NBER TECHNICAL PAPER SERIES

TECHNICAL PROGRESS IN U.S.
MANUFACTURING SECTORS, 1948-1973:
AN APPLICATION OF LIE GROUPS

Ryuzo Sato

Thomas M. Mitchell

Technical Working Paper No. 4T

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138

May 1985

An earlier version of this paper was presented at the Fourth Annual
Conference on Current Issues in Productivity at Cornell

University, Ithaca, New York, November 30 to December 2, 1982. The
authors wish to thank Professor Dale Jorgenson for his permission
to use data painstakingly developed by Frank Gollop and himself.
Thanks also to Professor Subhash Sharma for his comments and
advice. And as always, the expert typing was done by Marion
Wathey, whose productivity always seems to increase. Any opinions
expressed are those of the authors and not those of the National
Bureau of Economic Research.




NBER Technical Paper #47
May 1985

Technical Progress in U.S.
Manufacturing Sectors, 1948-1973:
An Application of Lie Groups

ABSTRACT

The purpose of this paper is to apply the theory of Lie
transformation groups as developed by the first author, and
derive a testable model of production and technical change. The
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significant.
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1. INTRODUCTION

Since the seminal studies of Schmookler [1952] and Solow
[1957], there have been many studies on technical change for the
United States' economy and various industrial sectors.! Most of
these studies computed rates of technical change for the sectoral
or aggreqgate production function, or sectoral price function.?2
While these studies calculated rates of technical change for the
sectoral or aggregate production (price) function under
consideration, attempts were not usually made to model technical

change.

Although technical change to the purist is the rate of growth
of an economy's "stock of technological knowledge", it is clear
that this is not a very practical definition, as the stock of
knowledge does not lend itself to empirical measurement.

Therefore, we concern ourselves with measuring the results of

‘technological advance. Following the established convention,

technical change, f/T, shall be defined under constant returns to
scale as that part of the growth of real output, f/Y, which is
unaccounted for by the weighted sum of the growths of factor

are the distributive

inputs, where the weights, & and

K’ '"Ll TTMI
shares of capital, labor, and material inputs, respectively:

(1) T/T = Y/Y - me (K/K) - m (L/L) - Ty (/M)

Alternatively, technical change could also be defined under
constant returns to scale as the negative of the rate of change of
the unit price of output unaccounted for by the weighted sum of the

rates of change of the factor prices:
(1) T/T = ~[B/P - m (£/r) - n (W/w) - T, (2/2)],
where P, r, w, and 2z are the unit prices of output, capital,

labor, and materials, respectively. See, for example, Jorgenson

and Fraumeni ({1980].




While many authors have used various forms of Equations (1)
and (1') to calculate rates of technical progress as an end, we
shall use it as a means toward the end of "describing" the
_technical change which has occurred. We will show with the theory
of continuous Lie transformation groups that it is possible to
estimate particular types of technical progress, free from the

restrictions which have been present in the other studies.

2. TECHNICAL PROGRESS FUNCTIONS AND THE THEORY
OF LIE TRANSFORMATION GROUPS

our model of production and technical change is a neoclassical
framework. We will assume that firms are profit maximizers and
that they purchase the services of factors, and sell their output,
in markets which are perfectly competitive in the long run.
Factors, then, are paid their respective marginal products.
Oﬁtputs will be assumed to be produced from the employment of three
inputs: capital (K), labor (L), and materials or intermediate
input (M), according to a general, linearly homogeneous, production

function,

(2) Y = £(K,L,M) = £(X) with £(aX) = A (X),

where f: Ri > R+, and X = [K,L,M] 1is defined as the vector of
inputs for notational simplicity. The function £ is presumed to
satisfy the usual conditions for concavity and differentiability.
In addition, we will assume that when technical progress occurs,
the mathematical form of the production function is not affected.
The effect of technical progress is to cause changes in the
"quality" or "effectiveness" of the capital, labor, and material

inputs, and therefore, possible substitution among the factors.

More specifically, capital, labor, and material inputs are

transformed into "effective capital", K, "effective labor", L,




and "effective material input", W™, through the technical progress

transformation, T,

K = (Pl(KrLert) = ‘Pl(xrt)l
(3) T: AL = ¢ (K,L,M,t) = ¢,(X,t),
M= 5 (K, L,M,t) = 95 (X,t).

