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discontinuities in the forward-looking variables., The third represents
the case where the number of unstable roots is less than the number of
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anticipated, current or future and permanent or transitory shocks can be
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SADDLEPQINT PROBLEMS IN CONTINUCUS TIME RATIONAL EXPECTATIONS MODELS:

(1)

A GENERAL METHOD AND SOME MACROECONQOMIC EXAMPLES.

INTRODUCTION

This paper studies the sclution of a class of raticnal expelt-
aticns models that can be represented by systems of deterministic
first order linear differential equations with constant coefficients.
This class includes virtually all deterministic continuous time
rational expectations models in the macroeconomic and open econcmy
macroeconomic literature such as Sargent and Wallace (1973), Dornbusch
(1976), Wilson (1979}, Krugman (1979), Dornbusch and Fischer (1980)
and Buiter and Miller (198la,b). The method handles systems with‘
state vecters cf any dimension, n. As lohg as the forcing variables
or exogenous variables do not "explode too fast", any combination of
anticipated or unanticipated, current or future and permanent or
transitory shocks can be analysed. Wilson's (1979) analysis of antici-
pated future shocks in systems where n=2 and Dixit's (1980) method for
handling unanticipated current permanent shocks are special cases of

the yeneral method developed in this paper.

When the number of predetermined or backward-loocking variables
(nl) equals the number of stable roots of the characteristic equation
of the homogencus system and the number of non-predetermined, forward-
looking or "jump" variables (n4nl) equals the number of unstable roots,
there is a natural way of specifying the n linearly independent
boundary conditions that are required for a unique solution. This case
is considered in Section 2. n, boundary conditions take the familiar

form of initial conditions for the predetermined variables. The

remaining n-n, boundary conditions are obtained from the terminal or
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transversality condition tﬁat the system should be "convergént”. More
precisely, if the particular sclution of the system of egquations
exists and remains bounded far all time then the general solution of
the system should remain bounded for all time. This transversality
conditicon constrains the initial values of the n—nl non-predetermined

variables to lie on the stable manifold; the influence of the n—nl

. . 1)(2)
unstable characteristic rocts is neutrallzed.( )

If the system has "too many" unstable roots, i.e. if there are
fewsr stakle roots than predetermined variables, no convergent
solution exist for arhitrary initial values of the predetermined
variahles and the methods of this paper cannot be utilized. The case
when there are more stable roots than predetermined, variables is con-
sidered in Section 3. The transversality conditien that the solution
be convergent now no longer suffices‘to ensure a unigue solution.

Two examples are given in which =2conomically sensible additional
linear boundary conditions can be provided to guarantee unigueness.
Cne involves "backward-looking” variables that are nevertheless not
predetermined. The other involves forward-lccking variables
"associated with" stable characteristic roots. Formally, all these
models can be viewed as linear two-point houndary value problems with
linear boundary conditions. The mathematical conditions for unique-
ness are straightforward. The problem lies in the economic mekivaticon
of the boundary conditicns. In ad—hoc macromodels this motivation can

never be fully satisfactory.



3.

%

(2) A continuous time version of the method of Blanchard and Kahn

(la)

The method presented in this Section is a straightforward con-

tinuous time adaptation of the solviticn method for linear diffsvence

(37}

models with raticonal expectations presented in Blanchard and Kahn

{1980) and Blanchard (1980).

Consider the discrete time model of eguations (la) and (b)

(t+h) -x ) (£)=a ) hx) (t)+a hx (t)+aquz(xl(t+h}iI(t))-xl(tJ}

*1 1171 122

ul4[E(x2(t+h) I(t))-xg(t)]+31h2(t)

E(x2(t+h)|I(t))—x (t)=a, hx (t)+a_ _hx, (t)+o

2 211 22 72 3[E(xl(t+h)|l(t))—xl(t)}

2
+B2hz(t)

x. [t) is the ny vector of predetermined variables, x2(t] the n-n

1 1

vector of non-predetermined variables (nanl). z(t) is the g vector of
exogenous or forcing variables. E is the mathematical expectation
¢perator and I(t) the information set at the beginning of period t,
conditioning the expectations formed in pericd t. hzo is the length
of the unit period. The predetermined variables xl(t+h) are functions
only of variables known at time t, i.e. E(x(t+ﬁ)!I(t])Ex(t+h), regard-
less of the realization of the variables in I{t+h) (see Blanchard and
Kahn (1980, pl3035). The non-predetermined variableé x2(t+h) can be a

function of any variable in I(t+h). I(t) includes all current and

past values of xl, x, and z as well as the true structure cof the model

Fs



(la")

{1b")

(2d)

(2e}

(2£)

(29)

(3a)

given in (la,b). It may include exogenous variables octher than the
"market fundamentals" (Flood and Garber (1980))(3) and future wvalues

of the exogenous variakles; TI{t+h) oI(t.

