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The paper demonsirates that the concepts of dynamic controllability are useful for the theory of
economic policy by establishing four propositions. First, dynamic controllability is a central
concept in stabilization policy. Second, the ability to achieve a target state, even if it cannot be
maintained. may be of economic interest. Third, dynamic controllability is of special interest for
‘historical’ models. Fourth, the conditions for any notion of dynamic controllability are distinct
from and weaker than those for Tinbergen static controllability.

. Introduction

A considerable volume of research on extending the theory of economic
policy to dynamic models has been summarized in a recent paper by Nyberg
and Viotti (1978) (henceforth N-VJ. It is the purpose of our paper to
emphasize certain issues not generally discussed in this literature, thereby
supplementing and extending the discussion summarized in N-V. In
particular, we focus on an assessment of the N-V conclusion that ‘the
concept of [dynamic] controllability ... is of limited interest for the theory of
economic policy.... We find four important reasons for qualifying this
statement.

First, dynamic controllability provides a convenient sufficient criterion for
determining whether the policy authority has the ability to steer the economy
toward an equilibrium state. The consequent importance of controllability
for stabilization policy is discussed in section 2. Second, controllability can
be relevant for policy even if the state to which the economy is moved
cannot be maintained. We provide examples in- section 3. Third,
controllability is especially interesting for models exhibiting hysteresis, 1.
models for which the equilibrium depends upon the initial conditions. An
example of such a historical model is given in section 4. Finally, N~V have
inferred an overly strict requirement for a system to be perfectly controllable
which has led them to an incorrect generalization of Tinbergen’s static

*The uuthors have benefited from discussions with Gregory Chow. Two anonymous referces

pointed out an error in an earlier version of the paper and offered a number of helpful
suggestions. )
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controllability condition to dynamic systems. This issue is discussed in
section 5. Before proceeding to sections 2-5, we establish some
terminological conventions and recall some important theorems on dynamic
systems.

I.1. Dynamic point controllability

Consider a linear system with constant coefficients

I=Az+Bx ih

P S
iiiere

¢=[B.AB.A*B,... A" 'B].} {2)

Dynamic point controllability of the state vector, z, can be extended to
dynamic point controllability of the output {or target) vector y. Let the
complete dynamic system be given by

Z=Az+ Bx (1
and
y=Cz+Dx, {17

where i i1s an m-vector of output (or target) variables and =z and x are as in
(1). The necessary and sufficient condition for dynamic output point
controllability of the system (1), (1) is that the rank of the mxr(n41)
matrix Q be m, where

Q=[D,CB,CAB, CA*B,...,CA" 1 B]. 2

*See, for example, Preston (1974), Buiter {1979). Gersovitz (1975) and Aoki (1976).
2Sec Aoki (1976, p. 89). In fact, (1} is perfectly general. Use the transformation g=y. This
permits us to rewrite (1) and (1) as

# ~ R 4 - 14 0 . |B
w=Aw+Bx, with w= , A= , B= R
g (G D

ie. wisan (m+m) vector, 4 is an (n+m) x (n+m) matrix and B is an (n+m) x r matrix.
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1.2. Dynamic path controllability

What N-V refer to as perfect controllability,” we call dynamic path
controllubility. The system (1) is dynamically path controllable iff there exists
a path for the controls capable of moving the state vector from any Initial
state and from any initial time along any pre-assigned (target) trajectory for
any pre-assigned finite time interval. The necessary and sufficient condition
for (1} to be dynamically path controliable is that the n* x (2n—1)r matrix ¥
have rank i where

B AB FELREY:
0O B
w—1 0 + (3)

132 Stutic controllability

*

An equilibrium of the system (1) is any z* such that

O=Az*+ Bx {4

for constant x. The equilibrium of system (1) is statically controllable iff there
exists a % such that O=Az*+ B% for any z*. 1f 4 is of full rank (n), the
equilibrium of (4) is statically controllable iff the rank of B=n, Le. there
should be as many linearly independent instruments as there are linearly
independent targets.” '

2. Dynamic point controllability of target states that are equilibria

N-V emphasize that if the target state is not an equilibrium of the system,
dynamic point controllability only ensures that there is an adjustment path
that will make the system pass through the target state at a pre-assigned
point in time (T). Thus, this concept does not indicate whether it is possible
to keep the system at the target state beyond T. However, if the state Is an
equilibrium of the system, it is clearly possible to keep the system there.

