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1. Introduction

As motivation for the investigation of the properties of the instrumental
variables (IV) estimator when the instrument is a poor one (by which we
mean weakly correlated with explanatory variables), consider an example
in the spirit of the recent literature on the consumption function. Hall
(1978) pointed out that when future income is uncertain, maximization of

expected utility implies

(L1) U/(Cop) = [%W’(@) e

which is a stochastic Euler equation where U(-) is the one period flow utility
function, § is the rate of time preference, r is the real interest rate, and €;41 ‘
is a stochastic error that is uncorrelated with C;. If utility of consumption
is quadratic then this equation is linear and can be estimated by least

squares. Suppose, however, that marginal utility is quadratic (or is to be

approximated as a quadratic) in which case we have, assuming é§ = r,

(1.2) Ciy1+ BCEy = Cr + BCE + €141

so the equation to be estimated is

(1.3) Cip1— Cr = B(Chyy — CF) + €41

Now C2, ; is contemporaneous with €;41 and IV estimation seems an obvi-
ous procedure to ensure consistency in the estimate of 3, with the lagged
value of the right-hand-side variable being the obvious instrument. Ap-

plication of IV in this context can be thought of as a simple example of
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the method of Euler equation estimation proposed in Hansen and Singleton
(1982).

Under the null hypothesis # = 0 we would have C;410 = Ci + €41
which is essentially Hall’s empirical model for consumption. Using this as
the generating mechanism we calculated a realization of length 120 (roughly
Hall’s sample period) with € ~ i.i.d. N(0,1) and Co = 100. The IV re-
sults for model (1.3) with a constant included both in the regression and
instrument list were:

brv = .0059
(.0005)

t(ij) = 12.69

(1.4)
R? = .99
S.E. = .08
DW. =195

The t-ratio tells us that 8 is not zero when in fact it is zero. The R? tells
us that the first difference of C? explains almost all of the variation in the
change in consumption, when in fact it explains none. Accordingly, the
standard error of the regression is far less than the true value of 1.0. These
misleading results are not due to an aberrant sample. In 10,000 replications
of this experiment, the median ¢ was 11.5 and the median standard error of
the regression was .06. Rather, the problem can be traced to the fact that
the instrument is only weakly correlated with the right-hand side variable
(the sample squared correlation is .009).

In the remainder of the paper we study the influence of weak correla-

tion between the instrument and the right-hand side variable on the finite
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sample distribution of the IV estimator bsy, the standard error of the re-
gression, the estimated variance of brv, and on its t-ratio. We find that the
effect of weak correlation is to concentrate the small sample distribution of
the IV estimator around a value that is inversely related to the feedback
from the dependent variable to the explanatory variable. That value is
frequently further from the true parameter than is the plim of OLS. The
sample variance of residuals also becomes concentrated around a value that
reflects the strength of feedback and not the actual variance we wish to
estimate. The distribution of the t-ratio reflects both of these effects, and
its central tendency is therefore determined by the feedback in the system,
stronger feedback producing larger sample t-values. In other words, in
those cases where QLS is a poor estimator, IV with a poor instrument will
be even worse. The spurious results seen in the example above are to be

expected when the instrument is poor.

2. Concentration of the IV Estimator
Consider a simple system in which variables « and 2z are cross-

correlated with representation

(2.1) z=Au+te¢

z=v9e+v

where X and 7 are fixed parameters and €, u, and v are serially random

disturbances, not cross—correlated, and are normal with mean zero and
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variances 02,02 and o2 respectively. The relationship of interest to the

investigator is



(2.2) y=pPz+u.

We would like to estimate 8 and test the null hypothesis 8 = g*.
I'will be useful to keep in mind some basic characteristics of the system.

