator. TO,-1). ether, a tleu trend Is included as an additional regressor

in the eotlaat.d podet. Based on10000 replications of an 65094A(0,1.1)

proteus.

(T0
' — . • c_1, c—i,.. .t.

The 0ick.yFullsf critical valuse are in parentheses wider the sample alit.

The *5(1) t..t 1. based on equation (6); the Phillips corrections to the 15(1)

rest, , en equations (113 and (63; the *91(4(1,1) test can equation (91:
- the *5(14) and tests sac equation (10) vitli 1 sod i2 1ae.

r..psctivsly. oilers M 12 are defined in (15a,b). The lattar taste see

Fullar'e(lNl'I correction n rltlpliod rises the rae test stati.tic. elect.

is r [unction of the additional AS parnetera estiaated for

that .od.l. The standard error for these astintes of the sloe of th. rests

is .001.



lob!. 4b. rapiric.l tire for 5% L..i Tort

Based on 0icksy-Tull.r Illetributlon of 0-' (or p—i

Stop!.
SI.. I MovIng Avg
(OF eric. Psrsoetc
value) S AR(I) bcrU4l t(112) ARIIA(l,1) AR(S4) ARU&__._

.6 .9)1 .921 .652 .266 .645 .139

.1 .346 .531 .359 .234 .457 .165
21 .0 .040 .046 .014 .113 .107 .130

(-11.9) - .5 .003 .007 .001 .056 .332 .152-0 .000 .004 .000 .036 .003 .133

.6 3.000 .999 .996 .440 .636 292

.3 .740 .673 .776 .206 .320 .263
50 .0 .045 .056 .024 .093 .171 .273

(.19.!) - .5 .002 .010 .001 .053 .121 .159
- .0 .001 .009 .000 .045 .077 .251

.0 1.000 1.000 1.000 .216 .921 .409

.3 .026 .707 .052 .139 .120 .343
100 .0 .050 .061 .045 .071 .143 .255

(-20.7) - .3 .003 .016 .007 .050 .171 .353
-.0 .001 .015 .001 .046 .230 .363

.0 3.000 1.000 1.000 .261 .719 .253

.3 .669 .641 .005 .009 .126 .236
250 .0 .052 .062 .069 .064 .097 .246

(-21.3) '.5 .001 .023 .011 .053 .062 .237
-.6 .001 .023 .011 .049 .025 .231

.0 1.000 1.000 1.000 .213 .711 .106

.5 .679 .551 .719 .090 .093 .152
500 .0 .052 .059 .066 .062 .072 .151

(-21.5) - .5 .002 .030 .025 .054 .062 .147
-.0 .001 .027 .023 .030 .037 .149

.6 1.000 .999 1.000 .136 .431 .114

.5 .079 .635 .611 .091 .070 .099
1000 .0 .032 .055 .063 .039 .065 .107

(-21.6) —.5 .001 .035 .035 .053 .062 .109
.0 .001 .033 .034 .054 .046 .103

NOTE; the proportIon of statistics Ins than the 56 critical valuetrue

FiolIer(l976, p. 371 Table 9.5.1) (or the nareslised bin .1 the unit runt

estisator, T(?,-1). ehere a rise trend Ic included as an additional regressor

in the estlaoted easel. 6usd on 10.000 replications ad an 933166(0,l,1)

precIse.

Y6;,1)
— - S t1. tot.. ..T

The Oickey-Fuller niticol values are in parentheeas toeder tIes as.ple airs.
The AR(i) test is based en equation (6); the Phillips serrectinne to the Aft)

test, use equations (11) and (6); lbs A131&(l,l) cast easeequatlon (9);

the MCI4) and AZ(S12) tests u.s equation (10) eith 14 and Isp,.,

respactivaly. ehare 14
l2 are defined in (13a,b). The ).atrer tests use

Fullats(1976( correction c .ultipLlsd tises the rev test statistic, vbers

c—1/(141- -4) Is a function of the additional AR per.seters estieated for

that e.odel, Tha ar.andard error for these setiaste. ef the sire of the tests

1. .007.



table Sc. 5% and 1% Fractilea of the rhillipa-Ferron test.