The technical progress transformation is composed of the three
3

technical progress functions, 9; ¢ (R+ x R) = R, (i =1,2,3),
which in general depend on the values of the three factors, and
also the single, real-valued, technical progress parameter, t.
The functions ¢i’ i=1,2,3, are not arbitrary; we will require
that they satisfy certain properties. (These properties are
discussed in detail in Sato [1980,1981), Mitchell [1984], and
Mitchell & Primont [1984], so we will simply state them below.)
The assumption above that the form of £ is unaffected by
technical change implies that the level of output after technical
progress, Y; may be expressed either in terms of the effective
inputs, X, or in terms of the factor inputs and the technical

progress parameter, (X,t):

= F(X,t) = F(K,L,M,t) = £(X,L,M) = £(X),

|

where X = [K,L,M], and F: (Ri x R) »R_.
By way of an example we now illustrate the so-called "Solow-

Stigler controversy". (See Stigler [1961] and Solow [1961].)

Recall that £(X) 1is linearly homogeneous, and suppose that the

technical progress functions are given by

X = 9 (X,t) = A(£)K; L = ¢, (X,t) = A(t)L; M = b5(X,t) = A(t)M.




(Technical change is of the "Hicks neutral" or "uniform factor
augmenting" type.) Then when technical change occurs with K, L,

and M fixed, output may be written as

£(X) = £[A(t)X] = A(t)f(X). .

<
1

This correctly indicates that technical chénge, acting on K, L,
and M alone, is completely transformed to a scale effect. 1In the
spirit of Solow and others, all of the growth in output would
incorrectly be attributed to a "residual", unexplained by growth in
the inputs (which have been fixed), or increases in the quality of
the inputs, when in fact the latter has been the true source of the
growth in output. In this example, because technical change is
completely transformed to a scale effect, we say that the

production function is "holothetic" under the given type of

technical progress. This example shows that in some situations it
may not be possible to estimate technical change and the effects of
scale. Fortunately, the theory of continuous Lie transformation

groups offers a solution to the holotheticity problem.

It is clear that the situation we want is that in which a
particular production function is not "holothetic" under a given
type of technical progress. For the purpose of clarity, we

formally define holotheticity:

Definition. A production function is said to be "holothetic"

under a particular type of technical progress transformation

if and only if the impact of the technical progress is =
transformed entirely to a scale effect. Therefore, £ is

holothetic under T: {¢1,¢2,¢3} if and only if

(4) Y = £(X) = £l (Xst), 9, (X,t), ¢3(x,t)] = H[t,£(X)].

(See also Mitchell [1984]1.) It is clear that the isoquants of a
production function which is holothetic under a particular type of
technical progress will be unchanged with technical progress; they

will merely be relabeled.




Let us begin our investigation of the holotheticity problem by

imposing some restrictions on the technical progress functions,

05 -

Property 1: Any two applications of the transformation are
equivalent to some single application of the transformation.
That is, given two values of t, ty and t,, there exists a

third value of t, say t3, such that

4>1[q>1(x,tl),¢2(X,t1),¢3(x,tl),t2] ¢1(x,t3),

¢2[¢1(Xrtl)I¢2(Xrtl)r¢3(xrtl)rt2] <P2(Xrt3)r

3
(Alternatively, if ¢ = [¢l,¢2,¢3], then the above may be
written more compactly as @[Q(X,tl),tzl = @(X,t3).)

Property 2: There exists a value of the technical progress

parameter, t,, which defines the identity transformation:

— . - . = 4
q)l(xrto) - KI ¢2(Xrt0) - Lr ¢3(Xlt0) - M-

(Alternatively, @(X,to) = X.)

Property 3: For any transformation, T, specified by a
particular value of the technical progress parameter, t,
there exists a value, s, which defines the inverse

transformation:




q)l[(Pl(Xrt)r ¢2(Xlt)l QB(XIt)rS] = K,
(P2[¢1(Xrt)r ¢2(Xrt)l ¢3(Xlt)rs] = L,
= M.S

o3le(Xst) s o (X)) $5(X,t) rS]
(Alternatively, e¢[e¢(X,t),s] = X.)

A transformation, T: {¢l,¢2,¢3}, satisfying these properties

shall be called a Lie transformation group. (For more on these and

related properties, see Mitchell [1984] and Mitchell & Primont
[1984].)

The Holotheticity Condition

Given the above restrictions on the technical progress
transformation, we now present the condition under which a
production function, £, 1is holothetic under a given technical

progress transformation, T.
First, we define the functions gi(X) as

36, (X,t ) 99,

i=1,2,3.
Using these functions, we define a linear operator, U, as
(5) U = gl(x)(a / K) + gz(x)(a /9L) + g3(X)(a / M) .

