
NBER TECHNICAL PAPER SERIES

TEMPORAL AGGREGATION AND STRUCTURAL
INFERENCE IN MACROECONOMICS

Lawrence J. ChristianO

Martin EichenbaUlll

Technical Working Paper No. SO

NATIONAL BUREAU OF ECONOMIC RESEARCH

1050 Massachusetts Avenue
Cambridge, MA 02138

September 1986

We have benefited from useful
discussions with Bennett McCa11U!U,

Allan Meltzer, Jim Stock, and especially Lars Hansen. We

acknowledge the research assistance of Tony Braun and David

Marshall. The research reported here is part of the NBER's

research program in Economic Fluctuations. Any opinions expressed

are those of the authors and not those of the National Bureau of

Economic Research.



NBER Technical Paper #60
September j966

Temporal Aggregation and structural Inference in Macroeconomics

ABSTRACT

This paper examines the quantitative importance of temporal aggregation

bias in distorting parameter estimates and hypothesis tests. Our strategy is

to consider two empirical examples in which temporal aggregation bias has

the potential to account for results which are widely viewed as being

anomalous from the perspective of particular economic models. Our first

example investigates the possibility that temporal aggregation bias can lead

to spurious Cranger causality relationships. The quantitative importance of

this possibility is examined in the context of Granger causal relations

between the growth rates of money and various measures of aggregate

output. Our second example investigates the possibility that temporal
aggregation bias can account for the slow speeds of adjustment typically
obtained with stock adjustment models. The quantitative importance of this

possibility is examined in the context of a particular class of continuous and

discrete time equilibrium models of inventories and sales. The different

models are compared on the basis of the behavioral implications of the

estimated values of the structural parameters which we obtain and their

overall statistical performance. The empirical results from both examples
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1. Introdiction

In order to analyze the effects of changes in the economic environment it
is necessary to identify and estimate the parameters of structural
relationships. One approach to this problem is to interpret economic time
series as the outcome of a well specified dynamic equilibrium in which
rational economic agents solve stochastic optimization problems.

Despite their emphasis on the need to uncover structure, proponents of

this approach to empirical research typically model economic agents as
making decisions at fixed, exogenously specified intervals of time.
Presumably, this modeling strategy does not reflect a belief that the timing
of economic decisions is invariant to macroeconomic policy interventions.
Instead it reflects the difficulty of endogenizing timing decisions in dynamic
equilibrium models. In general we would expect decision intervals to be
time varying and different across heterogeneous agents. Suppose however
that, for technical reasons, we accept the need to proceed under the
assumption that agents make decisions at common, fixed, prespecified
intervals of time. Does it necessarily follow that this interval of time
should be thought of as coinciding with the data sampling interval?
Unfortunately, the answer to this question is no. There is simply no reason
to believe that the frequency at which economic time series are collected

coincides with the frequency at which economic agents make decisions.
In this paper we proceed under the assumption, which corresponds

to standard practice in applied econometric research, that agents make

decisions at fixed intervals of time. However we abandon the assumption
that this interval of time coincides with the data sampling interval. The
purpose of our paper is to examine the consequences of the specification
error that results when agents' true decision interval is finer than the data

sampling interval. We call the resulting distortion to parameter estimates

and hypothesis tests temporal aggregation bias.
It is not surprising that temporal aggregation bias could lead the analyst

astray. In principle i specification error or measurement error could
distort inference. The question addressed in this paper is whether temporal
aggregation bias is important in practice. Clearly we cannot hope to
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provide a definitive answer to this question which will be applicable under
all circumstances. Accordingly, our strategy is to consider two empirical
examples in which temporal aggregation bias has the potential to account for
results which are widely viewed as being anomalous from the perspective of
particular economic models. In both cases, we find evidence of' substantial
temporal aggregation bias.

Our first example illustrates Sims' (1971) observation that temporal
aggregation bias can generate spurious Granger causality relationships. In
particular, the use of temporally aggregated data can make a bivariate
system in which there is one way Granger causality appear to display
bidirectional Granger causality. Our example focuses upon the Granger
causality relationships between growth rates of money and output. Using
post - war U.S. monthly data Eichenbaum and Singleton (1986) provide
evidence that growth rates of nominal aggregates do not Granger cause
output growth. These results are used in conjunction with a monetary model
of the business cycle to argue that exogenuous shocks to the monetary
growth rate were not an important source of variation in output growth in
the U.S. postwar period. More generally their results imply that y
monetary model in which monetary growth rates Granger cause output
growth is inconsistent with post - war U.S. data. Since GNP figures are not
available on a monthly basis, Fichenbaum and Singleton use an index of
industrial production as their measure of real economic activity. A natural
question that emerges is whether their Granger causality findings are
sensitive to the use of quarterly real GNP data. We show that, at least for
some time periods, there is somewhat more evidence that monetary growth
rates Granger cause quarterly growth rates in real GNP. One interpretation
of this result is that quarterly real GNP figures represent more temporally
aggregated measures of real activity than monthly industrial output.
Consequently, Granger causality orderings between real GNP growth and
monetary growth could be spurious in the sense that they reflect the effects
of temporal aggregation. In order to explore this possibility we constructed
quarterly industrial output figures by taking the appropriate averages of the
monthly data. Using this quarterly data, we find that monetary growth
appears to Granger cause industrial production. We conclude that Granger
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causality tests can in practice, as well as in principle, be strongly affected

by temporal aggregation bias.
Our second example investigates conjectures of Mundlak (1961) and

Zellner (1968) that temporal aggregation bias can account For the slow
speeds of adjustment reported in the empirical literature on the stock
adjustment model. Our strategy for investigating this conjecture is as
follows. First, we construct a continuous time equilibrium rational
expectations model of inventories and sales. The model rationalizes a
continuous time inventory stock adjustment equation. Using techniques
developed by Hansen and Sargent (1980a, 1981) we estimate the model using
monthly data on inventories and sales in the nondurable manufacturing
sector. The parameter estimates from the continuous time model imply that
firms close 95 percent of the gap between actual and 'desired" inventories
in seventeen days. We then estimate an analogous discrete time model using
monthly, quarterly and annual data. The parameter estimates obtained using
monthly data imply that it takes firms forty six days to close 95 percent of
the gap between actual and "desired' Inventories. The analogous figure
obtained using quarterly data is two hundred and eleven days. The point
estimates obtained with annual data imply that it takes firms one thousand
nine hundred and eighty days to close ninety five percent of the gap between
actual and "desired" inventories. In our view these results provide support
for Mundlak and Zeilner's conjectures. More generally they indicate just
how sensitive structural inference can be to temporal aggregation bias.
Unfortunately, we cannot claim that temporal aggregation effects account
for the statistical shortcomings of existing stock adjustment models. Both
the discrete and continuous time versions of our equilibrium stock
adjustment model impose strong over identifying restrictions on the data.
Using a variety of tests and diagnostic devices, we find substantial evidence
against these restrictions. In addition, we find no evidence that the overall
fit for the continuous time better is superior to that of the discrete time
model.

Our empirical examples illustrate two distinct approaches taken in the
literature to the study of temporal aggreption bias: the "reduced form" and

"structural" approaches, respectively. The reduced form approach is



concerned with properties of the mapping from the continuous time
statistical representation of a stochastic process to the representation of
the sampled and possibly averaged data. For example, Hansen and
Sargent (1984) and Marcet (1985) focus on the relationship between
continuous and discrete time moving average representations of covariance
stationary stochastic processes. Sims (1971b) studies the mapping from the
continuous time regression of one variable onto another and its sampled
counterpart. The results in this literature have an important role to play in
the model selection and evaluation stages of empirical research. An
illustration of this is provided by our first empirical example, where it is
argued that the observed bidirectional Granger causality pattern between
money growth and GNP growth may reflect spurious temporal aggregation
effects rather than supporting evidence for monetary models of the business
cycle.

The structural approach to the study of temporal aggregation bias
focuses on distortions to parameter estimates and hypothesis tests. This
approach to the temporal aggregation problem is typified by the work of
Hansen and Sargent (1983) and Christiano (1984,1985). Our second example
is very much in the spirit of this approach. In particular we use the
apparatus developed by Hansen and Sargent (1980a,1981) to illustrate
empirically the ways in which temporal aggregation bias can lead the
analyst astray in making structural inferences based on temporally
aggregated data.

For the most part, this paper proceeds under the assumption that the
economic system evolves in continuous time. This does not necessarily
reflect a belief on our part that economic agents are best modeled as making
decisions continuously. Instead we adopt that framework because it is an
interesting limiting case which provides us with a useful benchmark. In
addition it is the standard framework in the temporal aggregation
literature.

Some of the material discussed in this paper is unavoidably technical. In
order to alleviate this problem we make extensive use of footnotes and
references. In addition we refer the reader to Christiano and
Eichenbaum (1985) which is essentially a technical appendix to this paper.



• Unfortunately, this strategy does not allow us to completely circumvent the
inevitable tradeoff between theoretical rigor and ease of exposition. When
faced with this tradeoff, we chose to sacrifice rigor so as to provide the
reader with intuitive interpretations of the main results.

The remainder of this of the paper is organized as follows. Section 2
discusses some reduced form effects of temporal aggregation, and reports
our money and output growth example. In addition, some basic
characteristics of the class of continuous time statistical models we use
are described there. Section 3 describes a continuous time rational
expectations model of inventories and sales. In addition we report the
empirical results obtained using that model. Readers anxious for the
empirical results can proceed directly to subsections 2.D and 3.C. In section
4 we provide some concluding remarks.



2. The Effects of Temporal Aggregation on a Reduced Form Time Series

gçpresentation.

In this section we discuss the temporal aggregation problem from the
"reduced form1' point of view. In doing so, we accomplish three tasks. First,
we briefly review certain theoretical results on the impact of time
aggregation bias on reduced form representations of time series data.
Second, we present two empirical examples which are designed to shed light
on the practical importance of these theoretical results. Third, we set up
the necessary background for our analysis of the structural model of section
three.

In our opinion, the 'reduced form' approach to the study of temporal
aggregation bias has important contributions to make at both the model
selection and model evaluation stages of structural empirical work. At the
model selection stage, the analyst chooses from the class of models under
consideration a variant which maps into a set of reduced form
characteristics qualitatively similar to those found in the data being
studied. In the context of business cycle models, the analyst might be
occupied at this stage in choosing among different propagation mechanisms,
such as costs of adjusting output, serial correlation in the exogenous
shocks, or sticky prices and wages. A standard unexamined assumption
made at this stage is that the model timing interval and the data sampling
interval coincide. If the analyst is not committed to this assumption, then
understanding the reduced form effects of time aggregation is important.
This follows from the fact that temporal aggregation affects the qualitative
properties of the mapping from a particular structural model to
implications for the dynamic properties of the data at hand.

After the model selection stage the analyst uses some procedure, perhaps
the method of maximum likelihood, to assign values to the parameters of the
model selected. Once this is accomplished, the model evaluation stage
begins, during which the analyst considers the time series implications of
his model and verifies whether these are consistent with those of the data.
When they are inconsistent, the structural model is rejected, at which point
the analyst considers different classes of structural models. Viewed in this
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way the model selection and evaluation stages are really part of one ongoing

process.
In this section we emphasize two kinds of temporal aggregation effects.

The first was pointed out by Working (1960) and Telser (1967), who showed
that time averaging and sampling can increase the MA order of a time
series representation. A consequence of this is that the temporal
aggregation effects induced by shrinking the model timing interval can play a
qualitatively similar role, in improving model fit, as increasing the serial
correlation in shock terms. A different reduced form effect of temporal
aggregation was emphasized by Sims (1971b) who noted that time
aggregation can convert a one way causal system into bidirectional
causality. One example of the potential practical importance of this
observation is reported in Christiano (forthcoming). That paper studies the
model in Taylor (1980), which implies that output fails to Granger cause
prices, an implication which is not consistent with the data. One reponse to
this inconsistency, pursued by Taylor (1980), is to introduce serial
correlation into the exogenous shocks, while preserving the assumption that
the model timing interval and data sampling interval coincide. Christiano
(forthcoming) shows that another way to accomodate the bidirectional
causality between prices and output in Taylor!s model is to preserve the
serial independence of the exogenous shocks, but shrink the model timing
interval. This change induces the temporal aggregation effects described by
Sims(1971b). A second example, which is examined in detail below,
concerns the empirical relation between post war U.S. output and money
growth.