From the viewpoint of stabilization policy, dynamic point controllability is
therefore a more important property of the system than stability. If the

3The literature also relers 1o it as funcrional reproducibility. e.g. Brockett and Mesarovic
(1965} and Basile and Marro (1971}

4See Aoki (1975, 1976). For the criterion for dynamic path controllability of the output vector
y when y=Cz+Dx: Z=Az+ Bx, see footnote 2.

5See, for example, Tinbergen (1955).
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system is stable, it returns to an equilibrium after a perturbation with the
policy authority rigidly adhering to whatever fixed values of its controls are
consistent with the original equilibrium. Stability analysis_therefore assumes
x 1s fixed and considers only the eigenvalues of the matrix A. Dynamic point
controllability, by contrast, implies that there exists a trajectory for the x
capable of returning the system to an equilibrium after a perturbation.®
Consequently, we consider dynamic point controllability to be a better
characterization of the policy options potentially available to the policy
authority. This interpretation is strengthened by the connection between
dynamic point controllability and the sta bilizability of a system.

Stabilizabiliry

A pair of matrices (A, B) is stabilizable if the range space of
[B,AB.... A" 'B]. ie. the space spanned by its columns, contains the
subspace spanned by the eigenvectors of 4 with non-negative real parts
[Aoki (1973, p. 134)]. Intuitively, (4, B) is a stabilizable pair if all sources of
instability in A can be eliminated by a control matrix B. as the following
propositions, advanced without proof,” indicate.

Proposition 1. If the dynamic system (1) is dynamically point controllable,
{A,B) is a stabilizable pair.

In other words, dynamic point controllability implies stabilizability.
Proposition 2 implies that a system which is stabilizable can always be
stabilized in a simple manner.

Proposition 2. If (4, B) is a stabilizable pair, there exists an (r xn) matrix T
uch that A+ BI' is a stable matrix, ie. all eigenvalues of A+BI' have
regative real parts.

“onsequently, dynamic controllability implies that there always exists a set
f proportional feedback controls which stabilize the system. Proportional
cedback is equivalent to policy behavior characterized by partial adjustment,
he simplest and most intuitive form of response to disequilibrium. To know
hat any system that is dynamically point controllable can be stabilized in so
imple a manner is clearly of great interest.

®Because all trajectories are considered feasible. dynamic controllability may overstate the
ptions available since there may be outside constraints on the path of the x, e.g. inequality
onstraints.

"For proofs see Wonham (1967 and Heymann (1968). See also Aoki (1973, 1976).
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. Dynamic point controllability of disequilibrium states

The previous section focussed on the usefulness of the dynamic point
controllability concept with respect to equilibrium states. In this section we
briefly consider the usefulness of this concept when the state which is reached
at T is not an equilibrium and it is therefore not possible to say, at least on
the basis of point controllability {but see section 5, whether the system can
be made to stay in this state:

N-V dismiss the importance of reaching a state which cannot be
maintained: "In economics, it is usually not sufficient to reach the desired
position: we must also be able to stay there. While we are in gencral
agreement with this statement we wish to emphasize exceptions. to this
position. For instance. models of the political business cycle emphasize that
governments may (ry Lo bring the economy to a point on, or just before, the
election which ensures re-clection. Problems of sustainability after re-election
may be of secondary importance, especially if the favorable situation can be
reconstructed by the next election. Clearly, controflability is the natural
analytical device for this purpose. Other examples of the usefulness of point
controllability may well be developed by the consideration of other problems
in political economy. For instance, tariff retaliation could be formulated as a
¢ynamic game where the ability to reach a state in which one’s opponent
capitulates may be important: '