The least squares estimator of 8 is bors and

(23) lim(bors — f) = 0k
' prmteLs T = ot + 7)

so of course it is the feedback from u to z through the parameter A that
creates the need for the IV estimator. For expository purposes it will be

helpful to consider the special case of unit disturbance variances for which

A

(2.3q) plim (bors — B) = T3 D

The suitability of 2 as an instrument for z depends on its being un-
correlated with u (true by assumption) but correlated with z. The squared

correlation between z and z is

(yo2)?

2.4 2 =
(24) Por = (o ¥ o7 (o7 7 07)

which of course will be nonzero if and only if 4 is nonzero. In the unit

variance case we have

2
2.4 2 ____ 7T
(2.42) Por = 0 1 D(y*+1)

The IV estimator of 8 is the ratio

4



Myy

(2.5) biv =

mzz:

where m denotes the sample second moment between the indicated vari-
ables. The small sample properties of the instrumental variable estimator
have been considered by, among others, Basmann (1974), who summarizes
a large body of work with particular respect to Haavelmo’s model of the
marginal propensity to consume, by Mariano and McDonald (1979), who
give the pdf for bors, and by Anderson (1982), who discusses approxima-
tions to the cdf. Basmann and Mariano and McDonald point out that bor s
is the ratio of two correlated normal random variables an so that its distri-
bution may be studied using Fieller’s (1932) results. (See also Johnson and
Kotz (1972), pp. 123-124, Hinkley (1969) and Marsaglia (1965)). Nelson
and Startz (1988) extends the work just cited by characterizing the pdf
and cdf of the instrumental variables estimator, and comparing them to
the asymptotic approximations, as the “quality” of the instruments varies.
In this paper, we focus on the limiting effects of low correlation between
the instrument and the explanatory variable.

Substituting for the observed variables using the equation of the system

we have

Mey
2.6 biv = _—
( ) v IB + AMy + My

Now think of € and v as being drawn once and then fixed as we sample
from the distribution of u. This fixes 2z in repeated samples, but not  since
z includes the random element u. Equivalently, consider the distribution of
y and « conditional on ¢ and v. Thus m,, in (2.6) is fixed and nonstochastic,

but m,, 1s a linear combination of the random u’s with the fixed z’s as
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weights and therefore the mean of m,, is zero. The particular value of m,
will depend on the ¢’s and v’s drawn, but will be within sampling error
of the population moment which is 4 - 02. For purposes of exposition we

assume this is the value of m,, so we have

Myy _ 1
Mau +7'0'? B )\+('Y"72)/mzu

(2.7) (bIV - ﬁ) ~ by

For the unit variance case we have

1

. brv — 3 88 —m———
(2 7a) IV ,B by T 7/m,,u

Consider now how the sampling error for bry depends on the realization -
of m,y in (2.7) and (2.7a). When m;, takes on its expected value of zero
then (bry — @) is zero. When m,, is very large relative to (v - 0?) then
(brv — PB) is approximately A~1. When m,, has the value —7—;{'—2 then
(byy — B) is infinite, and for values of m,, in the neighborhood of that
value we will get very large sampling errors. These features are readily
seen in the graph of (byv — B) as a function of m,, in Figure 1.

For illustrative purposes in Figure 1 the value of A is unity, ¥ is .05,
and o2 is unity. The singularity value for m,, at which (brv — ) diverges to
400 is -0.05. As the value of m,, moves away from the singularity value in
either direction, the error function (byv —f) approaches A~ ! asymptotically.
The error function is symmetric around the singularity and around the
asymptote. To the right of the singularity, the error function crosses the
zero line from below (at which point byy = B) where m,, = 0. The rate
of convergence of the error function toward the asymptote also depends
on v, ), and ¢2. In particular, at a value of m,, that is, say, & from the

singularity the error function differs from its asymptotic value A~ by the
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amount (y-02)/(A%.§). The smaller is v or o2 or the larger is A, the closer
the singularity will be to zero and the more rapidly will the error function
converge to A~1.

The sampling range of m,, is centered on its mean at zero, and its

variance is

var(myy) = E(% 3 zu)?

