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Abstract

This paper studies the role of population density as a driver of innovation. Using

a newly assembled dataset of georeferenced patents in the U.S., we show that over-

all innovation activity is not concentrated in high-density areas as commonly believed.

However, when we restrict attention to unconventional innovations - innovations based

on unusual combinations of existing knowledge - we show that these are indeed more

prevalent in high-density areas. To interpret this relation, we propose the view that in-

formal interactions in densely populated areas help knowledge flows between distant

fields, but are less relevant for flows between close fields. We then provide evidence

supportive of this view. We build a model of innovation in a spatial economy that en-

dogenously generates the pattern observed in the data: specialized clusters emerge in

low-density areas, whereas high-density cities diversify and produce unconventional

ideas.
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1 Introduction

The idea that informal interactions among people are central to innovation and knowledge
diffusion has become a cornerstone of recent theories of economic growth (Lucas 1988). If
true, the idea implies that economic geography, by controlling the extent of those inter-
actions, should play a first-order role in determining the creation and diffusion of ideas.
Specifically, we would expect that innovation should cluster in high density areas, and that
cities should be a key engine of technological progress. There exists a sizeable literature on
the role of cities and agglomeration for growth that builds on this intuition (Glaeser et al.
1992, Black and Henderson 1999, Glaeser 1999).

In this paper, we examine the link between density and innovation empirically, using
narrowly georeferenced information on patenting in the United States. Our geographically
disaggregated data show that the advantage of cities in producing innovation is more nu-
anced than commonly believed. While suburban areas are responsible for a substantial share
of overall innovation activity, high-density places disproportionately generate innovation
with a high degree of unconventionality. This pattern, which to the best of our knowledge
has never been documented, reconciles the intuition that density fosters creativity with the
observation that the origin of innovation in the U.S. is dispersed. We then propose a spatial
theory of a knowledge-based economy that is consistent with our findings. The theory high-
lights a novel rationale for why economic activity agglomerates in cities of different sizes
and degrees of diversification. This rationale is grounded in the process of knowledge cre-
ation and reconciles the tension between returns to local specialization (Marshall 1890) and
returns to diversity (Jacobs 1969), without relying on the presence of ex-ante heterogeneous
agents. We use our model for policy analysis, and find that that a system of place-based
subsidies can have a significant impact on aggregate welfare by changing both the intensity
and composition of innovation activity.

The role of geography in shaping innovation outcomes has been receiving growing at-
tention in recent years. As argued by Moretti (2012), this emphasis reflects the fact that
knowledge creation has gained increasing importance for the economic success of advanced
countries. The theoretical link between innovation and geography relies on the intuition that
spatial proximity is a key channel for the diffusion of ideas. Although a broad empirical lit-
erature has shed light on several aspects related to this intuition (Jaffe et al. 1993, Audretsch
and Feldman 1996), direct assessments of its importance in simultaneously affecting tech-
nological change and economic geography are still relatively scarce. Previous research has
relied either on a high level of geographical aggregation like MSAs (Carlino et al. 2007) or on
indirect evidence such as differences in skill premia and skill mix (Davis and Dingel 2013).
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In this paper, we look at variation in patenting across narrowly defined geographical
units in the United States. We start by collecting the full-text record of all the patents granted
by the USPTO in the years 2002-2014, that we then geo-reference at the County Sub-Division
(CSD henceforth) level. We document four novel facts on the spatial distribution of innova-
tion in the United States.

First, the role of high-density regions as engines of innovation is smaller than commonly
thought. Over 40% of the patents in our sample originate from units with density of pop-
ulation below 1, 000/km2.1 Unsurprisingly, density is positively related to innovativeness
along the extensive margin: more densely populated places are more likely to host perma-
nent innovative activity. However, among continuously innovative CSDs - defined as units
that produced at least one patent per year - innovation intensity (measured as patents per
capita) and population density display a weak relationship that, if anything, points towards
a negative slope. Density and patenting have a zero correlation across places with density
above 500/km2 and are negatively related across areas with density above 1, 000/km2.

Second, innovation produced in densely populated areas is more likely to be built upon
unconventional combinations of prior knowledge. To show this fact, we formulate a notion
of technological distance that proxies for the intensity of idea flows between fields, based on
the observed network of patent citations. We implement an algorithm in the spirit of Uzzi
et al. (2013) to evaluate the atypicality of references listed in each patent. Our measure com-
pares the observed frequency of each pairwise combination of citations with the frequency
one would expect if references were distributed at random. This procedure defines an index
of conventionality (c-score) for each citation pair: combinations are unconventional if their
empirical frequency is small compared to their random frequency. The c-score ranks inven-
tions along a dimension that we argue to be economically meaningful: first, unconventional
patents are significantly more likely to be highly cited compared to conventional ones; sec-
ond, unconventional patents are significantly less likely to be produced by large, publicly
traded firms. We find that unconventional innovations tend to originate disproportionately
from densely populated areas. This relationship is statistically and economically significant,
emerges both in patent-level and CSD-level regressions and is robust to a wide variety of
specifications.

Third, dense cities host a more diversified pool of learning opportunities. Computing the
technological distance between two patents produced in each CSD, we show that pairwise
combinations of inventions in high-density CSDs are more technically distant than combi-
nations in low-density ones. The implication of this fact is that inventors in dense cities will

1As reference points, the density of Manhattan in 2014 was 27, 000/km2, Chicago 4, 400/km2, Los Angeles
3, 200/km2, Austin 1, 300/km2, Palo Alto 960/km2 and Armonk (NY) 280/km2.
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be more likely to be exposed to ideas from backgrounds distant from their own.
Fourth, the local pool of ideas is a strong predictor of the combinations embedded in

new inventions. In other words, inventors exhibit a positive bias toward drawing ideas out
of a pool that is locally determined. As a descriptive finding, we observe that for 75% of
the class pairs, a patent that references both classes in a given pair (A,B) is more likely to
appear in CSDs with a higher share of patents of class A and B produced in the same CSD,
and disproportionately more likely when the product of the two shares is high (i.e. the coeffi-
cient of the interaction is positive). To control for endogenous locational choice, we adopt a
difference-in-difference strategy and look at the evolution of patenting of pre-existing firms
upon arrival in town of a company from a different sector. We find that the arrival of a firm
significantly biases the citation behavior of pre-existing entities toward the field of the arriv-
ing firm. To the best of our knowledge, this paper is the first to provide direct evidence of
inter-sectoral localized knowledge spillovers operating through this channel.

The facts that we document suggest an alternative interpretations of how technologi-
cal change interacts with economic geography. Overall, suburban areas play a prominent
role in the innovation process: for example, big innovative companies such as IBM or Mo-
torola tend to carry out their research in large office parks located outside main city centers.
One view is that these companies can organize knowledge flows efficiently within the or-
ganization, and do not have to rely on happenstance interactions in a dense environment.
By contrast, informal interactions in dense and diversified areas may become important in
generating knowledge flows across technologically distant fields, since specialized formal
networks (e.g. firms, academic departments and research labs) may not efficiently inter-
nalize them. As a result, innovations originating in high-density areas will be built upon
more uncommon combinations of prior knwoeldge. The channel of inter-field knowledge
spillovers generates an additional benefit from spatial proximity, promoting diversification
in dense locations and specialization in sparse ones.

This new set of observations calls for a reassessment of the theoretical link between geog-
raphy and innovation. In particular, a spatial model of innovation should be able to account
for the simultaneous emergence of specialized clusters in suburban areas and diversified
hubs in urban centers, while taking the heterogeneity of innovation into account. In the
second part of the paper, we propose such a model and use it to perform policy anaysis.