The system (la,b) can be represented by the more compact but
equivalent system (la',b'}, provided the relevant matrix inverses in

(2a~g) exist

(t+h)—xl(t)=Allhxl(t]+A12hx2(t)+B hz (t)

*1 i

r . =
ELx2(t+h)lI(t)]—xz(t)—AZlhxl(t)+A22hx2(t)+B hz (t)

2

where
A =0(I-a, ) Lia + )

11y, “117%14%21
A ={I-n ]_l(u +o. o)

12 13 12%%14%7
Ba1™%1 %058
AggTU0tay4R 5

= — iy i
By= (I-ayq) T(E ey 4800
By=Byta,58)

-1 -1

g _[I—(I_alB) O‘14‘"23]

Dividing (la') and (lb') by h and taking the limit as h-o yields:

dx (t)=A  x (£)+A

x {(t)+B. z(t)
3t 272

1 1



(3b)

(4a)

(4b)

(Al)

(A2)

and, since.xztt.t)=x (£},

2

2{s,t) =A21xl(t}+A2

xz(t)+B22(t)
s=t

2 3
2s 2

Where for any variable y we use the notation y(s,t)ZE(y({s)|I(t)},

dy®=pin [y(t+h)-y(t)] and 3 y(s,t) =gim [y (t+h,t)-y(t,t)
dt h-c h 3s |s=t h>o h
h>o h>o

To solve (3a,b) we return to (la') and (lb'}), take expectations con-

ditional on I(t), divide by h and take the limit as h»oc. This gives

N r = X r + X ] -
Jixl(s tr Allxl{s t) Alzxz(s t) 4B 2(s,t)
ds s=t s=t s=t 1
s=t
Ax, (s,t) =A_ X, {s,t) +A_ % (s,t) #B_z(s,t)
8s 2 s=t 21 s=t 2272 s=t 2 s=t
We make the following assumpticns:
yl(s,t) Zy(s} sst
For s<t this means "perfect hindsight". For s=t it is the assumption

of "weak consistency" made e.g. in Turnovsky and Burmeister (1977).

z{s,t) is a piecewise continuous function of s and t and z(s,t) is

of exponential order for all t and for all s2t, i.e. for all t and
for all szt there exist constant matrices C and a, C*»o such that

[ at
;z(s,t)|sCe . This assumption rules out explosive growth of the

expectation of future values of z, held at time t.

Note that since for the predetermined variables

E[xltt+h)|I(t)] Exl(t+h), we have in continuous time:



{5}

(6)

dx, (t)=8im [x, (t+h) -x_ (£} ]=0im E[x, (t+h)-x_ (£} [I(t]= 3 x (s,t)

= 1 1 1 1 =¥

dt h-+o T h-»o N 3s =t
h»o h>o

The a=zrtual and the anticipated instantanecus rates of change of the

predetermined variables coincide; eguivalently:

3x, (s,%) =gim Fg(xl(t+h)|:{t+h))-etxl(t+h)|1(t§]= o)
at s=t h-o L :
h
h>o

This is not in general true for the non-predetermined variables.

Indeed we have

dx ()2 iim [x (e+h)-x, (£} ]=Lim E[xi(t+h)!I(t+h)]—E[xi(t)!I(t])1
dt a0 | n h=c n
h>a 4 hro .
i T
“Lim E[xi(t+h)|:(t))-ﬂ(xi(t)II(t)}
h»o N
h>o *~
r hl
+2im E[xi{t+h}|I(t+h)]-E[xi{t+h)|I(t))|
h-o o
h>o = '
S A%, (s,£))  + 3x (s,t)
s * is=t Jt * s=t i=1l,2.

For x2 the instantaneocus rate at which expectations are revised,
;iﬁzts,t) will not be equal to zero at those instants at which
at s=t,

"news" arrives. %, will therefore neot in general be a continuous

functicn of time: (s,t}

2
e ¢ s=t

well be unbounded at those

instants that new information becomes available. Assumpticn AZ is

convenient but perhaps too restrictive. Given A2, x, will be a



(7)

(Ba)

(Bb)

(8¢}

continuous function of time. There are, however, gquite reascnable
models in which the instantaneous rate of ehange Of.xl can become
unbounded because the value of z becomes unbounded at some point in
time. Examples are Buiter and Miller (198la,b). One of the pre-
determined state variables in their models is the real stocﬁ of money
balances: R&(t)Im(t)-p(t). m(t) and p(t) are the natural légarithms
of the nominal money stock and the price level, respectively. In
these "Keynesian" models p(t} is constrained to be a contihuous
function of time. Therefore, discrete discontinuous changes in the
level of the-nominal money stock at t=tO (which would occur e.g. if
m(t) were a step function with a step at t=to) imply a discrete, dis-
continﬁous change in RL(t) at t=t0; the instantanecus rates cf change

of m(t) and £(t) are unbounded at t=t0.