This operator we call the "infinitesimal transformation of

technical change", and it can be used to describe the first order

measure of technical change:

of of of
Uf = £, (X) = + €. (X)) — + £,(X) —.
1 3K 2 AL 3 aM

It

(6) (9y/9t),

Having introduced U, the following theorem states the necessary

and sufficient condition for holotheticity.




Theorem 1. The necessary and sufficient condition that a
production function, £, be holothetic under a technical
progress transformation, T, is that

(7) Uf = glfK + ngL + g3fM = G(f),

where U is given by Equation (5) and G is some arbitrary,
nontrivial, function of f. )

(For a proof, see Sato [1981].)

Recalling that Uf represents the first order measure of
technical change, Theorem 1 states that the necessary and
sufficient condition for holotheticity is that merely the first
order measure of technical change be representable as some function

of the original production function.

3. EXISTENCE AND UNIQUENESS OF A HOLOTHETIC TECHNOLOGY

Given a particular technical progress transformation, we would
like to be able to identify all classes of production functions
which are holothetic under the given technical progress

transformation. Again, from Sato [1980, 1981] we have:

Theorem 2. Given a technical progress transformation, T,
which satisfies the conditions of a Lie transformation group,
there exists one and only one class of production functions
which is holothetic under T.

(For a proof, see Sato [1980,1981].)
Clearly, the implied class of production functions of Theorem

2 must satisfy Equation (7). To solve the partial differential
equation in (7) for £(X), John [1971] shows that we should solve

the following system of ordinary differential eguations:

(8) dK/ g, (X) = dL/g,(X) = dM/€3(X) = df/G(f).




Example. To illustrate this, consider a specific form of the

Hicks neutral type of technical progress used earlier; 1in
particular, let A(t) = eat. Then, the system of ordinary
differential equations of Equation (8) is dK/akK = dL/aL = dM/aM =
df/G(f). Solving this system for the general form of £(X) gives
the solution Y = £(X) = H[KQ(%, %)], which is nothing but

Shephard's class of homothetic production functions.
4, EXISTENCE OF A LIE TECHNICAL PROGRESS TRANSFORMATION

Considering the holotheticity problem from the other point of
view, we would like to know what technical progress transformations
exist which will result in the holotheticity of a given production

function.

Theorem 3. Given a particular production function, there
exists at least one technical progress transformation which
satisfies the properties of a Lie transformation group and
under which the production function is holothetic.

It is clear that a Lie type of technical progress
transformation could not be unique for there are three functions to
be found——gl(X), aZ(X), and EB(X)——and we need only satisfy the
single Equation, (7). Therefore, we are free to choose two of the
three infinitesimal transformations; then the third is uniquely
determined by Equation (7). The implication for empirical studies
is that once the production function, £, has been given (if it
must be) and a technical progress transformation, T, has been
chosen, it simply must be verified that £ is not holothetic

under T.
5. ESTIMATION OF TECHNICAL CHANGE

Equation (6) indicated that the first order measure of
technical change is the infinitesimal transformation, U, applied
to the production function, f. The functions gl, 52, and 53
are the infinitesimal transformations of capital, labor and

intermediate inputs, respectively, and the partial derivatives of




f with respect to K, L, and M are the marginal products of the
respective factors. Noting that gl(X) = UK, gz(X) = UL, and
EB(X) = UM, we may interpret the infinitesimal transformations as
measuring the technical change which has occurred to the capital,
labor, and intermediate inputs. Then we may express the first

order measure of technical change as a weighted sum of the three:

(9) Uf = (technical change to capital) MPK
+ (technical change to labor) MPL

+ (technical change to intermediate input) MPM.

(See also Berndt [1980].) 1If we assume that the inputs are paid
their marginal products, and given estimates of technical change,
Uf, we can estimate Equation (9)--with an appropriate stochastic
term--using different forms for the infinitesimal transformations

of capital, labor, and intermediate input.

Recall our assumption that f exhibits constant returns to
scale. Then our measure of technical change is exactly as it has
traditionally been defined: it is the growth of output unexplained
by the weighted sum of the growths of the factor inputs. Then what
Kendrick and others have identified as the growth rate of the
"total factor productivity index", f/T, is simply the total

measure of technical change:

(10) T/T = (1/Y)(9Y/st) = ¥/Y - nKﬁ/K - nLﬁ/L - nMM/M,

where, again, = b and Ty are the relative shares of the

kK’ L'
respective inputs, and e + T + Ty = 1. If the occurring

technical change comprises a Lie transformation group, then near

the identity value of t, the change in the total factor




productivity index is nothing but the first order measure of

technical change, Uf, and the regression equation is

(11) T/T = (T/T)O = TrKE;;l/K + WLEZ/L + HM£3/M + U,

where u is a random disturbance term satisfying the appropriate
assumptions. Note what the use of Lie transformation groups has
done: The form of the production function need not be specified!
Indeed, we do not even have to make any assumptions about the
elasticity of substitution! This is the beauty of using Lie
transformation groups in productivity analysis, as earlier studies
were forced to assume something about the form of the production

function and/or the nature of the elasticity of substitution.