In our setting, innovators are specialized in one of a finite set of scientific fields and
choose where to locate balancing rent considerations and innovation opportunities. After
developing an idea, innovators can either implement it through an established firm, which
keeps the monopoly power over its specific product and increases its productivity, or com-
bine their idea with the knowledge of an inventor of a different field. The second option
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leads to an unconventional innovation: the inventor can start up a new company and gain
leadership over an existing product line, replacing the previous monopolist. Innovators
have an incentive to cluster with people of similar background to benefit from intra-field
spillovers that increase their ability to develop ideas. However, interactions with inventors
from different fields require informal channels and are subject to search frictions. Density
reduces frictions across fields but is ineffective in fostering spillovers within fields, that in-
stead occur via formal organizations.

The model reproduces the geographical sorting of innovation activity observed in the
data. Conventional and unconventional ideas are complementary. This leads to the emer-
gence of asymmetric sites, both in terms of density and specialization. Densely popu-
lated sites diversify and generate unconventional innovation, whereas specialized clusters
emerge in low-density areas and produce conventional ideas. The equilibrium implies that
geography and both composition and intensity of the innovative activity in the economy are
tightly related, and they depend on the parameters of the model in an intuitive way.

This unexplored link opens up novel possibilities for welfare improving place-based
transfers. We study optimal policy numerically by calibrating the model using US data.
Unconventional ideas are found to be mostly driven by business stealing considerations, as
they bring about little technological improvement compared to conventional ones. How-
ever, they act as creative destruction events and limit the monopoly power in the economy,
which translates into an improved static allocation of labor across firms. The equilibrium
conceals a set of externalities that make the outcome inefficient in several dimensions. The
welfare analysis reveals that a planner would use place-based policies to increase urbaniza-
tion and boost creative destruction, at the cost of lowering growth and increasing conges-
tion. The optimal policy of a planner who has the ability to fully affect the urban structure
leads to a welfare gain 2 to 3 times larger (in consumption equivalent units) than the one of
a planner who can only intervene by reallocating people within the existing urban structure.

This paper contributes to the empirical literature on the estimation of localized knowl-
edge spillovers and the study of their implication for innovation and growth. The impor-
tance of localization and geography for the spreading of knowledge, which dates back to
Marshall2 (1890), has been the subject of extensive empirical study in recent years since
Lucas (1988), Krugman (1991) and Glaeser et al.’s (1992) seminal papers on economic de-
velopment and economic geography. Jaffe et al. (1993) analyze the network of patents and

2In Marshall’s famous words: “When an industry has thus chosen a locality for itself, it is likely to stay there
long: so great are the advantages which people following the same skilled trade get from near neighborhood
to one another. The mysteries of the trade become no mysteries; but are as it were in the air, and children learn
many of them unconsciously.”
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find that citation patterns display a significant bias towards patents that were produced
in the same state and metropolitan area. Audretsch and Feldman (1996), Audretsch and
Stephan (1996) and Feldman and Audretsch (1999) analyze the geographical concentration
of production and innovation activities and find evidence of substantial complementarities
between the two. The urban literature has long been interested in the interaction of knowl-
edge spillovers with local specialization and diversity, as in Porter (1990), Florida and Gates
(2001), Delgado, Porter and Stern (2014). We contribute to this literature by explicitly consid-
ering how local innovation activity affects the composition of the knowledge base upon which
inventors build new ideas. Our analysis puts particular emphasis on inter-field technology
spillovers. Our main finding is broadly consistent with Packalen and Bhattacharya (2015),
who find that over the last century newer concepts have been implemented in inventions
originating from high-density regions.3

This paper also contributes to the theoretical literature on spatial equilibria and knowl-
edge spillovers. Glaeser (1999) proposes one of the first models of knowledge flow in a
spatial setting. The dichotomy between specialized and diversified sites in an innovation
economy was first introduced by Duranton and Puga (2001). In their model, young firms
locate in diversified cities to experiment with different prototypes, while established firms
move to specialized sites where intra-field spillovers are stronger. Davis and Dingel (2012)
develop a model in which productivity in cities is fostered by informal interactions among
people living in a densely populated environment. In their setting, the spatial equilibrium
is determined by the comparative advantage of high-skilled individuals in an environment
with high learning opportunities. In our setting, individuals are homogeneous in all respects
except for the knowledge background they carry: density plays the peculiar role of favoring
interactions among people from different fields. As in Berliant and Fujita (2011), knowledge
diversity is a key component of growth in our model.

Finally, this paper is related to the literature on endogenous growth and heterogeneous
innovation. Akcigit and Kerr (2010) develop a model with heterogeneous firms in the spirit
of Klette and Kortum (2004) and explicitly allow for the possibility to carry out exploration
R&D to acquire new product lines and exploitation R&D to improve existing ones. We iden-
tify exploration R&D with unconventional innovation. This choice is based on the empirical

3Packalen and Bhattacharya (2015) find that throughout the last century, patents produced in more densely
populated urban areas have made more intense use of newer concepts, identified as new sequences of words.
Differently from that paper, we look directly at combinations of ideas. The pattern of geographical sorting that
we document runs through a specific channel, namely, a more hybridized composition of the knowledge base
upon which new ideas are built. Packalen and Bhattacharya (2015) also find that the advantage of dense cities
is significantly weaker in the part of the sample corresponding to the time period covered by this paper. This
suggests that the sorting that we document could be even stronger if an earlier sample of patents were used.
This is left for future research.
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observation that unconventional patents have a substantially higher technological impact
than conventional ones. From a technical point of view, our model closely resembles Peters
(2013) and Hanley (2015) in assuming limit pricing and Cobb-Douglas final good aggrega-
tor, allowing a simple decomposition of welfare into a static and a dynamic component. We
innovate on the existing literature by integrating the idea of heterogeneous innovation in a
spatial equilibrium model of a system of cities.

The remainder of the paper is organized as follows: Section 2 introduces the dataset
and presents four empirical facts on the geographical organization of innovation activity
in the United States. Section 3 introduces the model, characterizes its solution, highlights
the mechanism, performs the calibration and studies its implications. Section 4 analyzes
optimal place-based policies under fixed and flexible urban structure. Section 5 concludes.

2 Empirical Analysis

Data

The analysis is a based on the universe of patents granted by the US Patent and Trademark
Office (USPTO) between January 2002 and August 2014, and filed between January 2000
and December 2010. Table A.1 reports the number of patents by filing year. There are sev-
eral advantages to focusing on this recent sample. First, the recent digitization of the patent
archive has made it easier for authors and reviewers to look for earlier patents to reference.
This is reflected in a significantly higher number of citations listed in each patent. Second,
by focusing on a short period we minimize long-run changes in the propensity to patent
and the technological composition of the sample. Finally, by focusing on the 2000-2010 pe-
riod, we can reliably link the location information in the patent with socio-economic and
demographic characteristics from the Census and the American Community Survey.

Every patent is associated to one of 107 International Patent Classification (IPC) cate-
gories.4 For each grant, we gather information on the identity and location of the original
assignee and the inventors and on the full list of referenced patents (up to a maximum of
1,500 citations per patent). Every patent is geolocated following a hierarchical rule: If the
patent file reports the name of an institutional assignee (e.g. a company, a research lab or an
academic institution) we assign the patent to the geographical coordinates of their location;
if the file does not report any assignee or its address is missing or located outside the United

4Since each grant is associated with several IPC classes but only one main USPTO class, we build a many-
to-one function that maps every USPTO class to a single IPC class based on the association that recurs more
often.
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States, we attempt to geotag the grant according to the location of its first inventor, other-
wise of its second inventor and so on until we are able to assign a location to each patent.5

Foreign patents are used for the computation of the conventionality score but are discarded
in the geographical analysis. We only consider patents that reference at least two citations.
The main analysis is performed on a final subset of 1,058,999 patents filed over an 11-year
period.

