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Preface

This paper presents a simple and economical test of the existence
in time series, or other data in which sequence of appearance is an
essential characteristic, of systematic tendencies related to sequence
- ororder. Although it has seemed desirable to express the derivation
of the test in mathematical terms, we have endeavored to explain
the procedures in such a way that a reader to whom the mathematical
expressions as such carry little meaning will nevertheless be able. to
grasp their general context. Use of the test involves no ‘higher
. mathematics whatever. -

The-test is a byproduct of studies of -the cyclical behavior of pro-
duction carried out at the National Bureau in 1939-40 under Research
Associateships provided by the Carnegie Corporation -of New York.
In the cyclical behavior of the production of major crops in the
United States, Great Britain, France, and Germany we found - no
- regular relation between ‘business cycles and the specific cycles of
' ‘quantity harvested, acreage planted or harvested, and average yield
-per acre. The striking contrast between this and our findings for
most other production series necessitated a close examination of crop
cycles. One plausible hypothesis is that crop production is domi-
nated by a complex of factors whose resultant is essentially ‘random’—
~ weather, Insect depredations, plant diseases, etc. Investigation of
this hypothesis required a criterion of randomness of expansion and
contraction in time series. Since the criterion which resulted is _
adaptable to a range of time series problems much wider than the
one we originally faced, it is published independently of the analysis
- of the cyclical behavior of agricultural production.

We are deeply indebted to Milton Friedman for invaluable counsel
and assistance on numerous aspects of this paper. Rollin F. Bennett,
Arthur F. Burns, Louis Guttman, John H. Smith, Abraham Wald,
Jacob Wolfowitz, and Holbrook Working have made especially care-
ful criticisms of the manuscript, and Martha Anderson, Harold
Barger, J. B. D. Derksen, Pavel Egoroff, Trygve Haavelmo, Roy W.
- Jastram, Milton Lifshitz, Jakob Marschak, Horst Mendershausen,
Frederick C. Mills, Wesley C. Mitchell, Russell T. Nichols, Paul S.
Olmstead, Julius Shiskin, Frederick F. Stephan, Viadimir P. Timo-
shenko, Gerhard Tintner, and C. Ashley Wright have also provided
helpful comments at one stage or another of its preparation.
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Milton Lifshitz calculated the fourth moments of the distribution
of Section VII and made most of the computations for the sampling
distribution and the examples, except those connected with the
least squares polynomial, which we owe to Dorothy Karger Gott-
fried. The sampling distribution for twelve observations was com-
puted chiefly by John D. MecLean, for whose services we are grateful
to the National Youth Administration at-Stanford University. The
charts are the work of H. Irving Forman. ' -

A summary of this paper was read before the Nineteenth Annual
Conference of the Pacific Coast Economic Association at Stanford
University on December 28, 1940, and appears in the Journal of
the American Statistical Association for September 1941.5

Superscript numerals refer throughout the paper to entry numbers
_ in the List of References.
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| I Introduction

Analyses of time series would be greatly facilitated by simplé signifi-
~cance tests of general applicability. Simplicity is essential if tests
‘are to be practicable, for time series usually contain many observa-
tions, and investigations using them often involve numerous series.
The standard error of estimate, to cite one example, is too expensive
a statistic for many investigations of time series, and 18, besides, en-
cumbered by assumptions and restrictions that narrowly circumscribe
its applicability. Generality is especially desirable, for economic
data seldom justify assumptions of normality, homoscedasticity, in-
dependence, etc., nor do they provide a basis for selecting any specific
alternative to these assumptions. Furthermore, it is frequently ad-
vantageous to use significance tests with such devices as moving
averages or even free-hand curves, whose very nature is abhorrent
- to modern tests of significance that have proved so potent with data
(including those of economics) free from the peculiarities of time
series. _ '

A test of significance is, of course, a test of randomness, in that it
shows whether the discrepancies between a set of data (a ‘sample’)
and expectations based on some null hypothesis can reasonably be
ascribed to chance. The simple question ‘Can this sample be re-
garded as random?’ is not, however, sufficiently exact to admit of an
answer. For any sample either ‘yes’ or ‘no’ is justifiable if the statis-
tician is allowed to frame his own definitions of the ambiguous ele-
ments in the question. These elements upon whose specification the
answer usually hinges are of two types. First, the form of the popula-
“tion the inquirer has in mind must be specified; he must ask: ‘Can
this be regarded as a random sample from such and such a popula-
tion?” - Second; the characteristics with respect to which randomness
is to be judged must be specified; the question should be amended
still further to: ‘With respect to this or that trait, can these data
reasonably be regarded as a random sample from such and such a
population?’ o

The characteristics with respect to which randomness is tested may
be simply the values of certain parameters. If a normal population
is assumed, for instance, the seventeenth or any pre-designated odd
moment about the mean should not differ significantly from zZero; or
if a Poisson population is specified, the mean, variance, and third
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moment should not vary significantly from one another. The char-
acteristic may also be a frequency distribution by certain stated
intervals; thus, if a uniform distribution is assumed, the frequencies
should be proportional to the lengths of the intervals. Another type
of characteristic, particularly relevant to time series, and the subject
~of this paper, is the order of appearance of the observations in
‘sampling. : :

Tt is essential that both the form of the population and the charac-
teristic(s) by which randomness is to be judged be chosen entirely
without reference to the sample. For any sample it is possible to
find some population of which it can be regarded as a random repre-
sentation; and an ingenious statistician can not only find a popula-
tion, but can also justify theoretically its use with the subject matter
under investigation. Similarly, it is always possible to select some
characteristic of a sample with respect to which it does not appear
to be a random sample of a specified population.

The necessity of specifying, independenily of the data under analysis,
“what characteristic of the sample will be the test criterion and what
hypothesis will be tested is often overlooked. A great many spurious

findings in statistical investigations, especially in the field of correla-
tion and regression analysis, are attributable to neglect of this
fundamental tenet. Unless it is adhered to rigidly, the conclusions
reached are at best suggestive hypotheses, perhaps worthy of further

- inquiry but in no sense substantiated. It is, of course, permissible
to estimate parameters from the data, provided the form of the
population is clearly specified without reference to the particular
sample. This would be subject to the same limitations as is selecting
the form, were it not usually possible to make an exact mathematical -
allowance for the extent to which the hypothesis is in this respect’
simply (i Fisher’s felicitous phrase) a. tautological reformulation of
the observations; i.e., by deducting degrees of freedom.

In practice there is usually no difficulty in selecting the charac-
teristic by which randomness is to be tested. Indeed, the decision is

“usually imposed by the nature of the problem or data, by the avail
ability of established methods and tables, by considerations of
" economy in calculation, by the traditions of the particular field of
study, ete. (It is not intended by this statement to ignore the great
advances made in recent work, initiated and principally developed
. by J. Neyman and E. S. Pearson,* on the choice of test criteria. But
“this work is not yet generally practicable, partly for the reasons just
suggested and partly because it usually presupposes specification of
the form of the population—in this regard, however, see the second
" paragraph of the footnote at the end of Section VIII.)
" On the other hand, the difficulties of specifying the population of
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Whlch the data may be regarded as 'a random sample are, in the ‘
social smences at least, usually considerable and frequently insuper-
. able. And even when it is possible to spe(:lfy the form of the popula-
- tion it may be difficult or impossible to obtain necessary estimates of
‘parameters. In regression analyses, for example, the usual hypothe-
sis is that the residuals are normally distributed about a mean of zero
with a variance to be estimated from the data. But when there is
only one observation for each value of the independent variate (which
with economic time series is virtually always) there is no satisfactory
way to estimate what variance the observations would have if the
independent variate were constant, since the validity of the estimate
depends- upon the adequacy of the fitted regression and the test of
. its adequacy is the variance of the re51duals (ie., the standard error
of estimate). = :

For these reasons there has been a great deal of interest recently
in tests that are independent of the form of distribution.* A test
- of this nature, especially relevant to certain problems of time series -
analysis and to other problems involving ordered observations, is set
~ forth in this paper. It is based upon sequences in direction of move- .
ment, that is; upon sequences of like sign in the differences between
© successive observations.

" *See references 20, 23, 25, 26, 28, 30, 31, 32, 40, 42, 45, 48, 49, 52, 53, 54.




II General Method

Each point at which the series under analysis ceases to decline and
starts to rise or ceases to rise and starts to decline is noted; these
_‘“turning points’ are thus relative maxima or minima, for the first
differences change sign there. A turning point is a ‘peak’ when it is
a relative maximum and a ‘trough’ when it is a relative minimum.
The interval between consecutive turning points is a ‘phase’. (The
interval between consecutive troughs or peaks might be referred to
as a ‘cycle’.) When a phase starts from a trough and ends at a-
peak it is an ‘expansion’; when 1t starts from a peak and ends at a
“trough, a ‘contraction’. The ‘length’ or ‘duration’ of a phase is the
number of intervals (hereafter referred to as ‘years’, though they
may represent any system of denoting sequence) between the 1n1t1a1
and terminal turning points of the phase.*

From these definitions several deductions may be drawn. The
turning points in a series of N observations may be as few as zero or
‘as many as N — 2; there will be none if the direction of movement is
the same throughout the series, and N — 2 if it alternates regularly
throughout the series. If the number of turning points is even, there
will be the same number of peaks as troughs but a difference of one
between the number of expansions and the number of contractions;
if it is odd, there will be a difference of one between the number of
peaks and the number of troughs but the same number of expansions
-as of contractions. The shortest possible phase, occurring when two
consecutive observations are both turning points, is one year. The
longest possible phase, occurring when the only turning points are at
the second and penultimate observations, is N — 3 years. The sum
~of the phase lengths is the number of years between the first and last
turning. point; since neither the first nor last observation can be a
turning point, it cannot exceed N — 3. ‘

* The definition of a phase excludes the movement preceding the initial turning point and that
following the final turning point in the series. This exclusion conforms with the definitions
used in the National Bureau’s technique of measuring cyclical behavior;3” but for the present
purpose it would be preferable, especially in short series, to include them and record two
additional phases (albeit from a slightly different population). The advantage of their inclu-
sion was not appreciated until most of our computations were complete, a;id then it did not
seem sufficiently important to justify the extensive, recalculations that would be required.
The incomplete phases are not entirely ignored by the test of significance developed in this
paper, for their-duration affects the number and durations of the complete phases.
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‘With these deﬁmtlons and their corollaries in mind, the expected _
frequency distribution of phase lengths in a series of N observations
drawn at random from a stable population can be calculated. It is
apparent that, as such a series is being drawn, the greater the number
of consecutive rises the less is the probability of an additional rise ;-
for the higher the observation the smaller is the chance of drawing
one that exceeds it. Perhaps surprisingly, the rapidity with which
the basic distribution tapers off from its mode does not affect the ex-
pected frequency distribution of phase durations; in fact, it is shown
below that this expected frequency distribution of phase durations
is practically independent of the probability distribution of the 0r1g1—
nal data.

The only restriction on the orlglnal probability distribution is tha,t
it be such (or else that the method of sampling be such) that the
probability of two consecutive observations being identical is infini-
tesimal. . This condition is fulfilled by all distributions for which the
cumulatlve probability (i.e., the ogive) increases continuously; all
continuous distributions, therefore and hence virtually all metric -
data, meet the restriction.

Without specifying anything further about the form of the basm _
distribution, we may make a mathematical transformation of it that
leads to a known distribution but leaves unaltered the pattern of -
rises and falls of the original observations. That is, if = represents
the original variate we replace it by a new variate z, which is a
mathematical function of z; the function we choose is such that 2z’ is
greater than, equal to, or less than z’’ according as =’ is greater than,
equal to, or less than z’’, where 2z’ and z’’ are the transformed values
of two observations 2’ and z’’. ‘

A familiar transformation of this type is the rank transformation.
If each observation is replaced by its rank according to magnitude
within the entire series, the new variate has a simple and definite
distribution; that is, z may be any integer from 1 to N (N being the
number of observations in the sample) and the probability of each
value is 1/N. . The ranks have exactly the same pattern of rises and
falls as the original observations. The distribution of phase dura-
tions expected in a random arrangement of the digits 1 to NV is, there-
fore, that to be expected in-a sample of N from any population;
that is to say, it is completely independent of assumptions about the
original distribution, hence comparable with the observed distribu-
tion of phase duratlons in any set of data.