We can summarize

(4a,b) compactly as folliows:

+ B z(s,t)
s=t

=A }Q(Srt) |

ax(s,t)
[s=t

s s=t

where




(a3)

{loa)

(10h)

(loc)

We assume that A can be diagonalized by a similarity transform-
aticn as in (9). Necessary and sufficient for this is that A have n
A sufficient condition is that A

linearly independsnt eigenvectors,

have n distinct characteristic roots.

a=vAv T or v tav=d

V is the nxn matrix whose columns are the right-eigenvectors of A.
A is the diagonal matrix whose diagonal elements are the characteristic

roots of A. A central assumption of this section is

A has ny characteristic roots with negative real parts (stable rocts)
and n-nl characteristic roots with positive real parts (unstable

roots).

We now partition V,V-l and A conformably, as fallows:

-

V=iV v

11 V12
Va1 Vs
-1 -1 -1, ]
V =iV }ll (v )lzr
-1 -1
W V0
f=[1, 0
A
°

"

A, is the n xnl

1 1 diagonal matrix whose diagonal elements are the

stable roots of A and Az the (n-nl}x(n—nl) diagonal matrix whose

diagonal elements are the unstable roots of A. We also define



(11} p=V_lx or x=vVp.

Partitioning p cenformably with V,V_l and x we get

{(12a)

or

(12b) xl] rvll Vlz} P,
=t"

*21. 121 V22 P2

Py is an n, vector and p, an n-n, vector. Using (9) and (ll), we

can transform {(7) intoc

(13)  apis,)|  =Ap(s,t)]  +v lBE(s,t)]

gs s=t s=t | s=t

cr

(14a) 3 p. (s, t) =\ p, (5,t) o B+ B -2( t)

LBy sy P tsy 1171 12°2|%4s

s s=t s=t g=t
{(l4b)  3p.(s,t]]  =A_p, (s,t) +((v"la B +(v i ]E(s t) |

3s s=t < < s=t t 2171 2272 ' s=t

The forward-locking solution for éz(s,t) as a function of s, holding

t ceonstant is

o]
L)
i

A-S A is=-1) 4
. A B -1 -1 - (4)
pz(s,t)—e K2 Je | [(V )21B1+(v )2232JZ(T;t)dT

s

K2 1s an n-nl vector of arbitrary constants. For s=t this becomes

1

ALt m A _(t-T)
(15) ﬁ:z(t,t)=e 2 Kz—J 2 [(v'l) Bl+(v',)

t

21 2232}Z(T't)dT
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Given assumption A2, the integral on the r.h.s. of (15) exists. (15])
will only converge, however, if K2=O, Imposing this traﬁsversality

condition, (15) kecomes

) 7 Ao (t-1) 1 -
(16) pZ(t,t)=-[e [(V )2131+(V )22E2

t

]E(TrtJaT

The weak consistency assumption (Al) implies that

éz(t,t)=p2(t). From (l2a) we know that p2=(v_l) X +(V-l) X

2171 2272
Therefore, provided (V_l)22 has an inverse
r -1 Il -1-1:0 A (t—f) =
-1 -1 -1 { 2 -1
(17) xz(t)ﬂ-t(v )22}- (v )2lxl(t)—iiv )22£ Je L(v )ElBl
t
- T4
+{V ]22B2JZ(T,t)dT

Equivalently, using (12b) we find that, provided Vll has an inverse,

-1 -1 y
x2_v2l{vll] xl+[V22—V21[yll] Vl2jp2' Since

.
i

-1
1-1 -1 , , .
V22—V21[V11J VlZ—L(V )22} (provided the inverse exists), (17)

can also be written as

x

-1 -1 sl by e-T -1 1
(17") xz(t)=V2l[Vll] xl(t){(v )22J Je [(v ) 5yB,*(V }22}32J
t

z(t,t)at.
The similarity between equation (17) or {17') and Blanchard and

Kahn's eguation (3) is immediately apparent. Here, as there, the

current value of the non-predetermined variables depends on the



(18)

(19a)

{19b)

{20]

1.

current value of the predetermined variables and on current antici-

pations of all future values of the exogenous variables.
To £ind the soluticn for xl(t) we substitute (17} inzoc [3al.
This yields