1(1), for an ARIMA(1,0,1) model with p—i, 9—8 and T—l,000 or 10,000

Sstin]e Size I — 1.000

Resldue1s... Residual.a Difference&__

Lags
2

5% 1%
Fractile Fractile

5%

Fractila
1%

Fractile
51 1%

Frectile Fractile
5%

Fractile
1%

Fractile

0 -366.2 -466,9

(.999) (.996)

-533.5 -730.7

(1.00) (.999)

1 -296.2 -401.5

(.986) (.958)

-187.4

(.983)

-239.5

(.947)

-301.0 -421.8

(.993) (.970)

-274.8

(.993)

-372.6

(.969)

2 -299.8 -418.9

(.967) (.920)

-128.6

(.946)

.162.6

(.875)

—232.7 -341.2

(.970) (.910)

-187.2

(.970)

—259.3

(.906)

3 -322.6 -456.6

(.953) (.901)

-98.5

(.903)

-124.7

(.806)

-204.5 -310.1

(.936) (.852)

-143.6

(.929)

.197.2

(.839)

4 -351.8 -498.3

(.944) (.893)

-80.1

(.860)

-101.8

(.755)

-194.2 -300.7

(.902) (.807)

—118.8

(.884)

-160.8

(.779)

.94
-546.1 -817.8

(.710) (.672)

-53.2

(.768)

-67.6

(.647)

24.3 -97.9

(.024) (.022)

-53.7

(.611)

-73.7

(.414)

'12
-953.8 -1291.5

(.976) (.954)

-24.4

(.632)

-30.0

(.521)

-541.0 -975.5

(.851) (.784)

-27.0 .

(.268)
-36.9

(.120)

OF -14.1 -20.?
(.050) (.010)

-14.1
(.050)

-20.7
(.010)

-14.1 -20.7
(.050) (.010)

-14.1
(.050)

-20.7
(.010)

2NOTE: the sampling distribution of the normalized bias statistic, (.1). against the

alternative hypothesis that the process is stationary around a constantseen. Sased on

10,000 replications of an ARUIA(0,l,l) process.

- c-l — c - r1, t—1,.. .7,

with 0—8 and 1—1.000 or 10,000. The Phillips-Perron corrections use equations (5). (6)

end (7) for I lags of the residual aucocorrelationa. For 1—1,000, .t47 and 212_21; for

1—10,000. 24—12 and 12" The percentage of rejections using the Dickey-Fuller critical

value is in parentheses under each of the fractiles (i.e. • for a 5% level test, this

should be .05 if the approximation to the Dicicey-Fuller distribution ie accurate). The

last row, labeled OF, contains the asymptotic Dickey-Fuller critical values and rejection

percentages.



Table Sb 5% and 1% Fractilsa of the Phillipe-Parron test,

5 (2), for an ARIMA(1,0,1) •odal with p —1, 8—8, and 1—1,000 or 10.000
U

5saole Size I — 1.000 Samole Size 7 — 10.000

Residuals Differences Residuals Differences

Lags
P

5% le
Fractila Fractile

5% ii
Fractile Fractile

5t 1%

Fractile Fractile
5%

Fractile
1%

Fractil

0 -1496 -17.43

(1.00) (.997)

-16.56 -19.51
(1.00) (.997)

1 -13.82 -l655
(992) (.968)

-11.68 -13.89

(391) (.960)

-12.60 -15,00

(.986) (.953)

-12.06
(.986)

-14.15

(.951)

2 -1388 -16.79

(.976) (.933)

-10.41 -12.63

(.960) (8B8)
-11.12 -1L60
(.949) (.879)

-10.05

(.945)

.11.99

(.873)

3 -14.25 -1728
(362) (.911)

-9.79 -12.08

(9l5) (.804)

-10.50 -13.03

(.909) (.825)

-892
(.898)

.1062
(.805)

4 -14.73 -17.85
(.955) (.902)

-9.38 -11.71
(.863) (727)

-10.25 -12.89
(.868) (.778)

-8.19
(.851)

-9.73
(.736)

14
-17.53 -2L46
(.674) (.644)

-8.91 -11.45

(.716) (.528)

-3.28 -8.75

(.055) (.048)

587
(.577)

-7.20

(.409)

12 -22.64 -26.53

(.980) (.960)

-9.00 -12.31

(.306) (107)
-1669 -22.40

(.835) (.767)

-4.68

(.329)

-5.96

(.188)

OF -2.86 -343
(.050) (.010)

-2.86 -343
(.050) (.010)

-2.86 -3,43

(.050) (010)
-286

(.050)

-3.43

(.010)

NOTE; the sampling diatrib ution of the normalize d bies statistic, SC2). against the

alternative hypothesis that the process is stationary around a constant mean. Based on

10,000 replications of an ARIMA(0,1,l) process.

(Yt - Tt-i — tt - 8 t—l. . - .7,

with 8—.8 and 1—1.000 or 10,000. The Phillipa-Perron corrections use equations (5), (6)

and (7) for £ Ia8s of the residual autocorrelations. For 1—1,000, t47 axed Iiz_21. for

7—10.000, 1412 and The percentage of rejections using the Dickey-Fuller critics

value is-in parentheses under each of the fractiles (i.e., for a 5% level test, this

should be .05 if the approximation to the Dickey-Fuller distribution is accurate). The

last row, labeled OF, contains the asymptotic Dicksy-Foller critical values and rejection

percentages.