Another familiar example of such a transformation, one more easily
handled analytically, is the probability transformation. Wlthout
knowing the original probability dlstrlbutlon we may 1mag1ne each*




vahi‘e of x to be replaced by its. cumulative probability, i.e.,
2= [u f(z) dz.

While this replacement cannot actually be performed, since we cannot
know the cumulative probability when we do not know the basic
distribution, it is obvious that whatever the original distribution,
f(x), may have been (provided, of course, that it meets the continuity
condition indicated above), the distribution of z will be uniform—
a straight line of unit height and length over the interval 0 <z <1
Indeed, this simply amounts to the tautology that any observation
with a given probability is exactly as probable as any other observa-
tion with the same probability, for. the probabilities are defined by
what is in effect the condition of uniformity in their distribution.
“Whenever the original variate, z, increases, the transformed variate,
2, inereases also, and similarly for decreases; so the pattern of phase
. durations is precisely the same in the transformed values as in the
Origina,l_(')bservations. We can, therefore, tabulate the actual distri-
bution of phase lengths from the original observations and calculate
the expected distribution of phase lengths for the transformed variate;
" each operation can be carried out without knowing the fundamental
probability law and the results will be comparable in the. strictest
sense. _ ' ,
A completely general determination of the expected distribution of
phase lengths in a random series can, then, be obtained by working
with a unifoim distribution of unit height and length. ‘ '




III Derivation of DiStributibn :

A preliminary step that illustrates the method of solution is to calcu-
late the expected number of phases in a series of N observations:
‘Three observations are required to define a turning point. The
probability of' any particular ordered set of three observations,
222 , 18 dz1-dz-dz; . The sum of the probabilities of all possible
sets is the triple integral of this product over the entire possible
range of z, '

ot 1 1 .
: [ [ [ derdzsdzs = 1.
b Jo Jo

It may be helpful to visualize this geometrically: z; may be plotted -
along the axis of abscissae, 2, along the axis of ordinates, and z along
an axis perpendicular to the z.-z plane at its origin.  Then, since
each variate is uniformly distributed from zero to one, a cube of unit
edge represents all possible sets of three observations, and the points
within the cube are equally likely. To ask what the probability is
.that a set of three observations constitute a turning point is to ask
in what portion of the volume of this cube 2, is either greater than or
less than both z and z; . ,

- If the turning point is a trough, z; is less than z, ;. hence only that

part of the cube is acceptable which lies above the half of the 212
base in which z, exceeds z, ; i.e., above the triangle formed by the
points (0, 0, 0), (1,0, 0), and (1, 1,0). And since z must also be less"
than 2, only that portion of the cube is acceptable which also lies
within a projection of the triangle on the z-z face defined by the
points (0, 0, 0), (0, 1, 1), and (0, 0, 1). The square pyramid that
~ has the z,-z; face as its base and the point (1, 1, 1) as its apex thus
represents all sequences zi-z,-2; that produce a trough; the volume of
this portion of the cube is given by

1 z3 1
f f f doydzs dzs,
23=0 J2o=0 Jzy2,

whi(-:h' may be evaluated as follows:

1
f dzl—“-‘—].—Zz
29 )

2

fza(l—z)d =z -2
A 2) Q22 = 23 §

[ $)e-

| &
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-~ From the symmetry of the function it is apparent that the proba-
- bility of a peak is also 1/3. The probability that any particular set
of three observations constitute a turning point is, therefore, 2/3.
Since in a series of N there are V — 2 sets of three consecutlve 1tems

- the expected number of turning points is

2(N — 2)
_ 3
Since a phase is the uninterrupted expansion or contraction between
two turning points, there are one fewer phases than turning points,

and
2N — 7
3

is the expected number of phases. This is not absolutely accurate,
since there may be no turning points but cannot be a negative number
of phases; when there are no turning points, the number of phases
is zero, or equal to the number of turning pomts The expressmn
obtained by subtracting one from the expected number of turning
points is therefore too small by one times the probability that there
will be no turning points. This occurs only if each item exceeds or
is exceeded by its predecessor, the probability of Which 18

. (1)7 ) _[ [N [N— f dordz -~ day = N"

i.e., twice the reciprocal of the number of permutations of N different
things. ‘This amount should, therefore, be added to the expression
for the expected number of phases. It is, however, so minute—less
than 0.0000006 when N is only 10—and declines so rapidly as N in-
creases, as to be utterly negligible.

An expansion of exactly one year is defined by four consecutive -
observations in which neither the first nor the third is as small as the
second, and neither the second nor the fourth is as great as the third.
The probability of any particular ordered set of four, 22,22, is
dz,-dz,-dzs-dz, ; and its quadruple integral over all possible values
is again 1. The probability that the four define a one-year expan-
sion is the same integral over that portion of the four-dimensional
hyper-cube in which z is between 2. and 1, 2z, between 0 and z;, 2
~between 2, and 1, and 2z, between 0 and 1, 1.e.,

1 pl pzg plL 5
-L.j;‘-l; Lgdz;d22d23d24=—22.

Since the-probability of a one-year contraction is exactly the same,
the probability of a one-year phase is 5712. And since there are
N — 3 sets of four consecutive items in a sample of N,
' ‘5(N — 3)
12
is the expected number of phases of exactly one year’s duration.

8




. Similarly, the probability that a set of five consecutive observa-
~ tions define a phase of exactly two years’ duration is ‘ o

T 'z3‘ 1 . 11 o |
2 f f f f f dzidesdzs dzades = ——.
0 Jz5 o 0 ETY 60

" Since there are N — 4 sets of 5 consecutive items in a series of N,

the expected number of two-year phases is
T1L(N — 4)
: 60
Proceeding in the same way, the expected number of phases of exactly
three years is
: 19(N - 5)
360 ’
of exactly four years,
29(N —6)
| 2520
of exactly five years, S <
' 4N —7)
20160 '’
and of exactly six years,
' 55(N — 8)
181440 -
These results are summarized in Table 1. ,
The general expression for the expected number of phases of exactly
d years’ duration is
@) 2(d’+3d+ 1N —d — 2)_
(d + 3)!
This may be derived inductively. It may also be obtained by start-
ing with the probability of a sequence of d rises or declines, the
extremes of which may or may not be turning points. The proba-
bility of such a sequence, which represents a phase of d or more
years, is shown by formula 1 to be

2
(d+ 1r
By substituting d + 1 for d and differencing, then placing d + 1 for d
in the result and differencing again, and finally multiplying by
" N —d — 2, expression 2 is obtained in the form

L 2AN—d - 2)[<(d _,1_‘1)1 - (d—i2)!> B ((d—:2)! B (d-:3)!>]'

Substituting d + 1 for d and differencing amounts to closing one end
of the sequence by subtracting the probability of a rise or decline of
d + 1 or more from the probability of a rise or decline of d or more;
the process is performed twice to close both ends and thereby define

.
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_ aphase. N —d —2isthe number of sets'of d + 3 consecutive items '
in a series 0f N, d + 3 being the number of points required to define

a phase of d. L o o N
Division of each expectation by the expected total number of
phases, ' '
‘ 2N — 7
T

gives the probability that a phase selected at random will have a

“specified duration as : o ' -

6@+ 3+ DIV —d — 2)

| @+ 3N —7)°

- It may not be apparent that this division.is legitimate. Among the
N1 equally likely possible arrangements of the digits 1 to N (refer-
ring now to a rank transformation instead of to a probability trans-
formation) there are ' :

@)

2N -7 , 2Y\.
N!(- 3 +Fv>

phases. Of these, . :
2NI(N —d — 2)(d®* +3d + 1)
. S (@+3) o
are of duration d. The proportion of phases that are of duration d
may therefore be obtained ‘by dividing the second quantity by the
first; and, neglecting the term '
’ 2
' N1
this ratio is expression 3. Table 1 shows the values of expression 3
for d from 1 to 6, the numerical values of the probabilities for N =
10, 20, 40, and 70, and the limits approached by these probabilities
as the sample size increases. The probabilities approach their limit-
ing values rapidly; when N is as great as, say, 40, there is little ad-
vantage in allowing for the length of the series. ~
As noted in Section II, the same expectations can be calculated
with a rank transformation. This brings out the fact that they are
- exactly those obtained by considering all possible arrangements of the
actual observations in a particular sample, provided no two observa-
tions in the sample are equal. For example, the probability that
three different observations define a turning point may be found by
considering all permutations of three observations. Of the six permu- -
tations two produce a peak, two a trough, and two. produce no turning
point; hence the probability of a turning point is 2 /3. Similarly,
formula 1 is immediately apparent from the fact that two of the N!
permutations of N different numbers produce an uninterrupted move-
ment; and from it the derivation of formula 2 proceeds as before.
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Had the definition of a phase included the incomplete phase pre-
ceding the first turning point and that following the last turning point
(see the footnote to the first paragraph of Section II), formula 2
would have been increased by .

4(d + 1)
(d+ 2)t

whend <N — 1and by
-2
‘Nt .
whend = N — 1. The expected total number of phases would have’
been _ .

2N — 1
T3 | |
and formula 3 would have had a 1 in the denominator in place of the 7
and would have been greater by :

12(d + 1)
(d+ 2)!2N — 1)°
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IV  Mean and Variance of Distribution

" The mean, or expected, duration of a phase is derived by mliltiplying
- each duration by its probability and summing the products: -

$36(d" +3d + DIV —d = 2) _ 30V +7 — 4)

_ = (d+3)1@EN —7) T 9N —7
(where ¢ is the natural logarithmic base, 2.7182818285).. This sum-

mation is evaluated as follows: First place the factor '

Expected Duration =

6. -
N —7’ __
which is common to all terms of the sum, outside the summation sign

and break the numerator of the remaining fraction into two terms:
N = 2)(@® +3d +d) — (d + 3d° + d&. The first contains a

~ factor N — 2 which may be placed outside the summation sign; the

remaining factor is then written as (d + 3)(d + 2)(d + 1) —
3(d + 3)d + 2) + 5(d + 3) — 3, to which it is equal. Upon
dividing this by the denominator we have

N=3 N-—3 N=3 N=3
1 1

i 1
d=1d!_,Szl(d—l—l)!+521(d+2)!_321(d+3)!'

These sums are easily evaluated from the fact that

s 1

z=0 z!

approaches ¢ so rapidly that unless 7 is very small the difference is
negligible; hence they are essentially e — 1, ¢ — 2, e — 2% and
¢ — 23. The second term into which the numerator was broken is
written as (d+3)(d + 2)(d+ 1)d — 3(d«+ 3)(d + 2)(d + 1) + 8(d + 3)
(d + 2) — 13(d + 3) + 9 and when this is divided by the denominator,
it yields sums similar to those above.