Most of the analysis is conducted at a County Sub-Division (CSD) level. The CSD rep-
resents the finest geographical unit that we are able to identify uniquely by intersecting the
location information retrievable from the full-text of the patent and the data available from
the Census and the American Community Survey.6 The CSD is much finer than a county, it
typically coincides with city boundaries and, in a few cases (e.g. New York City) a city can
be partitioned in multiple CSDs. Since demographic data at this level of disaggregation are
only available every 10 years, the values of the demographic variables between 2000 and
2010 were interpolated assuming a constant growth rate throughout the years.

2.1 Fact 1: No relationship between density and rate of patenting

The map in Figure 2.1 illustrates the distribution of patenting in the United States between
2000 and 2010 (see also Figure A.2 for close-up maps of the four most denseley populated
metropolitan areas).7 There is a clear tendency for innovative activity to concentrate around
main urban centers, highlighting a pattern that most would expect: the East-Coast, the
Chicago Area, the Texas Triangle and the Bay Area, among others, are all highly innovative
regions. However, two features also emerge. First, a substantial part of patenting activity oc-
curs away from main urban centers, often in low-density areas that are geographically sep-
arated from major cities (notably, Armonk, NY and Schenectady, NY). Second, even within
major metropolitan areas, a big share of the innovative action takes place in the suburban
portion of the latter (e.g. Redmond, WA and Schaumburg, IL). Low density regions seem

5Note that we choose to use the location of the assignee, whenever available, instead of the address of the
inventor. Most of the literature on the subject, since Jaffe et al. (1993) uses the location of the inventor. Both
alternatives raise a number of issues. Since often a patent lists multiple inventors whose locations are too
far apart to suggest any interaction through spatial proximity, the address of the institution can represent a
more accurate indication of the geographical origin of the invention. Many companies issue patents under
several addresses, corresponding to different establishments or research facilities. The main concern with our
approach is that the address of the assignee sometimes represents the headquarters of the company instead
of the research facility. However, Aghion et al. (2015) report a 92% correlation between the two locations. To
attenuate this concern, we run robust checks using only patents assigned to individual inventors. We mention
these checks several times throughout the text.

6The socio-economic and demographic indicators at the CSD level available at https://nhgis.org.
7Note that CSDs are a partition of the US: the empty areas are CSDs where no patents where filed between

2000 and 2010.
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Figure 2.1: The figure shows a map of county sub-divisions in the United States. Each CSD is colored
according to the number of patents produced between 2000 and 2010. The more red the higher this
value; the more blue, the lower. No patents have been filed in the CSD’s that are missing in the map.
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to play a key role in the innovation process. About 43.3% of the patents filed between 2000
and 2010 were produced in CSDs with population density below 1,000 residents per square
kilometer.8

2.1.1 Measurement

In our analysis, we are mostly concerned with characterizing patterns of innovation along
the intensive margin. Namely, we restrict the focus to continuously innovative CSDs, de-
fined as units that have filed at least one patent per year between 2000 and 2010. These areas
accounted for 53% of the U.S. population and 61% of college graduates in the U.S. labor force
in 2010. Roughly 95% of all the patents in our dataset originate from these units. Since we
are interested in measuring the extent to which density is related to the flow of knowledge,
it is natural to restrict the focus to areas that are continuously involved in innovation ac-
tivities. The study of areas where innovation does not occur, or occurs only occasionally, is
outside the scope of this paper.

For most of the paper, the units of analysis correspond to CSD-year observations. We use
patents per resident as our proxy for innovation intensity. As additional tests, we use patents
per worker, patents per college-graduate and the logarithm of patents per capita. In the
benchmark results, density is measured as residents per square-kilometer, but we also use
density of workers or density of college graduates as additional tests. In this subsection, we
weight observations by total population (or, depending on the relation, total workers or total
number of college graduates) but the same patterns emerge if observations are unweighted
or weighted by number of patents.9 We control for year fixed effects to account for aggregate
trends in density and patenting. Since the panel includes a high number of observations, we
illustrate the results using bin-scatter plots: we divide the variable on the x-axis in 20 equally
heavy bins and take the mean of the y-variable across the observations falling in each bin. 10

2.1.2 Finding

Unsurprisingly, in the cross-section of U.S. locations, density is related to innovativeness on
the extensive margin: increasing population density by 1% increases the probability of host-
ing permanent innovation activities by 0.16% (Figure A.3a). As a result, the unconditional

8As a reference, the Census defines as urban those areas with a central block of at least 2, 500/km2, sur-
rounded by blocks of at least 1, 300/km2.

9Since the relationship between patenting per capita and density is flat across continuously innovative
CSD’s, those different weighting methods yield very similar results.

10Chetty et al. (2013) show that this methodology is able to graphically capture the correlation between two
variables. See http://michaelstepner.com/binscatter/ for a more in depth discussion.
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Figure 2.2: Bin-scatter plot of patents per capita and (log) population density in continuously inno-
vative CSDs. The plot is weighted by total population and controls for year fixed effects.

correlation between density and patenting is positive and significant (Figure A.3b). How-
ever, this correlation is entirely driven by very low-density places that have zero patenting.
The plots in Figure A.3d-f show that the correlation is still positive across places with den-
sity above 100/km2 (d), but becomes flat when we condition on density being larger than
500/km2 (e) and even negative when we restrict to places with density above 1, 000/km2 (f).

We now turn to the focus of this subsection, namely the relation between density and
patenting along the intensive margin. Figure 2.2 shows a bin-scatter plot of patents per per-
son against (log) population density in the balanced panel of 1,645 continuously innovative
CSDs. The relationship between population density and innovation intensity appears to be
flat. This finding contrasts with the positive correlation that is observed at the Commuting
Zone (CZ) level (Figure A.3c).

Table A.2 in the Appendix presents additional specifications with different weights (e.g.
total patents) and fixed effects. In column (4), we control for state fixed effects: the coef-
ficient becomes negative and significant.11 This fact suggests that although more densely
populated states indeed produce more innovation, the low-density portions of those states
attract a bigger share of the innovative activity.

Figure A.5 (left-panel) presents an alternative way of visualizing the relationship be-
tween density and patenting: we rank CSDs according to their population density and plot
the cumulative share of overall patents (horizontal axis) and the cumulative share of overall

11A similar result is obtained when controlling for commuting-zone fixed effects (column (7)).
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population.12 As we would expect in the absence of a relationship, the cumulative function
largely overlaps with the 45-degree line.

2.1.3 Robustness

It is possible that the relationship in Figure 2.2 is biased downward by the fact that continu-
ously innovative, skill-rich regions tend to be low-density (e.g. college or company towns).
In this case, we would be overestimating the relevant interaction opportunities in dense
cities and underestimating them for suburban areas. Panel (a) of Figure A.4 shows a similar
bin-scatter that captures the partial correlation between density and patenting per capita af-
ter controlling for the skill composition (namely, the percentage of college graduates in the
population). Panel (b) of the same Figure shows the unconditional correlation, but using
density of college graduates and patent per college graduate instead. In both specifications,
density and patenting are weakly but negatively correlated.