. -1 -1, -1
é%_xl(t) LAll A12[<v )22] (v ), x, (E)+B z(t)

-Alz[(v'l)zz]'lje [{v"l)2lBl+(v'l)2232]§(r,t)dT,

From (9), (loa,b,c) and (8b) we find that

- -1 -1
R LR AR R R A PP Y

and

_ . -1 -1
A =V__ A (V) +v12f\2(v }

12 111 12 22

-1 r -
-1 -1 -1 -1 -1
Therefore All-Alz[(V )22] (v )21—V A [(V Y. =(v ) l(V ) J

Equation (13) therefore becomes

ji_xl(t)=v

-1 NS B
L ] xl(t)+Blz(t)—A12t(V ’22}

11A1[V11

ct

-1 -1 -
[(v ) 5BV )22B2]Z(T,t)dr
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We choose the backward-looking solution fer the predetermined

variables xl(t). Therefore

21 (ti=v M el T e [ -
A ST LA RSP IS R LSRR RS S8 I kbt - )22
. | (5)
A, {s-T1) ‘
{ 2 -1 -1 o
Je [(V )21Bl+(v )zzBé}z(r,s)dT}ds
=3

Kl is an n, vector of arbitrary constants. We solve for this by

using an initial condition for xl(t) at t=to' e.d.

(22) Xl(to)=xl(t0)

The solution for xl(t) is then found to be

fy (E=t ) L Toa(tms) -1
(23) % (£)=v, e I:vll] x) (to)+[vlle [Vll] Blz(s}ds
@]
t A (t-s) -17 A {s-1)
1 -1 -1 2 -1 -1
"1V11® [VllJ A12[(" )22] Je [(V VopB Y )22B2]
t . : s
Q .
E{T,s)drds

or, using (19b)

Attt ) -1 F 4 (E-s) _
¥ — l’
(239)  x (&)=V e [vll] xl.to)+Jvlle [V11] B z(s)ds
tO
t Al(t—s) 1 -1 -1 -1 Az(e—T)
'Jvlle hyw ):1.2[(v )22] +[Vy4] Vlez}Je
t 5

-1 -1 "
[(V )lel+(V )2232]Z(T,S)des
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The similarity between (23) or (23'i and Blanchard and Kahn's final
form solution for xl(t) in their equation (4) is again immediately
apparent. The value of the predetermined variables in period t
depends on the initial condition ;l(to)' The influence of the
initial conditions vanishes as t o siqce AI contains only the stable
roots of A. The solution depends also on the actual values of the
exogenous variables between time to and t. Finally it depends on all

expectations, formed at any instant s between time tO and t, of ail

values of the exogenous variables beyond s.

Dixit's formula

Consider the special case when the anticipated future values of
z are all constant, i.e. z(t1,t)=z, 12t. Equation (17) then
simplifies to

T

r_l -1 -1 -1 1-1 -1 -1 -l' _
xztt)=—Lﬂl )22} (v )2lxl(t)_[(v ) J Az [(V ) 4BtV ]2232Jz

Let X, and X_. be the steady state values of x

5 1 , respectively xl,

2

corresponding to z. A little manipulation then shows that

- -1 -l -
‘(24) xz(t)"‘z:{(v )22] (Vv ), (x, (t)-x_)

or, using (17')

' - = o -1 —_
(24") x2(t)—x2—v21Lvll] (k) (£)=% ).

These are the formulae obtained by Dixit (1980) for calculating the
effect on the non-predetermined variables of previously unanticipated

r

immediate, permanent changes in the exogenous variables,



{25¢)

(25d)

(25e)

(25f)

(25g)

{25h)

14.

An ExamEle

An example of the kind of model that fits the formal structure

of this Secticn is the following generalization of a model by

Dornbusch (1978). (See Buiter and Miller (198la, 1981b) and Wilson
(1979) .
m-p=ky - Ar k, ¥ > o
¥y = - ylr- Bﬁ(s,t] j+ S(e-p) vy, § > 0
‘ Bs 5=t
p=qaw + (l-aje o s a g1
die =9y + ™ b >0
dat
Beals,t) =1 - r*
ds s=t
"= dm’
dat

m is the nominal money stock, p fhe domestic price level, y real out-
put, r the domestic nominal interest rate, e the exchange rate
(domestic currency price of foreign currency) w the money wage, 7 the
underlying or "care" rate of inflation, r* the world interest rate.
All variables except, r, r* and T are in lags.