The precise expression for the expected duration, allowing not only
for the approximation involved in summing. to infinity but also for
‘that referred to in expression 1, is

¥ oq
3<N+7—4§05—!>+ oV — 1)
' NIGN -7 6’

6
WN -7+ 5
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which is exact for any value of N. When N = 6 it agrees with the
simpler form to two decimal places, when N = 7 there is a difference
of one in the third place, and when N = 8, there is a difference of
_one in the fourth place. _ _

The variance of the distribution is simply the sum of the products
of the probabilities by d*, minus the square of the expected duration,
““and may be found by a similar process of summation to be essentially
3[(8e — 21)N® + (4¢ — 17)N — (48¢* — 140e + 14)]

(2N -7

_ 2.238764N” — 18.380618N + 35.654290
(2N — 7y '

Calculation of the variance requires, after common factors are re-
moved from the summation, evaluation of

: ”2—:3012@12 +3d+ (N — d —2)
= @+ 3)! .
The numerator breaks into two terms: (N — 2)(d* + 3d* + d°) —
(d5> + 3d* + d?®). The first involves only a summation already evalu-
ated in connection with the mean duration; the second may be writ-
ten (d + 3)(d +2)(d + 1) dd — 1) —2(d + 3)(@d +2) @ + 1)d +
8(d + 3)d + 2)(d + 1) — 21(d + 3)(d + 2) + 35(d + 3) — 27,
which (since the ( —1)! may here be regarded as infinite) reduces to
summations of the form -evaluated for the mean. '

The variance has been evaluated for various values of N and en--
tered in Table 1. As N increases, it rises toward a limiting value of
©0.55969097.  Because the phases in a single sample are not inde-
pendent of one another, as is pointed out in Section VI, and because
the number of phases is itself a stochastic variate related to the
distribution of phase durations, the variance cannot be used in the
usual way as a test of the observed mean duration (see Section VII).
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V  Empirical Vériﬁcation

The foregoing mathematical deductions were checked by three em-
- pirical tests. The first involved- 200 random series of 25 items each,
_the second, 300 random series of 50 items each, and the third, 200
‘raridom series of 75 items each. Kach series was copied from a deck -
of N playing cards bearing the integers 1 to N , shuffled ten or a
dozen times by the ‘fan’ method. Not all 700 series are completely
independent, although all series of a given length are.’ One hun-
~ dred of the series of fifty were gotten by omitting the integers above 50
in the first 100 series of 75.  All 200 of the series of 25 were taken
from the first 67 series of 75 by treating the integers 1-25, 26-50, and
9175 as three independent series. .
~Deriving some series from longer ones does not involve as much
duplication as it may seem to at first glance. The longer series are
in no sense simple sums of their component series, for the manner in
“which the components are intermingled is an important characteristic
of the full series. This becomes clear when we consider the problem
of combining three independent series of 25 into a single series of 75.
It would be necessary to determine by chance for each of the 75 posi-
tions which of the three series should fill it, this determination being
such that each series would necessarily be selected exactly 25 times
out of 75. A possible procedure would be to place in a bowl 25 chips
of each of three colors, and draw these (without replacement) to
determine which series should fill each position. While the frequency
distribution of phase durations in the final series is not entirely un- ,
related to the distributions for the component series, the redundancy
introduced by this economizing device was not deemed sufficient to
offset the advantages of the increased number of series. :
The turning points in the 700 series were marked and the lengths
~of the intervening phases tabulated. Table 2 gives the observed fre-
quency distributions, the theoretical distributions, and the values of
x? for goodness of fit with the corresponding probabilities. - Since in
- computing x? the expected frequencies are adjusted to the observed
~'In only one respect, the value of N , only one degree of freedom is
lost. Had the expectations been calculated from column 3 of Table 1
instead of column 2, the total frequencies also would have been equal,
and two degrees of freedom would have been lost; but the value of ¥
- would also have been smaller.

15




TABLE 2
Frequency Distributions of Phase Durations in 200 Random
Series of 25 Items, 300 of 50 Items,
and 200 of 75 Items

DURATION _FREQUENCY
OF PHASE ‘Expected Observed Expected Observed Expected Observed
N =25 N =50 N=175
1 1833.3333 1850 5875.0000 5895 6000.0000 6085
2 770.0000 776 2530.0000 2579 2603.3333 2624
3 211.1111 199 712.5000 663 738.8889 757
4 113.7302 49 151.9048 146 158.8095 118
5 - 26.2351 35 27.6587 20
over 5 [8-4921 6 4.3601 2 4.6429 7
Total 2866.6667 2880 9300.0000 9320 9533 .3333 9611
x 2.2504 8.8914 15.6165
» 4 5 5
P(x?) .68 11 .008
P(p) .65 .70 .13

. .
= Probability for total number of phases; see Sec. VII.

Although the fit is adequate for the series of 25 and of 50, it 1s
definitely bad for the series of 75, entirely because of a great defi-
ciency of four-year phases—two-thirds of the value of %2 is contrib-
uted by this one class. The presumption that this result is fortui-
tous was confirmed by an additional 100 series of 75 integers gotten
by using in order all two digit entries in Fisher and Yates’ Table of
Random Numbers,* the digits to the right being regarded as decimal
places when two consecutive numbers were equal. A count of the
four-year phases showed 80, surprisingly close to the expectation
of 79.4. .

For the significance test developed in this paper it is immaterial
whether the expected frequencies are correct for phases longer than
two years, provided the expected total number of such phases 18
accurate; for in applying the test to a single series, the expected fre-
quencies of phases longer than two years are usually so small that it
is necessary to combine all into a single group in order to meet the-
requirement that expected freuencies used in x? be not too small.
Most authorities state that the expected frequencies must be at least
five and preferably ten, though recent investigations of the effect of
small theoretical .frequencies indicate that ‘“‘except perhaps in the
case when m [the theoretical frequency] = 1, the theoretical distri-
bution of x? is sufficiently closely realized”.2" *7 ,
 The three-year phases cannot be made a separate group unless the
‘expected number of phases of four or more years is sufficient to stand
alone. The expression for this expectation is

5N — 31
360 ’
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which is almost-exactly one when N = 78, two when N = 150, five
~when N = 366, and ten when N = 726. - Since the expected number
of phases in excess of two years is not large—it is
4N — 21
60 '’

which is approximately one when N = 20, two when N = 35, five
when N = 80, and ten when N = 155—not a great deal of informa-
tion is lost by combining all into a single group. The test does ot
neglect entirely the lengths of phases in the last class, because these

- lengths influence the total number of phases and therefore the fre-
quencies in all three classes. A test of the mean duration (see Sec-
tion VII) salvages some of the information lost by grouping. -

For each of the three empirical tests, therefore, x* was recomputed
by combining all durations except the first two into a single group.
The resulting values of x* are 0.5291, 3.6998, and 2.21 12, which, being
based on two degrees of freedom each, indicate probabilities of .77,
.16, and .33, respectively. S
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V1 The Test of Significance

After the frequency distribution of phase durations has been obtained
from a time series, it may be compared with the expected distribution
by the usual procedure for testing goodness of fit; that is, by squaring
the differences between the observed and the expected frequencies,
dividing by the expected frequencies, and summing the ratios.?
This sum is essentially similar to x?, but since its sampling distribu-
tion is not quite that ordinarily associated with x? it is advisable to
distinguish it by the subsecript p (denotmg ‘phase’).

The reason x> is not distributed as x’ is that the phases within a
single sample series drawn at random from a fixed population are not
entirely independent of one another. When one long phase occurs,
another long one is more probable than it would otherwise have been.
A long rise, for example, tends to carry the series to unusually high

values, thereby increasing the probability that the decline will be
long. Short phases, on the other hand, tend to leave the series at "
~ central values, from which short phases are likely. (This positive
serial correlation is offset to some extent by an inverse relation caused
by the fact that a long phase reduces the number of observations
available for other phases, which reduces not only the number of the
other phases but also the relative frequency among them of long
phases; except for very long phases or very short series, however,
this counteracting effect is small.) Since the resultant positive corre-
lation within samples makes very large and very small values of Xo
- a little more likely than if the phase lengths were independent, it is
to be expected that, except perhaps in short séries, the variance of X5
will somewhat exceed that of x*. In addition, since x5} is virtually
always based on two degrees of freedom, for which the x* distribution ‘
is exceedingly skewed, this increased variance may be expected to
raise the mean value of x> above that of x*. For two degrees of
freedom, x2 has a mean of two and a variance of four.

In the precedmg Section the x? test was applied in disregard of the
mterdependence of phases within a series. In that Section, since
phases from many series were thrown into a single frequency distri-
bution, the independence of phases from different series tended to
submerge the interdependence of phases from the same series. For
a given number of series the importance of the interdependence in-
creases with the series length, and this may have something to do
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. with the series for N = 2’5'_appearing to fit better than those for
" The problem of the exact Sampﬁng distribution of ‘x; for various
values of N is not unlike (and, apparently, not simpler than) the
- similar problem for the rank correlation coeflicient, for which no

-general solution has yet been found. Both Olds* and Kendall,

 Kendall and Smith have devised what are essentially systematic

Tméthods of building up the distribution of the rank correlation coeffi-
cient for any value of N from the distribution for N — 1. They have
also provided excellent approximations to bridge the gap between the
point at which the patience necessary to evaluate the exact distri-
butions is exhausted and that at which the limiting (normal) distri-
bution becomes applicable. But no precise formula giving the prob-
. . ability as a function of the coefficient and the sample size has been
- discovered. Similarly, in tabulating the distribution of the rank

- correlation ratio Friedman?s devised a method of building one exact -
distribution from another—later explained in detail by Kendall and
Smith,* who added an. approximating function to smooth the transi-
tion between exact and limiting distributions; but there is no general
analytic expression for the probability. We have not been able to
determine mathematically the sampling distribution of x ; but have

found what seems a satisfactory working solution.
In the first place, we discovered a recursion formula for calculating

the relative frequencies of the 2% different arrangements of signs of
first differences that occur in the N'! permutations of N different
numbers. This formula states the number of permutations of N
different numbers that produce the sequence of signs of differences
shown in the r-th row of a matrix having 2" rows and N — 1 columns
formed as follows: In the first column fill in alternately plus and
minus, starting with plus at the top of the column. In the second
column enter two pluses, then two minuses, and alternate groups of
- two. In the third column enter four pluses, then four minuses, etc.
In general, the j-th column starts with pluses in the first 2 rows,
then has minuses in the next 2 then another 2/ pluses, ete.,
alternating groups of 2 to the bottom of the column. The last

"' column has simply 2*~* pluses followed by 2 minuses. Then, de-

noting by Fy(r) the number of permutations of N different integers
that produce the sequences of signs given in the r-th row of this
matrix,

@ e = F) (; ¥ ) ~

wherer =2 15 (0 <i <N -2,1 <j <2, i.e., 7 is the largest
power to which 2 can be raised without equaling or exceeding r, j is
the difference between r and 2%
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(4)

denotes the number of combinations of N things+ + 1 at a time, i.e.,
N! _
G F DIV —i -1’
and Fy(1) = 1forall N. Division of Fy (r) by N! converts it from
an absolute frequency to a probability. .

The durations of the phases represented by the r-th row in the
above rectangle may also be determined from the value of r: The
length of the preliminary incomplete phase is the largest value of po
such that r = 0 or 1, modulus 2%; i.e., the largest value of p, such
that r divided by 2% leaves a remainder of 0 or 1. To find the
length of the first complete phase write r = k-2 + 4, ;i.e., let k
by the largest integer by which 2% can be multiplied without ex-
ceeding 7, and let ¢, by the remainder of O or 1. Take r’ =k + &
and determine the largest value of p, such that ' = 0 or 1, mod 27,
p, 1s then the length of the first complete phase. Similarly, the
length of the second complete phase is found by starting with an »’’
that has the same relation to 7/, through a %, and a ¢, , that »” has to r
- through %k, and ¢,. The lengths of successive phases are found by
repeating the process until eventually the congruence 1 = 0 or 1,
mod 27, appears, whence p,, = «. This is to be replaced by

m—1

N—-1-2p
=0

as the length of the final incomplete phase.

This recursion expression enabled us to calculate the exact distri-
bution of x% for small values of N. The calculation requires not
only a great many evaluations of the formula, but also computation
of the corresponding values of x% and subsequent cumulation of fre-
quencies. Despite considerable shortcuts that can be introduced in
actual calculation with the formulas, the procedure is laborious and
has been carried only as far as N = 12. Table 3 gives the exact
probability, P, of obtaining a x% as large as or larger than each
possible value, and also the mean and variance of x5, for N = 6
to 12, inclusive. These distributions are also shown in Chart 1, the
‘probability scale being logarithmic. The x? distribution for two
degrees of freedom is a straight line on semi-logarithmic coordinates,
since x? = —2 log P when n = 2 (denoting by n the number of
degrees of freedom). _ '

Because of the discontinuity of x% , the probability corresponding
with a given x% might properly be plotted at any abscissa from that
value of x} to the next lower value, and the value of x% for a given P
at any probability from that value to the next higher. For sim-
‘plicity, the midpoints of both' these intervals are plotted: at each
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. TABLE 3 .
Exact Distributions of -x:, Six to Twelve Observations®
N=17 N=8 ~ N=9 = N=10 N=11 = N=12

X P X, P X P x5 P x;, P x5 P
.5515 1.0000 | .2837 1.0000 | .3576 1.0000 .3281 1.0000 -4792 1.0000 L6152 1.0000
7333 .7893 | .6837 .8432 | 1.1576 .7978 L6139 .9410 | 5792 9800 .6606 .9843
.7515 7028 | .8437 .6654 | 1.2667 6308 7281 .9169 | 8169 .9335 7485 .8962
-9333 .5361 | .9200 .5897 | 1.6303 6046 | 1.0554 .8129 L9169 .8436 - L7939 .8907

1.7333- .4933 | 1.3200 L5605 | 2.0667 .4893 | 1.3411 .6927 .9792 7300 8374 .8500
2.1515 3702 | 1.4800 .5062 | 2.4303 .4519 1.4190 .6059 | 1.0879 .7232 9707 7862
12.3333 .3024 | 2.3637 .4946 | 2.7576 .3811 | 1.5853 .6010 | 1.2792 .6554 1.0152 .7204
3.9333 .2774 | 2.6800 .4708 | 3.1576 .3743 1.7048 .5937 | 1.3169 .5763 | 1.0606 .6851
1. 1
1.
1.