The infinitesimal transformations estimated were those
corresponding to the familiar factor augmenting types of technical

change, the factor additive types, and others to be discussed.

6. THE ECONOMETRIC MODEL

Equation (11) was developed as a means of estimating different
forms of the infinitesimal transformations of capital, labor, and
material inputs in our model. Since the "projective" type
technical progress functions have as special cases all of the
familiar technical progress functions, let us introduce the

projective case. .

The technical progress functions for the projective group are

given by -
1 Byt
K =3 [KeB . + (B) + B,L ¢ BlOM)t]

(12) T: T =< [LeBS F By 4 ggR o BpyEd,
Lﬁ =1 e PP 4 (5, + 8K + BgLIE]




where D =1 - t(Bl3K + g, ,L + 315M). This group gives rise to

14
infinitesimal transformations for capital, labor, and intermediate

inputs of the following form:

- 2
&l(X) = Bl + B4K + B7L + leM + 313K + 314KL + BlSKM
- 2
(13) Ez(x) = B, *+ 65K + 381, + BllM + BBKL + By L7t slSLM
— 2
63(X) = 83 + BGK + 69L + 312M + 813KM + 814LM + BlSM

Substituting (13) into (11), introducing an intercept term, and

simplifying gives the regression equation for the projective group,

f “K HL ﬂ . K
(14) T =8+ B g * 8§ * B3y * BT ™* B L~
7, K w L w, L
M K M
T B M Y By kTRt By Ty
M m.M
+ K L

Bilo KV Bpp Lt Bram™m B3Rt Byl BgM +u

A Multicollinearity Problem

The above equation is suitable for econometric estimation
except for the presence of three terms: B4“K' B8"L' and BIZ“M'
These terms introduce extreme (perfect) multicollinearity. While
multicollinearity is usually a sample problem, here it is not
because of the assumption of constant returns to scale, which
implies T + T + Ty = 1. This will prohibit the estimation of
some kinds of technical change. To see this, suppose we were to
hypothesize that technical progress were simultaneously capital-
and labor-augmenting. Then the technical progress functions would

be given by




and the estimation equation would be f/T = BO + 84"K + BS“L + u.
If we use the assumption of constant returns to scale and

substitute 7w, =1 - 7. - 7 then the equation becomes

K L M’
T/T = (8, + By) + (Bg = B m = Bymy + Uy

which is exactly the regression equation one would obtain under
technical progress hypothesized to be simultaneously labor- and
material-augmenting, which is described by the following technical

progress functions:

The upshot of this example is that we will be unable to distinguish
between types of technical change which have factor augmenting

characteristics for two {(or all three) of the factors.

We stated however, that we would estimate factor augmenting
types of technical change. This meant that we would consider the
technical progress transformations given by the capital-, labor-,
and material-augmenting types. These transformations are

represented, respectively, as

=|
[
=

(15) K = e K, L =1,

i
=
=
#
o
il
=|
I
=

(16) K




(17) K=K, L=1L, M=c¢e M.

For expository purposes, consider the technical progress
described by Equation (15). The alternative form of technical
change from which this could not be econometrically distinguished

is the following:

I.e., labor and materials are "augmented" in exactly the same

way. Since this is unlikely--although certainly possible--we have
more confidence that our separate estimates of the parameters in
Equations (15), (16), and (17) are actually estimates of those

parameters.

Data

The data we have employed were compiled by Frank Gollop and
Dale Jorgenson [1980]. The documentation of the measures used
would be lengthy and appears in their paper, so there is no need to
discuss those issues here. Berndt's comments give a discussion of
the advantages and disadvantages of Gollop and Jorgenson's methods,
but we agree that one feature in particular represents a
"substantial contribution": the inclusion of intermediate inputs
into the analysis. As Berndt noted (p. 134), "failing to include
intermediate inputs in the aggregate American studies involved
neglecting a relatively small amount ... of transactions. At the
industry level, however, intermediate inputs are guite
important." Additionally, the omission of intermediate inputs
"would tend to bias upward the measurement of aggregate factor

productivity change" (Sato and Suzawa [1983, p. 56]).