The remainder of this section is organized as follows. In subsection 2.A
we discuss some basic ideas about continuous time models which are used in
the rest of the paper. In subsections 2.B and 2.0 we discuss the impact of
time sampling and averaging on MA orders of time series models. This
discussion is illustrated with the use of data on the Japanese-U.S. exchange
rate. Section 2.0 examines the impact of temporal aggregation on Granger
causality patterns.
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2.A Some Notation and Correpts.

In this subsection we describe some basic features of the class of
continuous time statistical models that we work with in this paper. A more
careful (though still very informal) version of what follows appears in
Appendix A.

Let z(t) denote an n dimensional, linearly indeterministic, continuous
2.2

time, covariance stationary, stochastic process. According to the
continuous time version of Wold's decomposition theorem, z(t) can be
represented as,

(2.1) z(t) =

where c(t) is a continuous time n dimensional vector white noise process
with Ee(t)€(t-k = 6(k)V, and 6 is the Dirac delta function which can be
thought of as satisfying 6(k) = 0 for all Ic not equal to zero. The vector c(t)
is the innovation in z(t) and satisfies,

k
(2.2) z(t-1-k) - E[z(t+kfllz(t-s),s�0] = k(r)c(t+k-r)dr,

for any k > 0. Here, E is the linear least squares projection operator.
For many purposes, it is convenient to write (2.1) in operator notation as

follows:

(2.3) z(t) = F(D)e(t),

where,

(2.4) F(D) =

Here, D denotes the time derivative operator, i e., Dx(t) E dx(t)/dt, and

is the continuous time lag operator, ie., etDx(t) x(t+r). It can be shown
that there is a one-to-one relation between f and F. Consequently, there is
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no substantive difference between parameterizing the Wold representation at
the level of F or F'. We find it convenient to parameterize F.

While Wold's theorem does not require P to be a rational function of D,
we impose this assumption for computational reasons. Accordingly we
assume that F(D) is of the form,

(2.5) F(D) = C(D)/O(D).

Here, C is an n x n matrix valued, q-th ordered polynomial in 0, and U is a
scalar, p-th ordered polynomial in D, with p,q < w. Using this notation, we
can write (2.1) in operator notation as,

(2.6) O(0)z(t) zC(0)c(t)

Exploiting the obvious analogy with discrete time models of time series, we
say that (2.6) is a continuous time ARMA(p,q) model for z(t).

Wold's theorem restricts the polynomials C(D) and 0(0) in several
respects. First, the assumption that {z(t),t c (-w,)} is a covariance
stationary stochastic process requires the zeroes of 0 to be negative in real
part. This is reminiscent of the analogous condition for discrete time
models, where covariance stationarity requires the zeroes of the AR
component to be greater than one in modulus. In addition, the condition that
€(t) is the innovation in z(t) restricts the zeroes of detC(D) to be nonpositive
in real part. Again, there is an analogy with the discrete time case, where
Wold's theorem requires the zeroes of the determinant of the MA component
to be equal to or greater than one in modulus. A restriction which we
impose on 0 and C which has no counterpart in the discrete time case is q �
p-i. If this condition is violated, then 0 and C do not correspond to an
"ordinary" p(r) function via (2.3) - (2.5). This condition is discussed
further in Appendix A. Finally, as in the discrete time case, econometric
identification requires some normalization of the coefficients on 0 and C.

We adopt the normalization that the coefficient on in 0 be unity and that
the coefficient matrix on 0 in C be the identity matrix. Accordingly we
write 0(0) and C(0) as,



(2.7a) 0(D) = 0 + 01D + 02D + ... + 01D1 + D

(2.7b) C(D) = I + CD + C2D + + CqjD' + CqD.

With the exception of example 2 below, all of the models which we consider
in this paper have continuous time reduced form time series representations
of the form given by (2.6) and (2.7).

2.B Sampling Point-in-Time From a Continuoi..s Time Process.

Given a continuous time process {z(t),t e (-m,w)}, we can define the
discrete time process {zt E (O,±1,±2,...)} by setting z = z(t) for integer
values of t. In this case, z is said to be z(t) sampled point-in-time. Since
z(t) is covariance stationary and linearly indeterministic, sq is z.
Therefore, by the discrete time version of Wold's theorem, it is possible,
without loss of generality, to represent z as follows:

(2.8) z =i0
were

= I, e is white noise with Eecj positive semidefinite
k- 1

Zt+k - Etzt+k 11'it+k-i'
for k (1,2,3,...). Here, E denotes the linear least squares projection
operator on the space formed by z5. s (0,1,2,...). Using the operator
notation, Lx xj, (2.7) can be written as follows:

z [f.L']c.
1=0

When the parent process is given by the continuous time model (2.6),
then the polynomial in L above is rational and can be written as,
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(2.9a) f1L' =

where

(2.9b) oc(L) = 1 + QC + ocL + ... + OCLP

(2,9c) Cc(L) = I + C1cL + C2CL2 + ... +
CC1LPI

Hansen and Sargent (1984) and Marcet (1985) analyze in great detail the
relationship between the innovations to the z(t) and z processes as well as
the moving average representations of these two processes. For our purposes
it is more convenient to focus upon the relationships summarized by the
following theorem.

Theorem!
If

(i) {z(t),t (-ai,w)} is generated by (2.6) and (2.7),
(ii) the roots of 0 are distinct and negative in real part, and p < q,
(iii) z = z(t) for t (O,±1,±2,...)

Then,

(iv) z has the representation given by (2.8)-(2.9),
Cv) 0(X) = 0 if and only if ec(e) = 0.

Proof: see Appendix A.

The result in Theorem I which we wish to focus upon is (iv), according
to which a point-in-time sampled representation of a continuous time
ARMA(p,q) model is ARMA(p,p-1) with in general not equal to zero.
This result does not depend on the assumption that sampling is being done
from a continuous time 'parent" model. The result holds whenever a fine
interval model with q < p is sampled. To motivate this assertion, consider
the following example.
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Example 1: Point-In-Time Sampling From a Discrete Time ARMA(2,O)
Model.

Suppose the data generating mechanism is given by

(2.10) (1 - X1L)(1 -
x2L+)zt

=

where Ltx1 and : t0, is the white noise

forecast error in linearly predicting z using s0, 1/2, 2/2, 3/2
Also lX11 < I for i =1,2. Evidently, (2.10) defines an ARMA(2,0)
representation for {z : trO, Now, multiply both sides of (2.10)

by the operator (1 + X1L3)(1 ÷X2L), and exploit the fact (1 - X L) = (1 -

XL3)(1 + XL) For i1,2, to obtain the representation,

(2.11) (1 - x1L)(1 - L)z = + (X1 + xz)e+ +

Since the expression on the right hand side of (2.11) is autocorrelated at lag
one it is not surprisin that the unit sampled representation of can be

shown to be ARMA(2,i)
Theorem 1 implies that the order of the MA component of the ARMA

representation of z is independent of the order of the MA component of the

ARMA representation of z(t). Even if q is equal to zero, temporal
aggregation induces a non-trivial MA component to z1 provided that p � 2.

Consequently, temporal aggregation can be an important source of serial
persistance in discrete time series data. At the model building stage, this

implies the existence of an interesting tradeoff between the temporal
aggregation effects induced by shrinking the model timing interval and
adding factors such as costs of adjustment and serially correlated shocks to

the model. Each of these has a qualitatively similar effect on the reduced
form dynamics of the model for the sampled data. For example, in a model
such as the one in section 3 of the paper, the reduced form for inventories
and sales is vector AR(2). If the econometrician implements empirically
the discrete time version of the model, he may find evidence of first order



autocorrelation in the fitted residuals. One way to respond to this situation
would be to preserve the discrete time specification and introduce an extra
MA term in the exogenous taste and/or technology shock processes.
Introducing costs of adjusting output, by adding higher order AR lags, may
also accommodate serial correlation "missed' by the model. Theorem 1
suggests that a possible alternative strategy is to preserve the basic
structure of the model, but formulate it at a finer timing interval.

2.C Sampling Averages From a Continuot. Time Process.

We now consider the impact of the use of time averaged data on the
ARMA representation of a time series. Define the average of z(t) over the
unit interval as follows:

(2.12) (t) = z(t-r)dr.

Again, it is possible to define the sampled process, (t) for t = 0,
The following theorem shows that when (t) is generated by (2.6),

then the discrete time representation of z is ARMA(p,p). Thus, the effect
of averaging is to increase the order of the moving average of the sampled
representation by one.

Theorem 2

If conditions (i) through (iii) of Theorem I are satisfied, then the Wold
representation of has the following ARMA(p,p) form:

(I + 010L. + e2cL2 + ... + ocLPz = (I + c1cL+ C2cL2 + ... +

where the O°'s match those referred to in Theorem 1.

Proof see Appendix A).

In order to provide the reader some intuition for this result we now
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present an example, taken from Working (1960), of the way in which
averaging induces an extra moving average term in a time series
representation.

Example 2:

Suppose z(t) has the representation:

(2.13) z(t) = e(t-z-)dr = F(D)c(t),

so that z(t) is the integral of white noise disturbances over the unit interval.
It is easy to verify that F(D) = (1 - e)/D. Since this F(D) function is not
rational, it does not satisfy the condition of Theorem 2. Nevertheless, the
example neatly illustrates the fact that averaging introduces an extra
moving average term in the sampled representation.

Note first that z is a white noise process and therefore has a discrete
time ARMA(O,0) representation. Now consider the stochastic process z(t)
defined by,

1 1 1 2

(2.14) (t) E c(t-v-r)dr] dv [re(Lr)dr + j (2 - r)E(t-r)dr.

It is easy to verify that,

(2.15) rk cov((t),(t-kfl/var((t)) = 0 k > I
* IkI=1

(The result in (2.15) can be found in Working (1960).) Thus, the effect of

averaging is to convert the white noise, z1, into the first order serially

correlated process,
To illustrate the potential practical importance of this observation, we

analyzed the monthly log difference of the Japanese - U.S. exchange rate for
the period February 1974 to February 1986. That is, we set z(t) = log[s(t)]-
log[s(t-1)J, where s(t) is the exchange rate at date t. As the first row of
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Table 2.1 indicates, when the observations are point-in-time, the sample
correlogram of the zr's conforms to that of a white noise. This result is
consistent with an. important class of economic models which predicts that
real asset returns ought to be serially uncorrelated. We also computed the
Following two measures of average z(t) which correspond to measures of
exchange rates and asset returns that might be used in empirical work when
only time averaged data are available,

1 t

(t) = log{s(t-v)]dr - log[s(t-1-r)]dr, and,
1 1

z(t) =
log[ s(t-r)dr] - log[js(t-i-r)dv]

The first of these measures is the one for which the analytic result, (2.15),
was derived. The second is a measure that is commonly employed in actual
empirical work. Let and denote the monthly sampled z(t)'s and (t)'s,
respectively. The second row of Table 2.1 reports the first 11 sample
correlations of , while the third reports results for z. The results are
virtually indistinguishable. Note that the null hypothesis that the averaged
data are a white noise can be rejected. Moreover, they are consistent with
the implications of (2.15), since the implied 90% confidence interval for
the lag one autocorrelation is (.21,.47), which includes in its interior.

An analyst who was not aware of the effects of time averaging on the
reduced form time series representation of z(t) would be led to incorrectly
reject the class of economic models which predict that exchange rates and
asset returns ought to be serially uncorrelated if he used or rather than

z. In this empirical example, the fact that the exchange rate movements
are serially correlated is purely an artifact of time averaging
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Table 2.1

Autocorrelations, Log Difference of U.S. - Japanese Exchange Rate
February 1974 - February 1986

Lag 1 2 3 4 5 6 7 8 9 10 11
EndofMonth* .10 .03 .14 .07 .07 -.05 -.01 .06 -.10 -.06 .04
AverageofLogs**.34 .02 .09 .19 .07 -.06 -.03 .02 -.06 -.06 .01
Log of Average. .34 .02 .09 .19 .07 -.06 -.03 .03 -.06 -.06 .00

* Standard error (s.e.) under null hypothesis of white noise: .08.
** Under (2.15), s.e. of r , for k>1 is {[1+2Wh]/145} = .09 and

s.e. of r1 {[1 - 3(*)2 + 4(*)I/145} = .08 (see Box and

Jenkins[1976,pp.34-35].) Here, rk denotes the sample estimate of rk.
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2.0 The Impact of Temjpl Aggregation on Tests ofGranger Cawa1iy

Since the work of Sims (1971b) and Geweke (1978), it has been well
known that temporal aggregation can convert a one way Granger-causal
relation into bidirectional Granger causality. The intuition underlying this
result is a simple omitted variables argument. Suppose that, in
continuous time, x(t) fails to Granger cause y(t). That is, past x(t)'s are
not useful in predicting future y(t)'s, given a continuous record on all past
y(t)'s. Now suppose that x(t)'s and y(t)'s are only observed at integer
values of t. In this case, a forecasting equation for future y(t)'s that only
uses sampled past y(t) 's omits a massive amount of useful information.
Missing are the observations on past y's between the integers. As long as
there is some dynamic correlation between x(t) and y(t), past x's at the
integers will be correlated with the missing past y's. For this reason, the
past x's may serve as a. useful proxy for the missing y's in forecasting
future y's. In this case the apparent Granger causality going from x to y
would be spurious in the sense that it is simply an artifact of temporal
aggregation.