1
(2.8) —_ aﬁ - mzz . ;

2.2 2
2_7Ue+6v
Y n

where n is sample size and the last line is an approximation which replaces
the sample variance of 2z with its population variance. For the unit variance

case we have

241
-

(2.8a) var (m,y) ~

The range depicted in Figure 1, £.10, is therefore roughly +1 standard
deviation for the unit variance case with n = 100 observations. Clearly,
sampling errors will often be large if the region around the singularity is
visited often by m,,. As a result, the moments of (8rv — §) do not exist,
as shown by Nelson and Startz (1988).

A smaller value of v or o2 or a larger value of A will shift the sin-
gularity closer to zero and increase the rate of convergence of the error
function toward A~!. Any of these changes would correspond to a smaller
p2, (the “first stage” r? in the two stage least squares interpretation of
IV) and therefore to z being a poorer instrument. In Figure 2 the value

of 7 is reduced to 0.01 from 0.05 in Figure 1. The value of p2, drops from
1.25 x 1073 t0 5.0 x 107%. Note that the value of m,, at the singularity
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in Figure 2 is much closer to its mean (-0.01 instead of -0.05) and that the
error function converges more rapidly to its asymptote. Most realizations
of m,, will correspond to a value of (bry — 3) closer to A~! than in Figure
1. The range of m,, depicted in Figure 2 is again +1 standard deviation
for n = 100.

It is clear that in the situation depicted in Figure 2 most realizations of
M, will result in a value of bry close to A~! and that this can be thought
of as the central tendency of the sampling distribution. It is not the mean,
which does not exist, and it is not the mode since the probability that
(bry — B) = A~ ! is zero. It may be useful to think of A=* as the point of
concentration of the error distribution as v - ¢ /X gets small. Occasionally,
very large outliers in (byy — ) will occur. Rarely will the sampling error
(bry — B) be closer to zero than to A7,

We conclude then that realizations of (byy — 8) will cluster around
A~ if the value of m,y at the singularity is small relative to the standard

deviation of m,,. This condition requires that

=My

(2.9) i 3

| € SD(m,y)

where the left-hand side is the value of m,, at the singularity. From (2.7)
and (2.8) and using the population moments corresponding to m.y and m,,

we have the condition
L2 2,2 2
(2.10) (uf_)2 <o, lfiﬁ,
A n
After substitution and rearrangement (2.1) becomes
1 2. g2

u >>n

(2.11) T W ite
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Recall that p2,, given by equation (2.4), is the population R? in the
first stage regression of « on z in the two—stage least squares interpretation
of IV. A small value of p2, will tend to satisfy (2.11), so a low first stage
R? is certainly an important element in producing spurious I'V estimates.
(Note, however, that the sample R? may have a significant upward bias.
See Section 5.) For the unit error variance case with A =1, ¥ = .01, and

n = 100 illustrated in Figure 2 we have

11,

so condition (2.11) is satisfied.

(2.12)

Note also that using equation (2.3), condition (2.11) can be rewritten

1 .
(2.13) e A-plim(bors — B) >>n

Tz

so the more serious the bias in bor s the stronger the tendency for sampling
errors in b7y to cluster around A~1. In other words, the worse are the results
of OLS, the stronger the tendency of IV to give a consistently spurious
estimate.

It is interesting to compare the biases of the IV and OLS estimators
in the poor instrument case, using the point of concentration and plim
respectively as measures of central tendency. Referring to (2.3) and the

above discussion of Figure 2, we have

Bias OLS N A2 <1
Bias IV~ X 4 o02[c2 =

(2.14)

which depends on the feedback from u to z measured by A and on the

ratio of the variances of € and u. Regardless of the specific values of the
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parameters, the bias in OLS is less than that of IV. Less surprisingly, the
larger is A (stronger feedback) the closer the bias ratio is to unity. When
feedback is weak, OLS may be much less biased than I'V. Using A = 1 and
unit variances as in Figure 2 the bias in OLS is only half that of IV.