5.6061 .1694 | 2.9347 .3924 | 3.2667 .3208 |-1.7717 .5917 5879 5368 | 1.4152 .5846

7.5045 1171 {3.0000 .2994 | 3.6667 .2150 | 1.8138 .5262 7000 .4728 .4606 .5830

1

8.9045 .0552(4.3746 .2931 | 4.0303 .1637 | 1.8190 .4186 8000 .4716 | 1.6374 .5695
4.4546 .2346 | 4.0667 .1445 | 2.3126 .4070 | 2.0792 4684 1.6828 .5332
4.9346 1936 | 4.7576 .1102 | 2.5769 3745 2.2000 .4666 | 1.9333 .4870
5.0000 .1332 | 5.6667 .0783 | 2.6762 .3274 | 2.3087 .4662 | 1.9485 .4863

- 5.8193 .0645 | 6.0667 .0635 | 2.7431 .3269 | 2.4087 -.4399 2.0667 .4277

6.4546 .0332 | 7.4848 .0197 | 2.8626 .2739 . 2.4169 .4028 L1556 4275

2
15.6667 .0049 | 2.9048 .2420 | 2.5000 .3916 | 2.2030 .4069

2.9769 .2200 | 2.5792 .3842 2.2889 3442
3.2424 1811 | 2.6879 .3044 | 2.3333 .3334
3.8341 1794 | 2.8087 .2742 | 2.5556 3313
3.9697 .1650 | 3.0256 .2608 | 2.6152 .3031
4.3333 1583 | 3.1087 .2302 | 2.6606 .3028
4.4003 .1580 | 3.2130 .2006 | 2.7333 .2996

4.6762 .1391 | 3.3000 .1472 | 2.8374 .2995

4.8580 .1074 | 3.7792 .1471 | 2.8697 .2867

5.1276 .0724 | 3.8000 .1468 | 2.8828  .2462

5.4912 .0590 | 3.9087 .1327 | 2.9556 .2158

6.5152 .0536 | 4.1169 .1278 | 3.2667 .2112

7.1333 0420 | 4.3130 .1259 | 3.4152 .2065

11.3076 .0141 | 4.3879 0991 | 3.4889 .1486

12.9648 .0062 | 4.7256 .0009 | 3.9333 .1266

5.0000 .0772 | 4.0697 .1266

5.6087 .0772 | 4.1556 .1143

: i 5.7000 .0755 | 4.3485 .1128

# Calculated from three frequency classes by combining all phases of more 6.0130 .0552 | 4.3939 .1128

an two years into a single class and disregarding the correction of for- 8.2000 .0498 | 4.5707 :1123

la 1, which would affect slightly the frequency expected for this class. 8.6348 .0320 | 4.6162 11094

: 9.4675 .0225 | 4.7333 1013

9.7348 ".0183 | 5.6667 .0924

10.2140 -0086 | 5.8030 .0924

11.4348 .0045 | 5.8889 .0905

6.0253 .0900

6.7333 .0849

6.8424 .0720

6.9556 .0597

7.5040 .0499

7.6222 .0408

8.5758 .0293

8.8222 .0260

9.2374 .0193

9.2667 .0141

10.5556 .0028

19.6667 .0004
Mean 2.5078 2.4364 2.3802 2.3629 2.3544 2.3497 2.3478
Vari- 17.0757 6.3017 3.7465 3.7080 3.8358 3.9657 4.4135
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. TABLE' 4
Distributions of xi from 200 Random Series of 25 Items,

300 of 50 Items, and 200 of 75 Items;
and Test of Homogeneity

.X,z, N=25 N =50 N=175 Total COni;;l;l;L;tlon
025 .

' 4 15 7 29 0.9310
115 v | |
' 10 7 10- 27 3.1605
215 - .

' 6 10- 15 31 5.9946
.395 :

» 15 8 10 33 5.9950

455 » |

' 16 12 4 32 8.2500

’ 8 4 -4 36 9.1111
.635

2 19 9 30 © 7.9944

780 =
R 10 n . 7 28 0.7083
.955 | .

‘o 4 17 6 27 4.7160
1.145 _
4 1 15 30 7.5278
1.310 )
8 14 8 30 . 0.1778
1.590 .
» 8 . L1 ' 12 31 1.5914
1.845 -
' 13 11 5 29 4.1494
2.035 |
| 3 2 4 31 15.1774
2.915
7 6 8 13 27 '5.1049
2.440
22 ' 1 6 29 33.8301
2.595
4 1 10 25 2.5333
2.835 |
® 16 : 3 28 4.5833
3.195
? 11 7 27 0.3086
3.605 .
? 11 7 27 0.3086
4.195
' 8 8 12 28 3.3333
4.755
| 4 13 11 28 3.2083
5.895 _
' 8 14 6 28 0.8333
7.510
4 13 9 29 0.2874
13.975
Total 200 - 300 200 700 x2 — 199.8252

Since n = 46, P(x?) is less than .0000000001. Using unit class intervals, x? = 18.604 for n = 18,
and P(x?) = 4l. N ’ ’
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- value of x5 there is a point halfway logarithmically between the two
bounding probabilities, and at each value of P a point midway be- .
tween the two bounding values of x; . These midpoints are con-
nected by the lines that appear in the chart. The same procedure
is followed later in Charts 2, 3, and 6.

As a second step toward determlmng the samphng distribution, -
empirical distributions of x, were determined from the 700 series
- described in the preceding section; that is, 200 values of x} were com-
puted for N = 25, 300 for N = 50, and 200 for N = 75, all from
three frequency classes. The observed distributions are given in
Table 4, the class intervals being so chosen as to make the sum of the
frequencies in each class as near 30 as possible without taking account
of more than two decimal places (though the values of x% were calcu-
lated to four places).” Chart 2 shows the three distributions (in
cumulative form on semi-logarithmic coordinates, as in Chart 1), each
value of x, being plotted individually. Chart 3 shows the same
thing for each of seven sets of 100 values, the division into sets
according with the order of drawing the samples

A x2 test of homogeneity was applied to the three distributions, and
the last column of Table 4 shows the contribution to x? from each
frequency class. Since the total x*1s 129.83 for n = 46, theré can be
no doubt that the three distributions differ significantly. They do
not differ, however, in respects important for the present test. In
the first place, the differences among the tails—approximately the
highest 30 per cent of the observed values of x5—are not significant,
even statistically: for the range beyond x%: = 2.6, the sum of the
contributions to x? is 15.3963, indicating a probability of about .4.
- Charts 2 and 3 perhaps create an impression of divergence at the
tails. This is because the curves necessarily converge at P = 1.00°
for x3 = 0, and the high serial correlation resulting from cumulation
tends to keep them together in that neighborhood. Furthermore,
discrepancies are minimized at high and magnified at low probabilities
by the logarithmic scale—which was chosen partly for this very
reason (the low probabilities for a test of significance requiring the
closest scrutiny) and partly because the relative rather than the abso-
lute magnitude of errors is relevant to probability measurements.
The similarity of the tails is better shown by Chart 4, deplctmg ‘the
three distributions of Chart 2 as hlstograms

In the second place, the discrepancies in the lower range of x3
largely reflect marked irregularities of the separate “distributions.
These irregularities are highlighted by the fineness of the class inter- »
vals in that range, and tend to disappear if the intervals are broad-
ened. Thus, class intervals by units of x} , 1 e.,, under 1, 1 to 2,
2 to 3, ete., with over 9 as the last class, result i ina x2 of 18. 604 based
on 18 degrees of freedom, correspondmg with a probability of .41.
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“The 111ustrat10n in the penultimate paragraph of Sectlon VIII further ’
confirms this evidence that the non-homogeneity is a matter-of erratic .
shifts in the numerous minor peaks of the distributions rather than -
of dlvergenmes in fundamental form.

In any case, the tails of the distribution are of chief concern for a
test of significance. When N is as large as 25 (and, as indicated by .
~ the exact distribution for N = 12, even when it is somewhat less)
the distribution of x} apparently is sufficiently near its hmltmg form
for a single sampling distribution to be adequate.

The mean of the 700 values of x} is 2.3049 and the variance is
5.0458." As an approach to the distribution of x} , it may simply be
reduced by approximately one-seventh of its magnitude. (more pre-
cisely by .3049/2.3049, but since these figures are merely estimates,
and the ratio differs httle from one-seventh, it seems sensible to use.
the more convenient figure) and compared with the x* distribution
- for n = 2, which has a mean of two and tables for which are readily

available. Such a comparison is shown in non-cumulative form in

Refative frequency
per unit of %2 .
1.6
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Chart 5, and in cumulative form in Chart 6; instead of reducing the
values of X} one-seventh, which would usually be the most convenient
procedure, the values of x? were increased one-sixth. In both charts
the agreement between the line representing fx? and that representing
the 700 observed values of x5 is quite good.
~ The fact that the variance of the observed values is less than that
of 3x? for n = 2 suggests, however, that a more satisfactory fit at the
tails ¢an be attained by using a x2 distribution having a variance of 5,
e.g., x* for n = 2.5. The values for x2 for n = 2.5 were obtained
from the Tables of the Incomplete T-Function,* taking p = .25 and
u = x2/V5. Interpolations with respect to p were made linearly,
and with respect to u, according to the logarithms of the probability
(i.e., the logarithms of 1 — P in the notation of the Tables or of P
in the present notation). This distribution is depicted by the dash
line in Charts 1 to 6; its agreement with the observations at the tails—
for x% above about 5.5 and P below about .10—is very satisfactory
indeed. In the main body of the distribution the curve whose mean
value is equated to the sample mean gives a somewhat better fit.
It may occur to the reader that the mean values might have been
equated by using x2forn = 2.3. Inthe main body of the distribution
this curve differs only slightly from % of that for n = 2, and at the
tails it lies as much below the observations as Zx? for n = 2 lies above
them. Hence the ready availability of tabulations for n = 2 is a
decisive argument in its favor. Similarly, equating the variance by

“Relative fréquency
i 2
per_unit of ¥,

IR
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multiplication of the curve for n = 2 gives a result definitely poorer
than that for n = 2.5. However, the use of x2 for n = 2.5 is based
on only about 65 or 70 observations, the highest 10 per cent of the
sample values of x3 , and these, as pointed out in Section V, are not
entirely independent. '

If a curve of the x2 form is to be-fitted to empirical observations,
the maximum likelihood estimate of n proves to be the value that

equates the digamma functlon” % of =2 to the natural logarithm

of one-half the geometnc- mean of the sample. For the 700 observa-
tions used here, the maximum likelihood estimate of n is 2.24. The_
“values for N = 25, 50, and 75 are 2.24, 2.22, and 2.24, respectively.
If both n and a coefficient of x%, are to be estimated by the criterion

of maximum likelihood, 7 is the value that equates digamma of 7—&—_2'—2

“to the natural .logarithm of n/2 times the ratio of the geometrivc mean
to the arithmetic mean, and the coefficient is n divided by the arith-

TABLE 5

Tail of x? Distribution for 21 Degrees of Freedom® for
Use as Approximate Distribution of x%when N > 12°

x? P x? P x2 P
5.448 .10 8.00 .0301 11.50 L0057
5.50 .0976 8.009 .08 11.75 .0050
5.674 .08 . 8.25 .0268 11.755 .005
5.75 .0869 8.50 .0238 12.00 . 0044
5.927 .08 8.75 .0211 12.25 .0039
6.00 L0773 8.836 .02 12.50 .0035
6.163 07 9.00 .0187 12.75 .0031
6.25 . 0687 9.25 .0166 13.00 .0027
6.50 .0612 9.50 .0148 13.25 . 0024
6.541 .06 9.75 ~.0131 13.50 .0022
6.75 .0543 10.00 .0116 13.75 .0019
6.898 .05 10.25 .0103 14.00 0017
.00 .0483 ~10.812 .01 . 14.25 .0015
7.25 .0429 10.50 .0091 14.50 .0013
7.401 .04 . 10.75 . 0081 14.75. .0012
7.50 .0382 » 11.00 .0072 15.00 .0010
7.75 .0339 ’ 11.25 .0064  15.085 .001

= Calculated from Tables of the Incomplete P-Function.*

b P denotes the probability that x* will equal or exceed the specified value. Interpolations
may be made linearly with respect to log P. For values of xj less than 6.3, §x2 should be
referred to the usual tables of x* for two degrees of freedom; or P may be calculated as the
reciprocal of the natural antilogarithm of $x3 (or the remprocal of the common antllogarlthm
of 1861267(,,) When N < 12, see Table 3.