In order to gain some insight into the quantitative importance of these
considerations, we investigated the Granger causality patterns between
different measures of U.S. real output and money growth. Our results are
based on estimated bivariate VARs which included twelve lags of each
variable and a constant. These were estimated using data on six sample
periods covering the period February 1952 through December 1985.
Initially we measured output by the monthly Industrial Production (IP) Index
constructed by the Federal Reserve Board. Money was measured by monthly
data on Ml as published in the Federal Reserve Bulletin. Column 2 of
Table 2.2 displays the significance level of the F-statistics testing the null
hypothesis that output growth (the difference in the logarithm of IP) is not
Granger caused by the growth rate of Ml (the difference in the logarithm of
Ml). Consistent with results in Eichenbaum and Singleton (1986), we found
that in none of the six sample periods does the growth rate in MI Granger
cause the growth rate of IF at the 5 percent significance level. In Live of

17



the six sample periods we cannot reject, at even the 10 percent significance
level, the null hypothesis that IP growth is not Oranger caused by money

growth.
Next, we examined the Granger causality patterns between the growth

rate in quarterly real GNP and the quarterly growth rate of Ml. Column 4
of Table 2.2 displays the significance level of the F statistics testing the
null hypothesis that real quarterly GNP growth is not Granger caused by
the quarterly growth rate of Ml. Notice that the reported F statistics are
all lower than the corresponding entries in Column 2. In fact, these
numbers warrant rejecting the null hypothesis at the 7 percent level,
although not at the 5 percent significance level. Overall, there is consider-

ably more evidence that output is Granger caused by money when we use
quarterly real GNP data than when we use monthly IP data as our measure

of output.
How can we interpret the different results that we obtain using quarterly

real GNP data and industrial production? One interpretation is that real
GNP is simply a better indicator of real output than monthly industrial
output. A different interpretation is that quarterly real GNP is a more
temporally aggregated measure of real output than monthly industrial output.
In light of Sims' results, the Granger causality pattern obtained with

quarterly data could be interpreted as being spurious in the sense of

reflecting the effects of temporal aggregation. In order to investigate the
empirical plausibility of this second interpretation we constructed quarterly
Ml and IP data by arithmetically averaging the monthly levels data. We
then estimated a quarterly VAR(i2) model using the quarterly growth rates
for Ml and IP, and tested the null hypothesis that Ml growth fails to
Granger cause IP growth. The significance levels of the test statistics for
the six sample periods appear in column 3 of Table 2.2. Notice that the
significance levels are lower than those in column 2 by a factor of 2 to 12,
depending on the period. Moreover, in all periods, except the most recent,
the significance levels have dropped enough so that the null hypothesis can
be rejected at the five percent level. In the pre-1983 data, Ml growth
appears to be useful in forecasting IP growth in the quarterly data only
because it is proxying for missing data on lagged IP growth.
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In our view these results provide support to the view that temporal
aggregation contributes in a significant way to the role that money plays in
forecasting quarterly real GNP. Of course in the absence of reliable monthly
data on real CNP data we cannot draw definitive conclusions Nevertheless
our results do indicate the potential importance of temporal aggregation in
generating spurious Granger causality patterns



Table 2.2

Significance' Levels of Granger Causality Tests of Null Hypothesis That
Money Growth Fails to Granger Cause Output.2

Industrial Production4 Real GNP5

Period3 Monthly Quarterly Quarterly

52 - 79 .220 .018 .067
61 -79 .093 .023 .060
52 - 83 .327 .045 .004

61 - 83 .123 .039 .024

52-85 .406 .114 .012

61 -85 .215 .107 .041

Defined as the probability, under the null hypothesis, that the test statistic

takes on a value greater than the computed value. When this quantity is
small then the null hypothesis is unlikely.
2All results are based on a bivariate 12 lag VAR estimated by ordinary
least squares.
3Signifies the period over which the estimation was carried out. Monthly
(quarterly) results were obtained using data from the first month (quarter)
in the first year to the last month (quarter) in the second year.
4Results for VAR on growth in industrial production and Ml growth.
5Results for VAR on real GNP growth and Mi growth.



3. Temporal Aggion and Structural Parameters: The Stock
MittrnenLModel

Application of the stock adjustment model to the study of inventory
behavior frequently produces implausibly low estimates of the speed of
adjustment of actual to target inventories. For example, the parameter
estimates reported by Feldstein and Auerbach (1976) imply that firms take
almost 19 years to close ninety five percent of the gap between actual and
desired inventories. Application of the stock adjustment model to other
problems such as the demand for money also yields implausibly low speeds
of adjustment.

A variety of interesting explanations for these anomalous results exist.
Blinder (1986), Eichenbaum (1984), and McCallum (1984) explore different
explanations for the slow estimated speed of adjustment of inventories.
Goodfriend (1985) discusses this problem with respect to the demand for
money. In this section we explore the possibility that estimated slow speeds
of adjustment reflect temporal aggregation bias. Mundlak (1961) and
Zellner (1968) showed theoretically that, if agents make decisions at
intervals of time that are finer than the data sampling interval, then the
econometrician could be led to underestimate speeds of adjustment. This is
consistent with findings reported in Bryan (1967) who applied the stock
adjustment model to bank demand for excess reserves. Bryan found that
when the model was applied to weekly data, the estimated time to close
ninety-five percent of the gap between desired and actual excess reserves
was 5.2 weeks. When the model was applied to monthly aggregated data, the
ninety-five percent closure time was estimated to be 28.7 months.

The empirical work discussed in this section is designed to shed light on
whether temporal aggregation bias can account, in practice, for the slow
speeds of adjustment typically found when the stock adjustment model is
applied to inventories of finished goods. In subsection 3.A we formulate a
continuous time equilibrium model of employment, inventories of finished
goods and output. In subsection 3.8 we discuss an estimation strategy which
explicitly takes the temporal aggregation problem into account. Finally, in
subsection 3.C we report our empirical results.
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3.A A Continuoiii Time Model of Inventories, Output and Sales.

In this subsection we discuss a modified continuous time version of the

model in Eichenbaum (1984). Our model is designed to nest, as a special

case, the model considered by Blinder (1981,1986) and Blinder and Holtz-

Eakin (1984). We take that model to be representative of an interesting

class of inventory models. An important virtue of our model is that it

provides an explicit equilibrium rationale for a continuous time version of

the stock adjustment equation for inventories. An additional advantage of

proceeding in terms of an equilibrium model is that we are able to make

clear both the theoretical underpinnings and the weaknesses of an
important class of inventory models which has appeared in the literature.

Consider a competitive representative household that ranks alternative

streams of consumption and leisure using the utility function:

(3.1) EL £ t{(t+)(t+r) -.5A(s(t+r)) -N (t+v) }dr.

In (3.1),
t = the time unit, measured in months,

Et = the linear least squares projection operator, conditional on the time t

information set,
s(t) = time t consumption of the single nondurable consumption good,
N(t) = total work effort at time t,
u(t) = a stochastic disturbance to the marginal utility of consumption at time

t, and,
A,r positive constants.

We now specify the technology for the production of new consumption

goods and storing inventories of finished goods. Let Q(t) denote the total

output of newconsumption goods at time t. The production function for Q(t)

is given by:

(3.2) Q(t) = [(2/a)N(t)]'

where a is a positive scalar. In order to accommodate two different types of
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costs associated with inventories that have been considered in the literature
we suppose that total inventory costs, measured in units of labor, are given
by:

(3.3) C1 (t) = (b/2) [s(t)-cI (t)I2 + v(t) 1(t) + (e/2) 1(t)2

where b,c and e are positive scalars, v(t) is a stochastic shock to marginal
inventory holding costs and 5(t) denotes time t sales of the good.The last
two terms in (3.3) correspond to the inventory holding cost function adopted
by Blinder (1981,1986) and Blinder and Holta-Eakin (1984), among others.
This component of costs reflects the physical costs of storing inventories of
finished goods. The first term in (3.3) reflects the idea that there are
costs, denominated in units of labor, associated with allowing inventories to
deviate from some fixed proportion of sales. Blanchard (1983,p.378)
provides an extensive motivation of this component of inventory costs.
Similar cost functions appear in Fichenbaum (1984), McCallum (1984) and
Eckstein and Eichenbaurn (1985).

The link between current production, inventories of finished goods and
sales is given by,

*
(3.4) Q(t) = s(t) + DI(t),

where D is the derivative operator, Dx(t) = dx(t)/dt.
It is well known that, in the absence of externalities or similar types of

distortions, rational expectations competitive equilibria are Pareto optimal.
Since our representative consumer economy has a unique Pareto optimal
allocation, we could solve directly for the competitive equilibrium by
considering the relevant social planning problem (see Lucas and
Prescott (1971), Hansen and Sargent (1980b) and Elchenbaum, Hansen and
Richard (1985)). On the other hand there are a variety of market structures
which will support the Pareto optimal allocation. In the interest of
preserving comparability with other papers in the inventory literature, we
find it convenient to work with a particularly simple market structure that
supports this allocation. As in Sargent (1979) we require only competitive
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spot markets for labor and the consumption good to support the Pareto

optimal allocation.
Suppose that the representative consumer chooses contingency plans for

s(t+r) and N(t+r), r 0, to maximize (3.1) subject to the sequence of
budget constraints,

(3.5) P(t+r)s(t+r) = N(t+r) + ir(t-t-v).

In (3.5),
P(t) = the price of the consumption good, denominated in labor units, and

rr(t) = lump sum dividend earnings of the household, denominated in labor

units.
Solving the representative consumer's problem we obtain the following

inverse demand function,

(3.6) P(t) = -As(t) + u(t).

Given the very simple structure of relation (3.6) it is important to

contrast our specification of the demand function with different
specifications that have been adopted in the literature. In constructing

empirical stock adjustment models, most analysts abstract from modelling

demand. Instead, the analysis is conducted assuming a particular time
series representation for an exogenous sales process (see for example
Feldstein and Auerbach (1976) or Blanchard (1983)). Our model is
consistent with this practice when A is very large. To see this, rewrite
(3.6) as,

(3.6Y s(t) = —(i/A)P(t) +

where q(t) = -(1/A)u(t). The assumptions we place on u(t) below guarantee
that q(t) has a time series representation of the form y(D)q(t) = u(t), where

u(t) is continuous time white noise, uncorrelated with past values of s(t) and

1(t). Also, y(D) is a finite ordered polynomial satisfying the root condition

required for covariance stationarity. If A is very large ("infinite") then
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sales have the reduced form time series representation y(D)s(t) = u(t). This
is the continuous time analogue of the assumption, made in many stock
adjustment models, that sales are an exogenous stochastic process in the
sense of not being Granger caused by the actions of the group of agents who
make inventory decisions. (Our empirical results indicate that the
assumption of one way Granger causality from sales to inventory stocks is
reasonably consistent with the data.)

Other authors like Blinder (1986) and Eichenbaum (1984) begin their
analysis by postulating the industry demand curve (3.6). Our analysis
provides an equilibrium interpretation of this demand specification. In so
doing we are forced to confront the strong assumptions implicit in (3.6).
For example, we implement our model on nondurable manufacturing
shipment and inventory data. This choice of data was dictated by the desire
for our results to be comparable with those appearing in the relevant
literature. Notice however that manufacturers' shipments do not enter
directly as arguments into consumers' utility functions. Rather they
represent sales from manufacturers to wholesalers and retailers who in
turn sell them to households. Consequently, objective function (3.1)
consolidates the wholesale, retail and household sectors. We know of no
empirical justification for this assumption. By focussing on nondurable
manufacturers, we place more faith than we care to on the stability of their
relation to wholesalers and retailers. For example, shifts through time in
the pattern of inventory holdings between manufacturer's and retailers and
wholesalers would have effects on our empirical results that are hard to
predict. At the same time they do not represent phonemena that we wish to
model in this paper. In future research we plan to avoid this type of
problem by consolidating data from the wholesale, retail and manufacturing
sectors.