4. Dynamic point controllability of historical systems

Hysteresis is the dependence of an equilibrium on the initial state and the
path the economy experiences towards the equilibrium.? Consider the system
(1) when A4 is not of full rank. In this situation, 47' does not exist and the
equilibrium of the system is not uniquely determined, for any given fixed x,
by {4). Instead, if (1) converges at all, it will move from any particular initial
state to an equilibrium determined by that initial state, the disequilibrium
path of x, and the final value of x. Dynamic point controllability of the
equilibrium values of the target variables of the model implies that the initial
values of the instruments, their values during the adjustment towards
equilibrium, and their equilibrium values can jointly be used to select the
equilibrium values of the target variables. The equilibrium values of those
target variables that are not statically controllable can be chosen by the
policy authority by leaving the steady state temporarily. The possibility of
this type of policy is demonstrated if we can establish dynamic point
controllability of an output vector consisting of the target variables plus a set

$An interesting example of a (highly nonlinear) model with ‘local’ hysteresis due to adjustment
costs can be found in Kemp and Wan (1974).
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of variables capable of assuming values that sustain any values of the target
variables as equilibrium values. Similarly, hysteresis of the output variables
means that the equilibrium value of the output vector. y. is not uniquely
determined by (4) and (1"},

A potentially important example of a historical model in which “the time
path to equilibrium partially shapes that equilibrium’ is mentioned in Phelps’
Inflation Policy and Unemployment Theory (1972, pp. 77-80, 256). If a
temporary boom has permanent effects on the attitudes and/or aptitudes of
workers, Le. if a departure from equilibrium produces effects which persist
after the return to equilibrium, the long-run or equilibrium natural rate of
unemployment is not invariant to the adjustment path towards equilibrium.
A convenient representation of the notion that the natural rate of
unemployment. uy, depends on past values of the actual rate, u, is given in
eq. (5). We also assume that some part of government expenditure. G.
facilitates search and lowers uy:

! N
uN{z‘y:j‘( f [u(s‘)—uN(s)]ds.G). 11>0. 1, <0 5)
Differentiating (5) and taking a linear approximation yields
iy =0 (u—uy)+ 06, 8>0.0<0. (5"

We now complement (5') by a simple macrodynamic model to obtain an
xample of the role of point controllability in the analysis of a historical
ystem. Let p denote the log of the price level, /T the expected rate of
nflation, M the log of the nominal stock of money balances. and G real
bublic spending on goods and services. The structural equations are {5') and

p=olu—uy)+11, o> 0, 6)
u=pgM-p)+7G, f<0,7<0° (7
M=n(p—1II). 17> 0. 8)

=q. (6) is an expectations-augmented price Phillips curve or a Phelps—
‘riedman-Lucas supply function. Eq. (7) expresses the rate of unemployment
s a decreasing function of the stock of real money balances m=M —p, and
he level of public spending. Eq. (8) gives the adaptive expectations
nechanism governing inflation expectations.

®The positive constant term in this cquation has been omitted-for algebraic simplicity.
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The steady-state equilibrium conditions are:

Uy =1, (9a)-
u=pm+,G, (9b)
p=M, (9¢)
[T=p, (9d)
G=0. (9e)

Egs. (9b) and {9¢) demonstrate that the model has the hysteresis property.
The steady-state equations do not. suffice’ to uniquely determine the
equilibrium  unemployment rate. In  equilibrium the actual rate of
unemployment equals the natural rate, but for each value of G there exists a
continuum of equilibrium solutions for m and u, given by eq. (9b). Let p and
i be the target variables. The target vector (p,u) is not statically controllable
using the instruments M and G. Note that (9e) implies that G is not a
potential instrument for static control. Only a one-dimensional subspace of
the target space (i.e. only p) is statically controllable. Given an initial
condition, however, any solution of the dynamic system which converges to a
steady state will generate a well-defined equilibrium value of u and thus also
of nr.