" metic mean; for these data, n is 2.12 and the coefficient, .92. If nis
fixed arbitrarily and a coefficient estimated by maximum likelihood,
the estimate is the ratio of n to the arithmetic mean of the sample,
n this case 2/2.3049 or approximately 6/7.

In practice, then, the procedure for interpreting x> , assumed al-
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.Ways to be .calculated from' three frequency classes, is as follows:
If 2 is less than 6.3 (the point of intersection between -the ogives of
Ix2forn = 2and x? for n = 2.5), reduce it one-seventh and refer to
the usual x? tables for two degrees of freedom. This procedure is
satisfactory for all values of 3, but for values above 6.3 somewhat
more accurate probablhtles are apparently obtained by referring the
whole value of x> to Table 5, which gives the distribution of 2 for
n = 2.5. The curve, composed of two segments, corresponding with
this procedure has been added to Charts 1-6. When N < 12 the
exact distributions of Table 3 should, of course, be used.

_ A thorough mathematical investigation of the proper samphng dis-
“tribution is much to be desired. It should determine the distribution
‘of x} not merely for three frequency classes but also for more. More.

important, it should analyze the broader question of what form of
~ test is most appropriate to phase durations.
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VII An Auxihary Test

A test of the mean phase duration would, as was mentioned in Sec-
tion V, retrieve some of the information lost by throwing all phases
of more than two years into a single frequency class; but the variance
of the expected distribution of phase durations, i1t was pointed out in
Section IV, cannot be used as a test of the observed mean duration.
It is quite simple, however, to test the total number of phases; and,
except for an unimportant discrepancy occasioned by excluding from
the definition of a phase the incomplete phase before the first turning
point and that after the last turning point, this is equivalent to a -
test of the mean duration. The mean phase duration is merely the

total duration of all phases divided by the number of phases, and the

total duration of all phases, plus the durations of the two incomplete

phases, is a constant, N — 1. The mean duration, therefore, depends

only upon the number of phases and the lengths of the two incomplete

phases. The number of phases is simply the number of turning

points reduced by one (except for the negligible qualification that the

two are equal when there are no turning points).

Now the expected number of turning points is shown in Section III
to be :

2(N — 2)
3 ?

the variance of the number of turning poinﬁs 1S

16N — 29
90 ’

the third moment about the mean is

_16(N + 1)
045

and the fourth moment about the mean-is

"448N* — 1976N -+ 2301
4725 .

The variance may be found inductively by computing for a series of
values of N the values of the second moment about the origin, utiliz-
ing the exact probabilities for all possible numbers of turning points,
* which are explained later in this Section. When N > 3, the second
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dlfferences of this series have the constant value 8/9; since for N = 4
the ¥alue is 13/6 and the first difference is 12 /5, the general ex-
pression for the second moment about the orlgln 18

40N* — 144N + 131
, 90 '
Deducting the square of the expected number of turning points leaves
_ the required variance. A series of values of the third moment about
- the origin shows, when N' > 7, constant third differences of 167/9;
since for N = 8 the value is 1618/21, the first difference is 2665 /63,
and the second difference 592 /45, the general expression for the thlrd
~ moment about-the origin is

280N° — 1344.7\72 + 2063N — 1038
945 )

From this the third moment about the mean is easily computed by
famihar formulas.22 The fourth differences of a series of fourth mo-
ments about the origin are constantly 128/27 when N > 7; when
N = 8 the fourth moment is 12683/35, the first difference is

52940/189, the second difference 23928 /175, and the third difference
" 192/5. The fourth moment about the origin is, therefore, :

2800N* — 15680N° + 28844N* — 19288N + 4263
T 14175 ’

whence the fourth moment about the mean may be derived.

As N increases, the skewness, measured by the ratio of the squared
~ third moment about the mean- to the cubed variance, approaches
zero, and the kurtosis, measured by the ratio of the fourth moment
about the mean to the squared variance, approaches three. That
the skewness and kurtosis approach their values for a normal distri-
bution suggests that the distribution of the number of turning points
approaches normality as the length of series increases. Further-
more, empirical comparisons indicate that normality is approached
with such rapidity that the discrepancy can be ignored when N > 12.
Hence the number of turmng points can be regarded as normally
dlstrlbuted about

2N — 2)
3

or the number of phases as normally distributed about

9N — 7
3 b

either with variance of
' 16N — 29
- 90 :
33




In using the normal distribution, the discrepancy between the ob-
served and expected numbers of turning points or of phases should
be reduced in absolute value by one-half unit to allow for discon-
tinuity, and the distribution should be truncated—i.e., the proba-
bility of values above N — 2 or below 0 deducted and the remaining
probabilities raised proportionately. (With a single tail of the distri-
bution, truncation is unimportant; with the two tails combined, as in
Table 6, its chief effect is when the departure from expectation is
negative and greater absolutely than is possible in the positive direc-
tion.) For the sake of comparison the approximate probabilities es-
timated from a truncated normal curve are given for N = 12 in
Table 6, which shows for N = 6 to 12 the exact probablhty of obtain-
ing a discrepancy from expectation as great as or greater (in absolute
value) than that represented by each number of turning points.

The exact probabilities were calculated from a recursion formula
derived inductively. Letting fy(f) be the number of permutations of
N different numbers that have exactly ¢ turning points, fx(¢) be the
first cumulation of fy(2), and fy(¢) be the second cumulation—i.e.,

) = Z;,fn(i), and fn(t) = ’Z(:)lev(j)
the formula 1s '

®) u)) = (€ + Dfia) + (N — t — )t = 2)
where '

=0 i t<0 and ﬂw-m:wgn{
Values of f5(t) are obtained by differencing the series of fy(f), and
values of fy(f) by differencing fN(t) (For a simpler recursion for-
mula see Section IX.) An expressmn for fx(¢) directly in terms of N
and ¢ is

50T 5~

(5a) ﬂé(t):% ;) (—1)" (t—2k+1)"A(k)
where oo
- kOl‘E
Ak) = Z @by s
_ (N—t—4+ !
TN —t —4)!
b= (2N — t — 5)!
=

R@N —t =5 —m)t

" The test of the number of turning points or phases, referred to
briefly as the p-test, is, of course, related to the x; test. A frequency
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: TABLE 6 : ’
Exact Probabxhty that the Discrepancy between Observed and Expected Numbers
of Turning Points will Equal or Exceed (in absolute value) the D1screpancy
corresponding with any Observed Number of Turmng Points,
Six to Twelve Observatlons and Normal Approx-
imation for Twelve Observations

N=12 _

' - ‘ - Approxi-~
& N=2¢6 N=7 N =28 N=9 N =10 N =11 Exact mate
Q .0028 .0004 .0000 .0000 .0000 .0000 .0000 .0000
1 .0861 .0250 .0063 L0014 .0003 .0001 .0000 .0000
2 .5833 .2988 .1436 L0257 .0079 .0022 L6005 .0010
3 1.0000 1.0000 .6374 - .1937 L0911 .0416 L0082  .0093

4 " .2556 .6325 1.0000 .6694 .4098 .2373 -0642  .0693 -
5 .1329 .6374 - 1.0000 1.0000 .6978 .2739 2780
6 .1436 .3847 .6950 1.0000 7173 .7180
7 .0694 .2304 .6978 1.0000 1.0000
8 .0357 .2373 .4638  .4597
9 1 .0416 L1350 .1384
10 : L0195  .0248

* ¢ represents the number of turning points. ‘Phases’ may be read for ‘turning points’ if the

entries of the first column are decreased by one and the first line is ignored.

18t —2N +4]—15
+1.6N —2.9

in this expression represents the number of phases, mstead of the number of turning points,

the 4 must be changed to 7.

may be regarded as a normal deviate. If ¢

For larger values of N, +-

distribution of phase durations may be thought of as compounded of
two elements: first, the total number.of phases.occurring; and second,
their proportlonate distribution by duration. The p test is sensitive
only to the first element, whereas the x? test is sensitive chiefly
(though by no means exclisively) to the second. x2 would be sensi-
tive only to the second component if it were based on the relative
frequencies of phase lengths expected with a specified total number of
phases. It would, therefore, be independent of the p-test, and the
two tests could be compounded by Fisher’s method.>> The relative _
frequencies expected with a specified total, however, are not those
given by formula 3, which is valid only when the total number of
phases 1s unrestricted; so until the proper expected relative frequen-
cies and the sampling dlstrlbutlon of this kind of x2 are determined,
such a combination cannot be made. Although the illustrations in
the next section are concerned with the x? test, the probabilities
resultmg from the p test have been recorded in the tables as P(p).

By using only one tail of its dlstrlbutlon the p test can be made to
discriminate between series having too many (i.e., too short) cycles
and those having too few (i.e., too long).
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VIII Applications

To illustrate the application of the foregoing technique to an economic
problem, we analyze sweetpotato production, yield per acre, and
-acreage harvested in the United States, 1868-1937= (Table 7 and
Chart 7). This crop, selected from a number of crops to which we
have applied the method in connection with the National Bureau’s
Studies in Cyclical Behavior, is presented here simply for its illustra-
tive advantages; it is, however, fairly typical of the group in its
cyclical behavior as judged by the present tests. The turning points
are indicated by asterisks in Table 7. .
Occasionally, as in this illustration, metric data include equal ob-
servations, presumably because of Limitations on the accuracy of
measurements. Only when these equal values are adjacent is there
a point that neither continues nor reverses the direction of movement.
In these instances perhaps the best procedure is to regard the ties
not as truly equal but as a random sequence of unequal observations,
tabulate the distribution of phase lengths for each possible arrange-
ment of plus and minus signs between the ties, and average the re-
sulting - distributions, each weighted by the probability of the par-
ticular set of signs it represents, as computed by formula 4 (Section
VI), using as N the number of observations in the tied sequence.
This procedure, of course, may result in an observed distribution ‘con-
taining fractional frequencies. Thus, the sequence 0, 1,'1, 1, 2,
(when the 0 and the 2 are known, in view of the preceding and suc-
ceeding values, to be turning points) represents four possibilities,
which may be denoted by the signs of the first differences as + + + +,
+—++, ++ - +,.and + — — 4. The first possibility corresponds
- with one four year phase and each of the other three with two one-
year and one two-year phases. Since the probabilities of the four
cases are 14, 14, 14 and lg, respectively, the set of points represents 22
phases, of which 1% are of one year, 5 of two years, and 14 of four
years. It would perhaps be preferable to carry the calculation through.
to the ultimate probability Value for each possible frequency distribu-
tion and then obtain the weighted average of these probabilities, but
ordinarily this result will not differ sufficiently from that based on
the weighted average of the frequency distributions to justify the
extra trouble. The assumption of randomness at the basis of this
procedure is in conformity with the null hypothesis, so differences
from the null hypothesis cannot be attributed to ties; but ties do
reduce the sensitivity of the test to departures from randomness.
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CHART 7
Sweetpotato Production, Yield per Acre, and Acreage Harvested

United States, 1868-1937
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1868
1869
1870
1871
1872

1878

1874.

1875
1876
1877

1878
1879
1880
1881
1882

1883
1884
1885
1886
1887

. 1888
1889

1890
1891
1892

1898

1894
1895

1896 .

1897

1898

1899

1900 .