The choice of a narrow geographical unit of analysis raises the possibility that commut-
ing can confound local population density as a proxy for personal interactions. We address
this issue by looking at two extreme cases. In the first case, relevant interactions only oc-
cur at the workplace. Since we geolocate the firm whenever possible, we would be cor-
rectly assigning the location, but learning opportunities would be mismeasured, as density
of workers should be used instead of density of residents. Panel (c) of Figure A.4 shows this
relationship for patents assigned to firms or other institutions (i.e. excluding the patents ge-
olocated at the inventor’s address). In the opposite case, relevant interactions only take place
at the inventor’s residence. This time, learning opportunities would be correctly mesured
by population density, but the patents issued to institutional assignees would be wrongly
geolocated. In Panel (d) of Figure A.4 we plot the relationship only counting patents issued
to individual inventors. The relationship is statistically flat in both the polar cases.

By counting the raw number of patents we may be distorting the relationship between
density and innovation if inventors and firms locating in low-density places have, other
things being equal, a higher propensity to issue low-quality patents. To address this possi-
bility, we weight the number of patents issued by the number of future citations received.
In Panel (e) of Figure A.4 we show the partial correlation of population density and citation-
weighted patents.13 Finally, in Panel (f) we plot the partial correlation after controlling for
CZ and year fixed effects. The results are largely unchanged. We also run an additional test

12The left-panel includes all the CSD-year observations. The right-panel shows the same exercise but drops
the observations corresponding to San Jose-Palo Alto.

13Although later patents have received on average a lower number of citations, year fixed effects account
for this difference.
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excluding Delaware and DC from the the sample, as those are classical examples of states
for which the address of the assignee and the inventor are more likely to differ.

2.2 Fact 2: Positive relationship between density and unconventionality

The intuition that learning opportunities offered by density should be strong enough to
attract the bulk of innovation receives weak support from the data: suburban regions take
on a relevant portion of aggregate patenting activity. A possible explanation is that density
catalyzes the flow of knowledge across fields that are not connected through established
networks, whereas formal organizations are able to internalize knowledge flows efficiently
within their own field, without relying on density-driven, informal interactions.

In this subsection, we show that innovations produced in high-density areas tend to be
constructed on a more diversified set of prior knowledge. To assess this fact, we need an
exact measure of hybridization of the knowledge base of each invention. To construct this
measure, we use the distribution of citations across technological classes to infer the inten-
sity of knowledge flows between fields. The fact that a pair of patent classes is recurrently
referenced together indicates frequent knowledge flows between the two. Conversely, the
fact that the combination of a given pair of categories is atypical denotes the lack of frequent
knowledge transmission between the two.

2.2.1 Measurement

We now describe how we measure the degree of interconnection between two technological
classes. We adapt the methodology proposed by Uzzi et al. (2013, UMSJ henceforth), who
study atypical citation patterns in the universe of academic papers. To the best of our knowl-
edge, this paper is the first to apply a similar algorithm to the universe of patents. The basic
idea is to compare the frequency of a bundle of classes in the observed network of references
with the frequency one would obtain by assigning citations at random in a replicated net-
work. In this process, the structure of the network is kept constant. In other words, the total
number of citations from class A to class B is the same in the two networks, but references
in the replicated network are reshuffled in a random way, so that the conditional correlation
of referenced classes within a patent is zero.14 The conventionality-score (or c-score) of the

14While aligning with the basic intuition in UMSJ, we depart from their implementation in two dimensions.
First, we do not consider the time dimension explicitely in the replicated network: the total number of citations
is kept constant across classes, but not across years. Given that our time window (2000-2010) is relatively short,
this simplification is not likely to have a big impact on our estimates. Second, we assume that the number of
nodes is big enough such that a law of large numbers hold, which allows us to have an analytical expression for
the random frequency. This delivers an exact formula for the c-score, that can be computed without simulating
the replicas. See the discussion in the Appendix for the details on the computation.
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pair (A, B) is then defined as the ratio between the observed frequency and the random
frequency:

c (A, B) = FREQOBS (A, B)
FREQRAND (A, B) .

The interpretation of the c-score is straightforward: a high value of c means that we
observe classes A and B cited together relatively more often in the data than if citations
were assigned pseudo-randomly. We will refer to this citation pair as “conventional” and
infer that idea flows betweenA and B are relatively frequent. On the other hand, a low ratio
indicates that A and B are observed in the data relatively less often than expected. In this
case, the combination would be defined as “unconventional”. For expositional convenience,
in some cases we will refer to u (A, B) = 1 − c (A, B) as unconventionality-score (or u-
score). The details on the algorithm are provided in Appendix.

Figure A.7 shows a heat-map of the symmetric c-score matrix: each pixel represents a
citation pair and it is colored based on its c-score. For example, the pixels on the diagonal
represent the score of citation pairs of the form (A, A). We use a chromatic scale in which
brighter pixels denote more conventional pairs and darker pixels denote more unconven-
tional pairs. The figure highlights two patterns that supports the validity of the measure.
First, combinations on the diagonal tend to be more conventional than other citation pairs.
This is exactly what we would expect: once a patent cites a certain class, it is likely that is
going to cite the same class again, since that class is likely to play a central role in the patent
development. Second, around the diagonal we observe some “clusters” of conventionality.
This happens because the IPC classification system tends to assign close labels to classes that
are technologically close. For example, classes in the top-left cluster group all the patents re-
lated to human necessities. It is not surprising that a citation that falls in that group is likely
to appear with another citation in the same group. However, the c-score identifies techno-
logical proximity also between classes that belong to different IPC clusters. The following
are some significant examples: Food (belonging to the Human Necessities cluster) and Sugar
(belonging to the Chemistry cluster) have a c-score of 1.17; Butchery (Human Necessity) and
Weapons (Metallurgy) have a c-score of 1.14; Decorative Arts (Printing) and Photography
(Instruments) have a c-score of 1.15; Knitting (Textiles) and Brushware (Human Necessity)
have a c-score of 1.84.

We assign to each patent an entire distribution of c-scores, one for each pairwise combi-
nation of references (hence, a grant with N references will be assigned (N

2 ) possibly identical
scores). Two statistics of the distribution are of particular interest. The 10th percentile (or
“tail-conventionality”) proxies for the most unconventional bundle of classes listed by the
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Figure 2.3: Marginal effect of having a conventional tail and being in a certain core-conventionality
category on the probability of being a hit patent.

patent. 15 The median c-score (or “core-conventionality”) proxies for how tightly grounded
the patent is in prior knowledge. Figure A.6 plots the cdf of the core and tail-conventionality
in our final sampe. Consistently with the findings in UMSJ, it shows that the median patent
is highly conventional at the core (its core-conventionality is well above one).

Next, we show that having an unconventional tail is a powerful predictor of technolog-
ical impact. To show this, in the spirit of UMSJ, we define a hit patent as an invention that
received more citations than 95% of the other grants issued in the same year and belonging
to the same class. We estimate a logit model of the form:

logit (Hiti) = α + δc + δt + β×Unconv.Taili + γ×Core Cat.i (2.1)

where Hiti is an dummy that takes value 1 if grant i is a hit patent, Unconv.Taili is a dummy
that takes value 1 if the tail-conventionality is below the median of class c in year t, Core Cat.i
is a set of 4 indicators denoting the core-conventionality quartile (in class c and year t), δc

and δt are class and time fixed-effects respectively.16

15In this paper we follow USMJ and use the 10th percentile for tail-conventionality, but our results are robust
to using the minimum. We winsorize the c-score at the 1% level.