We assume that the representative firm seeks to maximize its expected
real present value.The firm distributes all profits in the form of lump sum
dividends to consumers. The firm's time t profits are equal to

(3.7) JT(t) = P(t)s(t)-N(t)-C1(t).



Substituting (3.2), (3.3) and (3.4) into (3.7) we obtain,

* * 2 * 2 2
(3.8) 7r(t) P(t)s(t)-(a/2) [s(t)+D1(t)] -(b/2) [s(t)-cI(t)I -v(t)I(t)-(e/2)I(L)

The firm chooses contingency plans for s(t+v) and DI(t+r), r � 0, to
maximize,

(3.9) Et 1rnTh(t÷V)dV

given 1(t), the laws of motion of v(t) and u(t), (3.1) and beliefs about the law
* 3.3

of motion for industry wide sales, s(t). In a rational expectations
equilibrium these beliefs are self-fulfilling. Sargent (1979,p.375) describes
a simple procedure for finding rational expectations equilibria in linear
quadratic, discrete time models. The discussion in Hansen and Sargent
(198 Oa) shows how to modify Sargent's solution procedure to accomodate
our continuous time setup. Briefly, the procedure is as follows. Write,

(3.10) F[I(t),DI(t),s(t),v(t),P(t),t} = et1r(t),

so that (3.9) can be written as,

(3.11) EtIF[I (t+r) ,DJ (t+r) ,s(t+r) ,v(t+r) ,P(t+r) ,r]dr,

by choice of DI(t+r), s(t-1-r), � 0, subject to 1(t) and the laws of motion of
v(t) and P(t). Notice that the principle of certainty equivalence applids to
this problem. Accordingly, we first solve a version of (3.11) in which
future random variables are equated to their time t conditional expectation.
Then we use a continuous time version of the Weiner-Kolmogorov
forecasting formula to express the time t conditional expectation of time
t+r variables in terms of elements of agents' time t information set.

The variational methods discussed by Luenberger (1969) imply that
firm's Euler equations for s(t) and 1(t) are:

*
(3.12a) BF/Bs(t) = 0 and,
(3.12b) 8F/8I(t) = D {BF/8DI(t)}.
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These imply respectively:
*

(3.1 3a) P(t) -(a+b)s(t)-aDI Ct) +bcl (t) =0, and,

2 2 * *
(3. 1 3b) aD 1(t) -i-aOl (t) -(c b+e) 1(t) +aDs(t) +(cb-ra)s(t) = v(t).

In a rational expectations competitive equilibrium, P(t) must satisfy (3.6),
with s(t) = 5(t). Substituting (3.6) into (3.13a) and replacing s(t) by s(t) we
obtain,

(3.14) s(t) [a/ (a+b+A) 101(t) + [bc/ (a+b+A) 11(t) + [1 / (a+b+A) Iu(t).

It is convenient to collapse (3.1 3b) and (3.14) into one differential equation
in 1(t). Substituting s(t) and Ds(t) from (3.14) into (3.13b) we obtain,

(3. ISa) (D-X) [O-(r-X)1I(t) = (a+b+A) v(t) - I {(bc-ra)/a + 0] u(t)
a (b+A) (b+A)

where,

23(3.ISb) X .Sr+(k+.25r) and,

(3. lSc) k= [(a+b+A)/a(b+A)]{(bc[c(a+A)+ra}/(a+b-s-A)) + e}.

Since k > 0, it follows from (3.15b) that X > 0 is real. Moreover, it is
easy to verify that r—X = .5r-[k+.25r2] Solving the stable root (r-A)
backward and the unstable root A forward in (3. ISa) we obtain,

(3.16) 01(t) = (r-X)I(t) 1 te>\tv(t+r)dr +

+ i ee>t[(cbra)/a+D}u(t+r)dr,ETA

= (r-A)I(t) - a+b+A f ettv(t+r)dr
a(b+A) °
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- 1 u(t) + 1 [bc (rX)]jeTu(t+t)dt,
bT b+a a

where the second equality is obtained using integration by parts.
Substituting (3.16) into (3.14), we obtain,

(3.17) 5(t) = _______ 1(t) ÷ ATetv(t+t)dr +b4Au(t)

-
(b+A)(a+b+A)

[(bc/a) - (rX)]jetu(t+r)dr.

Equations (3.16) and (3.17) are the equilibrium laws of motion for
inventory investment and consumption in the perfect foresight version of our
model. Before allowing for uncertainty we discuss some qualitative features
of this equilibrium.

First, suppose that the parameter b is equal to zero and there are no
technology shocks. This is the model considered by Blinder (198 1,1986) and
Blinder and Holtz-Eakin (1984). The role of inventories in this version of the
model is to smooth production in the sense that inventory investment is
negatively related to current demand shocks and positively related to
expected future demand shocks (see (3. 16) and recall that r-X <0). As
Blinder (1986) points out, production smoothing, as defined here, does not
necessarily imply that the variance of sales will exceed that of production.
For example, if the serial correlation structure of u(t) were such that a
jump in u(t) typically implies a large increase in u(t) in the future, then the
current jump in u(t) could lead to an increase in inventory investment, as
well as sales. We rule out these types of u(t) processes below. Consequently,
production smoothing in our model implies that the variance of production is
lower than the variance of sales when b = v(t) = 0.

Second, suppose that there are no preference shocks. Then, the role of
inventories is o smooth sales. To see this, notice that inventory investment
depends negatively on current and future shocks to the inventory holding cost
function. The firm holds less inventories when the marginal cost of holding
inventories increases. Suppose that inventory holding costs are viewed as
general shocks to production costs. Firms will use inventories to smooth
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production costs, as opposed to production levels, over time in the face of
stable demand for their product. For the kinds of production cost shocks that
we consider in this paper, this implies that the variance of sales will be
smaller than the variance of production.

A slightly different way of seeing these points is to remember that the
competitive equilibrium solves the problem of a fictitious social
planner/representative consumer. The representative consumer has a utility
function which is locally concave in consumption so that, other things equal,
he prefers a smooth consumption path. II preference shocks predominate we
would expect sales/consumption to be volatile relative to production. On the
other hand if technology shocks predominate, we would expect sales/con
sumption to be smooth relative to production. Blinder (1981,1986) and
West (1986) document the fact that, at least for post World War II data, the
variance of production exceeds the variance of sales/consumption. This
suggests that the primary role of inventories is to smooth sales rather than
production levels.

We now consider the equilibrium of the system in the uncertainty case. In
order to derive explicit expressions for the equilibrium laws of motion of
the system we parameterize the stochastic laws of motion of the shocks to
preferences and technology. To this end we assume that u(t) and v(t) have
the joint AR(1) structure,

(3.lBa) u(t) = c1(t)/(fi+D) 7eThc1(tr)dr, and

(3.18b) v(t) = e2(t)/(a-W)

where a and are positive scalars. The vector e(t) = [edt) e2(t)] is the
continuous time linear least squares innovation in [u(t) v(tW, Ec(t)c(t-r) =
Sft)V, where V is a positive definite 2 x 2 symmetric matrix and 6(r) is
the Dirac delta generalized function.

Given the above specification for the shocks it is obvious that, for r � 0,

(3.19a) Etu(t+r) = Jec1(t+r-s)ds = C t1fls(t)d ePtu(t).
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Similarly,

(3. i9b) Ev(t+r) = e_atv(L).

Simple substitution from (3.19) yields,

E T etu(t+r)dr = u(t)/(fl+X) and Et etv(t+r)dr v(t)/(a+X).

Substituting these expressions into (3.16) and (3.17) we obtain the
equilibrium laws of motion for s(t) and DI(t),

(3.20a) D1(t) = (r-X)1(t) -
:(b4-A)(a+X)

v(t) + u(t)

(3 20b' bc-a(r-X) + v(t) + a [(bc-ra)-a]
• / —

a+b+A ' ' (b+A)(a+X) (b+A)(a+b+A) a($+X)

+ 1a+b+AJ u(t)

It is convenient to write the equilibrium laws of motion for 1(t) and s(t)
in the form of a continuous time moving average of e1(t) and e2(t).
Substituting (3.18) into (3.20) and rearranging we obtain, in operator
notation,

(3.21) 1(t)
= 0(0) C(D)e(t).

s (t)

where

(3.22) 0(D) = (cr+D)(+D)[D

2

(3.23) C(D) = C0 + C1L + C2L
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q1a q2P

g1bc-(r-X)) S2k2
a+b+A a+b+N

= '+a-(r-A) g2 (fl-bc/a)
a+b+A a+b+A

0 0

62:: 1-aq1 -aq2
a+b+A a+b+A

(3.24) qi = (cb-ra)-afl and q = - (a+b+A)
a(A+fl) (b-i-A)

We find it useful to write (3.21as,

(3.21) 1(t)

= 9(D)1C(IJ)e(t)
s (t)

—. .'. — —1 ..'. , 4'where e(t) = 00e(t), C(D) = C(D)C0 , and Ee(t)e(ty = óft)V = 6(r)C0VC0'.
With this definition of C(D) and e(t), equations (3.21)-(3.24) summarize all
of the restrictions that our model imposes on the continuous time Wold
MAR of 1(t) and s(t).

We conclude this section by showing that our model is consistent with a
stock adjustment equation for inventories. Let 1(t) * denote the aggregate
level of inventories such that if 1(t) = 1(t) * then actual inventory
investment, 01(t), is equal to zero. 1(t)t is taken to be the level of "desired'
or "target" inventories. Relation (3.20a) implies that,

(3 25) 1(t)t — + a+b+A
(t) - (bc-ra) - afl (t)

—

(r—A)a(b+A) (a+X)
V

a(r-A) (b+A) (fl+A) u
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Substituting (3.25) into (3.20a) we obtain a stock adjustment equation for

inventory investment,

(3.26) DI(t) = (X—r)[I(t)t — 1(t)].

We require a measure of the "speed of adjustment" which can be
compared with similar measures reported in the literature. In order to
make this concept precise we imagine, counterfactually, that movements in
1(t) can be ignored over an interval r E (t,t+l), so that Ifr)* = 1(t)t for r E
(t,t+l). Then the solution to (3.26) is

(3.27) l(t+v) - I(t)* = et[I(t) - l(t)*J.

Relation (3.27) gives rise to an interesting summary statistic regarding
the speed of adjustment of actual to target inventories. In particular, the
number of days required to close 95% of the gap between actual and target
inventories is,

(3.28) Tc = -3Olog(i-.95)I/(X-r),

where 30 is approximately the number of days in a month.
Given estimates of the structural parameters it is straightforward to

calculate this statistic. In the next section we discuss a strategy for
estimating the parameters of our model from discrete data. In addition we
formulate a discrete time version of the model which is useful for
estimating speeds of adjustment under the assumption that agents' decision
intervals coincide with the data sampling interval.

32



3.B Estimation lssws.

In this subsection we discuss a strategy for estimating the continuous

time model of subsection 3.A from discrete observations on inventories and

sales. Since our estimator corresponds to the one discussed in Hansen and

Sargent (1 980a) we refer the reader to that paper for technical details.

Chriètiano and Eichenbaum (1985) provide additional details for the model

considered here. In this subsection we also display a discrete time version

of our basic model and decsribe a method for estimating its parameters. By

estimating both models we are able to derive an empirical measure of the

effects of temporal aggregation on speed of adjustment estimates.

We now describe the procedure used to estimate the parameters of the

continuous time model described in subsection 3.A. This procedure takes

into account the fact that the inventory data are point—in-times and measured

at the beginning of the sampling interval, while sales are averages over the

month.
Our estimation strategy involves maximizing an approximation of the

Gaussian likelihood function of the data with respect to the unknown

parameters, , which we list explicitly in subsection 3.0. The

approximation we use is the frequency domain approximation studied

extensively in Hannan (1970). Hansen and Sargent (1980a) show how to use

this approximation to estimate continuous time linear rational expectations

models from discrete data records.
One way to describe our estimation strategy exploits the observation that

estimation of a continuous time model actually is a special case of

estimating a constrained discrete time model. Recall from the discussion of

section 3.A that implies a continuous time ARMA model, characterized

by the polynomials (D) and 0(0) and a symmetric matrix, V (see (3.2 1)-

(3.24)). This continuous time series representation implies a particular

discrete time series representation for the sampled, averaged data. In

Theorem 2, section 2.0, we characterized this discrete time representation

by the polynomials ec(L) and Cc(L), and an innovation variance matrix, VC.