Equation (25a) is the

LM curve, equation (25b) the IS curve. The price of domestic output
is’'a mark-up on unit labour costs and unit import costs
(equation (25c)). The foreign currency price of

imports is assumed constant. Through chcice of units its loqarithm‘
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equals zero. The augmented wage Phillips curve is given by aquation
{25d). The international interest differential is assumed to equal
the expected rate of exchange depreciation (equation 25e). The
underlying or core rate of inflation eqﬁals the right-hand side time

derjivative cof the money stock:

+ -t . ,
dm (t)=1lim m(;‘t) The money wage rate is treated as predetermined
dt T+t ‘
™t

and is a continuous function of time, unlike the exchange rate. A
convenient cheoice of state variables is L Z m - w which is a measure
of real liquidity and ¢ = e - w which is a measure of competitive-
ness. ¢ is a forward-looking jump-variable because of e. 1 is pre-
determined. Except at those instants that m makes a discrete jump,

it is a continuous function of time. We assume dm(t) to be constant
dt

+
in what follows so that dm=dm =yu.
dt dt

The state-space representation of the model is given in (26).

P - -

(26)  T41(t) 1 gay  de(Ad-y(1-0)) L)

;de b 1
L ‘ T ey (Ad-k)-A
‘iip(s,t) L1 ad (bA~-k) + a - 1] [c(t)]
Las s=tJ

fayxsd  —¢Ay(l-a) [y ]

1
T ay ek - X
LA A+ oy (k-2 ] Lr(t) ]

A necessary and sufficient condition for a stationary equili-
brium of (26} (corresponding tc constant values of the exogenous

variables) to be a saddle-point (i.e. for the state matrix to have one
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stable and one unstable characteristic root) is ay(Aé-k} - A < o
The interpreation of this condition is that, at a given level of
competitiveness, an excgenous increase in aggregate demand raises ogr-

put. The "saddlepath" for this model is upward-sloping in c-% spacs.

We can apply the methods of this secticn to the model of

emuation (26). Note that X, = L, ®x, =c and z = [EJ . The A and B

L

matrices are given in (26). An initial condition is given for ¢{t)
at t = to. A graphical illustration of the effect of an-unanticipated
increase 1n the world interrest rate r=* is given in Figure 1. The

economy is assumed to be in steady-state equilibrium at El for £t < t .
. Q

The new steady-state equilibrium corresponding to the higher value of

faf}

r*, which has a higher value of ¢ and a lower value of % is at 5.,. At

-

t = £t 2 previcusly unanticipated increase in r* becomes part of the
Q .
private agents' information sets. If the increase in r* occurs

immediately (at t=to) the level of competitiveness jumps immediately

to El2' With R predetermined this jump places it on the unigue con-

vergent trajectory 5'5' through E After the initjal "jump deprec-

5-
iation", the real exchange rate gradually appreciates along S'S' to

E_ . An anticipated future increase in r* at t

> € causes an
2 o]

1
immediate jump depreciation to Eiz. This jump has te satisfy the

condition that it places the system on that unstable trajectory (UU
in Figure 1), drawn with reference to El' which will take it to the

unique convergent trajectory S$'S' trhough E2 at t = tl' that is at

the moment that the foreign interest rate assumes its new higher value.
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Lgure 1

joal¥ |



(3a)

(27)

(28)

{22a)

18,

The case of "too many" stable roots

"Backward-looking" but non-predetermined state variables

Consider +the case where the matrix A has nl stable roots and

n--nl unstable roots, but where there are only nl'<nl predetermined

variables. We first analyse the case where it is pogsible to identify,

on economic grounds, nl state variables xl for which we choose a

backward-lcoking solution as in (21). ©Of these ny backward-locking

variables, nl' are pfedetermined and will ke denoted xl'. The remain-

ing n -n_'

7, are ndn—predetermined and are denoted xl“. Thus

Assume that at t=tO the following set of linear restrictions applies:

" 1
F.ox (to)-i'—FzXl (to)+F

1 x, e )=t

3

: _ ] - T : - r [ :

Fl is an (nl ny )x(nl n, ) matrix, F2 an (nl oy )xnl matrix, F3 an
— ] - : —_ I

(n nl 1x(n nlJ matrix and £ an nl nl vector.

Provided Fl is invertible (i.e. provided (28) represents nl—nl'

independent boundary conditions) a ungiue convergent solution exists

te the system (29a,b) with boundary conditions {30a,b)

Tdd_t X, ' (£) rxl't) 1
= All + Al2x2(t)+Blz(t)
4 x1 (t) Xl (t)J



19.

(29b) 3 x,(s,t) = A X "L} ]+ Ay x, (£)+B,2(E)

2
X, {t)

{30a) xl'(to)=xl'(to)

" _ -1 ! _ —l -1
(30b) X, (tO)——E‘l szl {to) Fl F3x2(to)+Fl f.