16We include time and class fixed effects to account for the fact that discreteness in defining the top 5% of
the citation distribution leads some classes/years to have a mechanically higher share of hit patents. A linear
probability model yields very similar results.
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Figure 2.3 shows the joint marginal effects of the two variables on the probability of
becoming a hit patent. The conditional probability ranges from 3.7% of a patent with a
conventional tail and an unconventional core to 6.2% of a patent with an unconventional
tail and a somewhat conventional core. By construction, the unconditional probability is 5%.
Having an unconventional tail increases this probability by about 1.7 percentage points. On
the other hand, the core seems to have a smaller impact and having an unconventional core
decreases the chances of being a hit patent. Our result is very similar to the one obtained by
UMSJ on the sample of academic papers: scientific research with the highest impact appears
strongly rooted in existing knowledge and at the same time displays the intrusion of novel
combinations. This surprising similarity seems to suggest that the process of innovation, no
matter if academic or applied, follows universal patterns.17

This strong correlation between unconventionality and technological impact suggests
that the c-score is ranking patents along a meaningful dimension. Motivated by this dis-
cussion, in what follows we will use tail-conventionality as our reference measure. We will
interpret this measure as capturing the most distant pieces of knowledge assembled in a
given invention.

2.2.2 Finding

One hypothesis is that density plays the decisive role of catalyzing knowledge diffusion
across unrelated fields. If this intuition is correct, we should observe that patents from high-
density regions display more unconventional references. By facilitating interactions, density
allows people to gain insights they cannot acquire through their formal network. This trans-
lates into new ideas obtained by assembling a more hybridized set of prior knowledge.

Table 2.1 and Figure 2.4 show several CSD-level correlations between (log) density of
population (or college educated workers) and the tail-unconventionality (defined as one
minus tail-conventionality) of the median patent filed in a given CSD/Year observation.
In all the specifications, increasing density of population has a positive and significant im-
pact on the tail-unconventionality of the median patent. In the baseline specification, an
increase in density of population equal to the weighted inter-quartile range increases tail-
unconventionality by 36% of its weighted inter-quartile range.

To study this relationship more in depth, we add to the specification various CSD specific

17The fact that high-impact research is novel and, at the same time, tightly grounded, is explained at least
in part by UMSJ by the necessity to efficiently deliver an idea to an inertial audience. They bring the example
of Charles Darwin’s On The Origin of Species, one of the pieces of research with the highest impact in human
history, where the groundbreaking idea of natural selection is not addressed until the second part of the work,
the first part being entirely dedicated to a much more uncontroversial subject, the selective breeding of cattle
and dogs.
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Figure 2.4: The dependent variable is defined as one minus the tail-conventionality of the median
patent in the CSD-year observation. The bin-scatter plot is weighted by the total number of patents
filed in the CSD/Year observation and controls for State and Year fixed effects.

controls, including (log) median income, the percentage of people with a college degree,
inequality (measured by the Gini index). The results are reported in Table 2.2. The effect of
density on tail-unconventionality stays positive and statistically significant. The coefficient
on median income is always positive and statistically significant. This is probably driven
by company or college towns that are typically not the places where hybridized innovation
is produced. The share of college graduates and the degree of inequality (Gini index) both
have a positive effect, but the coefficients are not statistically significant.

Table 2.3 reports the marginal effects of a patent-level logit regression of (log) density
on the probability that the patent has an unconventional tail. Consistently with the CSD-
level results, the coefficient is positive and significant. This patent-level regression allows to
control for whether the patent is produced by a publicly traded firm. Traded firms tend to
produce conventional innovation, consistently with the interpration of unconventional in-
novation as creative destruction events. This is an interesting fact per se and would deserve
further research. We leave this for future work.

2.2.3 Robustness

Table A.8 in Appendix shows that these results are not driven by any of the four most
densely populated urban centers (New York City, Boston, San Francisco and Chicago). The
bin-scatter plots in Figure A.9 repeat most of the robustness checks mentioned for Fact 1.
Panel (a) controls for the share of college graduates, Panel (b) uses density of college grad-
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Median tail-unconventionality
(1) (2) (3) (4) (5) (5)

Log population 0.012*** 0.013*** 0.0075*** 0.0097***
density (0.0039) (0.0032) (0.0012) (0.0014)

Log college- 0.010*** 0.010***
graduate density (0.0035) (0.0031)

st/y f.e. no yes no yes no no
Weighted Pat Pat Pat Pat no Pop

N. Obs 18,095 18,095 18,095 18,095 18,095 18,095
R2 0.023 0.14 0.016 0.13 0.003 0.01

Table 2.1: The dependent variable is defined as one minus the tail-conventionality of the median
patent in the CSD-year observation. All regressions, except for (5) and (6), are weighted by the
total number of patents filed in the CSD/Year observation. Standard errors in all the regressions are
clustered at the CSD level. All variables are winsorized by year at the 1% level.

uates as independent variable. Panel (c) and (d) show what happens when, respectively,
only patents with institutional assignee and individual inventor are considered (and plot-
ted against respectively density of workers and density of residents). Finally, Panel (e) and
(f) plot the unweighted and the unconditional correlation respectively. All these alternative
specifications yield similar results.

2.3 Fact 3: Positive relationship between density and diversification

Figure 2.2 and 2.4 show that density of population and innovation are indeed tightly re-
lated. In particular, density seems to affect the type, rather than the rate, of local innovation
activies. This pattern of geographical sorting runs through a previously unexplored chan-
nel, namely, a more hybridized composition of the knowledge base upon which new ideas
are built. In the remainder of this section, we show that (1) dense cities offer a more diversi-
fied pool of interaction opportunities and (2) those interactions can be inferred by looking at
innovation outcomes. These two findings suggest that the geographical sorting that we doc-
umented can be explained as a result of the local interactions available in densely populated
areas.

In this subsection, we show that dense cities tend to be more diverse in their innovation
output. In particular, we use the concept of the u-score to show that dense cities host a diver-
sified range of innovation activities spanning technologically disconnected fields, whereas
low-density areas are markedly specialized in a set of technologically close fields.
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Median Tail Conventionality
(1) (2) (3) (4)

Log population density 0.012*** 0.0095*** 0.0093*** 0.0073***
(0.0032) (0.0028) (0.0029) (0.0029)

Log median income -0.0193*** -0.0277*** -0.0199***
(0.0068) (0.0100) (0.0090)

% College Graduates 0.0322 0.0227
(0.0220) (0.0281)

Gini 0.1147
(0.0824)

st/y f.e. yes yes yes yes
Weighted Pat Pat Pat Pat

N. Obs 18,095 18,095 18,095 17,995
R2 0.14 0.15 0.15 0.15

Table 2.2: The dependent variable is defined as one minus the tail-conventionality of the median
patent in the CSD-year observation. All regressions are weighted by the total number of patents filed
in the CSD/Year observation. Standard errors in all the regressions are clustered at the CSD level.

Unconventional Tail
(1) (2)

Log population density 0.0069** 0.0074**
(0.0035) (0.0033)

Publicly Traded -0.0161**
(0.0068)

st/y/class f.e. yes yes
N. Obs 706,469 706,469

Pseudo R2 0.007 0.007

Table 2.3: Marginal effects of a logit regression. Dependent variable is a dummy that takes value 1
if the Tail Conventionality of the patent is below the median of its year-class bin. Standard errors in
all the regressions are clustered at the CSD level.

2.3.1 Measurement

In addition to assessing the degree of unconventionality of a single patent, the concept of the
u-score can also be useful for evaluating the technological diversification of a given subset
of inventions: a group of patents is highly diversified if two items drawn at random from
the group are likely to belong to technologically distant fields. This idea can be applied to
evaluate the degree of technological diversification of a given region over a certain period.