Given these objects it is possible to compute the spectral density of the

data, Sy(z;C). which is one of the two ingredients of the spectral
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approximation to the likelihood function. It can be shown that S(z;ç) is
given by,

Sy(z;c) = CC(z) VCCC(z) 7ec(z) QC(z1) for z=elW, wc(-n-,ir).

The other ingredient of the spectral approximation to the likelihood function
is the periodograrn of the data. We denote the available data by
{Y(t),t=l,2,...T}. Here, Y(t) (I(t)j(t)y, where (t) denotes averagesales:

(3.29) (t) = f s(t+r)dr.

The periodograrn of the data at frequency I is

I(w.) = (1/T)Y(w.)y(w)H

where H denotes the Hermetian transpose and,
T

-1w .tY(w.) Y(t)e jU

Here, w. = 2irj/T, j=1,2,...,T. Given these expressions for Sy(z;C) and
I(w) we can compute the spectral approximation to the likelihood function,

T
(3.30) LT(C) -Tlog2n- -.5log det[S(e""j;c)1

j=I
T

-l

-.5trace{S(e''j;) I(w.)J,j=I 3

Since the likelihood function
(3.30) is a known function of the data and the

parameters of the model it can be
maximized with respect to those

parameters. We obtain an estimate of the
variance-covariance matrix of the

estimated coefficients by computing the negative of the inverse of the second
ierivative of with respect to , evaluated at the estimated values of .We now consider the problem of estimating a discrete time version of the
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model. Accordingly, we suppose that the representative consumer
maximizes,

(3.31) Et4)J{u(t+j)s(t+j) - .5As(t+j) -

subject to (3.5) by choice of linear contingency plans for s(t) and N(t). The

parameter 4) is a subjective discount rate that is between zero and one.

As before the solution to the consumer's problem is given by the inverse

demand function (3.6).

*
The representative competitive firm chooses linear contingency plans for

s(t) and 1(t) to maximize,

(3.32) E4)3(P(t+j)s(t+J) -(a/2) [s(t+j)+I(t+j)-I(t+j-t)]
2

-(b/2) [s(t-l-j)-cI(t4-j)] - v(t+j)l(t+j) - (e/2)l(t+j) },

subject to 1(t) given and the laws of motion of v(t) and P(t). We suppose that

the shocks to technology and preferences have a discrete time AR (1)

representation:

(3.33a) u(t) = pu(t-i) + c1(t), and

(3.33b) v(t) = pv(t—1) + c2(t),

where p1 < I and Ipi < I. Also c(t) = [cdt) e2(t)I is a vector white noise

that satisfies,

(3.34) Ec(t)e(t-rY = r equal to 0,
= 0 r not equal to zero.

The model summarized by (3.31)-(3.34) is the discrete time version of
our continuous time model in that, essentially, it has been obtained by

replacing the D operator by its "approximation", 1-L. An alternative would

have been to specify the discrete time model so that the implied reduced
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form time series representation for inventories and sales would be an
ARMA of the same order as that predicted by the continuous time model. In
order to do this we would have to abandon the assumption that u(t) and v(t)
have first order autoregressive representations or change other basic
features of the discrete time model. This is an important point which we
will return to in subsection 3.C.

Eichenbaum and Christiano (1985) show that the equilibrium laws of
motion for inventories and sales are given by,

(3.35a) 1(t) = ViI(t-l) + hu(t) + gv(t)

(3.35b) 5(t) = -(a-bc)/(a+b+A)J(t) + a/(a+b+A)J(t-f) +[1/(a+b+A)juftj.

where

(3.35c) h =
a [b(c+i) +A]{(a-bc) + [(a-bc)-a]*Pp/( i -$p)},

g = -(a+b+A)qi
a[b(c+1)+AJ) 1-!pflf

+ = -(a+b-i-A) [a2 + (a-bc)2 - (a+bc2 + e
a[b(c+1)+AJ a+b+A

and hi'I < I.
The relevant measure of the speed of adjustment of inventories which

can be compared to the measure which emerges from the continuous time
model is,

(3.28Y Td X[log(.O5)J/logqi,

where X is the number of days in the data sampling interval.
It is convenient to write the equilibrium law of motion for s(t) and 1(t)

in the form of a moving average representation of the discrete time
innovations to agents' information sets. Substituting (3.33) into (3.35) and
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rearranging we obtain,

(3.36) 1(t)
=

s (t)

where,

(3.37) = (i-p)(t-pL)(i-L),

.4 A A .42
(3.38) CiL)=C ÷C'L+C'L,

h g

t-(a-bc)h g(bc-a)
a+b+A a+b+A

-gu

-(a-bc) hi g [a-p (bc-a)

a+b+A a+b+A

0 0

-p(ah-X) -g a
a+b+A a+b+A

Given these relations the free parameters of the discrete time model can

be estimated by maximizing Hannan's spectral approximation to the

likelihood function.
We are now in a position to demonstrate some of the possible sources of

temporal aggregation bias in estimates of the speed of adjustment.
Relations (3.21)-(3.24) and (3.36)-(3.38) summarize the restrictions on the

continuous and discrete time Wold representation imposed by the continuous

and discrete versions of the model, respectively. It can be shown that the

continuous and discrete time models imply that 1(t) and 5(t) have continuous
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and discrete time VAR(2) representations, respectively. For example, to
see this For the continuous time model, notice that (3.2 t)-(3.24) imply

(3.39) detC(D) =

Premultiplying (3.22) by C(D) C(D)a/detC(D) we obtain,

(3.40) (Aa)a(b÷A)C(D)ay(t) = e(t).

Here C(D)a denotes the adjoint matrix of C(D). Thus {Y(t)} is a pure
VAR(2) in continuous time. However, Theorem I of section 2 implies that
sampled and averaged {Y(t)} is a discrete time ARMA(2,2) process. One
moving average term is due to sampling and the other is due to averaging.
We choose not to focus upon this representation of the discrete data because
its AR part requires stronger than usual restrictions to ensure
identification (see Christiano and Eichenbaum(1985), pp.29-31). Instead we
focus on an alternative reduced form representation for the data which
emerges from the continuous time model,

(3.41) ec(L)y() = [I + + +

where e'(t) is the innovation in Y(t) which has covariance matrix Vc. Here
det C'(L) = OC(L)K(L) where ie(L) is a second order polynomial in the lag
operator L. The presence of K(L) is a symptom of the effects of sampling
and of averaging s(t). Since det C'(L) is not proportional to Oc(L), the
sampled representation is not VAR(2). As we indicated it is vector ARMA
(2,2). Christiano and Eichenbaum (1985) discuss the mapping between the
representations (3.40) and (3.41).

Of course the discrete time model remains a VAR (2). It is useful to
write the reduced form of the discrete model in a manner that is analogous
to (3.43). Define ed(t) = C0c(t) and cd(L) = cd(L)(ej) . Then (3.36)
implies that the reduced form representation for Y(t) emerging from the
discrete time model is

d d d2d(3.42) 6 (L)Y(t) = [I + C1 L + C2 L Je (t),
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where the first row of is composed of zeros. We denote the covariance

matrix of ed(t) by
Comparing (3.41) and (3.42) we see that the moving average component

of the reduced form for the discrete model is of smaller order than that of
the continuous time model. Again, this reflects the fact that the continuous
time and discrete time models have different implications for measured
data. Not surprisingly, estimation of the two models will yield different
estimates of the underlying structural parameters and speeds of adjustment
of actual to target inventories.
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3.C Empirical Results

In this subsection we report empirical results obtained from estimating
four different models. The continuous time model was estimated using
monthly data. Three discrete models were estimated, one each using
monthly, quarterly, and annual data. Our main results can be summarized
as follows. First, the parameter estimates from the different models that
we estimated are consistent with the Mundlak-Zeliner hypothesis that
temporal aggregation can account for slow speeds of adjustment in stock
adjustment models. Secondly, we find that while the effects of temporal
aggregation are substantial as we move from annual to quarterly to monthly
specifications of the model, they are rather small when we move from the
monthly to the continuous time specification. This second result is
consistent with findings in Christiano (forthcoming) where the length of the
timing interval in a rational expectations model is treated as a free
parameter. Christiano (forthcoming) plots the maximized value of the
likelihood function of an annual data record against various values of the
model timing interval. As the interval is reduced from an annual to a
quarterly specification the value of the likelihood function rises sub-
stantially. However, further decreases in the model timing interval result
in smaller increases in the value of the likelihood function. This result is
also consistent with findings in Christiano (1986) in which a continuous time
model of hyperinflation is estimated using monthly data. When an analogous
discrete time model is fit to the same data, the results are virtually
indistinguishable from the continuous time results.

The 11 free parameters of our continuous time model are:

cA =

Our discrete time model also has 11 free parameters:

d d d dA = (P,a,b,c,e,A,p,p,\'11,V22,V2).

Equation (3.40) implies that no more than 9 parameters of the continuous
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time can be identified. The same is true for the discrete time model.
Consequently, we searched for a lower dimensional parameter set that was
identified. We restricted our attention to sets that included (X-r) and p For
the continuous and discrete time models respectively For present purposes,
it does not concern us that we cannot identify all the elements of Ac and Ad,

since our principle motivation is to identify the adjustment speeds implied
by the two models. These are controlled by (X-r) and i in the continuous and

discrete time cases, respectively. The parameter sets that we estimated
are the following:

C = [r,a,$,X-r,bc/a,(a+b+A)/a,Vt,V2,V), and,

= [,p,p,Ji,bc/a,(a+b+A)/a,

Christiano and Eichenbaum (1985) establish that C and are
identified. In practice we fixed the discount rates r and t, a priori, at
values which imply a monthly discount rate of .997.

Both models were estimated using seasonally adjusted monthly data on
nondurable manufacturing shipments and finished goods inventories. The data
correspond to those used by Blinder (1984). This data is published by the
Bureau of Economic Analysis (BEA) except that Blinder has converted BEA's
end-of-month inventory stocks to beginning-of-month figures. We constructed
quarterly and annual data by taking arithmetic averages of the monthly data.
The data cover the period February 1959 to April 1982 and are measured in
millions of 1972 dollars. Shipments data are averages over the month. All
data were demeaned and detrended using a second order polynomial function
of time and seasonal dummies.

Table 3. 1 reports the results of estimating the continuous time model

using monthly data. We are particularly interested in the implications of
these estimates for the speed of adjustment statistics. The point estimate
for X-r is 5.29 with 90 percent confidence interval given by (1.83, 8.75).
This implies that,

= 17 (10,49).
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The ninety percent confidence interval is reported in parentheses. Thus the
continuous time model implies that it takes 17 days to eliminate 95 percent
of the gap between actual and desired inventories. This speed of adjustment
seems plausible1 especially in light of Feldstein and Auerbach's (1976)
observation that even the largest swings in inventory stocks involve only a
few days' worth of production.

We now turn to the results obtained with the discrete time models. Table
3.2, 3.3 and 3.4 report results obtained with monthly, quarterly and annual
data, respectively. The point estimates of ip obtained with monthly,
quarterly and annual data are .14 (.036,.244), .28 (.070,.490) and .58
(.150,1.01), respectively. Ninety percent confidence intervals are reported
in parentheses. The standard en'ors of the estimates of /i increase with the
degree to which the data are temporally aggregated. Presumably this
reflects the smaller number of data points that are available for the more
temporally aggregated data.

The implied speed of adjustment statistics are given by,

Contiraa Monthly Qwrterly Annial
DaystoClose9s% 17 46 212 1980
of the Gap

3.10Condidence (10,49) (27,63) (101,378) (577,co)
Interval

The continupus time figures are repeated here for ease of comparison. The
numbers in the last three columns of the first row correspond to Td in
(3.28)1 The number in the first column of row one corresponds to Tc in
(3.28). Numbers in parentheses in the second row are 90 percent
confidence intervals.