1901
1902

1908
1904
1906

- 1906

1907

© 1908

1909
1910
1911

1912

Sweetpotato Production, Yield per Acre, and Acreage Harvested

PRODUCTI ON

(thousands
of bushels)
28,557
22,713*
30,911*
28,003
27,148*

33,266*
30,150*
32,518

38,214+
35,196*

38,703*
33,851+
40,128*
24,830*
41,742+

31,096*
32,376
40,111%
39,061
38,528*

44,838*
44,779+
44,963
45,773
46,364*

45,615*
49,676*
44,886
42,001
41,587*

50,743*
42,245
45,684
48,156
48,975

52,871
55,515
58, 560*
57,750
57,330%

62,299*
58,994*
60,310*
55,285*
56,644*

* Purning point.
1 Ties.
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For method of handlmg see Sec. VIII, second paragraph

TABLE 7

United States 186819375

YIELD PER ACRE

(bushels)
87.9
64.7*
87.8*
74.9
71.6*

84.9*
74.3*
76.5

83.1*
77.5*%

80.8*
75.1*
85.6*
56.3*
89.0*

66.2*
68.0
84.6*
81.2
78.0*

87.1*
85.9
84.7*
85.2%
85.2*T

83.7*
90.6*
82.4
75.4*
78.3

92.8*
79.6%
84.3
86.3
87.8

93.6
97.4
102.0*
98.7

96.2*

100.3*
92.3*
95.1*
91.7*
96.7*

ACREAGE HARVESTED (thousands)

Actual
325
351
352
375
379

392
406
425
460*
454*

479*
451*
469*
441*
469

470
476>
474*
481
494

515
521
531
537
544

545
548*
545*

557* °

531*

547>
531*
542
558*
558*T

565
570
574
585
596

621
639*
634
. 603
586*

6-yr. moving
average
‘centered

360
382

397
413
428
441
451

458
460
462
463
465

468
473
481
489
498

508
518
528
535
540

544
546
545
544
543

543
544
547
552
558

565
572
580
591
603

611
613
613
609
604

Residual -

—-5

7%

—3
19*

21*

7*
—22*
4*

2*

3*
—8*
—4

7*
3*
3*T
2*
4*

1*

9%

0*
13*
—12*

4*
—13*
—5
6*
0*

o+1
—2
__.6*
g1
._7*

10
26*

21

—6
—18*




\

TA B L E: 7-—C’oncluded

* PRODUCTION - YIELD PER ACRE ACREAGE HARVESTED (thousands)
N : R 6-yr. moving.
(thousands - I : - average ‘- . . .

. of bushels) L (bushels) . Actual centexjed o Residgal .
1913 © 55,998 C O 94.0* o 596* 605 A
1914 " b4,145* M7 572* 617 ' . —a5*
1916 63,241 100.9* 627 . . 640 “—13:
1916 61,546* . 93.5* 658 669 ~11
1917 s 72,767 100.4* . 725 701 o

1918 - 68,581* 92.9* 738 734, 4x

. 1919 78,272* 99.0 _ 791* 763 28* .
‘1920 . 76,999 100.4* 767* 772 B A
1921 73,708* 90.2* . 817+ 753 6
1922 78,365* 95.9* sirsl . 795 92%

- 1923 63,871 94.8 674 702 ~28
1924 " 44,884* , 79.6 564* 684 o —120%
1925 50,139 _ $78.8* ' 636 662 . -2
1926 63,300 98.1* . 645 644 I |

1987 70,897* 97.9 . 724 651 - 73*.
1928 59,178* T 93.0% : 636* 677 —41 -

" 1929 64,963* - 100.6* ) 729 83
1930- 54,415% . 81.3 - 669 779 —~110*
1981 66,849 78.6* 850 821 .2
1932 86,436* 81.9 . 1,056* 875 - 181*
1938 75,248* 82.9* 908* 914 -
1934 77,482 80.9* 958 926 32
1936 83, 128* 85.8* 969* . :

1936 - 64, 144* 78.0* ' 822*

i 1987 75,053 89.3 840

* Turning point.
t Ties. For method of handling see Sec. VIII, second paragraph,

The phase durations for the sweetpotato series are tabulated in
~ Table 8, together with the expected frequencies on the hypothesis
that the observations are random and independent. From the values -
of x; and their corresponding probabilities (Table 8), it appears that
‘the fluctuations in production conform well with' chance; of the two
components of total production, yield per acre conforms well and
acreage harvested not at all, suggesting that fluctuations in produc-
tion depend more upon ﬂuctua,tlons in yield than upon fluctuations
In acreage.

* 1t is, of course, apparent even from casual inspection of Table 7 or
Chart 7 that total production does not constitute a random series,
but has a marked upward trend. In general, the method here pre-
sented is not very sensitive to a primary trend. By ‘primary’ trend
we mean an elementary function whose first and second derivatives
have few, if any, changes in sign and only gradual changes in magni- -

tude. It corresponds with the basic secular trend, as contrasted with o .

long waves, trend-cycles, business cycles, seasonal variations, etec.
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““A line of primary trend will trace out synoptically and elegantly the
general secular movement without giving much heed to the details of
the movement.”’’s# The removal or introduction of a trend can alter
“the order of magnitude between adjacent items (i.e., change the sign
of their difference) only if the trend factor for a single year is greater
than the difference between successive trend-adjusted items. Con-
sider, for example, a set of observations 1, 2, 1, 2, 1, in which there
is no trend. ~ If an upward trend having a rate of rise of less than one
unit per year is introduced, there will be no alteration in the pattern
of expansions and contractions; for since none of the differences is -
. less than one in absolute value it cannot have its sign changed by
-adding a quantity less than one.

“Ordinarily, of course, there is no minimum to the absolute value of
the random factor. When the difference between consecutive resid-
uals from trend is less absolutely than the change due to trend
between the two points, the sign of a difference may depend upon
whether trend is included or eliminated. If, as frequently happens
in economic time series, the sequence of residuals is such that differ-

TABLE 8

Frequency Distributions of Phase Durations in
Sweetpotato Production, Acreage Harvested, and Yield per Acre
United States, 1868-1937

DURATION EXPECTED OBSERVED FREQUENCY
OF PHASE FREQUENCY®?

PRODUCTION ACREAGEP YIELD
Expan- Contrac- Expan- Contrac-
(years) . Total sion tion Total sion tion Total
1 27.917 32 16 16 18 5.5 12.5 30
2 12.100 16 4 6 2.5 2 0.5 14
3 3.431 3 2 1 3.5 2 1.5 1
4 0.737 0 0 0 1 1 0 0
b 0.128 0 0 0 1 -1 0 0
6 0.019 1 1 0 0 0 0 1
T 0.002 0 0 0 0.5 0.5 0 0
'8 0.000 0 0 0 0 0 0 0
9 0.000 0 0 0 1 1 0 0
10 0.0600 0 0 0 0.5 0.5 0 0
Total © 44.333 46 23 23 28 13.5 14.5 46
x:"’ : 1.363 1.323 0.920 13.487 14.676 5.444 1.696
Plx) .56 .57 .67 002 .001 .10 .48
S S————
Compound probability?? ' .75 .001 :
_P(p)¢ - .73 .000 a3

s Bxpected frequencies for expansions or contractions are one-half those in this column.
b For explanation of fractional frequencies sée Sec. VIII, second paragraph.

¢ Computed by combining all durations in excess of 2.

2 Probability for total number of phases; see See. VII.
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ences as small as the trend factor for a single year are rare, the_v distri-
bution of phase lengths will not be much affected by the presence or
absence of trend. : :

Still another factor minimizing the effect of a primary trend on the .
test is that a positive trend tends to lengthen expansions but to
shorten contractions. In general it tends to make one-year contrac-
tions more numerous than one-year expansions, and expansions. of
more than one year more numerous than contractions of more than
one year, without altering greatly the total number of phases of a
given duration. Opposite effects are produced by negative trends.
In'such cases the existence of trend may be concealed by the fre-
quency distribution of all phases, but be revealed by ‘separate distri-
butions of expansions and contractions.

- 'Separate distributions of expansions and contractions are shown

(Table 8) for production and acreage, but not for yield, which has
little or no apparent trend. For production, both distributions con-
form well to the expected distribution and to each other. = A test of

homogeneity shows x? = 1.4, which, for n = 2, signifies a probability

of .5. There is, therefore, -no indication that the distribution of

phases has been affected by the primary trend. For acreage the two

distributions differ markedly in a manner attributable to trend; and

the probability resulting from application of the x? test for homo-

geneity is only .02. The non-randomness evidenced in the acreage

series may, therefore, be at least partly attributable to a primary

trend rather than to secondary movements. '

In interpreting tests of the homogeneity of contractions and expan-
sions, it should be remembered that the positive serial correlation in
phase lengths pointed out in the second paragraph of Section VI has
a tendency to produce homogeneity between the distributions of ex-
pansions and contractions. This affects also the probability com-
pounded from the probabilities of the x;-s for expansions and con-
tractions (Tables 8 and 10), since it means that the two probabilities
are not entirely independent.

Lack of sensitivity to primary trend is a limitation of the technique -
from the viewpoint of detecting its existence. On the other hand, it
- 15 not difficult to determine by other methods whether s primary
trend exists—the rank correlation between the variate and the date
often affords a satisfactory test. And for determining whether the
systematic variation contains secondary components, e.g., cyclical
or seasonal variations, it is a decided advantage of the present method
that it frequently—perhaps usually with economic data—gives satis-
factory results regardless of the presence of trend, thus avoiding the
complexities of trend elimination. It is, of course, possible for sec-
ondary components also to be concealed if their year to year changes
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are definitely smaller than the year to year random changes; this is

. not so likely as in the case of the primary trend, but it is a real

possibility in the case of gradual movements, e.g., long waves.
' A second example illustrates the usefulness of the technique as a

‘criterion of the fit of moving averages and for selecting the proper

perlod for a moving average. If a moving average or any other curve
describes adequately the systematic variation in a series, the residuals

should constitute a random series. If the period is too long, waves

or cycles may appear in the residuals; if it is too short, the residuals
will cluster too closely about the line.
To illustrate this application, ten moving averages having spans of

-from 2 to 11 years were fitted to the data on sweetpotato acreage and

the residuals tested for randomness. Each moving average uses equal
weights. Averages based on an even number of points, however, are

centered half-way between observations so must be interpolated to

find the smoothed value corresponding with a given observation, and
this amounts to using a moving average based on one more year with
the extremes recetving only half the weight of the intervening years.

. What is designated a six-year moving average with equal weights is

" thus really a seven-year moving average with equal weights for the

central five years and weights of one-half for the first and seventh
years: The moving averages were rounded to the number of figures

. appearing in the data.

Table 9 shows the values of x2, together with the corresponding
probabilities, obtained by testing the residuals for randomness. Its

- chief feature is that the moving averages based on even numbers of

years give better results than the corresponding averages based on
odd numbers; the implicit tapering of the weight diagram involved
in interpolating seems to improve the fit markedly. A second strik-
ing feature is that the probabilities first rise, then decline. Thus, the
probabilities for the odd numbered moving averages reach a maxi-
mum of .24 at seven years while the even numbered give the best
fit at six years, when the probability is .61. Had other weight di-

agrams been tested; they might have resulted in still better fits.

A ‘better’ fit, in the present sense, does not necessarily give a closer
approximation to the data. It is one for which the residuals behave
more like a series of independent, random observations, as judged by
the sequences in the signs of the first differences. The closest fits to
the original observations are given by the shortest moving averages;

but these deseribe not only the systematic variation but also a portion

of the random fluctuations. . If the moving average is either too short ;
or too long, x; will be significantly large; but the source of its magni-
tude is not the same in the two cases. If the moving average is too
short, there are too many short phases and too few long ones; if too
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, TABLE 9 ‘ _
‘Frequency Distributions of Phase Durations in
Residual® from Moving Averages fitted to
Sweetpotato Acreage Harvested
United States, 1868-1937

" PERIOD FREQUENCY OF PHASES

. oF ) ‘ o ‘

Alg’}g‘g]@ / Towe Yours ;i%rs Total Xp P(Q) P@)
g {gg;cs:g Mow 117 418 4 .52 000k 0008
s fomed BTN TS we on oo
TR v S S AR I
N P S e N R B
o {oe  me Sa sm om0 wM o w
DR BELONTER m o w e
8 {gig::‘fzg 208 10.63 308 B 2.547 .34 .88
e N S SR T
oo (Goeel BTN ORORY am m
1 {gg:rcszg 33.75 13.267. 3.65 31.667 osel - o1 05

= Probability for total number of phases; see Sec. VII.
b For ‘explanation of fractional frequencies see Sec. VIII, second paragraph.

long, there are too few short phases and too many long ones. This
effect appears in the actual frequency distributions of residuals from
the ten curves (Table 9).