Specifically, we consider all the pairwise combinations of patents filed in each CSD/Year
bin. Each of these combinations is assigned the u-score corresponding to the pair of patent
classes to which the two grants belong. For example, a CSD that has produced N patents in
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Figure 2.5: Diversification of innovation output and log density of population. The bin-scatter plot
is weighted by the total number of patents filed in the CSD/Year observation.

a given year will be assigned (N
2 ) u-scores.18 We then compute the median u-score of those

combinations. This procedure delivers an index of diversification for County Sub-Division
CSD in year t defined as:

Diversification (CSDt) ≡ median
({

u
(
CLASSi, CLASSj

)
| (i, j) ∈ CSDt

})
. (2.2)

2.3.2 Finding

The bin-scatter plot in Figure 2.5 shows the correlation between density of population and
the diversification index defined in (2.2). High-density regions are significantly more di-
versified than low-density ones. The magnitude of this effect is economically meaningful:
a regression of log-density on the diversification index yields a coefficient of 0.03, which
implies that an increase in density of population equal to the weighted inter-quartile range
decreases diversification by 42% of its weighted inter-quartile range.

2.3.3 Robustness

Since the measure in (2.2) computes the median of a set whose cardinality grows at a bino-
mial rate with the number of local patents, a possible concern is that CSDs with a higher
number of patents (as it is typically the case with dense cities) will have a mechanically

18To clarify, in this case we are not evaluating the set of references of a given patent, but rather the techno-
logical distance of the innovation output itself.
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high index of diversification. To address this possibility, we conduct a placebo experiment
in which we generate 50 datasets identical to the original one in terms of total number of
patents assigned to each CSD/Year bin and to each technology class, but reshuffling the
geographical allocation of individual patents at random. We then run 50 regressions of log-
density on the simulated indexes of diversification. The resulting coefficients are plotted
in Figure A.11. Although the distribution of coefficients for the simulated datasets has a
slightly positive average, proving that the index in (2.2) has indeed a dimensionality bias,
the estimated coefficients range between −.0004 and .00099 (with a mean of .00037), two
orders of magnitude smaller than the estimated coefficient on the original sample.

2.4 Fact 4: The local pool of ideas predicts local inventions

The key implication of Figure 2.2 is that, if local interactions matter, people in densely popu-
lated regions will have a more diversified pool of possible ideas to draw from. In the extreme
case in which local interactions are the only source of ideas, having access to a local pool of
innovators from remote fields will be a necessary condition for generating unconventional
patents. In this subsection, we show that the local pool of ideas indeed matters.

Inter-field spillovers should be a key component of the benefits from geographical prox-
imity in the production of innovation. As ideas can flow almost freely within interconnected
subjects but can hardly spill over across remote fields, spatial proximity should be essential
for assembling unconventional combinations of knowledge.19 In this section, we perform a
series of empirical exercises to shed light on the existence and the strength of such spillovers.

2.4.1 A descriptive analysis

As a first step, we check whether our data suggest a correlation between the local technolog-
ical mix and the citation patterns of locally produced patents. In particular, we ask whether
a patent that cites both class A and B is disproportionately more likely to originate from a
CSD with a high share of patents of class A and B. This can be accomplished by running a
set of patent-level logit regressions of the form:

logit
(
1{A∧B}

)
= α + βA SA + βB SB + βAB SASB + ε (2.3)

for any pair of technology classes (A,B). This implies running (107
2 ) regressions, one for

each combination of classes. In (2.3), 1{A∧B} is a dummy variable that takes value 1 if the

19Consistently with this idea, Inoue et al. (2015) find that in Japanese patent applications spatial proximity
is more relevant in inter-field collaborations than in intra-field collaboration.
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patent cites, at the same time, items from classA and B, while SA and SB denote the share of
patents produced in the same CSD/Year belonging to class A and B respectively. The logit
regression tries to predict whether a patent will display the combination of references (A,B)
based on the frequency of A and B in the local innovation pool, including the interaction
between the two frequencies. A convenient way of interpreting this regression is looking
at two polar cases. Given that patents of class A are more likely to cite other items from
A (and similarly for B), if the local pool is completely irrelevant, we should observe βA

and βB to be positive and the coefficient of the interaction βAB to be zero. At the other
extreme, if exposure to local spillovers is the only channel through which A and B can be
combined, we should observe βA and βB to be zero and the coefficient of the interaction to
be positive. Figure A.12 in Appendix is a graphical representation of our results. Every pixel
in the heat-map is colored according to the sign of βAB, blue if negative, red if positive. The
estimate of βAB is positive in more than 75% of the regressions. This appears clearly from
visual inspection of the heat-map. Surprisingly, red and blue pixels appear to be evenly
distributed over the map, and are not concentrated along the diagonal.

2.4.2 Predicting combinations from the arrival of new firms

Figure A.12 suggests that the local technological mix is reflected in the citation behavior of
inventors. However, from this descriptive analysis it is unclear whether this fact reflects
local knowledge spillovers or it simply results from endogenous locational choice. Places
that produce (or are expected to produce) significant knowledge flows between two fields
can be endogenously populated by firms belonging to those fields. For example, a company
that aims to produce high-tech shoes, might find it optimal to locate in a town hosting strong
CPU and footware sectors.

To control for this possibility, we adopt a difference-in-difference approach and follow
the evolution of the citation behavior of pre-existing firms upon arrival in their location of
a company from a different industry. The assumption is that the location of pre-existing
firms is uncorrelated with the locational choice of incoming firms. Pre-existing firms are
all the companies that patent at least once in a given CSD at the beginning of the sample
(year 2000). Incoming firms are all the companies that file the first patent in a given CSD
in some year after 2000 (we run a robustness exercise considering only firms entering from
2005 onwards). Each incoming firm is assigned to the technology class corresponding to
the most recurring class among its patents. Then, for each class/CSD/time observation, we
construct an arrival shock as:

Acdt =
∑t

τ=2001 Rcdτ

Pd,2000
(2.4)
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Share of citations to class A
(1) (2) (3) (4)

Arrival of new 0.0049*** 0.0043*** 0.0092*** 0.0065***
firm of class A (0.0002) (0.0002) (0.0011) (0.0002)

Class/CSD & f.e. yes yes yes yes
Class/Time f.e. no yes no yes

Shock arrival year 2001 2001 2005 2005
Average S̄ 0.0043 0.0043 0.0043 0.0043

N. Obs 682,116 682,116 682,116 682,116
Adj. R2 0.0352 0.0091 0.0109 0.005

Table 2.4: This table reports the coefficients of a regression of the share of citations received by
patent class A from patents of classes other than A in a given CSD at a given time on time/class and
class/CSD fixed effects and the cumulative normalized arrival of new firms of class A in that CSD.
Columns 2 and 4 include time/class fixed effects. Columns 3 and 4 only include incoming firms on
or after 2005. Standard errors clustered at the CSD/class level are reported in parenthesis.

where Rcdτ is the number of patents filed in year τ by incoming firms of class c in CSD
d and Pd,2000 is the total number of patents filed in 2000 by pre-existing firms in the same
CSD. In other words, the numerator of Acdt proxies for the cumulative inflow of patents
of class c, while the denominator normalizes by the size of potentially affected firms. As
dependent variable, we use the share of citations that class c receives in patents filed by pre-
existing firms of any class different than c.20 We denote this share by Scdt. The unconditional
average of Scdt is 0.0043.21

The specification of the regression is the following:

Scdt = α + δct + δdc + βAcdt (2.5)

where δct and δdc are class/time and CSD/class fixed effects respectively. To estimate the
parameter of interest, β, we exploit the variation in the increase in the propensity to cite class
c that results from a higher relative inflow of firms of class c. The identifying assumption is
that the citation shares display parallel trends within the same class, across different CSDs.
To see this formally, consider the diff-in-diff representation of (2.5) between year t and year

20For example, how frequently patents that belong to any class different from CPU reference items in CPU.
21Given that we have 107 classes, if citations were distributed at random, every class should receive a share

of citations from other classes equal to 1
106 = 0.0094 on average. The fact that the unconditional average is

about half that number is simply telling us that on average half of the citations go to items in the same class of
the citing patent itself.
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t + r for class c in places d1 and d2:

(
Scd1(t+r) − Scd1t

)
−
(

Scd2(t+r) − Scd2t

)
= β

[
∑t+r

τ=t+1 Rcd1τ

Pd1,2000
−

∑t+r
τ=t+1 Rcd2τ

Pd2,2000

]
.