From Gollop and Jorgenson's data, we used their series
covering 1948-1973 for labor input, capital input, intermediate

input, their prices (to compute shares), and the computed




rate of technical change. 1In light of Kendrick's [1985] analysis
of the service sectors of the economy, we chose to focus only on
manufacturing sectors. Specifically, we used Gollop and
Jorgenson's data for their manufacturing sectors. (See their Table
1.1, pages 30-31, or our tables in the next section.) Therefore,
we had 25 observations on rates of technical change, inputs, and
shares for each of 21 individual industries. (Data available on

request.)

Methods

Under ideal conditions, we could use ordinary least squares
(OLS) regression analysis to estimate an equation for each
industry. However, the assumptions of the general linear
regression model probably do not apply. 1In particular,
independence of disturbance terms across models is probably an
unrealistic assumption. Therefore, we used Zellner's [1962] method
of seemingly unrelated regression equations, which is a special
case of the generalized least squares (GLS) analysis, to
simultaneously estimate all 21 equations. For more on this method,

see the Appendix, Zellner [1962], or Theil [1971].

7. EMPIRICAL RESULTS

Factor Augmenting Technical Change

The most freqhently used form of technical change is the
factor augmenting type, under which an effective factor is the
product of an augmenting function of t and the nominal value of
the factor. Therefore, capital augmenting (Solow neutral)
technical change is given by Equation (15), and the regression
equation is f/T = BO t By U labor augmenting (Harrod
neutral) technical change is given by Equation (16), and the
+ B, m. + u; and

0 8 L
material augmenting technical change is identified by Equation (17)

associated regression equation is f/T = B

and the implied regression equation is f/T = + u.

By + Bio™




Unfortunately, these types of technical change did not test well
with Gollop and Jorgenson's data. Using Zellner's method of
seemingly unrelated regression equations, none of the models gave a
weighted—R2 over 0.5, and none produced more than fourteen
significant coefficient estimates, on the basis of the computed t-
ratios. We conclude that, as a system applied in all sectors,
factor augmenting technical change is not the appropriate type for
the data.

Factor Additive Technical Change

One of the distinct advantages of employing Lie transformation
groups to analyze technical change is that simple analysis no
longer requires the factor augmentation hypothesis. 1I.e.,
technical change may be characterized in ways other than those
which give constant rates of growth. Consider, for example,

(18) .I-(_=_K+Blt,—I:=L,l_Vl_=M;‘

(19) E=K,E=L+32t,ﬁ=m;

(20) R’=K,E=L,H=M+33t.

These are more special cases of (12). But in contrast to the cases

of Equations (15), (16), and (17), the nonzero rates of growth are
not constant, but rather declining with t. E.g. in (18),

K/ ot = B, but 3lnK/dt = B,/ (K+g,t), while in (15),

3lnK/ st = Byr i.e., constant. From the form of ¢1(X,t), (18) 1is

called capital additive technical change. Similarly, (19) defines

labor additive technical change, and (20) defines material additive

technical change. The associated regression equations may be

determined directly from (14), or derived through (13) and (11).
As in the factor augmenting case, however, the factor additive
types did not test well with the data. Under GLS, none of the
systems gave a.weighted—R2 as high as 0.41 and only the capital
additive case produced more than six significant coefficient




estimates (only 12). We again conclude that factor additive
technical change does not significantly account for U.S.

manufacturing technical change.

"Mixed Types" of Technical Change

In the above cases, we estimated systems of equations based on
the assumption that technical change was the same across
industries. This is clearly restrictive. (In addition to the
analyses discussed above, we separately estimated the other nine
coefficients in Equation (14), again assuming that technical change
was the same in every industry. The results were similar: the
weighted—R2 ranged from 0.2356 to only one exceeding 0.5 by a small
amount; the number of significant coefficients ranged from only 5,
to 15.) As an improvement, however, we attempted to find the
single explanatory variable which best described technical change
for each industry, and then applied GLS to the resulting system.
(Identification of the "best" variable was done with PROC STEPWISE
in SAS, with option = MAXR.) The identified variables are given in
Table 1 along with the coefficient estimates derived from GLS.
While only ten of the coefficients were significant at the 5% level
under OLS, 20 were significant under GLS at that level, and the

lone exception (furniture) gave B significant at the 6.6%

4
level., The weighted—R2 for the system, 0.5687, exceeded the values

for all 15 systems previously considered.