The sclution is given by eguations (30a,b) and

2 AL (E-T) .
_ -1 -1 -1 , ol -1{ "2 Co=1
(17) xz(t)—-[(v )22] (v )2l|x1 (t) [(v )22] Je [(v ), 1BL*
{xl“(t) £
wly B E(T t)dr
22 2] ' ;
t
(31 x_'(t) AL (t-t ) x. "(t) ; Ay (t-s)
1 _ 1 o -1 |71 "o 1 -
{x ‘) = Vlle [Vll] e ) + J Vlle [Yll] Blz(s)ds
1 x1 o t
(o]
? A (t-s) < A (s-1)
1 1 -1 -1 -1 -1 2 1
“V11® A v )12[(V J22] +[vll] Vlzhz]Je [(V )o1Brt
t s
Q

-1 -~
(v )22B2]z(r,s]d1ds
An example of a model that fits this format is found Buiter and Miller
{1981b). It is obtained by making a fairly minor alteratiocn to the
medel of equations (25a-h). The equation for the core rate of

inflation (25f) is replaced by

€ _n(t-s)
(25€')  w(t) =n [ e " dp(s)ds n>o

—~® dt

This defines rw as a backward~looking weighted average of current and

past inflation rates with exponentially declining weights. We continue



(32)

where

(33)
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to treat w and m (and therefore &) as predetermined and continuous

functions of time. Differentiating (25f') vyields the familiar

" adaptive process

dn =n(d p-w)
dt dt

From (25f') one can see that while 7 is backward-looking, it
will not be a continuous function of time if D can make discontinuous
jumps. From equation {25c) one can see that P will jump discontinously
whenever e jumps discontinuously, if o ; 1. 7 can indeed be described
as a "dependent" jump variable as it will jump if and only if p

Jumps. From (25f') or (25f") we derive:
T(t) = () + n(plti-pit))

T(t ) = lim (T and similarly for p(t ).
T->t

<L

The state-space representation of the model of equations

(25 a,b,c,d,e,f", g and h) is:

7

T oy Atayk o (AS—y (1-a)) : rp@ (t)
-1
= A Nl-a(l+y$))  mA(l+a(l+v4))  nlad (v(l-a) =adA) = (1-a) (1-a(1-8k)) ][I (L)

i i_ 1 A ad (pA-k) - (1-a) e e

A =¢Ay(l-a) u
A O n(l=-o) (A+yk) {lr*(t)

[0 A+r(k-9R)



21.
where A'=ray(¢ﬁ—k) - A<o

For plausible values of the parameters of the model, the state
matrix A of (33) will nave two stable (complex conjugate) roots and
one unstable root (see Buiter and Miller {1281b)). Yet there is only
one predetermined variable, {. We do, however, have three linearly
independent boundary conditions %hich guarantee a unigue solution for

the model. First note that (32) can be written as

T(t) = w(t]) + n(i-a) (c(ti-clt ) + nlwlt)-wlt))

Since w(t) is a continuous function of time the last term vanishes and
(34)  m(t) = 7(t ) + ni{l-o) {ci{t)-cit ))

Using the notation of equations {(27-31), xl'=2, xl“=n and xz?c.

Thus, starting the system off at t=tO one proceeds as follows.
Z{EO) is given by past history at E(to), say. Unless there is news
at t_ (i.e. unless I{to)#I(tO_)), ) will be equal to the
historically given value W(toq). If there is "news" at to' w(to) is
determined using equations (3Ca), {(30b) and (17) evaluated at t=tO
Equation {34) is of the format of (28) or (30Db). C(to-) is found by
using {30a,b) evalued at t:to_ and (17) evaluated at t=to_. From to
onwards, we treat m{t)as predetermined until further "news'"arrives ,
in which case (34) again becomes relevant. In the model of equation
(33), an unanticipated permanent.reduction in u leads to an immediate
“jump" appreciation of the real exchange rate, ¢, and a Jjump reduction

in core inflaticn, .
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(3h) Faorward-locking state variables associated with stable characteristic
roots |

Another small modification to the medel of eguations (Z25a-h) per-
mits us to illustrate the class of models to be characterized and
analysed in this subsection. The équation for the core rate of
inflation (25f) is replaced by:

(25€"") 1 = 3p(s,t)]

as |s=t

This can be interpreted as perfect foresight or raticnal expectations

in the labour market. We no longer treat the money wage rate as a

continuous function of time. Both ¢ and £ now are "jump" variables.