If β > 0, pre-existing firms producing, say, laptops in a town that has received a higher
inflow (compared to its size) of, say, apparel firms, have disproportionately shifted their
citation behavior towards apparel. The results are shown in Table 2.4. The estimates of β are
always positive and statistically significant, as well as economically meaningful: the arrival
of a firm producing exactly as many patents as Pd,2000 results in an increase in Scdt equal in
size to its unconditional mean (column 3). We also report results where we only consider
incoming firms that arrive in or after 2005 (column 4): the results are robust and larger in
magnitude.22

Taking Stock

Our empirical findings can be summarized as follows: (1) the relationship between den-
sity and patenting is flat across continuously innovative locations and negative when we
consider variation within larger areas (e.g. states or CZ); (2) innovations originating from
densely populated areas are built on a more unconventional bedrock of prior knowledge; (3)
higher population density is associated with higher diversification of the innovation output;
(4) the local technological mix predicts the composition of the knowledge background upon
which new inventions are built. In the next section, we will embed these findings into an
endogenous growth model of a spatial economy to study how they can help redefine the
link between economic geography and innovation, and its implications for macroeconomic
outcomes and growth.

3 Model

In this section, we explore the interaction between economic geography and composition of
innovation in a fully-specified, endogenous growth model of a spatial economy, in which
the heterogeneity in innovation is explicitly taken into account. In its positive implications,
the model rationalizes the observed geographical patterns: specialized clusters emerge in
low-density areas and produce conventional innovation, while high-density cities become
diversified hubs and generate unconventional ideas. The theory provides a novel rationale

22The fact that the estimated coefficient is larger in magnitude suggests, as one would expect, the presence
of a positive correlation between the class of firms arriving before and after 2005.
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for the coexistence of asymmetric cities (both in terms of size and degree of diversification)
without assuming ex-ante heterogeneous agents, differentiated products or intrinsic pro-
ductivity differences across different locations.

The key assumption of the model is that conventional and unconventional ideas are qual-
itatively different: while the former is crucial to the improvement of existing products and
processes, the latter is the foundation for creating new products or disruptively entering
a market by displacing existing producers. This assumption is supported by the fact that
unconventionality is a strong predictor of a patent’s success, as showed in Section 2.2. In
the model, the urban structure and the conventionality mix are jointly determined. This
fact highlights a novel channel through which place-based policies can have an impact on
growth and other macro aggregates. In the next section, we study the normative implica-
tions and discuss the main policy trade-offs at play.

3.1 Setting

Consider a continuous time environment in which a representative consumer has access to
a homogeneous final good which is valued according to:

Wt =

� ∞

t
e−ρ(s−t) log (ct) ds. (3.1)

where ρ > 0 is the time discount rate.
The final good Yt is produced by a competitive firm that aggregates a continuum of

intermediate varieties in the interval [0, 1] through a Cobb-Douglas production function:

log (Yt) =

� 1

0
log (yit) di. (3.2)

The final good producer takes prices of the intermediate varieties as given. Normalizing the
price of the final good to Pt = 1, profit maximization implies:

Yt = pit yit.

The form of the demand function of each variety reveals that the revenues of intermedi-
ate producers only depend on aggregate output. Hence, intermediate varieties are only
produced by the most efficient intermediate firm that charges the highest possible price in
order to minimize total production costs.
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3.1.1 Intermediate Producers

The most efficient producer (the “leader”, denoted by a superscript L) of each variety i
employs unskilled labor lit at wage wt to produce output yit, according to a linear production
function:

yit = aL
it lit

where aL
it denotes the labor productivity of the leader. We follow the recent literature on

Schumpeterian growth with limit pricing23 and assume that each intermediate variety i at
time t can be identified by a leader-follower distance ∆it ≥ 0, such that:

aL
it = (1 + λ0) (1 + λ1)

∆it aF
it (3.3)

where aF
it is the labor productivity of the second most efficient producer (the “follower”),

(1 + λ0) is the jump factor by which the previous leader’s productivity is improved upon
losing leadership and (1 + λ1) is the factor by which the current leader’s productivity is
improved after receiving a conventional innovation. The leader maximizes current profits
by setting a price that is equal to the follower’s marginal cost:

pit =
wt

aF
it

.

This results in a markup over its own marginal cost equal to:

µit ≡ µ (∆it) =
aL

it
aF

it
= (1 + λ0) (1 + λ1)

∆it . (3.4)

Profits can be written as:

πit ≡ πt (∆it) = pit yit −
wt

aL
it

yit = Yt

(
1− µ−1

it

)
.

It is easy to see that, given aggregate output Yt, profits are an increasing and concave func-
tion of ∆it that converges to Yt as ∆it grows to infinity. Substituting the optimal intermediate
firm’s decisions into (3.2), the expression for aggregate output becomes:

log (Yt) = log
(

LF
)
+

� 1

0
log
(

aL
it

)
di +

� 1

0
log
(

µ−1
it

)
di− log

(
E
[
[µ (∆)]−1

])
(3.5)

23Peters (2013) and Hanley (2015) generalize the original Schumpeterian growth model in Klette and Kortum
(2004) by allowing for the possibility of heterogeneous markups.
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where LF =
� 1

0 li di is the total amount of unskilled labor employed by intermediate pro-
ducers.

Expression (3.5) decomposes aggregate output into an “aggregate input” term, log
(

LF),
an “aggregate technology” term,

� 1
0 log

(
aL

it
)

di, and a “static distortion” term:

� 1

0
log
(

µ−1
it

)
di− log

(
E
[
µ−1

it

])
(3.6)

which reflects the misallocation of labor resulting from heterogeneous markups. To see why
the third term represents a static loss from resource misallocation, note that, by Jensen’s in-
equality, it is always weakly negative, and is equal to zero only if almost every intermediate
producer charges the same markup.

3.1.2 The Leader

Consider the leader in product line i who currently holds an advantage on the follower
of size ∆it. Two types of idiosyncratic events can hit the leader: a conventional innovation
that improves her productivity, and an unconventional innovation that pushes her out of the
market. For now, we take the frequency of these shocks as exogenous and endogenize it in
Section 3.2.

1. At Poisson rate ψ > 0, the leader is contacted by an innovator who offers her a conven-
tional technological improvement that increases her productivity by a factor (1 + λ1).
We assume that conventional innovators always find it optimal to contact the current
leader. As a result, the productivity of followers is stagnant. Patent protection of previ-
ous underlying technologies prevents the innovator from making any alternative use
of the idea. Denoting by Vt (∆it) the value of the leader at ∆it, the resulting surplus is:

St (∆it) = Vt (∆it + 1)−Vt (∆it) .

If a conventional innovator contacts the leader, a bargaining process begins and a frac-
tion b ∈ (0, 1) of the resulting surplus is paid by the firm to the innovator. The incre-
mental innovator receives a payment equal to:

βt (∆it) = b St (∆it) .

2. At Poisson rate ζ > 0, an inventor develops an unconventional innovation that im-
proves the productivity of the current leader by a factor (1 + λ0). However, while
conventional ideas rely on underlying technologies for which the leader enjoys patent
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protection, unconventional ideas can be implemented without infringing the leader’s
intellectual property. The inventor starts up a new firm and becomes the new leader,
and the previous leader becomes the current follower. This event resets the technolog-
ical lead in product line i to ∆it = 0.

