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ABSTRACT

Recent research has proposed the state space (SS) framework for decomposition
of GNP and other economic time series into trend and cycle components, using the
Kalman filter. This paper reviews the empirical evidence and suggests that the
resulting decomposition may be spurious, just as detrending by linear regression is
known to generate spurious trends and cycles in nonstationary time series. A Monte
Carlo experiment confirms that when data is generated by a random walk, the SS
model tends to indicate (incorrectly) that the series consists of cyclical variations
around a smooth trend. The improvement in fit over the true model will typically
appear to be statistically significant. These results suggest that caution should be
exercised in drawing inferences about the nature of economic processes from the SS

decomposition.
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1. Introduction

In a trio of recent papers, Harvey (1985), Watson (1986), and Clark (1987)
advocate state space models for extraction of the trend from economic time series.
The Kalman filter is used to calculate maximum likelihood estimates of the parame-
ters and the implied estimates of the components themselves. The trend component
is viewed as a nonstationary stochastic process, generally a random walk with drift,
and the cycle is a stationary process, generally an autoregression. The observed
data are the sum of these components so the model allows for long term growth as
well as both permanent and transitory stochastic shocks. The empirical case for
the appropriateness of the state space model is based by these authors on goodness
of fit relative to competing specifications, some of which would have quite different
implications for the behavior of trend and cycle.

The primary objective of this paper is to demonstrate that the log likelihood is
a misleading criterion for model selection in this context because it is subject to the
bias described by Fuller (1976), Dickey (1976), and Dickey and Fuller (1979,1981).
Briefly, if the data generating process is stationary in first differences, a model
which represents the data as stationary deviations around a smooth trend will show
an improvement in fit which appears significant by conventional standards. One
needs, therefore, to exercise caution in interpreting estimates of trend and cycle
components based on the unobserved model and the Kalman filter components
methodology.

2. Modeling GNP

The basic issues are well illustrated by the behavior of real GNP which Harvey,
Watson, and Clark all analyze. First differences of real GNP (in logs) exhibit posi-

tive autocorrelation in the range 0.3 to 0.4 at lag one. Oddly enough, this charac-
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terization of the data serves for both annual and quarterly data! This phenomenon
is roughly consistent with GNP being a random walk at some short time interval
in which case both quarterly and annual averages would be subject, to about the
same degree, to the aggregation effect described by Working (1960) which induces
positive autocorrelation. In any case, the growth rate of real GNP is reasonably
modeled in the ARIMA framework as an AR(1) or perhaps MA(1) with a coeffi-
cient of about 0.4. If we take this to be a correct representation then it poses a
dilemma for someone who would like to decompose real GNP into trend and cycle
components, as Nelson and Plosser (1981) pointed out.

The trend-cycle model represents z; as the sum of a trend 7z and a cycle ¢;
where c; is stationary but 7 is stationary only after differencing. Restrictions need
to be put on the SS model if parameters are to be identified. One customary
restriction is that r is a random walk with drift (which is itself a random walk in

some versions) so that

(1) ¢ = Ty—1 + d + wy.

The first difference of z, denoted (1 — B)z; using the backshift operation B, is then

(2) (1— B)zy = d+ w; + (1 — B)e,

where w; is an i.i.d. random shock driving the trend process. Now if (1 — B)z; is
autocorrelated at lag one only, then ¢; must be serially random or else the term
(1 — B)e; would imply longer lag autocorrelations. This leaves us with the following

relations between the nonzero second moments of (1 — B)z; and the parameters of

(2)



(3) ~(0) = aff, + 203 + Owe

(4) V(1) = —0we — 07,

where v(0) and ~(1) are the variance and lag one autocovariance respectively of
(1 — B)z; and oy, is the contemporaneous correlation between w; and c; (having
ruled out lagged cross-covariances). The model is not identified since we have 3
unknown parameters and only 2 equations. This identification problem is a general
one as shown by Nelson and Plosser; regardless of the MA order of (1 — B)z;, the
model contains an unidentified parameter in the absence of further restrictions.