This line of thought was pursued to the next "level", where
technical progress is represented by transformations with two
unknown parameters. (We estimated all 102 possible types of
technical change under the assumption that technical change was
identical in every industry. There are 105 combinations, but we
did not estimate those three types which are factor augmenting in
two factors. However, none of the models was as good as that which
was determined by relaxing the restriction of identical technical
change in every industry.) For each industry we identified the
two-parameter transformation which best described its technical
change. We then applied GLS to the resulting system. For the




system, Ez = 0.8294, and for 19 industries both t-tests led to

rejection of the appropriate null hypothesis at the 5% level. The

exceptions were the paper significant at 13% level) and

(8
furniture (Bl significant aé333% level) industries. All other
coefficients were significantly different from zero at the 5%
level; the results are in Table 2. The most prevalent variables
(components) were the nLM/L and L wvariables, each occurring six
times in the system. These components are termed "material-ratio
additive to labor" and "inverse-labor additive", respectively.

(The names are derived from the forms of the holothetic
technologies which are f = H[(L/M) + Q(K,M)] and £ HI(1/L) +
QO(K/L, M/L)], respectively. See Sato [1981], Table 1, for two-

factor analogues.)

Taking this process one step further produced the best
estimate of its kind. We did not estimate all possible three-
parameter models. Rather we found the three-parameter model of
technical change which was best for each industry, and estimated
the resulting system. With R2 = 0.9771 under GLS, in 17
industries all three t-tests led to a rejection of the appropriate
null hypothesis at the 5% level. On the bhasis of the available
(and approxima;e) statistical tests, this is a high degree of

explanatory power.

As a refinement, and at a slight cost in terms of the
weighted—R2 for the system, we dropped thevinsignificant
coefficients from the four industries and re-estimated. The
resulting model hypothesized téchnical progress to be a three-
parameter type for 17 industries, a two-parameter type for three
industries, and a one-parameter type for miscellaneous
manufactures. The generalized least squares estimate (ﬁz
= 0.9675) had all remaining coefficients significant at the 5%

level; the results are in Table 3.

We continued the analysis to the levels of 4-, 5-, 6-, and 7-
parameter types of technical progress transformations. While the

weighted—R2 statistics were comparable to the 3-parameter results




Table 1. One-Parameter Technical Change,

GLS Results

(§2 = 0.5687).

Industry

Food products

Tobacco manufactures
Textile mill products
Apparel

Paper & allied products
Printing & publishing
Chemicals

Petroleum & coal

Rubber

Leather

Lumber (exc. furniture)
Furniture & fixtures
Stone, clay, & glass
Primary metals
Fabricated metals
Non-electrical machinery
Electrical machinery
Transportation equipment

Motor vehicles

Professional photographic

equipment & watches

Miscellaneous manufactures

Variable

nLK/L

ﬂKL/K
nMK/M

Estimated Coefficient

by

Byg

blS

by

blO

~0.46
0.12
0.008
-2.25
-2.00
-8.29
-0.82
-0.89
-0.10
0.06
~-0.13
-0.45*
0.16
-0.69
-0.18
0.12
0.15
-0.76
-0.02

-0.33
0.19

*
Insignificant at 5% level; all others significant at 5% level.

(ranging from 0.9324 to 0.9759), the number of significant models

in the system, based on separate t-tests, ranged from only seven to .

ten. As a last alternative to consider, we relaxed our implicit

assumption that the technical change transformations should have

the same number of parameters in every industry.

Without

estimating all possible combinations, we decided on the following

method. For each industry we looked at the best l-parameter,




2-parameter, ..., l2-parameter models, and the 13-parameter
model. Among the 13 we chose that model which gave the maximum
adjusted—R2 under OLS. After doing this for all 21 industries, we
applied GLS to the resulting system. While far more complicated
than our "modified 3-parameter model® described above, the results
did not justify the added "bulk", and we retained the estimated
model in Table 3 as the best estimate. While the estimated model
in Table 3, derived from the theory of Lie transformation groups,
provides a good statistical "fit", it illustrates a discomforting
characteristié. We may not be able to give a simple economic or
intuitive interpretation to the technical progress functions. More
to the point, the appearance of 19 813, 814, or Bls's simply
defies interpretation, which is unfortunate. However, there is no

reason to believe that technical change occurs in simple, intuitive

forms.