Notice that the number of days required to close 95 percent of the gap
between actual and desired inventories (Td) is more than twice as large
with monthly data, more than twelve times as large with quarterly data, and
more than one hundred and fifteen times as large with annual data, than the
estimate obtained using the continuous time model. Evidently, the
estimated speeds of adjustment are a monotonically decreasing function of
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the degree to which the data are temporally aggregated. We take this result
to be supportive of the Mundlak-Zeilner conjecture that temporal
aggregation can account for slow speeds of adjustment in stock adjustment
models. The estimated adjustment speeds are plausible for the continuous
time and monthly models, but implausibly slow - in our view - in the

quarterly and annual models.
An interesting feature of our results is that the estimated speed of

adjustment increases in diminishing increments as the model timing
interval is reduced. The increase is very large going from annual to
quarterly data, but appears to have approximately converged at the monthly
level. To see this, notice that the adjustment speed confidence intervals for
the monthly and continuous time models overlap considerably. To investigate
the conjecture that convergence has occur-ed with the monthly specification,
we compared the discrete time reduced forms of the monthly and continuous
time models.

The reduced forms of the continuous and discrete time models are
reported in the second columns of Tables 3.1 and 3.2 respectively. These
are similar along a number of interesting dimensions. First, 03c is close to
zero, while the third order term in C'(L) is exactly zero. Also, the 2,1
elements of c1c and ci are small, and so compare well with the
corresponding elements in CL. This feature of the reduced forms has the
implication that sales fail to be Granger-caused by inventories. One

dimension along which the reduced forms differ concerns the first row of
020, which does not appear to be close to zero. In contrast, the first row of
02(1 is identically equal to zero. Also, the variance of the second innovation
error is three times larger in the continuous time model than in the
discrete time model. Unfortunately, the importance of these differences
and similarities is hard to judge, since we do not have the relevant
distribution theory. Moreover, it is not clear that a direct comparison of
the reduced form parameters is the most revealing one.

In our view, it is more interesting to compare the implications of the two
reduced forms for both sets of structural parameters. We are particularly
interested in the implications of the reduced form representation of the data
emerging from the continuous (discrete) time model for the the structural
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parameters of the discrete (continuous) time model. Consider first the
implications of the reported reduced forms for the structural parameters of
the continuous time model. Since the continuous time model Is identified the
reduced form parameters in column 2 of Table 3.1 map uniquely into the
parameter values reported in the first column of Table 3. 1. It is less
obvious how to deduce the implications of the reduced form emerging from
the discrete time model for the structural parameters of the continuous
time model. Since the reduced form of the discrete time model does not
satisfy the cross equation restrictions implied by the continuous time
model, there is in fact no set of continuous time structural parameters
consistent with the discrete time model reduced form. In view of this, we
decided that the most sensible thing to do was to compute the set of
continuous time parameters that comes "closest" to reproducing the discrete
time reduced form in Table 3.2.

A natural candidate for this set of parameters is the probability limit of
the maximum likelihood estimator of the continuous time structural
parameters calculated under the assumption that the data are generated by
the estimated reduced form corresponding to the discrete time model. If
the discrete time model is true then the estimates of the continuous time
model obtained using monthly data ought to be close to this probability
limit. These probability limits are reported in the second of the two
columns labeled "Plim" in Table 3.5. Numbers in parentheses are the
estimated parameter values taken from column one of Table 3.2. We find
some discrepancies. For example, the plim of a is .035, while its
estimated value is .08i. Other discrepancies which stand out are the
results for bc/a, V22, and V12. Unfortunately, we cannot draw any definitive
conclusions regarding the magnitude of these differences in the absence of
the relevant distribution theory. Nevertheless it is interesting to note the
similarity between the estimated value of X-r and its reported probability
limit. As noted earlier, the estimated value of A-r implies that firms close
95 percent of the gap between actual and desired inventories in 17 days.
The estimated probability limit of this number under the assumption that
the data are generated by the discrete time monthly model is 19.5 days.

We now consider the implications of the two reduced form
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representations for the structural parameters of the discrete time model.
In column I of Table 3.5 we report the probability limits of the structural
parameters of the discrete time monthly model. These were calculated

under the assumption that the data are generated by the continuous time
model. If the continuous time model is true then the estimates of the

structural parameters of the discrete time model obtained using the monthly
data ought to be close to the corresponding probability limits reported in
Table 3.5. In fact these appear to be quite close to each other. The

principal discrepancy is that bc/a is larger than the value reported in Table

3.2. In addition and are somewhat different from the values
reported in Table 3.2. As before we cannot draw any definitive conclusions

from this exercise without the relevant distribution theory. Nevertheless,
it is interesting to note how similar the estimate of .s reported in Table 3.2

is to its plim in Table 3.5. In particular, inferences about the speed of

adjustment of actual to target inventories are basically the same for the
two values of q'.

We conclude from the results in Table 3.5 that, when viewed from the
point of view of their implications for the discrete time parameters, the

reduced forms in Tables 3.1 and 3.2 are fairly similar. Some differences
are apparent when examined from the point of view of certain structural
parameters of the continuous time model.

A third way to compare the two reduced form representations is to
compare their log likelihood values. The difference between the log
likelihood value of the discrete time monthly and continuous time models is
equal to 25.36. In this sense the discrete time monthly model 'fits' the data
better than the continuous time model. On the other hand, the likelihood
ratio statistic obtained when either of the two models is compared with an

unrestricted reduced form ARMA (3.3) model indicates rejection of both
structural models at essentiallythe same level. The log likelihood value of
the unrestricted ARMA(3,3) model is 3307.5 which is significantly greater
than the log likelihood values associated with both the continuous and
discrete time monthly models (see Tables 3.1 and 3.2.).

Overall, we conclude that the monthly discrete time and continuous time
models appear to be fairly similar when examined from the perspective of
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the reduced form time series representations that they imply for the monthly
data. Next, we report some diagnostic tests on the underlying statistical
adequacy of the two structural models.

The validity of the formulas used to compute the confidence intervals
around our speed of adjustment estimates requires that the underlying
models be correctly specified. Unfortunately, we found evidence against this
hypothesis. As we indicated, a likelihood ratio test rejects both models
against an unrestricted ARMA(3,3) alternative. We also computed the
multivariate Box-Pierce statistics proposed by Li and McCleod (1981) to
test for serial correlation in the fitted residuals from the continuous time
and monthly discrete time models. These statistics were computed at lags
12 and 24 and are denoted by BP(12) and BP(24), respectively. Under the
null hypothesis that the underlying disturbances are white noise, BP(k) is
drawn from a chi-square distribution with 4x k - n degrees of freedom,
where n is the number of free parameters. In our case, n9. The Box
Pierce statistics for the continuous time model are BP(12) 162 and
BP(24) = 278. For the discrete time model, they are BP(12) = 386 and
BP(24) = 602. These statistics indicate a substantial departure from white
noise in the fitted residuals. Because the likelihood ratio statistic and Box-
Pierce statistics supply evidence against our models the speed of adjustment
confidence intervals that we reported above must be interpreted with
caution.

To what extent are our results sensitive to the way in which we specified
our discrete time model? As we indicated in subsection 3.B there are at
least two ways to choose a discrete time analogue to the continuous time
model of subsection 3.A. Our procedure was to specify the shocks in the
discrete time model to have the same representation as the point-in-time
sampled representation as the continuous time shocks. Since our continuous
time shocks are AR(1), this implies an AR(1) representation for the shocks
in the discrete time model. We adopted this specification of the discrete
time model because it matches well with what is commonly done in the3.14
literature. An alternative would have been to specify the shocks in the
discrete time model so as to produce a reduced form for that model with
AR and MA orders identical to those implied by the continuous time model.
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This can be accomplished by adding a first order moving average term to
the shocks in the discrete time model. We conjecture that the effect of
these moving average terms would be to raise the estimated speed of
adjustment implied by the discrete time model. This conjecture is based
on the belief that the additonal MA terms would take over some of the
burden borne by the AR parameters- one of which controls the speed of
adjustment - for accommodating the serial correlation in the data. This
would be consistent with results in Telser (1967). As yet, we have not
formally investigated this conjecture. However, it is important to note that
these comments illustrate the observations made in subsection 2.B, where
we argued that that the temporal aggregation effects of shrinking the model
timing interval can have the same effect on the reduced form implications
of a model as allowing for more serial correlation in the unobserved shock
terms.

We conclude this subsection by reiterating the main objectives of our
empirical exercise. These were (i) to show that slow speeds of adjustment
obtained with the stock adjustment model could be accounted for by
temporal aggregation bias, and (ii) to show that structural inferences can,
in practice, be substantively affected by different assumptions about the
frequency with which agents make economic decisions. In our view these
objectives have been accomplished.
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Table 3.1

Continuous Time Model

Monthly Data

Structural Parameters* Reduced Form Parameters

a .081 &zr-1.85
(.021)

.082 .851
(.02 1)

X-r 5.29 = -.004
(2.10)

-.772 -.035
bc/a 610.9

(9120.5) -.032-.698

-.104 .009
a/(a+b+A) 0.00 C' =

(.00 1) .088 -.243

13244.5 -507.3 -.002 .003
(12046.2) (4854.8) C =

28310.7 -.001 .002
(25150.5)

24852.1 12459.9
%**_335233

187924.0

*Standard errors are displayed in parentheses.

**Value of the log likelihood function.
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Table 3.2

Discrete Time Model

Monthly Data

Structural Parameters* Reduced Form Parameters

.910 = -2.01
(.027)

p .960 &= 1.14
(.02 1)

.140
(.063)

-.910 .008
bc/a 1.00 =

(1.17) 0.00 -1.10

a/(a+b+A) 0.00
(.00 1)

24808.7 7594.0 0.00 0.00
4= (2110.4) (3781.3)

54792.8 0.00 .130
(13156.5)

£ = 3326.97**

*Standard errors are displayed in parentheses.

**Value of the log likelihood function.
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Table 3.3

Discrete Time Model

Quarterly Data

Structural Parameters* Reduced Form Parameters

p .824 O=-1.96
(.077)

p .854 1.18
(.063)
.283
(.132)

-.824 -.007
bc/a .078 =

(.602) 0 -1.14

a/(a+b+A) 0.00
(.001)

A 0.00 0.00
A 65530.8 8337.6 =

Vu = (9731.9) (14396.0) 0.00 .242
2763 18.4

41021.8

= -1161.52

*Standard errors are displayed in parentheses.

**Value of the log likelihood function.
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Table 3.4

Discrete Time Model

Annual Data

Structural Parameters* Reduced Form Parameters

1-' .139 O=-1.31
(.224)

p .584 = .500
(.256)

'Ii .584
(.257)

-.139 -.038
bc/a .998 =

(.525) .206 -1.17

a/(a+b+A) .021
(.396)

133765.1 -42203.5 0.00 0.00
'A = (42042.6) (60428.8) =

468030.5 -.029 .333
(146721.4)

*Standarrj errors are in parentheses.

**Value of the log likelihood function.
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Table 3.5

Probability Limits
I 2

Discrete Continuous
3 3

Parameter Plim Parameter Plim

p .940 a .035
(.960) (.081)

p .938 p .164
(.910) (.082)

.116 X-r 4.60
(.140) (5.30)

bc/a 51.45 bc/a .879
(1.00) (611.1)

a/(a+b-I-A) 0.00 a/(a+b+A) 0.00
(0.00) (0.00)

'4, 24951.7 VII 19013.6
(24808.7) (13244.5)

'42 200570.0 V22 8276.7
(54792.8) (28310.7)

11701.0 V12 2661.6
(7594.0) (-507.3)

Lprobability limit of parameters of monthly discrete time model, assuming
data are generated by reduced form in column 2, Table 3.1.

2

Probability limit of parameters of continuous time model, assuming data
are generated by reduced form in column 2, Table 3.2.

3

Numbers in parentheses are parameter estimates obtained from the data.
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4. ConltzJirE Remarks

This paper has investigated the impact of temporal aggregation bias on
structural inference in macroeconomics. We have argued, by way of two
empirical examples, that this source of bias should not be dismissed as a
quantitatively unimportant theoretical curiosum. Our empirical examples
indicate that temporal aggregation bias can be quantitatively important in
the sense of significantly distorting inference.

Nowhere did we argue in favor of a particular decision interval as being
the most natural or correct one for the purposes of modeling macroeconomic
phenomena. In our view this is an entirely open question which in all
likelihood cannot be resolved on the basis of the aggregate time series data
alone. However we do not see any compelling reason for the standard
practice of assuming that the interval of time between agents' decisions is
equal to the data sampling interval. This practice might be defended on the
grounds that it is empirically inocuous. In fact our results indicate that
there is little reason to expect that empirical results are robust to different
assumptions regarding the frequency with which agents make decisions.