The concentration of the sampling distribution of b7y around the value
A~1 as a function of A and 7 is seen in the results of a Monte Carlo exper-
iment shown in Table 1. Briefly, the data are generated by system (2.1) -
(2.2) with unit variances and # = 0. Conditional on a realization of z, ¢ such
that m,. is close to its population value, repeated samples of u’s are drawn
resulting in random z and y. Each sample is of length n = 100. Fractiles
of byyv are reported in Table 1 along with those of bors for comparison.
The asymptotic bias of bprg is 0.5 for A = 1, and indeed that appears to
be roughly the median of its distribution. For A = 1 and v = .05 (a mod- _
erately poor instrument), the values illustrated in Figure 1, the sampling
distribution of bry is not concentrated around A~! = 1 but has median .63.
The asymptotic variance formula would predict the fractiles given in the
next column labeled “Asy.” The striking difference is in the 1 and 99 frac-
tiles which are much farther from zero than the asymptotic formula would
suggest. These fat tails reflect values of m,, close to the singularity.

When we reduce 4 to 0.01 in the next column (a very poor instrument),
the concentration effect becomes evident. This is the case illustrated in Fig-
ure 2. The sampling distribution is much less disperse than the asymptotic
formula would predict, since the asymptotic variance is larger for a poorer
instrument. Finally, for 4 = .001, bsy is tightly distributed around A=1 =1,
only the occasional outlier being evident in the 99 fractile. Asymptotic the-
ory, in contrast, predicts a more disperse distribution as « is reduced. Note
that there is little overlap between the distributions of byy and borg, with

the latter being concentrated around A/(A% + 1) = 5.
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3. Concentration of the residual Variance

In order to do statistical inference about 8 we need to estimate the

variance of the regression disturbance, u. The estimate of o2 based on the

sample variance of residuals for any estimated coefficient b is

n—1

[1— (b= B muq
+2(b - B)Ab - B) —1] - muc
+(b— ) me,

2= — Yy~ wib)®
i=1

(3.1)

using £ = Au + ¢. Conditional on a realization of the €’s, me. is fixed and
My, 1s a linear combination of the random u’s. However, in the case that
b is the IV estimator under condition (2.11) where it is close to A=! with

high probability, then (b — 8) ~ A~! and we get

sty ~AT2 me
(3.2)

-2 2
~A"202,
replacing the sample statistic m,, by its population counterpart in the sec-

ond line.

Evidently the residual variance does not involve the variance of dis-
turbances u in the case of a poor instrument, since (3.2) tells us that s,
will depend on o2, the variance of the exogenous part of z, rather than on
o2, the variance we would like to estimate. The reason is that the spurious
value of by tends to cancel u out of the residuals, leaving €. To see this,

note that we have,
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(yi — zibrv) = (2B + ui — zibrv)

~ (u; — 2271
(3.3)
= (wi — (u + A7)

=x"le.

As a consequence, the residual variance will tell us little about the value of
o2,

Concentration of the sampling distribution of s, around the value
XA~2.02 can be seen by the Monte Carlo results reported in Table 2. As in
Table 1, the variances are all unity and we consider the effect of successively
smaller values of . Using A = 10 we expect that the sampling distribution
of s%, will concentrate around A~2 = 0.01 instead of the true value of
02 = 1. With y = .05 the median is 0.013 but sometimes much larger
estimates are obtained, corresponding to outliers in bry. As 4 is reduced
to .01 and then .001 in Table 2, the concentration effect is evident.

The consequence of concentration in the distribution of s%;, is that
when we come to calculate the standard error for byy using the classical
formula we will be replacing o2 with an estimate that is spurious. It may
be biased upward or downward depending on the relative magnitudes of ¢2
and A~2. 2, but will not reflect the true value of o2 if the instrument is a

poor one.