Table 2
Two-Parameter Technical Change, GLS Results (ﬁz = 0.8294)
Industry Estimated Coefficients

Food products by, = 0.795 b3 = -0.021
Tobacco manufactures b6 = -0.591 big = -4.,08
Textile mill products by = 5.06 b,g = 0.025
Apparel b, = -5.03 byg = —0.402
Paper & allied products byg = -2.28 b3 = *
Printing & publishing by = 0.735 bg = -0.293
Chemicals , by = 6.65 b7 = -2.01
Petroleum & coal b, = -0.877 byg = 0.074
Rubber big = -0.088 b15 = 0.045
Leather b, = -1.55 by; = 0.361
Lumber (exc. furniture) bg = -0.346 by, = -0.868
Furniture & fixtures by = * by = -0.820
Stone, clay, & glass by = 4,91 bg = -1.14
Primary metals bll = 0.163 b14 = -0.013
Fabricated metals b11 = 0.190 b14 = =0.007
Non-electrical machinery b6 = 0.637 b10 = 1.07
Electrical machinery bl = 5.95 b7 = -1.22
Transportation equipment b4 = -0,895 b15 = -0.001
Motor vehicles b11 = 0,230 b14 = -0.027
Professional photographic

equipment & watches b7 = -(0,452 b14 = -0.009
Miscellaneous manufactures b4 = -0.263 b6 = 0.233

*Insignificant at 5% level; all others significant at 5% level.
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Table 3. "Modified" Three-Parameter Technical Change,
GLS Results (R°= 0.9675)
Industry Estimated Coefficients’
Food products b11 = 0.910 b13 = ~-0.024 b14 = 0.018
Tobacco manufactures b3 = -1.87 blO = -4.06 b13 = -0.170
Textile mill products b2 =-19.67 b3 = 11.27 b11 = 1.21
Apparel b5 = -2.36 b13 = 0.102 b14 = -0.056
Paper & allied products b3 = 1.05 b7 = -2,95 b15 = -0.006
Printing & publishing b3 = 3.09 b5 = 1.19 b6 = -0.797
Chemicals b2 = 24.27 b3 = ~-4,72 b14 = 0.025
Petroleum & coal b3 = -4,67 b7 =-12.33 bll = -0.954
Rubber b2 = -4.,16 b13 = 0.018 b14 = ~-0.091
Leather b2 =-10,51 b11 = 3.03 b15 = -0,385
Lumber (exc. furniture) b1 = -3.75 b9 = 0.157 b13 = -0.055
Furniture & fixtures bl = 4.68 b4 = -2,33 b15 = 0.019
Stone, clay, & glass b3 = 5.64 b9 = ~=1.32 b10 = -0.754
Primary metals b11 = 0.486 b13 = -0.004 b14 = -0.015
Fabricated metals bl =-11.00 b4 = 0.909 b14 = -0.012
Non-electrical machinery b1 = 4,53 bll = 0.628 b14 = -0.009
Electrical machinery bl = 6.10 b4 = 0.286 b7 = -1.26
Transportation equipment b4 = -0.866 b15 = -0.001
Motor vehicles - b11 = 0.214 b14 = -0.031
Professional photographic
equipment & watches b7 = -0.475 b14 = -0.0078
Miscellaneous manufactures b6 = 0.204

*All coefficients statistically significant at the 5% level.

8. CONCLUSIONS

In the foregoing sections we have developed the theory of Lie
transformation groups and applied it to a model of [production and] = .-
technical change. We then developed an econometric model which would
statistically described some time series for rates of technical
change, and applied the model to data derived by Gollop and Jorgenson
for U.S. manufacturing industries over the sample periocd 1948-1973.




The econometric results were reported in Section 7, and the results
are both new and interesting. As far as we know, this work is the
first empirical study in economics to incorporate the theory of Lie
transformation groups. This would be an empty claim were the results
uninteresting, but they were not, at least from a statistical point of
view. Using Zellner's seemingly unrelated regression equations
approach to generalized least squares produced an estimate of a set of
models of technical change which had a high degree of explanatory
power as measured by the system's weighted—R2 statistic (0.9675), and
gave all individual coefficients to be statistically different from
zero at the 5% level.




APPENDIX

Equation (14) is the basic form of our regression model. The

full model would be represented by

S . s = ll2, s e 0 21;
(Al) Yo = Bt Lo 2L, 585 Y Ur v = 1,2, ..., 25;

where yi is the rate of technical change for sector s 1in
period t; IS 1is the set of indexes for the unknown parameters
in the infinitesimal transformation for sector s; ks is the
zi'j is the value of the jth
for sector s in period t; and ui summarizes stochastic and

number of elements in 1I%; variable

neglected variables for sector s in period t. (More

specifically with regard to =z it is the variable having the

S
t,j’
coefficient B. in Equation (14), where the sector and period

indexes have been omitted.) Note that X zi js§ = Usfs/fs,
j 14

]
the infinitesimal transformation for sector s applied to the

sector's production function as a fraction of the sector's output.