The convenient identifying restriction is that the trend and cycle processes are
uncorrelated (o, = 0). This uncorrelatedness restriction puts the model into state
space (hereafter SS) form, making all the power of the Kalman filter available for
parameter estimation and calculation of estimated values of the trend and cycle.
However, the SS model also constrains the autocorrelation structure of (1 — B)z;.
For the heuristic first order case summarized by (3) - (4), it is apparent that o, = 0
implies that ¥(1) < 0, so the model is not compatible with the positive autocorrela-
tion observed in growth rates of real GNP and many other economic variables. An
AR(1) specification for (1 — B)z; does not remove the dilemma. Watson showed
that in the SS model with uncorrelated components the spectral density function
of (1 — B)z; has its minimum at frequency zero. The AR(1) process with a positive
coefficient instead has its maximum at frequency zero.

If the AR(1) or MA(1) characterization of the growth rate of real GNP is correct

then, as we have seen, the SS model is inadmissible. We would then be obliged
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to conclude that the trend and cycle components are cross-correlated (evidently
negatively), or that the trend process is autocorrelated, or both. Certainly the
uncorrelatedness of trend and cycle has no compelling economic motivation, and I
have suggested in another paper (Nelson, 1987) how a simple macro model might
suggest negative correlation between them. Likewise, there is no theory to suggest
that the trend component of real GNP, which we could think of as its natural
level, should be a random walk. But this does not point us towards a method of
detrending the data, it just leaves us with an unidentified model.

A way out of the dilemma was suggested by Harvey who pointed out that
positive autocorrelation at lag one can be compatible with the SS model if it is
accompanied by some negative autocorrelation at longer lags. This negative au-
tocorrelation in (1 — B)z; need not be large (indeed it might be small enough to
be ignored in the specification of an ARIMA model) as long as it is sufficiently
persistent. Indeed, sample autocorrelations of growth rates of real GNP both an-
nual and quarterly are persistently negative at longer lags though not individually
significant. Harvey showed that this pattern would be produced by a cycle process

that is AR(2) with appropriate values for the coefficients, his example being

(5) ¢t = 1.27¢;1 — .48¢4_o + 4

which also implies periodic behavior in the cycle. Combining (5) with the trend (1)

we have the model for (1 — B)z,

(6) (1—1.27B + .48B%)(1 — B)z; = (1 1.27B + .48B%)w, + (1 — B)v,
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which corresponds to an ARIMA(2,1,2) univariate representation. The behavior of
(1 — B)z: could well be mistaken for ARIMA(1,1,0) if the variance of w is small
relative to that of v since we have (1 — 1.27B + .48B%) ~ (1 — B)(1 — .4B) so the

terms (1 — B) roughly cancel leaving

(7) (1— 4B)(1 — B)zs ~ v

Harvey fitted the SS model to the Nelson/Plosser annual data, imposing a
further restriction on the AR(2) that its coefficients imply pseudo—periodic behavior.
For the pre- 1948 period Harvey found that the parameters of the cycle process
bordered on non-stationarity with an estimated period of 7.0 years. He concluded
that an alternative model which allowed cyclical movement in the first differences
of the trend, which he dubbed the “cyclical trend” model, gave a better fit to the
data. The cyclical trend model would imply that the trend and cycle components
cannot be separated. For the 1948-1970 period annual GNP is essentially a random
walk, leaving little room for an improved fit using an SS model. The traditional
trend plus cycle SS model did not then get much support from Harvey’s analysis of
GNP data, nor did it from the other time series he examined.

Watson and Clark both study post-war quarterly real GNP. They find that
standard Box-Jenkins identification procedures suggest first order models for first
differences of lags, AR(1) and MA(1) fitting about equally well. The AR(1) fitted

by Watson is

(8) (1 — B)z; = 0.005 + .406(1 — B)z;—y; o = 0.0103
LogLik = 292.07.
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This is consistent with the rapid decay of the autocorrelations from a value of .37
at lag one. However, sample autocorrelations at lags longer than three quarters
are persistently negative though small (see Clark, Table 1B). Some of this persis-
tent negative sample autocorrelation can be attributed to the negative bias that is
inherent in sample autocorrelations (see Kendall, 1973, p. 93) but the bias is not
large enough to explain it away. Harvey’s SS model with an AR(2) cycle might
account for this pattern and that is the specification chosen by both Watson and

Clark. Watson’s version is

Ty =T+ C

(1 — B)r, = 0.0008, o = 0.0057

(9) ¢; = 1.501¢;—1 — 0.577¢s_3,0 = 0.0076

SE = 0.0099
LogLik = 294.42

o denotes the estimated standard deviation of the innovation in each component
process and SE is the prediction standard error. Similar results are obtained by
Clark.