Macroeconomists often have access to different data sets, corresponding
to different sampling intervals. It is not our view that tests of economic
models ought always to be conducted with the data set corresponding to
the finest sampling interval. This is because there may be systematic
differences in the degree of measurement error associated with data
collected at different intervals of time. However, the specification of
agents' decision intervals and which data should b,e used in implementing a
given model, are, in principle, separate issues. It is not logically
inconsistent to believe, for example, that agents make decisions on a
monthly basis and still insist on using quarterly data. The quarterly data
may simply be more reliably collected. However it is logically inconsistent,
under these circumstances, to use quarterly data without taking into account
the misallignment of agents' decision intervals and the data sampling
interval. This inconsistency is even more pronounced when the quarterly
data are not sampled on a point in time basis.

Economists have long understood the need for robustness checks of
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empirical results with respect to different data sets. One conclusion from
this study is that more attention should be devoted to robustness checks
using data sampled at different intervals of time. More generally, we hope
that macroeconomists will begin to deal explicitly with the problem of
temporally aggregated data. Fortunately, the technical apparatus for dealing
with temporal aggregation problems exists, at least for linear models.
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Footnotes

1.1
See Garber (1977) for an example of a model in which the decision

interval is endogenous. In our view, whether timing decisions should be
endogenized is, to some extent, an empirical question. Christiano
(forthcoming) develops a technique for estimating fixed timing intervals in
economic models whose reduced form are linear in the variables. That
technique could be applied to several data sets, say drawn from different
countries or diffferent regimes. If the estimated timing interval varied in
some systematic way across the data sets, then it might be desirable to
modify the model by making the legnth of the timing interval a function of
the other parameters. Of course, at the most general level, an endogenous
timing interval would not be of fixed legnth. Instead it would be state
dependant. A limitation of Christiano's analysis is that it cannot accomodate
state dependant timing intervals.

The reduced form approach is represented by the work of Working
(1960), Telser (1967), Sims (1971b), Geweke (1978), Hansen and Sargent
(1984) and Marcet (1985). Examples of the structural approach are
Mundlak (1961), Zellner (1968), Sims (1971a), Zeilner and Monrnarquette
(1971) Engle and Liu (1972), Hansen and Sargent (1980a) and Christiano
(1984,1985).2.1

Although this section omits citations to rigorous presentations of the
material, these are included in Appendix A.

A linearly indeterministic process is one for which the mean and any
other perfectly linearly predictable component, eg., a trend term, have been
çe3moved. See Sargent [1979,Chapter XI, sect. 11] for further discussion.

Note that we depart slightly from the usual convention, according to
which a vector ARMA model denotes a representation in which both the
autoregressive and moving average parts are vectors. We refer to this kind
of representation as a VARMA model. In section 3 we refer to VAR
models, by which we mean a VARMA model with zero order moving average
component.2.4

Given the definition of the continuous time lag operator, the definition of
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Limplies that L = e.
2 2

The argument is formalized as follows. Define y = (1-A1 )(i-X2 )zt and

let S (e_U) denote the spectral density of at frequency w c (-ir,ir). Since
= ft + (Xt+Xz)ctt/2 + A1X2c111 S( ) = c(O) + c(1)(e + e ),

where c(k) = EYtYtk for integer values of k, and c(k) = 0 for k > 1. The

discussion in Sargent [1979, Chapter Xl, section 13] applies so that unique
scalars dl � I and a � 0 can be found with the property that Sy(e) = ii
+ de"°I a. Also, Sargent [1979, p.24 ii shows that Sy(e°) =

(1-A1 e")(I-A2 e"°i Sz(e1<°) where S is the spectral density of
{z(t), t = O,±I,±2,...}. Then, since by hypothesis Xii < 1, i = 1,2, we have

that S(eW) = i(1Aje1a5(1X2efld)l l+de"°la . But the object on the

right hand side of the equality is the time series representation for a

process with AR component (i-A1 L)(l-A2 L), MA component 1+dL, and
innovation variance a This establishes that t = 0,±i,±2,...} has an

ARMA(2, I) representation.
2

The integrals were approximated by taking daily averages over the month.
For other examples of cases were the random walk hypothesis may have

been innapropriately rejected as a consequence of spurious correlation
induced by data averaging, see Working (1960,ftn.1) and Cowles (1960).
2.8 There is one dimension along which the preceding results are not at all
robust. We r'edid the calculations reported in Table 2.2 using the levels of
the logs of the data. VAR(12)'s with and without a quadratic trend were
computed. The results are strikingly different from those reported in Table

2. 2. First, money significantly improves forecasts of output whether a trend
is included or not. For example, using the 1952 to 1983 period, the
significance level of the test statistic for the null hypothesis that money does

not help predict output is .0007 when a trend is excluded, while it is
.00006 when a trend is included in the VAR(12). Second, the significance
level of the test statistic is smaller when quarterly averages of money and

output are used. In this sense, money seems to be less important in
predicting output when time aggregated data are used. These results are
puzzling to us. We are currently working to develop an explanation for these

results using Monte Carlo methods.
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3.L
ftc fact that we specify utility to be linear in leisure warrants some

discussion because it appears to be inconsistent with findings in two recent
studies. Our specification implies that leisure in different periods are
perfect substitutes from the point of view of the representative consumer.
MaCurdy (1981) and Altonji (1986) argue, on the basis of panel data, that
leisure in different periods are imperfect substitutes from the point of view
of private agents. Roger-son (1984) and Hansen (1985) describe conditions
under which the assumption that the representative consumer's utility
function is linear in leisure is consistent with any degree of intertemporal
substitutability at the level of private agents.

It is of interest to contrast our model with the equilibrium model in
Sargent [1979, chapter XV]. In that model, the representative agent's utility
function is linear in consumption and quadratic in leisure. As a result, the
interest rate on risk Free securities, denominated in units of the consumption
good, is constant. In our model, the representative agent's utility function is
quadratic in consumption, with the result that the interest rate on risk free
securities, denominated in units of the consumption good, is time varying
and stochastic. This feature of our model is attractive in view of the
apparent non-constancy of real interest rates in the U.S. In order to remain
within the linear-quadratic framework, we specify utility to be linear in
leisure. This implies that the interest rate on risk free securities,
denominated in units of leisure, is constant.
3.3

To avoid proliferating notation we do not formally distinguish between
variables chosen by individual households and firms and their economy wide
counterparts. Nevertheless the disticntion between them plays an important
role in the model. By assumption agents are perfectly competitive and view
economy wide variables, such as P(t) and economy wide sales and
inventories, parameterically.3.4 2 2/2

To see that A > 0 consider f(k) = .Sr - [k+2.Sr I and note that f(0)
0 and f(k) < 0 for k � 0.
3.5

See Hansen and Sargent (1980a) who show that this procedure yields the
unique optimal solution to the social planning problem which the competitive
equilibrium solves.
3.6

Specifically, Christiano and Eichenbaum (1985) show that and are
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locally identified. In addition, we show that, given any admissable ', then

there are at least S other values of which are observationally equivalent,
i.e., yield an identical value for the likelihood function. We constructed an

algorithm to find these 's in order to determine whether any of them is

admissable in the sense of satisfying the non-negativity conditions imposed
by the model. Generally, we find that one other is admissable in this

sense. This value of is obtained by exchanging the values of a and (X-r) and

suitably adjusting r. As we point out later, our continuous time parameter
estimates imply a = .082 and (X-r) = 5.29 with r = .003. This

parameterization implies a relatively rapid speed of adjustment of actual to

desired inventories. An alternative parameterization which yields the same

value of the likelihood function is one in which a = 5.29 and (X-r) = .082.

This implies that the speed of adjustment is very slow and relatively little

serial correlation in the inventory holding cost shock. This parameterization
can be ruled out as being implausible since it requires the discount rate to

be rxiO0 = 62,112 percent. We experimented with numerous parameter-
izations, and always found that if we placed a reasonable upper bound on r,
then global identification obtained. We found the same result regarding .

Cur results were insensitive to the different values of r and fi that we

considered.
3.8

This time trend can be rationalized as follows. Suppose that u(t) and v(t)

are the sum of a covariance stationary component, as given by equation
(3. 18) and a linear function of time and seasonal dummies. Then the

equilibrium laws of motion will have two components. The first component

will be the law of motion given in the text. The second component will be a
deterministic function of time and seasonal dummies. There are no
restrictions across the two compnents. These claims are established in

Christiano and Eichenbaum (1985). There are alternative ways to generate
trend growth in inventories and sales. For example, the equilibrium laws of

moton for s(t) and 1(t) will inherit any unit roots in the VAR for u(t) and

v(t). The fact that we choose to work with deterministic time trends does not

necessarily reflect the view that this is the only reasonable model of trend

growth for our variables. Instead it reflects the fact that almost the entire
empirical literature that we wish to address assumes the existence of
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deterministic time trends.
3.9

In models where the timing interval is finer than the data sampling

interval, estimates of the AR and MA parameters can be sensitive to the

scale in which the data are measured. This contrasts with the case in which

the timing interval coincides with the data sampling interval. In the latter

case, multiplying the data by a constant scalar affects only the innovation

variances but not the AR and MA parameters. To check that our continuous

time speed of adjustment estimate is robust to a change of scale, we
divided the data by 100 and re-estimated the model parameters. The results

were virtually unchanged.
The upper bound of the ninety percent confidence interval for iji in the

annual model is 1.01. This implies that firms never reach their target

inventory level. This is why the reported upper bound of the ninety percent

confidence interval for Td in the annual model is w.
3.11

We noted in section 3.A that this assumption is frequently made in the

inventory literature.
3. t2

These were computed by maximizing the frequency domain approximation

to Gaussian likelihood function in which the periodogram was replaced by the

spectral density function implied by the reduced form parameters in Table

3.2. The justification for calling the resulting numbers probability limits is

given in Christiano (1984) where this technique is applied in another
context.
3. 13

Li and McCleod (1981) derive the distribution for their test statistic
under the assumption that the model being estimated is an unconstrained

vector ARMA with independent, identically distributed disturbances. They

show that BP(k) has an asymptotic chi-square distribution with m k-I

degrees of freedom, where m is the number of equations in the vector
ARMA model and I is the number of AR. and MA parameters. We assume

that the appropriate modification regarding the number of degrees of
freedom, in our problem, is obtained by replacing .9 by n.

See for example, Blinder (1984), Eichenbaum (1984), Maccini and

Rossana (1984) and the references in McCallum (1984).
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Appendix A: A Primer on Continuous Time Models.

In this appendix we present a very informal discussion of certain
properties of the class of continuous time models utilized in this paper. The
presentation assumes familiarity with discrete time models of time series
data. Our presentation makes heavy use of analogies between discrete time
and continuous time models. The proofs for Theorems I and 2 of the paper
are contained in subsection A.3 of this appendix.

A. 1 The Continuous Time Wold Representation

In discrete time, it is common to write a time series representation for
a covariance stationary, linearly indeterministic process, z(t), as an infinite
ordered moving average (MA(w)) of disturbances. The disturbances in this
representation are the errors in forecasting z(t) one step ahead using a
linear function of past z(t)'s. Because they are serially uncorrelated, the
disturbances are often referred to as "white noise". The fact that the
assumption of an MA (w) model involves no loss of generality is guaranteed
by Wold's theorem in discrete time (see Sargent[1979,p.257].) There is a
continuous time version of this theorem (Rozanov[1967,p.118-119].)
According to it, a covariance stationary, linearly indeterministic continuous
time process can be written as an integral of current and past disturbances
as follows:

(A.la) z(t) = f F (c)c (Vr)dr

where,

(A.Ib) Ee(t)c(t-k) = 6(k)V,

Here, V is positive definite symmetric matrix which we refer tO as the
"variance" of e (t). Also, 6 is the Dirac delta function (see
Hannan[1970,pp.514-5161) which is defined by the property that



+cx,

I' h(z-)dft)dz- = h(0)

for any function h that is continuous at zero. Loosely speaking, 6 can be
thought of as a function that is nonzero only when k = 0. Consequently,
according to (A. Ib), e(t) is a serially uncorrelated process, and so we call
it a 'continuous time white noise'. One sense in which the analogy between a
discrete time MA(co) model and (A. Ia) is strained is that a continuous time
white noise is considerably more difficult to analyze rigorously than its
discrete time counterpart. This is because the continuous time white noise
does not 'exist' in the sense that a discrete time white noise does. The
difference lies in the fact that a discrete time white noise can be simulated,
say by repeatedly tossing a coin, or rolling a die. By contrast, it is not
possible to simulate realizations from a continuous time white noise
process. For this reason, a white noise process is said not to be
'realizable". On the other hand, a weighted integral of a white noise, eg.,
(A. Ia), is realizable. Although a rigorous understanding of continuous time
white noise is mathematically demanding, it is sufficient, for the purposes
of this paper, to rely on analogies with the discrete time case. A rigorous
treatment of continuous time white noise processes can be found in
Hannan(1970, section 1.6) and Gel'fand and Vilenkin(1964). (See
Sargent[I982J and Astrom [1970] for introductory treatments).