4. The Central Tendency of the t—Ratio for b;y

The asymptotic variance of byy is given by

0'2 m;;

(4.1) Asy Var(byy) = —22

.2
n-msz,
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which suggests that the variance of b;y should be estimated by replacing
o2 with s%;,. The square root of the resulting statistic provides a standard

error for bry and one would hope that the ratio

(4.2) t= _ v -8

2 L. mg
SIv'n ' m

ix

would be approximately distributed as Student’s ¢ with (n — 1) degrees of

freedom. This “t-ratio” can also be written as

(4.3) 1= v —F)
st ' m T

where again r2, is the “first stage” r? in the regression of z on the instru-

ment z.
In the case of a poor instrument we know that (byy — 8) will be con-
centrated on the value A=! and s%;, on the value A~2-¢2. Therefore in this

case we have

t AT
et
A2.g2. L. 1
€ n ori mgr

(4.4)

n-rZ, -mgg

Q

2
o

Now, the sample statistic 2, is biased upward by approximately % Its

mean Is

2\ o A2 (1—P2)_ 1 "—2_2
(4.5) By mpr+ o = a1t o
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where p is the population correlation (see Johnson and Kotz, p. 244). If
condition (2.11) holds it implies that p? < (n — 1)~! in which case

(4.5a) E(r)~(n—-1)"1,

The sample variance my, has mean (A202 + 02). We surmise then that

very roughly

2. 42 4 g2
A?.02 07

(4.6) E() ~ e

which is the unit variance case becomes

(4.6a) E()~ VX2 +1.

Evidently, the value of the t-ratio will reflect the size of the feedback
coefficient A when the instrument is a poor one. If feedback is strong then
the t—ratio will tend to be large even if the null hypothesis is true. Further, -
note that the t-ratio will be positive if A is positive and negative if A is
negative since the sign of ¢ in (4.4) is given by the sign of A. These effects
are apparent in the Monte Carlo estimates of the fractiles of bry and the
t-ratio reported in Table 3. Data are generated with A = 10 and » = 100 as
before. The first value of v considered is 4 = 1.0 in which case z is not poor
enough an instrument to concentrate b7y around A~1 = 0.1. The median of
the t-ratio is 0.42 and the distribution is strongly skewed to the right. For
4 = 0.01 the concentration effect in b7y is becoming more apparent, and
the median of ¢ rises to 3.68. Negative values of ¢ become very infrequent.
At 4 = 0.01 and 0.001 the concentration effect on bry is strongly apparent,

the median of ¢ is about 7.3, the probability of a negative ¢ has become
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negligible, and the probability of ¢ being larger than 42.0 is greater than
0.75.

It is far from clear that the mean or other moments of ¢ exist, but es-
timated means and standard deviations are given in Table 3. As expected,
the estimated mean of t increases as v declines, evidently approaching a
value somewhat less than vA2 + 1. The standard deviation of ¢ also in-
creases as the instrument becomes poorer, and is over 6 instead of being
unity.

Under what circumstances will the distribution of t(brv) approach Stu-
dent’s t? It should be intuitive from the discussion in this paper and the
geometry of Figure 1 that when condition (2.11) is reversed b;v becomes
well behaved in the sense of having properties closer to those suggested
by asymptotic theory. In the unit variance set-up those will be cases of -
larger ¥ and smaller A. If A is small, then the potential advantage of IV
over OLS disappears. The value of A that maximizes plim(bors — 3) is
X = 1, so this is a case where we would hope IV would be an improvement
over OLS. Table 4 shows how the sampling distributions of byy and t(bsv)
move toward the asymptotic distributions as we consider larger values of ¢

which make z a better instrument.