Watson notes that the SS model performs slightly better than the AR model
both in terms of standard error and log likelihood. The implied behavior of trend
and cycle differs radically, however. Plots by Watson and Clark of the SS model
trend component (using the Kalman filter) show it to be very smooth so that short
term fluctuations in GNP are predominantly due to cyclical fluctuations. The eye

has difficulty distinguishing the trend in these plots from a least squares trend line.
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This may be surprising in view of the fact that the o of the trend process is 75
percent as large as the o of the cycle process. However, the variance of the cycle
component also involves the parameters of the AR(2) which it follows. The variance

2 in cases where the sum of the AR

of the cycle will be very much larger than o
coefficients is close to one. To see this note that the formula for the variance of an

AR(2) process can be rewritten as

(1—¢2) 1 o2
1+¢2  d[2(1—¢2) —d

(10) var(e) =

where ¢; and ¢, are the AR coefficients, 02 is the variance of the innovations, and d
is simply [1 — (¢1+ #2)] so that d = O corresponds to the situation where the AR(2)
has a unit root and becomes nonstationary. For Watson’s model, d is only 0.076
while Clark gets 0.05. The estimated standard deviation of ¢ is therefore .03 (or
3 percent around trend) for the Watson numbers and .036 (or 3.6 percent) for the
Clark numbers, while their standard deviations for trend changes are only about
.007 (or 0.7 percent).

In contrast, the AR(1) model does not accommodate the usual trend-cycle
decomposition, as discussed above. An alternative trend measure used in this case
is the definition of the trend as the long term forecast, as proposed by Beveridge and
Nelson (1981). However, since there is little autocorrelation in the first differences
of GNP, the forecast differs little from the observed value. Thus the ARIMA model
suggests that almost all the variation in GNP is due to trend and therefore is
permanent, not cyclical. Watson’s plot of the Beveridge/Nelson ARIMA trend
against actual GNP shows them to be practically the same.

3. The Puzzle



The apparent puzzle posed by the Watson and Clark papers is that widely
practiced methodologies seem to lead to very different models of GNP. On the one
hand, the Box-Jenkins methodology suggests an ARIMA(1,1,0) model with little
evidence of cyclical variation. On the other hand, the SS methodology leads to
the characterization of GNP as long and large cyclical movements around a very
smooth trend. Likelihood and goodness-of-fit favor the latter.

Note, however, that the cycle model in (9) an be rearranged in the form

(11) ¢t = 0.924¢;—1 + 0.577(ct—1 — ct—2) + vy

where 0.924 is the sum of the AR coefficients (¢ +@2). The stationarity of the cycle
component clearly depends on the inference that (¢; + ¢2) is less than unity. If the
sum is in fact unity, then the cycle becomes a nonstationary process and the SS
model becomes effectively the sum of two random walks, one being autocorrelated.

The process for the growth rate of GNP would then be

(12) (1-0.577B)(1 — B)z; = (1 — 0.577B)(1 — B)w; + v;

where w and v are the innovations in the trend and cycle process respectively. If the
trend is very smooth so that the variance of w is small relative to that of v, then the
model will be very similar to the ARIMA(1,1,0) model (8). The distinction between
the ARIMA and SS models rests, then, on the inference that (¢; + ¢2) < 1.
Suppose that in fact (¢; + #2) = 1 and there is no stationary cycle component.
What would be the properties of estimates of (¢; + ¢2) under the hypothesis? We
can get some insight into this from what we know about the case of fitting a strictly

linear trend to a process with a unit root. The true process is
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(13) Ty = Teq1 + H(Te — Te—2) + vy

but instead we fit the trend-stationary model

(14) Ty = pTi—1 + G(Te—1 — Te—2) + dt + vy

or, in the SS framework
7w ="T—1+d (noinnovation)

(15) ¢t =p-c—1 + ¢ (ct—1 — ct—2) + vt

Iy = ct+Tt-

This is the Dickey-Fuller problem and we know that least squares estimates of
the unit root are biased towards zero. The formula given by Nelson and Kang
(1981) can be used to approximate the expected value of g. For the number of
observations used by Watson (n = 144) it gives 0.93 (for large n the formula can
also be approximated -by 1 —10/n). Thus, the apparent stationarity of the cycle is
consistent with the bias we expect to get in simple linear detrending if in fact there
is no stationary cycle.