Using egs. {57} and {6)—(8), the state-space representation of the model can
be reduced to

i —afp =1 b - m 10
lj[ _ nafp 00—z gy n . 0 0 [M:I (102)
lin op 0 -9 oy Uy 0-0 G
G 0 0 0 0 G 0 1
or
i=Az+ Bx. (10a')

A policy-maker may wish to move the economy. to an equilibrium where
(=I1*"=p and uy=uf For an equilibrium to prevail, m==1iy=G=0 is
required. As is clear from (10a), m=[I=1iy=0 implies G=0. Thus, if the
outputs 11, [1, ty, [T and uy are controllable, the policy-maker can reach the
desired equilibrium. The apparent contradiction with the Tinbergen static
controllability criterion which indicates that u is not statically controllable is
easily resolved. The variable u can be controlled only by leaving the steady
state temporarily and taking advantage of the hysteresis property of the
mode! to select one from the continuum of possible equilibrium values of 1.
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p

For the economic system to be in long run equilibrium at ¢, it is necessary
that u(t)=uy{t}, but not that this state of affairs has prevailed at all time in
the past. In other words, '{La{) [uts)—i{s¥]ds need not equal zero when the
system is in equilibrium at ¢ It is indeed the policy:maker’s ability 1o
influence this integral of past deviations of the actual from the natural rate of
unempioyment that enables him to select alternative equilibrium rates of

unempioy ment. For pmiicv purposes, the comparison of two equilibria, sach
one of which has besn in effect since the begzxmmg of time. is irrelevant. In
such a permarnent ctedd, state. uiry=uy{r} at all times and the natural rate is

i
uniquely determined by f(0.G)=u,. With ‘ahe z‘ﬁnsim‘m between
1

<J‘|
£ I
.
s
o
[N
¢
-
D
[N
)
o]
(9}
e

states specified by our dynamic equations { pe
steady-state rate of employvment on the actual non steady-state path of
economy emerges. since iy need not equal v during the transition.

We have the output system

341/ - ? _f"; ?mj 21 (;}

L R S A a0 10 0 o

Ly =10 0 =5 e Lo ol 15 ow)
I . oo LG

i o 0 1 UHGJ 10 0

LnJ o 1 o o0 ]- Lo OJ

ot
y=Cz+Dx. {10b")

Dynamic point centrollability of the output vector i requires that the rank
of the matrix Q be 5, where Q=[D,CB.CAB,CA*B.CA’B, C4*B1. For {10a)
and {10b) the first three elements of @ are given by

10 ; —of a8 —-) ;//)’ aff +06—un) ——1(0—“ (1/>7+<‘;—;7)_
0 Oy nuff —nu0— j —nafaf+8) nalll =W af+ )

0 61 p  —s0-y L —OPap+d) ow-y;(qﬁﬂn

0 0y 0 0 ! 3B —5(0—7)

L0 f 0 0 | . — (0 =)

Under our assumptions about the parameters of the model. the first five
columns of this matrix are independent and therefore the rank of Q is five.
As a consequence, the policy-maker can bring the system to an equilibrium
with any desired level of p=1IT and u=nuy,.

5. Dynamic path controllability

The necessary and sufficient condition for the system Z=Az+Bx to be
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dynamically path controllable is that the matrix ¥ of {3) have rank n%. N-V
state that for a system to be dynamically path controllable; ‘it turns out that
the number of instruments must be at least as many as the number of
targets, ic. the Tinbergen rule is exactly carried over to the general dynamic
case’ [Nyberg and Viotti (1978, p. 78)]. In this section we show that dynamic
path controllability is possible when the number of linearly independent
instruments is less than the number of linearly independent targets.