Along with the use of nonlinear instrumental variable methods for the
estimation of Euler equations, Hansen and Singleton popularized testing a
model’s overidentifying restrictions as an overall check of model vahdity.
In the 2SLS’ context, the test statistic for overidentifying restrictions is
SSR/s?, which is distributed asymptotically x%(g — k), where SSR is the
sum square residuals of the “second- stage” regression of the fitted ¥ on
the fitted X (see Basmann (1960) and Startz (1983).) Just as for the t-
statistic, if s underestimates the true variance, the test for overidentifying

restrictions will give too many false rejections.
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We ran a Monte Carlo experiment to illustrate the problem. While our
model to this point has been limited to the just identified case, a simple

extension provides for two instruments, Z; and Z, where

A =7e+v1+6v2
(4.7)
Zy =ve+ bv1 4+ va

Table 5 shows the results of the Monte Carlo. The variances were all
set to unity and A = 10,7 = 0.001, and é = 0.999. To illustrate that the
problem is not limited to small “small samples,” we set n = 1200. In the
case shown in Table 5, the investigator will almost certainly falsely reject
the overidentifying restrictions, rejecting over one-fourth of the time at the

1 percent critical value.

5. Suggestions for Practitioners

If the authors’ own experience is any guide, the general impression
among practitioners of econometrics is that the consequence of having a
poor instrument is a large standard error and a low t—ratio. This paper leads
us to the conclusion that the consequences of having a poor instrument are
much more insidious than that; namely the bias in the estimated coefficient
will be large relative to its calculated standard error if the feedback is
strong. In these cases the bias of OLS will be smaller than that of IV in
the sense defined in this paper.

The only protection against erroneous inference is to look directly at
the correlation between the instrument and the explanatory variable, using
inequality (2.11) to judge whether the correlation is too low. We would like

to know whether
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1 2. g2 >
— Y —————— n
P, Aol +o?

(5.1)

which depends on unknown parameters, but we can make use of the fact

that

1 1 A%.q2
(5‘2) _ — #
p:%z paz:z AZ. o; + 062

since p2, can be estimated directly from the data on z and z. The approx-

imate bias in sample r? is given by (4.5), so a bias—corrected estimate of

pl, is given by

2 _n—1, _ 1
(5'3) pa:z - n _2Tzz n— 2)

for p? small. If we find that

(5.4)

S >N
Tz

we should consider that inequality (2.11) may apply and therefore be wé,ry

of using the instrument. For example, in the artificial data used in the

introductory section of the paper, we have

119 1
2
P2, = = - (.009) — — = .0006
(5.6) : 118 118
— = 1662 > 12
Sog = 1662 > 120,

suggesting that the results reported in (1.4) are spurious, which indeed they

are.
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If we return to the 2SLS interpretation of instrumental variables, (5.4)
is essentially equivalent to saying that the coefficients on the instruments
are not very significant in the first-stage regression. Formula (5.4) is ap-
proximately the same as the statement that the first-stage TR? < 2. So in
the one right-hand-side variable, one instrument, linear, instrumental vari-
able problem, checking the significance of the first—stage regression provides
an easy to implement safety check against the concentration phenomenon,
although a less satisfactory test against the “fat—tail” problem.

In the context of estimating stochastic Euler equations, we would par-
ticularly caution against the use of lagged changes in consumption or lagged
stock returns as instruments for current values, as advocated by Hansen and
Singleton (1982). The quality of these instruments depends on the degree
of serial correlation in these variables which is well known to be low.

Finally, we are obliged to caution that when the model includes mul-
tiple explanatory and instrumental variables, high first—stage R*’s do not
provide an adequate warning against spurious inference. (It is easy to pro-
duce Monte Carlo results for the model £ = 2 in which each first-stage
R? is above .98, but where all the qualitative problems discussed above
recur.) Our preliminary investigations suggest that correlation among the
instruments is also relevant, a phenomenon which we plan to investigate in
further research. The only safe strategy appears to be Monte Carlo inves-
tigation of the distribution of test statistics under the null hypothesis one

wants to test.
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