The Dickey-Fuller results also tell us that a linear trend model will appear to
fit significantly better than the true ARIMA model if one uses conventional testing
criteria. The Monte Carlo study in Nelson and Plosser (1982) shows that the t-

ratio for (1 — ) is typically about -2, corresponding to a nominal significance level
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of about 0.025. This in turn corresponds to a difference in log likelihoods of about
2.5, which is about the difference we see in Watson’s two models. It would appear
that even a constrained linear trend version of the SS model (with zero innovations
in the trend process) could be expected to fit better than the ARIMA model even
if the latter were the correct model.

As a final comment on the SS models for GNP, I note that the AR parameters
for the cycle imply a very long business cycle. Watson’s AR(2) is a pseudo periodic
process with a cycle period of 40.5 quarters. Clark’s model gives 69.7 quarters. A
period length of 10 to 17 years is being estimated from data series of lengths 36
and 39 years respectively. Perhaps relevant is that NBER business cycle lengths
have been more in the neighborhood of 5 years. Some caution in interpreting these
estimates would seem to be in order in view of the finding by Nelson and Kang
that linear detrending of an ARIMA(1,1,0) process tends to result in a spurious
cycle with a length that is somewhat more than half that of the sample. This again
points out the difficulty of inferring the existence of a cycle that is long relative to
the length of the available data series.

4. The Dickey-Fuller Phenomenon in the SS Model

The SS model differs from the linear trend model studied by Dickey and Fuller
in that it allows for stochastic shocks in the trend process. The objective here is
to see whether the resulting model, estimated using the Kalman filter, is subject to
the same bias of finding a cycle when there is none. The null hypothesis is that the
data generating process is ARIMA, and for this purpose I take the simplest case of

a random walk. This defines Model 1 which can be written

(16) Te = Te—1 + d + wy
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ct=0

with parameters d and ¢2. An equivalent representation is a linear deterministic

trend plus a random walk

Tt = Tt-1 +d

(16a)

¢t = Ct—1 + V¢

with parameters 02 and d. The linear trend plus cycle model relaxes the unit root

for ¢ and introduces an AR parameter ¢

Tt = Tt—1 +d

(17)

¢t = dep—1 + vt
This defines Model 2 with parameters d, ¢ and 62. The AR(1) specification is
appropriate since the second order term in the GNP model is associated, as shown

above, with the autocorrelation in first differences of log GNP. Finally, the SS model

allows for innovations in the trend process, so Model 3 will be

Tt = Tg—1 +d+ wy

(18)
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ct = Pci_1 + Ve

with parameters d, ¢,02,02. It will be useful to think of Model 2 as Model 3 with
the constraint 02 = 0, and Model 1 as Model 2 with the constraint ¢ = 1.

The log likelihood of any of these models can be evaluated using the Kalman
filier. The computations are described in detail by Clark for the slightly more
complex GNP model having an AR(2) cycle. I have chosen to maximize the log
likelihood by grid search over the relevant parameter space, partly to defend against
iterating to local minima. The generating process is Model 1 withd =0and ¢ =1
with initial condition zo = 0. Initial values of the state variable 7 are set at zero
and given a variance of 20 so that the initial value gets little weight. The number
of observations was set at » = 50, 100, and 150. Experimentation suggested that
d could be estimated simply as the mean change in z (no further search) without
having a meaningful impact on the results. A summary of experiments is given
in the following table, where the numbers in parentheses are estimated standard
deviations. FEach experiment consumed about two hours of cpu time on a VAX
8700.

Note that relaxing the constraint ¢ = 1 as we go from Model 1 to Model 2
increases the log likelihood by about 2 on average; the amount of the increase rising
slightly with the number of observations. Applying a conventional likelihood ratio
test in the typical sample one would reject the random walk hypothesis at better
than the .05 level. This is the Dickey-Fuller phenomenon. When the constraint
that the trend innovation variance is zero (¢2 = 0) is relaxed in going from Model

2 to Model 3 there is only small further increase in the log likelihood, around 0.2

on average. A conventional likelihood ratio test would not suggest a significant
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improvement in fit. The combined increase in the log likelihood from Model 1 to
Model 3 rises with n and averages 2.23 for n = 150, the case most comparable to
quarterly post-war U.S. GNP data. This is close to the improvement reported by
Watson for the SS model over the ARIMA. If one thought this were a chi- square
with two degrees of freedom under the null, then the true model would be rejected

at about the .10 level in the typical case.