The state-space representation of the model of equation (Z5a-h)

with (25f"'") is

(35)  [dace) | -1 (1-a) (1-0 (1+v) +adk) +a861] | |
Eye : by _ { ’Q‘(t)
| A(1-o(1+Y9)) 4
o .
i;{s,t)J | 0 _-bed FERENES
ds s=t] - CL-a(l+yd) J J
1 0 A(1-a(1+Y4) ) +Aey+ky (1-a) 3 T 1
_ (I=a (1+y0)) : o
+ ‘ ] \
by i ey
¢ l=a(l+vd) 5 : {t)‘
— -J -

Note that the model has bedome recursiveL The behaviour of c is
completely independent of the behaviour of £ except for such inter--

dependence as may be introduced via the boundary conditions. The two
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-1 - :
characteristic roots of the A matrix in (34) are A = and ' -¢ab
. 1-2(1l+vd)
The‘sign of the létter is the sign of-(-a(l+y$)). To interpret this

condition we add a demand shock term d on the right-hand side of the

IS equation (25h). A little manipulation then vields
y{1l-a) * a(l-a)d (1-a)
po= e e + + d
¥ I (1+vd) — 7 I-a(l+ye) ° " T-a(l+vyd)

For oguw<l, l-u(l+y$) must be positive for an exogenous increase in
demand to raise oﬁtput at a given level of competitiveness. We
assume this condition is satisfied. It implies that the character-
istic root governing ¢ is negative. Thus even though we have initial
conditions for neither e nor w {(or neither c nor i1} there is one
unstable and one stable root. Figure 2 depicts the response of ¢ and
£ to an unanticipated permanent increase in r*. Thed =o locus could
dt
be downward-sloping, but nothing essential hinges on that. With both
¢ and £ free to jump in response to "news", the condition that c and 2
remain bounded for bounded values of the exogenous variables u aﬁa,r*‘
no longer suffices to select a unique solution trajectory. Considef
. an.immediatg unanticipated increase in r* at t=to. The new long:fun ‘
equilibrium is E2. The initial position at t; is assumed to be E)-
Any jump in L and c¢ which places the system anywhere on S'S' at t=to
satisfies the equations of motion and guarantees convergence to E2.
A plausible further restriction might be that the behaviour of this
system with its two "forward-looking" variables should not be depend-
ent on an "irrelevant" past. With the increase in r* occurring at

to, when it is first anticipated, this would mean that the system

jumps immediately to EZ' the new long-run equilibrium. If a
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previously unanticipated increase in r* is expected to occur at
£ >t any jump in ¢ and  that places the system on a divergent

solution trajectory, drawn with reference to E which will take it at

l r
t=tl to S'35', the convergent path through E2, satisfies the eguations
of motion and converges to EZ' Three such divergent paths, UU, G'U'
) wrar : : 1 r :
and U"U" are drawn in Figure 2. ElZ' E 12 and E 12 are possible

positions of ¢ and & at to. By analogy with the argument for the
case of the immediate increase in r*, a case can be made for restrict-

ing the sclution to an initial jump to E on UU', from where the

12

systam will arrive at E2 when r* is actually increased, i.e. at tztl.

{See tinford (12979},

Figure 2
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The proposed boundary conditions therefore take the form:

2 ) -1 _[(1-0) (1-a(L+yg) +ask) +asgi -1
(tl) ’ All-c(l+yd)
) _ - n
R 1
sty © Ima(leye) '
xr A(L-0 (1+70) ) +Apy+ky (1-a)
X (Lo (1+y¢) ) s
|
0 ——‘dL— IE*}
1-a(1+Y4} 40

This class of boundary value oroblem can be solved using the method of

adjoints.
The method of adjoints Jornts

We consider the model of equations (3a,b) over a time interval

toststl during which the information set does not change, i.e.

L(t)=I, t_stst,. Over this interval, therefore, 3 x_(s,t)| =

is s=t
ji;é(t)*and equations (3a,b) or (7) can be written as:
dt
(37) _dx(t)=Ax(t)+Bz(t). t gtst
ac Q l_

We now consider the two-point boundary value problem of equaticens (37)

and (38)
(38) Mx(t )+Nx(t_ )=r
o 1

Equation (38) gives n linear restrictions on the value of the state

vector at two distinct dates.
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Let M = {u..}, N={vji} and r = (p

i, 3=1, 2, ..., n.
We can therefore rewrite (38) as (38')
n

n .
' + L, X, (B) =0, ]
(387 Eluji xi(to) iilvjl xl( l) 3 ]

1, 2, ..., n.
i

Xx. now denotes the ith elements of x, i=1, 2, ..., n .
1 ‘

Consider the adjoint system to (37).