Under ideal conditions, there will be independence between
disturbarnces of the same equation but different periods, between
disturbances of different equations and different periods, and
between disturbances of different equations but the same period.
(These conditions are in addition to the usual conditions for the
general linear model.) If these hold, then (Al) may be estimated
with OLS sector-by-sector, s = 1,2, ..., 21. However, these
conditions of independence probably do not hold. While we will

maintain that ui and ui (r # £t) are independent,7 and that
ug and ui (g #+ s, r # £t) are independent, it would be
unreasonable to expect u% and ui (g # s) to be independent.

Economic conditions affecting technical change in sector q will

surely have an effect in sector s. To the extent that this is

true, ud ang u® will be correlated. 1In that case, sector-by-

t t
sector OLS estimation of (Al) will give inefficient estimators.




Given the presence of these correlations, we used Zellner's method
for two-stage Aitken estimators for the generalized least squares
model (GLS), which estimators are asymptotically equivalent to

their corresponding maximum likelihood estimators.

Let us define the 25 «x (ks+ 1) matrix 2% = [zi j]
[
(s = 1,2, aoey 21; t =1,2, ooy 25; 3 = 0,1, «uoy Kg)y
where =z, . 1is as before except we now have 2° =1 for all
t,] t,0
S s s s
s and t. Also, let y = [yl’ Yor e y25]‘,
s _ s 8 S 1.4 s _ s S s .,
B - [Sol Bll LR 4 BkS] r and u [ul' u2, o e oy U25] .
Then our full model can be written as one equation:
. _ - = - - -
y1 Z1 0 P ¢ Bl u1
y2 0 22 eee O 82 u2
(A2) vy = = + = ZB + u,
_y21— 0 0 . 221~ _821_ Luzl-

where the null matrix in the ith woolumn" of the partitioned
matrix, 2, 1is 25 x (ki+ 1). In (A2), y and u are column

vectors of 525 elements, 8 is a column vector with

21 .
K = ) (ks+ 1) elements, and Z 1is a 525 x K matrix.

s=1

If all disturbances are independent, then (A2) may be

estimated by OLS and the least sqdares estimate of 8 would be

b = (Z'Z)-lZ'y. Furthermore, if the disturbances were distributed

according to N(0,})), where 0 ¢ R°?>  and ) = 02125
2 2

o 1525 (¢° = Var (ui) for all s,t), then b 1is distributed
1 q

according to N(B,GZ(Z'Z)_ ). However, when we permit ug and
ui (g # s) to be correlated, then b will no longer be an

& Iy




efficient estimator of B8, since the disturbances are no longer

2

distributed according to N{0,¢ I ).

525
If we permit correlation only across sectors for each period,
then Var (u) = V, where V is block diagonal with ) = 02125
along the diagonal. Under these conditions the Aitken estimator
for B 1is b* = (Z'V_lz)—lzfv—ly, and if u comes from
N(0O,V) then b* comes from N(B,cz(Z'V_lz)—l). Unfortunately,
V is not known. Zellner's [1962] method for these seemingly
unrelated regression equations is to replace ) with the matrix
of mean squares and products of the estimated least squares
disturbance vectors, Gs: 2 = S = 1 [s..] where s.. = Qi- Jj,
n ij ij
and n 1is the number of observations. This matrix S 1is then

put on the diagonal of V to give V and we have our estimator

br* = (z'v tz)"lz'v"ly which is distributed according to

N(B,oz(Z'V—lz)—l) when u comes from N(O0,V). This is the

estimator we have used. (See also Theil [1971].).




NOTES

lendrick [1961, 19731, Kendrick and Sato [1963], Sato
[1970], Christenson and Jorgenson {1973], Gollop and Jorgenson
[1980], Jorgenson and Fraumeni [1980], and Kendrick and

Grossman {[1980], to name a few.

2Jorgenson and Fraumeni [1980] took the dual approach and

estimated sectoral price functions with disaggregated data.

31 ¢t represents time, then a reasonable specification

for t3 would be t3 = tl + t2.

4If t represents time, the obvious value for t; would

be zero.

5Again, if s and t are measures of time, s = -t and

Property 3 is analogous to Fisher's "time-reversal test" in index

number theory.
65ee Mitchell [1984].

TThis implies that the disturbances for sector s are
serially uncorrelated. On the basis of Durbin-Watson statistics,

this assumption was justified in all our models.
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