Applying (A. ib) and the definition of the Dirac delta function, it is easy
to confirm that c(k) E Ez(t)z(t-k is

(A. Ic) c(k) = Ef fft)e(t- r)drfc(t-k-vf (u) dv

= f f(r)Vfft-kdr < cn,
-w

for any real value of k. The presence of the inequality in (A. Ic) reflects our
assumption of covariance stationary which coincides with the requirement
that f be a square integrable function of r.

A final property satisfied by €(t) in (A. Ia) is that the error in



forecasting z(t+k) using a linear combination of z(t-s), s 0 is
Ic

(A.id) z(t+lc) - E[z(t+k I z(t-s) s � = fft)c(t+k-r)dr

for any k > 0. Because of the obvious analogy with the disturbance term in

the discrete time MA(co), property (A.id) leads us to call e(t) the
"innovation" in z(t).

A.2 Continuous Time Models in Operator Notation.

In the discrete time context it is often convenient to write the MA(cn)

representation of a stochastic process in operator notation. This is also the

case in continuous time, where the shift operator is etDx(t) x(t-1-r), for any

real value of v. Here, Dx(t) E dx(t)/dt, so that D is the time derivative

operator. (In discrete time, the common notation for the lag operator is

Lx(t) x(t-l), so that L = e0.) Intuitively, we can think of the rationale for

this notation as follows. Suppose x(t) were infinitely differentiable. Then

ethix(t) = x(t) + rDx(t) + I v2D2x(t) + t r3D3x(t) -4-...
2T

Here, we have simply written etO as a series expansion. Notice, however,
that the expression to the right of the equality is x(t+r) expressed as a

Taylor series expansion about x(t).
Substituting the shift operator into (A. ia), we obtain

(A.2a) z(t) = 7f(r)etDdre(t) F(D)e(t),

where,

-rID
(A.2b) F(D) = f(r)e dr.

It makes no substantive difference whether we parameterize the

continuous time model at the level of 1, or at the level of F, since given one

it always possible torecover the other. (More precisely, the F polynomial



corresponding to F via (A.2b) is unique. Also, there is only one £ function
satisfying (A.l) that corresponds to a given F polynomial.) In general, it is
more convenient to parameterize the model at the level of F(D). We
parameterize F by specifying it to be a rational polynomial in D. In doing
so, we lose some generality, since Wold's theorem says only that F
corresponds to some f satisfying (A.1) and (A.2b). Specifically we assume,

(A.3) F(D) = C(D)/0(D),

were 0(D) is a q-th ordered, nxn matrix polynomial in D, and 0(D) is a p-th
ordered scalar polynomial in 0.

The requirement that the f function corresponding to F satisfy (A. Ic),
(A.ld), and that z be realizable implies the following three sets of
restrictions on 0 and C:

(i) 9(s) = 0 implies Re(s) < 0 covariance stat onarity of {z(t)}.
(ii) detC(s) = 0 implies Re(s) < 0 condition (A.ld)).
(iii) p � q-I

realizability of {z(t)}.

Here, Re(s) denotes the real part of the complex variable s. The first
restriction is required by covariance stationarity of a, and the second by the
requirement that c be the innovation in z. Restrictions (i) and (ii) are
among the reasons why there is such a close analogy between continuoustime and discrete time ARMA models. Recall that in discrete time,
covariance stationarity and the requirement that the time series disturbance
be an innovation imply that the roots of the autoregressive part and of the
determinant of the moving average part lie outside the unit circle. Suppose,
for the moment, that we think of the lag operator, L, as a complex variable.
Then the restrictions just described are the following. If L is a zero of
either the autoregressive part or the determinant of the moving average partof the discrete time representation, then IL! > I. To see the analogy with
the corresponding restrictions on the continuous time model, recall the link
that L = e, and notice that JL I > 1 and re(D) < 0 are equivalent conditions.
(Here, j . I denotes the absolute value operator.)



Restriction (iii) does not have a counterpart in discrete time models. The

need For it arises because of the fact that a continuous time white noise,

unlike its discrete time counterpart, is not realizable. Notice that (iii)

rules out p=qzO, in which case z is not realizable since it identically equals

We now present three examples which are designed to further motivate

the three restrictions which we impose on 0 and C.

Example t

Suppose n1 and

(A.4a) 0(0) (fi + D), C(D) = I

then,

(A.4b) F(D) = I/( + D)

(A.4c) f(r) = r�O
0 r<O

It is easy to verify that (A.4b) and (A.4c) satisfy (A.2b). Also, note from

(A.4c) that unless > 0, fft) will not converge to zero as r—+ and (A.lc)

will fail. This translates into the proposition that covariance stationarity

restricts the zeros of 0(D) to be negative. This is consistent with restriction

(i). (Here again, we lapse into referring to the operator 0 as a variable.

This does not lead one astray).
The following example illustrates the role of restriction (iii).

Example 2

Suppose n1 and

Q(D)=fl+D,C(D)yD+l



so that (iii) holds if, and only if, y = 0. Then,

F(D)= yD-s-1=y+ 1-y

and,

z(t) = F(D)e(t) = ye(t) + l-yfl ECt)

= ye(t) + (I - y) 7 ePte(tr) dr.

Evidently, in this case z(t) is the sum of yc(t) - which is realizable if, and
only if, y=O - and a second term which is realizable. Consequently, z(t) is
realizable if, and only if, y=O. This result coincides with restriction (iii).

Finding the £ function corresponding to an arbitrary rational F was

trivial in example I because 0 had only one root. It is of interest to note
that if the roots of 0 are distinct, then finding the f function corresponding
to a given F can be converted into a problem as simple as the one in
example I by application of the partial fractions expansion formula.
Example 3 illustrates this for the case p=2, q=i.

Example 3.

Suppose n=I and

0(0) = (D - Xd(0 - A2) A1-X2 n.e. 0, Re(A) <0 j1,2,

C(D)=0-b b<0,

In this case, restrictions (i), (ii) and (iii) are satisfied, implying that z(t) is
realizable and covariance stationary, and that the disturbance e in

OUJ)z(t)=C(D)e(t) is the innovation in z(t). Application of the partial
fractions expansion (see Sargent [1 979,pp. 188-89]) yields
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F(D) = 0(D) = I [ (A1-b) I + (b-A2) 1

0(D) A—A2 ID-A1 0-A2

Then, applying the result in example I twice, we obtain

1 [Rtb)eAtt +(bA2)eX2n] V � 0
A1-Ar

f(r) =

0 r<O.

Evidently, (A.Ic) is satisfied because Re(A) < 0, i1,2, as restriction (i)
implies. If b > 0, then z(t) is still covariance stationary, but c is not its
innovation. For a heuristic explanation of this, see Sargent(1982).

A.3 Proof of Theorems 1 and 2 In Section 2.

The proofs essentially follow the strategy taken in Example I of section
2. We begin by developing some notation and presenting a useful lemma.
Define the scalar polynomial in 0:

(A.5) 0(D) = (D - A1)(D - A2) (D -

where Re(A.) < 0 for all i and the A1's are distinct. Also, define the n x n
matrix polynomial in D,

(A.6) 0(D) 00 + 010 + ... + CqD

with q � pSI, and detC(s) = 0 if, and only if, Re(s) < 0. Finally, let

(A.7) Øc() = 1 + 6c + + + 0cp

= (1 - p)(l - 2) (1 -
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A.
where p1 = e 1, i=1,...,p, and is a complex variable. In this case,

0(0) W.
(A.8) F(D) = =

0(D) j=1 0-A
where

C(A.)
.1

.3
(A. - A)

k=1
k. ne j

Here, the standard partial fractions expansion formula has been applied,
element by element, to F(D). From (A.8) it follows that z(t) has the law ol
motion given by

ooA.r
(A.iO) z(t) = W. e ' c(t-r) dr.

j=1

The following Lemma is used in the proofs of Theorems I and 2:

Lemma I.

If
(1) {z(t)} is generated by the structure (A.5) - (A. 10)

then,
(ii) OC(L)z(t) = q(t)

(iii) (t) ff(r)e(t - r)dr

(iv) f(r) = WJ( GCke J) e r e (s,s+1), sO,l,...,p-I.

Proof

The proof consists of applying Oc(L) to the right side of (A.1O) and
showing that the result is q(t) in (iii) - (iv).
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coA.r
OC(L)z(t) = ec(L) W. e e(t - r) dr

3=1
w A.toC Wje e(t-r-J)dr.

j=i .3

Notice that

a A.r -IA.r w Ar
ICi c(t-r-Edr e c(t-r-J)dr+ fe c(t-r-J)dr

o p-J

-i X.r X.r A.(p-.D)
e c(t-r-i)dr+[ e e c(t-r-p)dr

Substituting,

wA.r -A. A.p
OC(L)z(t) +W. [e 9C(e 3) e e(t - v - p) dr = (t)

j=1
-A.

since by construction QC(5 3) = 0, il,...,p. Now,
p-i A.rW.f e 3 c(t-i-r)dr

1=0 Jo
A.r 2 A.r

= W.{ 0c [fe c(t - r)dr + J e €(t - r)dr
j=l 0

A.r p A.r
+Ie c(t-r)dr+...+f eJ €(t-r)drl

p-I
2 X1r A.r p A.r

e 3[Je e(t-r)dr+fe 3 e(t-r)dr+...+J e c(t-r)dr]
1 2

-2A. A.r p X.r
+oe 3[j eJe(t—r)dr+...+5 e3e(t-r)dr]2

-AJp-1) p Ar+...+ ec1e 5 e3 e(t-r)dr}
p P-I

s+1 A.r
Collecting terms in 5 .3 e(t-r)dr, s = O,i,...,p-i, yields tp q(t) in (iii)
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and (iv).

Q.E,D.
Proof of Theorem I

Let
S(ico) denote the

spectral density at frequency w c (-co,co) of the
continuous time

process, z(t). Absolute
integrability of the

moving average

function in (A.IO)
guarantees that S(iw) =

F(icô)VF(-iw, where F is
defined in (A.8) (see eg.,

Papoulis[1962,page 27].) Evidently S(ico) > 0,
meaning that S is positive

semidefinite for all co
and its

determinant is positive at all but possibly a finite number of points. Let

5d (e"°) denote the
spectral density of z at

frequency w C
According to Hannan

[197O,p.45], S'3(e'°) =
S(i[co+wk]).

The fact

that S > 0 therefore
implies sd > 0. Define y = 6 (L)z for integer t.

According to
Hannan[1970,Theorem 9, p.58], the

spectral density of
{y}.

denoted S , is given by S (e'°) =
IOC(e0) jSdz(ec), for co

(-ir,ir).

Because 1the
the X's, 0°(e"°) 2 n.e. 0 for all co w).

Hence, > 0. Since
the conditions of Lemma 1 apply, y = q(t) and c(k) =

Eyy = 0, k �
p-1. Hannan's

fj979,p.66] Theorem 10 then
guarantees

the existence of a unique set, A, ...
W, for which the zeroes of

detA(ç) lie on, or outside
the unit circle and W is positive

definite, with the
property S(e"°) = A(e"°)WA(e"°Y. Here, A(e"°) I + A1eL + .n ÷Therefore, we conclude that

Szd(e_iw) = jO°(e"°) 2
A(e"°)WA(e'<°Y.But the

expression on the right of the
equality is an

ARMA(p,p—1)
representation for a process with scalar

autoregressive part O'(L), matrix
moving average part A(L), and innovation

variance W.

Q.E.D.
Proof of Theorem 2

he proof is a trivial
modification on the proof to Theorem 1, so th&details
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are ommitted. The important
thing to note is that fO°(L)z(t-r)dr

OC(Li(t)

= jq(tr)dr
= say. Hence, (k) = is not necessarily

zero for k =

p, although
(k) = 0 for k > p.

Q.E.D
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