If a series is conceived to have residuals that are in some sense
random but not independent of one another, a moving average se-
lected according to the present criterion Will tend to include the part
of the random element that is serially correlated with the preceding
items. As is well known, serial correlation will produce ‘cycles’ in an
otherwise random series. , '

Further examination of the residuals from the six-year moving av-
erage reveals that separate distributions for expansions and contrac-’
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tions do not differ significantly from expectation or from one another
(Table 10). A test of homogeneity yields ax? of 2.247 based on two
degrees of freedom, which corresponds with a probability of .33 and
therefore indicates no significant difference. According to the cri-
terion of sequences in the direction of movement of the residuals,
therefore, the six-year moving average seems to give a satisfactory
fit. The values of this moving average and of the residuals from it
(Table 7 and Chart 7) suggest that until about 1907 the systematic
variation in sweetpotato acreage consisted principally of a simple
trend and mild undulations of about 15 years, but that the undulatory
movements became marked thereafter. :
Were we presenting a detailed analysis of the sweetpotato data,

~ instead of using them merely to illustrate a technique, it might be

desirable to treat the two portions of the series separately, perhaps
using different moving averages. If separate frequency distributions
of phase durations in the residuals are made for the periods before
and after 1907, there seems to be an excess of short phases in the
earlier period and an excess of long phases in the later period, though
in neither are the differences from expectation statistically significant.
The values of x} are 2.911 and 6.388, respectively, corresponding
with probabilities of .29 and .06. Probably a longer moving average
would be more satisfactory for the earlier period and. a shorter one
for the later period. - A possible explanation (which we have not yet
investigated) lies in the assertion of the U. S. Department of Agri-
cultures® that “in 1909 there appears a marked concentration of pro-
duction in certain states”. Concomitant with the increase in spe-
clalization there may have been greater sensitivity of producers to
price and cost factors. Inverse relationships between the price of

TABLE 10
Frequency Dlstnbutlons of Durations of Expansmns and
Contractions in Residuals from Six-Year Moving Average of
Sweetpotato Acreage Harvested
United States, 1868-1937

DURATION OF PHASE EXPECTED OBSERVED FREQUENCY?
FREQUENCY . .
(years) - Expansions Contractions
1 12.708 11.5 - 14
2 5.500 6 2.25
3 1.557 2 2.5
4 . 0.333 0o 0.5
5 0.058 0 0
6 0.008 ] 0 0.25
Total 20.167 19.5 19.5
x® 0.161 2.903
P(x2) . .93 .29
Compound probability?” o .62

* For explanation of fractional frequencies see Sec. V1II, second paragraph. . |
® Computed by combining all durations in excess of 2.
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cotton and the acreage of sweetpotatoes harvested the following year,
and between cotton acreage and sweetpotato acreage harvested the
same year, are noticeable from the time of the 1914-18 War. The
increased amplitude of fluctuations in sweetpotato acreage from the
time of that War coincides with increased amplitudes in cotton prices
and acreage.

In order to compare this new test with a more elaborate procedure:

frequently used in time series analysis, a power series y =
a +bx + cx? + dzd 4 --- was fitted by the method of least squares
to the series on sweetpotato acreage harvested. The calculations
. were carried as far as the ninth degree term, using the technique of
; orthogonal polynomials,” but none beyond the third reduced the
- residual variance significantly. According to the usual criterion,
-therefore, a third degree curve would be regarded as giving an ade-
quate fit (Chart 7). The residuals from the third degree curve were
then subjected to the present test. There were 24 phases of one
year, 3 of two years, and 9 of more than two years, producing a x2
of 12.47 and a probability of .004, from which it is clear that the fit
of the third degree power series is quite inadequate. (The normal
deviate for the total number of phases—see Section VII—is 2.26,
indicating a probability of .02.). The power series required very much
more time and labor for fitting and testing than did the moving
averages; but the result seems considerably worse and the variance
test completely misleading. The power series does give a good repre-
- sentation of the primary trend, but since in this particular case it is
good only in a descriptive sense—even a fairly short projection being
obviously absurd because the curve rises with increasing accelera-
_tion—it has little advantage over methods that avowedly produce
mere descriptions. The shortcomings, of course, lie not in the method
of least squares but in the fallacy of inferring that a third degree power
series gives a thorough fit because no other power series effects a
significant reduction in the standard error. It is doubtful that eco-
nomic time series generally can be adequately represented by power
series fitted in this way, though such functions may be useful for
describing certain portions of the systematic variation (a use in which
the present test is inappropriate).

An obvious limitation of the present test is that it by no means
utilizes all the information in the data. This shortcoming, in fact,
partly accounts for the usefulness of the technique; it can be applied
to any distribution because it ignores characteristics not common to
all distributions. :

For particular problems additional tests perhaps as general as thls

one, can usually be devised. (In applying them the caveats of Sec-
tion I must be kept firmly in mind and ‘cruel and unusual’ tests
avoided, for sufficient multiplication of tests is bound sooner or later
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to produce a ‘significant’ result.) It would be futile to attempt a
detailed discussion of supplementary tests except in relation to some
specific problem and body of data, but two suggestions will indicate
the nature of the possibilities. . :

‘First, the magnitudes of the differences between successive observa-

tions may be taken into account, without introducing assumptions
about. the population form, by comparing the variance of the differ-
ences with the variance of the N observations, regarded as a finite
population. If this is done in rank form, it is very nearly equivalent
to testing the serial rank correlation coefficient, for none of the N — 1
differences that determine the variance of the differences can differ by

‘more than one from the N — 1 differences by which the serial rank

correlation is determined. (If the original data are used, rather than
ranks, it is equivalent to testing a serial correlation coefficient from
a finite population.) In the case of sweetpotato production, the
serial rank correlation coefficient is +.91; a highly significant value.
That the rank correlation coefficient suggests non-randomness
~ whereas x? suggests randomness 1is due to its greater sensitivity to
the kind of trend present in these data; whether this is an advantage
or disadvantage depends upon the problem (or, to express it differ-
ently, upon the nature of the alternative hypotheses). _
Second, the signs of the observations (instead of the signs of their
first differences, which enter the x? test) can be tested for non-random
sequences. When testing the six-year moving average, for example,
we might determine whether there are non-random sequences in the
signs of the residuals. If it is assumed that each residual is equally
“likely to be positive or negative, the expected number of completed
sequences of like sign d years in duration is
N—d—1
2d+1 ’

the expected total number of completed sequences is
N-—3

2 )
and the probability that a sequence selected at random will be of d
years duration is - A
N-d-1
PN~ 2)

These results are easily obtained. - A sequence terminal point (initial

or final) occurs when a pair of signsis + — or — +, and the proba- |
Dility of this is 1/2. Since there are N — 1 pairs of consecutive

signs in a series of N,
N-—-1

2
46




is the expected number of terminal points. Since there are one fewer

sequences than terminal points (note, however, an exception similar
to that measured by expression 1, which in this case has a probability
of 2¥) the expected number of sequences is

N-1_,_N-3
, 2 2
A completed sequence of d involves d signs of one kind enclosed be-
tween two 81gns of the opposite kind, and the probability of this is
2(1)d+2 - (1)d+1
multiplication by N — d — 1, the number of sequences of d + 2in a
series of N, yields the expected number of -completed sequences of
exactly d years. Such a test lacks generality because there is no
reason to assume, in the absence of definite information, that positive
and negative residuals are equally likely, even if the curve fits ade-
quately; if the probabilities of positive and negative deviations are p
and g, where p + ¢ = 1; the expected number of completed sequences
of d in the signs is p2?(p*—? + ¢)(N — d — 1) and the expected
‘total number of completed 'sequences is 2pg(N - 1) — 1.
TABLE 11
Frequency Distribution of Sequences of Like Slgn in
Residuals from Six-Year Moving Average of

Sweetpotato Acreage Harvested
United States, 1868-1937

DURATION . FREQUENCY CONTRIBUTION
2
OF SEQUENCE Expected Observed o x
(years) (N = 64) : )
1 15.5000 7 4.6613
2 7.6250 4 1.7234
3 3.7500 8 4.8167
4 1.8438 2 0.0132
over 4 1.7812 2 0.0269
Total 30.5000 23
2 11.241
PO .02

Table 11 shows the observed distribution of sequences in sign for
the residuals from the six-year moving average of acreage harvested,
and that expected if positive and negative deviations are equally
probable, a reasonable assumption in this case. Since x2 is 11.241,

based on 4 degrees of freedom, the probability of so great a divergence

~ from expectation, were chance alone operating, is only .02. It is,
of course, a well known characteristic of moving averages, particularly
when the weighting is uniform or nearly so, that they tend to lie
below the observations during certain types of movement and above
during others. This condition can be improved by alterations in the
. weight diagram.
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Still another consideration’ to béar in mind when interpreting the
test is that a set of phase durations that appears random when viewed
only as a frequency distribution may not have occurred in a random
sequence. To test this, the theory of runs® could be applied to the
series of phase durations, regarded as a series composed of three kinds
of elements (though the serial correlation among phases may be
sufficient to vitiate such a test). -

An additional point, obvious yet none the less worthy of mention,
is that the time unit may affect conclusions derived from the x] test.
For example, year to year movements in pig iron production, 1877-.
1936,% show a x2 of 3.60, corresponding with a probability of .2,
whereas month to month movements show a x; of 372.11, correspond-
ing with an extraordinarily minute probability (Table 12). To put
the point more generally: for certain types of continuous function
whether the ordinates are correlated serially over a given interval
depends upon the frequency with which they are recorded over that
interval. Ordinates recorded frequently may be highly correlated
serially, while those recorded infrequently may be entirely uncor-
related; but clearly many other types of result are possible.

TABLE 12
Frequency Distributions of Phase Durations in

Pig Iron Production, Annually and Monthly>
United States, 1877-1936%¢

DURATION ANNUALLY MONTHLY
OF PHASE Expected Observed ) Expected  Observed
Frequency Frequency Frequency Frequency
1 23.750000 16 298.750000 43
2 10.266667 7 131.266667 38
3 2.902778 2 37.736111 29
4 0.621429 0 8.216667 25
5. 0.107788 0 1.450050 19
6 0.015763 . 1 0.215829 15
7 0.001996 1 0.027822 4
8 0.000223 0 0.003166 9
9 - 0.000022 0 0.000323 5
11 0.000000 0 0.000003 3
12 0.000000 0 0.600000 2
18 ) 0.000000 0 0.000000 1
Total 37.666667 27 477.666667 193
Xz 3.6019 372.1092
- P(x3) ' .21 .0000
P(p)e N .002 : .0000

l*'The annual figures are calendar year totals of the monthly figures.
b Computed by combining all durations in excess of 2.
< Probability for total number of phases; see Sec. VII.

An entirely different use for the x2 test, not pertaining especially ~
to time series, may be illustrated by the homogeneity test of Table 4. -
If the three distributions are really homogeneous, the total value of
x? should be apportioned among the rows at random. Whether it is
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may be tested by determining whether the 24 contributions to x?
constitute a random series. x; is found to be 1.0355, corresponding
with a probability of .64 (Table 13). This test is entirely independent
* of the homogeneity test, since that test would be unaffected by any
rearrangement of the rows while this one depends only on the ar-
rangement of the rows. It therefore salvages information on order
‘neglected in a x? test of homogeneity or goodness of fit. The result
of the x; test could be fused with the result of the x* test by R. A.
Fisher’s method* to obtain a single probability based upon both types
of information, but there is no point in doing so in this particular
case, since the homogeneity test of the 24 classes shows a probability
SO 10W that no other single test based on the same classes, however
high its probability, could alter the inference of non—homogenelty
A test based on sequences of like sign in the differences from the mean
contribution, similar to that shown in Table 11, is an alternative
‘device for Salvaging the order information that the x? test disregards,
provided the expectations are large enough to eliminate skewness.

TABLE 13
Frequency Distribution of Phase Durations in the
Serie§ of 24 Contributions for the x2 Test
of Homogeneity in Table 4

DURATION OF PHASE : FREQUENCY
‘ Expected Observed
1 © 8.7500 _ 6
2 3.6667 3
over 2 1.2500 1
Total 13.6667 10
P 1.0355
P(x3) .64

P(p)» A1

= Probability for total number of phases; see Sec. VII.