The source of N-V's error is a misinterpretation by Aoki of corollary 2 of
his proposition I, stating the necessary and sufficient conditions for dynamic
path controllability [Aoki (1975, p. 295)]. The corollary correctly states that
the system (1} is dynamically path controllable only if

n<{(2— /). {11}

Aoki then interprets this condition erroncously as ‘only if the number of
target variables is less than or equal to the number of instrument variables,
[Aoki (1975, p. 295)7.

If n=1the system is indeed only controllable if r=1. For n=2, 111}
implies rz4/3 which. with only integer numbers of controls admissible,
requires r=2. When n=3. the condition is r=9/5 which is satisfied by r=2.
In the limit as n— x. the right-hand side of (11} tends to 2r, i.e. the number
of instruments must not be less than half the number of targets. This
condition is clearly much weaker than the Tinbergen condition for static
controllability and does not justify the N-V statement quoted above.

First, we note that the Tinbergen condition is sufficient for dynamic path
controllability. Inspection of (3} shows that ¥ has rank n% if B has rank n.
Furthermore, if 4 is the identity matrix, it is clear that B must have rank n
for ¥ to have rank n’. The question is, arc there weaker conditions that are
still sufficient? We have not been able to state a general condition, but it is
possible to find numerical examples for which n>r and yet rank ¥ =n% As
the discussion above implies, the lowest value of n for which this search
could be successful is three.

Given the result about 4 equal to the identity matrix, it is clear that an A
matrix which fulfils the ¥ condition is not likely to be sparse. This
conjecture is economically intuitive: without » instruments, it seems clear
that the instruments ought to affect the states not only directly through the
B matrix but also indirectly through the A4 matrix. A pair of 4 and B
matrices, both of full rank, for which rank ¥ =9 is

-3 —4 9 £ 0
A= 1 —-17 2 71 B=10 1]. (12)
-20 -6 -4 0 0
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The counterexample demonstrates that the mathematical proposition, ie.
‘dynamic path controllability requires the number of linearly independent
instruments to equal the number of linearly independent target variables’, is
incorrect. However, the behavior of the controls required in order to achieve
dynamic path controliability with fewer independent instruments than targets
nay violate unstated physical or economic constraints, even if it does not
violate the simple linear structure to which our mathematical path
controllability proposition refers.’®

6. Conclusion

The aim of this paper has been to demonstrate the usefulness of dynamic
controllability concepts for the theory of economic policy. To make our case
we establish the following: (1} dynamic controllability is a central concept in

stabilization policy: {2) the ability to achieve a target state, even if it cannot
be maintained. may be of economic interest; {3) dynamic controllabiiity s of
special interes i of

dynamic co: and weaker than those for
Tinbergen static controllability. On the basis of these results, we believe that
the two notions of dynamic controllability will play a growing role in the
dynamic extensions of the theory of economic policy.

%5 the discrete time formulation of the controliability problem. path controllability is
defined both with respect to the number of periods, p. until the system must begin 1o follow a
given target trajectory and the number of periods. P. for which the system is to remain on the
target trajectory. Let =4z, + Bx, be the state-space representation of the model. A necessary
and sufficient condition for controflability of -, for P periods, starting p periods from now is that
the rank of the nP x (p+ P —1})r matrix ¥’ be nP:

AP"'B AP°'B . AB B 01

o A7B A'B .. A*B AB B ... 0
Y=y A B.Pp)= , - |
: !

: _—

APTEEPB A4PTIPR L 4PBAPTB AR . B

[See Uebe (1977)]. This condition is harder to satisfy the larger p and P. In the continuous time
case, the influence of an initial condition can be undone in an arbitrarily short interval because
the controls can be varied continuously. In the discrete time case it may.take many periods to
‘purge’ the influence of the initial state. Even then, however, provided the system has sufficient
time to get “on track’ {p is not too small) and provided the control period is not too long (P is
not too large). path controllability may be achieved with fewer independent instruments than
targets.
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