(39) ds(t)= - A" s(t)
dt

We integrate the adjoint equations backward from ¢t = tl

in (38 '), using as the terminal boundary conditions

, once for

each xi(tl)

(3}

- (40) S5 (tl) = vji i, 3 =1, 2, ..., n .
{3) . . th .th . y
s; (tl) is the i component at t = tl for the j backward integration
. . . T th
of the adjoint equation. Thus, if v.

denotes the transpose of the j

row of N in equation (38), we have the solution

. —(t—tl)AT T
(41) sJ(t) = e vj j=1, 2, ..., n.
Setting t = tO in (41) we obhtailn S(J)(to)-

The fundamental identity for the method of adjoints is

(see Roberts and

Shipman {1972, pp. 17-22})}:

b,
1

n . n . t n .
(3) _ (3} 1 (3)
42 isi (k) x (t)) i s;7x; (k) = { i s;” (t) b.z(t)dt

i =1, 2, ve., n .
. .th ' .
is the i row of the matrix B .



27.

Substituting for s(j)(tl) from (4¢0) into (42) and using (38') vields
n n . t n .
b= T owox(ty - = s ey =t s boz(oat
1 , Ji "1 o i G 17> . i i
i=1 i=1 t i=1
o}
j=1, 2, ..., n .
or .
. ) ST PR
(43) L [u,. +siic)]l x (t) =p, -] ¢ s77(t) bz(t)dt
. i‘o o 3 . i i
1=1 tO i=1

Equation (43). constitutes a set of n equations in the n unknowns

xi(to), i=1, 2..., n. If they are linearly independent they will

yield a unique solution for X(to). Given the value of the entire
state vector at t = to, equation (37) can be solved as a standard

initial value problem. Its solution would be
t
x(t )+‘[e
o

t
o

A(t4to) A(t—S)B

(43) x(t)=e z(s)ds, t stst
o 1

However, in practical (i.e. numerical) applications, the true
value of x at t=tO can only be approximated., Since A will in general
possess unstable characteristic roots, any error in the calculaticn
of x(to) will be compounded as time passes. If there are unstable
roots, it is therefore computationally superior, having calculated
x(to) using the method of adjoints, to use the sclution method of
equations (17) or (17') and (23) or (23'). Note that 2 (1,8)=z (1, )"
=z{s) for téssétl when we apply this method. If the information‘set
changes at t=£i; we resclve the two-point boundary value problem.
Equation (36) can be seen to be the special case of equation (38) with

M=0.
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CONCLUSION

The paper presenﬁs a general solution method for raticnal expect-
ations models that can be represented by systems of deterministic
first order linear differential eguations with constant coefficients.
It is the continucus time adaptation of the method of Blanchard and
Kahn. To cbtain a unique scluticn there must be as many linearly
independent boundary conditions as there are linearly indépendent
state variables. Three slightly different versions of a well-known
small open economy macroeconomic model were used to illustrate three
fairly general ways of specifying the required boundary conditions.’
The first represents the standard case in which the number of stable
characteristic roots equals the number of predetermined variables.

The second represents the case where the number of stable roots
exceeds the number of predetermined variables but squals the number

of predetermined variables plus the number of "backward-looking" but
non-predetermined variables whose discontinuities are linear functions

of the discontinuities in the forward-looking variables. The third

‘represents the case where the number of unstable roots is less than

the number of forward-locking state variables. For the last case,
boundary conditions are suggested that involwve linear restrictions

on the values of the state variables at a future date.

The method of this paper permits the numerical solution of
models with large numbers of state variables. Any combination of
anticipated or unanticipated, current or future and permanent or

transitory shocks can be analysed.
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FOOTNOTES

See Brock (1975) for a model in which these transversality conditions
are derived from explicit optimizing behavicur by an infinite-1ived
consumer. The non-predetermined variables there have the interpret-
ation of co-state variables in a dynamic optimization problem.

Thne non-predetermined variables frequently are asset prices deter-
mined in efficient asset markets. Implicit arbitrage conditions
rule out anticipated future jumps in these asset prices. Thus,
except at those instants at which new information arriwves, the non-
credetermined variables are continuous functions of time. See Calvo
(1977) .
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(3) We do not however, for reasons of space, conslder solutions in which
"extraneous" information plays a role.

. c : N S
(4) The exponential matrix e where C is an nxm matrix is defined by

C o
e Ekgo Cc When C is a diagonal matrix
k!
Ll ecl
.0 . e 0
C= “c. C_ .. i
o i then e = e .
: o c
. ..n
C e
L n_ - -
v h [v, 17 At
(5) Using e 'V l[ 11] =v. et v 17!
11 [ 11]

. T
{6) For any matrix i, £ denotes the {complex conjugate) transpose of .