Note that allowing for stochastic evolution of the trend component in Model
3 tends to reduce the estimated ¢ in comparison to the linear trend in Model 2.
The stochastic trend tracks the data more closely than a linear trend does, making
the apparent cycle less persistent. The mean estimate for ¥ with n = 150 is very
close to the corresponding coefficient for GNP reported by Watson (see equation
(11) above).

Note also that the estimated variance of the trend innovation (¢2) is relatively
small. In effect, the SS model divides the variance of the true innovations (= 1)
between the cycle and trend innovations, giving the former about 0.8 of it and the
latter somewhat less than the remainder. The estimated o2 is not only small on
average but is zero in more than half the samples. The limitations of the fineness of
the grid do not permit the conclusion that the exact maximum is at zero in these
cases, but it is consistent with the boundary solution phenomenon described by
Sargan and Bhargava (1983) and discussed in the present context by Harvey and
Todd (1983).

Limited experimentation with adding d to the parameter search (rather than
setting it to the mean change in z) suggests that it improves the fit of Model 2 over
Model 1 by about 0.2 in log likelihood, but not the incremental improvement of

Model 3 over Model 2. Estimated % in Models 2 and 3 were reduced slightly. This
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is because by choosing a value of d different from the mean change we get a trend

that tracks the data more closely leaving a less autocorrelated cyclical deviation.

5. Summary and Conclusions

The SS model decomposes the observed series into two components: a nonsta-
tionary trend which is assumed to be a random walk with drift, and a stationary
cycle. The model is identified if these components are assumed to be statistically
independent. When the model is fitted to U.S. real GNP it suggests that time
series can be represented by a smooth trend process plus a highly autocorrelated
cycle which accounts for most of the short term variation in GNP. The SS model
is reported in the literature cited above to fit better than the alternative ARIMA
representation which does not lend itself to decomposition into independent trend
and cycle. The data seem to present a dichotomy: either (1) GNP is a nonsta-
tionary ARIMA process in which short term variation is largely or even entirely
due to stochastic shocks in its trend (permanent) component, or (2) the trend in
GNP is instead very smooth and short term stochastic variation is dominated by
an independent cycle component that is also very persistent; and the latter appears

to fit the data better.

The choice between these alternatives is not without its political overtones. We
tend to think of the trend component of GNP as arising from real factors affecting
the aggregate production function. A “real shock” such as OPEC would shift the
aggregate production function and therefore the long run path (trend) of output.
Monetary and fiscal policy are generally not thought of as having much impact on
the long run path of the economy. Cyclical movements in the economy, on the other
hand, are thought to be strongly influenced by monetary and fiscal policies, if only

to the extent they are unanticipated. Lack of cyclical variation in the economy may
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suggest that government policy is relatively unimportant in steering the economy,
or at least much less important than we had thought. A full discussion of policy
implications goes well beyond the scope of this paper, but it is not difficuit to see
how one’s perception of the importance of monetary and fiscal policy might be

influenced by which view of the GNP process appeared more likely.

It is not surprising on the basis of intuition that it would be difficult to dis-
tinguish empirically between stochastic variation in the trend process and highly
autocorrelated cyclical deviations around a very smooth trend, given a finite sample
of data. The work of Dickey and Fuller (op. cit.) suggests, however, that conven-
tional statistical tests will tend to favor a smooth trend plus persistent cycle model
even when the actual data generating mechanism is entirely nonstationary with no
cycle at all. The result is the appearance of trends and cycles that are spurious
and not present in the generating process. Dickey and Fuller worked specifically
with the case of a linear deterministic trend, while the SS model allows the trend
to be a random walk. To see whether spurious trends and cycles may also arise in
applications of the SS model, I have generated random walk data so that the gener-
ating process is entirely stochastic trend with no cyclical component at all. I then
fitted the SS model in repeated samples of various lengths. The results reported
in section 4 show that the SS typically fits best with a very smooth trend (small
innovation variance), attributing, incorrectly, most of the variation in the data to
a highly autocorrelated cyclical component. The typical improvement in likelihood
over the true model would be judged significant by conventional criteria (as in the

linear trend case) and is comparable to the improvement reported by Watson for

actual GNP data.

The results of the experiments reported in this paper suggest that decomposi-
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tion of GNP and other economic time series in the SS framework using the Kalman
filter should be interpreted with caution. The model may be attributing to the cycle
component variation that is actually due to the trend, while understating the mag-
nitude of shocks in the trend process. The result could be spurious cycles around
a spuriously smooth trend that do not actually portray the characteristics of the

underlying process.
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