X3 can also be used to test the independence of two variates, and
in some circumstances is superior for this purpose to the rank cor-
relation coefficient. The procedure is to arrange the pairs according
to the order of magnitude of one variate and tabulate the distribution
of phase durations in the other variate. If the two series are in-
dependent, the resulting value of x2 will not be significant. This test
is likely to be more sensitive than the rank correlation coefficient
when the relation between the two variates is not monotonic. Sup-
pose, e.g., that arrangement of 15 pairs in ascending order according
to one variate produces the following sequence in the second:
1,3,4,8,10,11,13,15,14,12,9,7,6,5,2. The value of x2 is 7.6667
(Slnce there are no completed phases it equals the expected total
number of phases), indicating a significant relation between the two .
~ variates (Table 5). The rank correlation coefficient, on the other
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hand, is only .089, definitely not significant. A difficulty with the
- xZ test in this use, however, 1s that the conclusion occasionally de-
pends upon which variate is chosen for arranging in order and which.
for counting the phase durations. If the numbers given above are
arranged in order, and a tabulation made of the phase durations in
the numbers of their positions as now listed, x2 is found to be only
0.1886, an unusually low value. While the two values of x; that can
be obtained from a single set of paired variates are not independent,
a little experimentation will show that almost any pair of values is
possible simultaneously. If the two variates are really independent,
of course, neither value of x7 should be significant, but their inter-
dependence makes it difficult to use both validly.*
- * Jacob Wolfowitz points out that this ambiguity can be avoided by basing a test on sequences
of consecutive ranks instead of on sequences in direction of movement. In the illustration
above, for example, there are three runs of two consecutive numbers (3, 4; 10, 11; and 15, 14)
and one run of three (7, 6, 5); this is also true when the listed numbers are arranged in order
and the runs counted in the numbers indicating the positions as now listed (the runs then are
2, 3; 5, 6;9, 8; and 14, 13, 12),

Mr. Wolfowitz derived this test of the independence of two series from a new criterion,
somewhat analogous to the likelihood ratio, which he has devised for the choice of tests of
significance when nothing is known about the form of the population. It is to be hoped that

this important work will reach an early fruition and become generally available. In this
connection, see the third from last paragraph of Sec. I.

2
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IX Historical Note .

Investigations of the topic treated in this paper started at least as

~early as 1874. A brief mention of them may be of interest, since
they have appeared in places not generally familiar to economic
statisticians. Most of the writers seem to have been aware of few
of their predecessors, and the present authors, unfortunately, were
aware of none until their own work was in final form. They have
no reason to suppose that the following account is complete—indeed, -
it would be surprising if the classical probability writers had entirely
overlooked the problem. ‘ ’

Three statistical papers have suggested basing a test of significance
on the frequency distribution of phase durations. The first was pub-
lished by Louis Besson in 1920, the second by R. A. Fisher in 1926,
and the third by W. O. Kermack and A. G. McKendrick in 1937,
Only the last seriously investigated the suggestion. : :

Besson is the only writer to obtain formula 2 (Section 1IT), giving-
the distribution of phase durations as a function of N. He derived
it for two special cases: (1) a discontinuous rectangular distribution
in which the number of possible values is. much larger-than the num-
ber of items in the sample, and (2) a normal distribution ; and he
implied that the same formula had appeared in other instances. He
did not, however, realize that it represents a completely general solu-
tion, although he apparently suspected as much. “QOur formulae are
exact,” he writes, “in both the very different cases where all values
are equally probable and where they follow the law of Gauss, as well
as in still different cases. Hence it cannot be doubted that they
possess a very great degree of generality, and no matter what law
which the quantities occurring in meteorological applications might
follow, the application of these formulae would not lead us into
serious error; as a matter of fact such quantities usually follow the

. law of Gauss quite closely.” Besson did not discuss the problem of

determining whether differences between observed and expected fre- -
quencies are statistically significant. Although two paperst® 2 have
referred to Besson’s formula, no use has been made of it, as far as
we know. . '

R. A. Fisher gave the limiting form of expressidn 3 (Section I1T)
for large values of N in the form

: 1 . 2 1
| i - @it @iy
and also the h'miti_ng value of the mean duration, variance, and third
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moment about the mean (Section IV). Since Fisher’s ob]ect was to
express the probability of a rise or fall at a given point as a function
of its distance from the preceding turning point, he was interested
only in infinite series and did not take account of the effect of N.
Apparently he realized the generality of the formula, however, and
'he suggested basing a test of significance uponit: ‘“The extreme rarity
of runs of 5, 6, or 7 differences is of value in the use of such runs as
evidence that a sequence is in parts not of a random character; such
a test may be refined by counting all the runs of all lengths and com-
paring the frequency of each class observed with that predicted by
the above distribution.”  He did not indicate how such a comparison

might be made.  Fisher’s results seem to have been unnoticed, except

for a single citation.** His contribution was elicited by a note by
Bilham showing the probability of three observations’ defining a
turning point to be 2/3. ,

The most important of the three- statistical contributions is that of
"Kermack and -McKendrick.# They derived formula 3 (Section I1I),
but only in the limiting form ' :

3(d* +3d+1)
@+ 3)!

and also the expected mean duration of a phase. In comparing the
observed with the expected distributions, however, they ignored the
interrelation among the phases in a single series and assumed that

x; 18 distributed as x2. They also gave the mean and variance of the’

total number of phases as functions of N. There are several striking
similarities between their paper and ours: they pointed out the insensi-
tivity to trend or slow periodic movements (they added a suggestion
that testing a sequence made up of every k-th observation will in-
crease the sensitivity in this respect); they wrote, “One obvious
limitation of these criteria is that as they make use only of qualita-
tive relationships and do not take into account the exact magnitude
of the observa,tlons, they do not make full usé of all the available

information. It is to be noticed, however, that there is the com-"

pensating advantage that the criteria make no assumption whatever
about the law of distribution of the observations, apart from the very
general one that they are unequal”’; and, as a ﬁna,l coincidence, their
paper was partly financed by Carnegie funds Their method of han-

~ dling ties is one that we have recommended elsewherest because of its |

simplicity, but since it assumes the true differences between tied
observations (instead of the true values of the observations them-
selves) to be a random sequence, it is not as strictly correct as the one

described in the second paragraph of Section VIII; the two procedures

are identical, however, in the most common case, that where only two -
adjacent observations are equal, and they differ little unless there are .
‘many sequences of more than two ties or a few unusually long

i

sequences.
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There are also three principal mathematical treatments of the -

topic: a long paper by Kermack and McKendrick published in 1937
and two in treatises on combinatory analysis, Macmahon’s of 19163

" and Netto’s of 1901.39

Kermack and McKendrick demonstrated the formulas utilized in
their statistical paper,s and extended these in several directions not
especially related to the present paper. At one point they used, in
effect, the probability transformation which we explain in Section II.
They simply stated that the observations-can be regarded as all

~between 0 and 1 because the distribution of phase durations remains

invariant under any one to one transformation; they did not, however,

_explicitly introduce a transformation to a uniform distribution, though

this is implicit in the integrations they make.

Macmahon®* does not consider phases in our sense, but he parti-
tions a series into groups which are, as he points out, equivalent. He
divides the observations in such a way that each group contains an
ascending sequence. All observations in what we call an expansion
of d, including both bounding turning points, thus constitute a single
group of d + 1; each observation in what we call a contraction, ex-
cluding the. bounding turning points, constitutes a group of 1. For
example, he divides the sequence 8, 6, 7, 2, 9, 5, 4, 1, 3 as follows:
8;6,7;2,9;5;4; 1,3 and treats it as a sequence of groups of 1, 2, 2,
1, 1, 2, in that order. (Given a sequence of groups as defined by
Macmahon, it is"easy to deduce the sequence of phase durations
according to our definition.) Letting a, b, ¢, - - - represent the group
sizes in. the order of their appearance, wherea +b +¢ 4+ --- = N, -
Macmahon shows that the proportion of the permutations of N
different observations which produce the sequence of groups a, b,

€, - -+ 1s given by the determinant
1 1 1
al (@+0b)! (@+ b+ ¢!
1 1 ) 1
b! b+ o)!
1
0 1 o

He gives several theorems useful in manipulating this expression.
(Compare equation 4, Section VI.) : '
Netto** summarizes a paper by Bienaymét and a long series by
André published between 1879 and 1896.:- Bienaymé in 1874
stated that the number of phases, complete and incomplete, is nor-

~ mally distributed about a mean of

2N — 1
3
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with variance of ‘
' 16N — 29
90 )

His paper actually reads: ‘“le nombre des maxima et des minima
sera probablement égal &

ON — 1 16N — 29
5 'Y 5

a probabilitjé correspondant a ¢ etant donnée approximativement par
~ I'integrale bien connue ' '

2 ¢ g2 24
v j; ¢ dx.
A later paper® describes

2N -1
3.

as “le nombre des maxima et des minima, ou des séquences,” meaning
by a sequence what we call a phase, including incomplete phases; -
and in the second sense it is correct. The appearance of 45 instead
by 90 is explained by the form in which Bienaymé writes the normal
‘distribution. André’s chief contribution was a recursion formula
for the number of phases (including the incomplete phases before the

* first and after the last turning points):

fN(P-) = pr—l(p) + 2fy_alp — 1+ N - P)fN—l(P -2

where fy(p) represents the number of the permutations of N different =
numbers producing p phases. (Compare equations 5 and 5a, Sec-
tion VII.) .

None of the works we have seen has investigated the central prob-
lem of how to test the significance of the difference between the
observed and expected distributions. Jones,? in referring to Bes-
son’s work,® cautions “against the use of the x> test for testing the
significance of these distributions since the total frequency of the ob-
served and expected number of runs is not necessarily the same,”
but we are unable to see the point to this warning; the fact that the =
totals are free to vary seems simply to remove one linear constraint
and so to allow one more degree of freedom for sampling fluctuations,
though the x* distribution is inapplicable for other reasons (see Sec-
tion VI). Some of the investigations, particularly those by Mac-
mahon® and by Kermack and McKendrick,* may prove valuable to a
future researcher who carries out our suggestion of a thorough mathe-
matical investigation into the question. None of the writers has -
considered any except direct applications of the technique to original‘:fi
data; that is, they have not considered its use with derived series’
-which should be random according to the assumptions of the method:!
of derivation. ' i
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X Sumiary

A simple and economical test of significance for time series (and other
data in which the order of appearance is essential), which makes no
assumption about the fundamental probability distribution, ; may be
based on the frequency dlstrlbutlon of sequences of like sign in the
first differences.

In a series of N independent random observations the expected
number of completed runs of d in the signs of the first differences i IS

2(d® + 3d + 1)(N—d—-2)
. (@ + 3)!
- As the size of the sample increases, the proportion of runs of one
approaches 5/8, the proportion of runs of two approaches 11 /40, the
proportion of runs longer than two approaches 1/10; and the average
length of run approaches 1.5. ,

The expected number of runs of one is, then,

5(N — 3)
12 ’
of runs of two, |
11{(N — 4)
- 60 ’
and of runs longer than two,
4N — 21
60

These three expectations may be compared with the observed fre-
quencies by the usual method of summing the ratios of thé squared
deviations to the expectations. The sum is essentlally similar to x?
- for two degrees of freedom, but is denoted by x; because its sampling
distribution dlﬂers somewhat from that of x2. The tail of the distri-
bution of x;, i.e., x; above about 6.3 or P below about 1/15, is well
- described by the x* distribution for 24 degrees of freedom, the .05
. level of which falls at x; = 6.898 (Table 5); the main body of the
distribution is covered by referring ¢x; to the usual x2 tables for
2 degrees of freedom. Although these empirical distributions seem -
© adequate for practlcal work, a rigorous derivation of the true sampling
- distribution is much to be desired.
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Since this test is, in general, not sensitive to the existence of a
primary trend, it is especially useful in determining the presence
of secondary components of the systematic variation, especially
‘cyclical’ fluctuations. It is useful also as an objective test of good-
ness of fit of smooth curves, particularly for curves that have not
been fitted by mathematically efficient methods, e.g., freehand curves
or moving averages. It also provides a criterion of the number of
terms to be used in smoothing by moving averages. Still other uses,
not pertaining especially to time series, are in salvaging the order
information neglected in a x* test of homogeneity and in detecting the
existence of correlation.

A simpler test of the same nature may be based on the total number
of completed runs in the signs of the first differences, since th1s is
normally distributed with mean of

2N -7
3

and variance of

16N — 29
90
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