In what follows, whenever the time subscript is dropped, we refer to the corresponding vari-
able in balanced growth path (BGP). For all non-stationary variables, we impose stationarity
by dividing the corresponding quantity by Yt.24 The stationary value function for a leader
with technological lead ∆ is therefore:

(ρ + ψ + ζ) V (∆) = π (∆) + ψ [V (∆ + 1)− β (∆)] . (3.7)

Equation (3.7) makes use of the fact that, along the balanced growth path, the interest rate is
constant and equal to:

r = ρ + g.

The analytical expression for the stationary value function is found by guessing and
verifying the following form:

V (∆) = A− B [µ (∆)]−1 . (3.8)

Matching coefficients for A and B delivers:

A =
1

ρ + ζ
B =

(1 + λ1)

(1 + λ1) [ρ + ζ] + ψ (1− b) λ1
.

This gives the value of a conventional innovation to a product line with technological lead
∆:

β (∆) = b B
{
[µ (∆)]−1 − [µ (∆ + 1)]−1

}
=

b B λ1

(1 + λ1)
[µ (∆)]−1 (3.9)

It is easy to see that β (∆) is decreasing in ∆, reflecting endogenous decreasing returns from
conventional improvements.

24For example, we let V (∆) = Vt(∆)
Yt

in BGP. Also, by definition, Y = 1.
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3.1.3 Stationary Distributions and Balanced Growth Path

Let ν (∆) denote the stationary mass of product lines with technological lead equal to ∆. It
can be computed as the solution of the following recursive system:ζ [1− ν (∆)] = ψ ν (∆) ∆ = 0

ψ ν (∆− 1) = (ζ + ψ) ν (∆) ∆ ≥ 1

This system has the following solution:

ν (∆) =
ζ

ζ + ψ

(
ψ

ζ + ψ

)∆

.

The stationary distribution of technological leads is geometric with an intercept that neg-
atively depends on the ratio of conventional and unconventional innovation ψ

ζ (or “incre-
mentalism”).

From (3.5), we can see that along the BGP, the growth rate of output is simply given by
the average growth rate of productivity of the intermediate varieties:

g =

� 1

0

ȧL
i

aL
i

di = λ0 ζ + λ1 ψ. (3.10)

3.2 Economic Geography

Up to this point, the innovation rates ζ and ψ have been treated as exogenous. We now
endogenize them by assuming that innovation takes place in a system of cities. For expo-
sitional simplicity, assume that all the intermediate varieties in the economy are high-tech
devices (e.g. smartphones) that are obtained by combining a software component (S) with
a design blueprint (D). The model easily generalizes to the case of multiple components or
multiple sectors.25

3.2.1 Agents, Cities and Housing

The world is populated by a measure L of unskilled workers and a measure N of skilled
innovators. Each innovator is born either as a programmer (S) or a designer (D). For sim-
plicity, we focus on the symmetric case in which the mass of designers is equal to the mass

25The extension simply requires an additional equilibrium condition that pins down the optimal degree of
diversification of diversified cities.
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of programmers:

NS = ND =
N
2

.

Skilled workers choose where to live and are fully mobile. Unskilled workers live in rural
areas (close to production facilities or in the outskirts of cities) where there are no congestion
costs and their rent is normalized to zero. There is a large mass of potential sites of area 1,
which implies that we can think of local population and local density interchangeably. These
sites are owned by absentee competitive landlords, and governed by city developers,26 who
have the ability to tax and provide subsidies to the local economy. They have three options
for how to utilize their own site:27

1. They can establish a company town that provides research facilities for innovators to
implement their ideas. Innovators living in a company town can only interact with
agents of their own type (e.g. at the workplace), but cannot interact with innovators of
the other type.

2. They can establish a generic town that does not provide research facilities directly but
allows people of different types to potentially interact together.

3. They can leave their site deserted.

In order to attract innovators, the developers can commit to provide type-specific subsidies
(τS and τD) to the research activity of local inventors. The subsidies are financed by taxing
the rent paid by the residents to the landlords. City developers act to maximize profits (taxes
minus subsidies) and since option 3 leads to zero profits, a free-entry condition can be used
to pin down the active mass of sites of type 1 and 2. We denote by Nk the skilled population
in town k and Lk the local unskilled labor input. Each skilled individual demands one unit of
housing and, since the area of each site is equal to one, we impose the additional constraint
Nk ≤ 1. Housing services are provided by competitive landlords, who face a local housing
production function:

Nk = q
(

Lk
)α

(3.11)

where the paremeters 1
α > 1 and q > 0 control the strength of the congestion force. The rent

26As in Becker and Henderson (2000).
27The choice between option 1 and 2 is introduced to simplify the definition and the analytical characteriza-

tion of the equilibrium. Eliminating the ex-ante distinction between option 1 and 2 would require to introduce
an additional condition on whether innovators would choose to interact with people from the other field (op-
tion 2) or interact only with people of the same field (option 1). As shown in the Appendix, imposing this
condition under the baseline calibration would induce exactly the same equilibrium.
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paid by residents of city k is equal to the marginal cost of producing housing services:

Rk =
w

q
1
α α

(
Nk
) 1−α

α . (3.12)

The entire rent is taxed by the local developer, whose revenue is equal to NkRk. To clarify,
city developers are large agents at the local level but are small from the point of view of
the macroeconomy: they can affect local rents but take all aggregate quantities and prices as
given.

3.2.2 Innovation

Skilled agents are fully mobile and choose to live in the town that offers them the best com-
bination of rent and innovation opportunities, taking into account the subsidies provided
by city developers. Innovation opportunities are determined by two orders of factors.

1. Individuals receive intra-field spillovers by agents of the same type that live in the same
location. Being surrounded by a high number of “colleagues” increases the Poisson
arrival rate of ideas.28 Specifically, an agent of type S living in a city with Nk

S innova-
tors (note, of her same type) will receive ideas at Poisson rate d

(
Nk
S
)φ

, where d > 0 and
φ ∈ (0, 1) control the extent of the learning externalities. Similarly, inventors of type D
living in a city with Nk

D peers receive ideas at Poisson rate d
(

Nk
D
)φ

.

2. Upon receipt of an idea, the agent must either be matched with an existing company to
which the idea will be sold, or meet an innovator of the other type to start up a new firm.
Specifically, a programmer (designer) with an idea can either look for an existing firm
whose software (design) can be improved upon, or combine it with a design blueprint
(software component) to create a new product. The first option is only available to
agents living in company towns through the local formal network: in this case, the
agent draws a product line i ∈ [0, 1] at random and sells her conventional improve-
ment to the current leader of line i, receiving a payoff of β (∆i). The second option
is only available to agents living in diversified towns: the programmer (or designer)
starts a search process in which he randomly draws a point in the city and finds an in-
novator of the opposite type with probability z Nk

D (or z Nk
S ), where z ∈ (0, 1) controls

the efficiency of the search process.29 If search is unsuccessful, the idea is lost.

28This source of agglomeration externality is akin to the one considered by Duranton and Puga (2001) in that
it only affects agents of the same industry.

29Since Nk ≤ 1, this probability is always well defined.

30



To save on notation, in what follows we conjecture that company towns will be fully special-
ized (i.e. they will host innovators of only one type). This conjecture will be proven formally
in Proposition 3.3. Let KG denote the set of generic cities and KC

S (or KC
D) denote the set of

S-specialized (or D-specialized) company towns. The stationary period utility of an inven-
tor of type S living in city k can be written as (the one for type D is analogous, but with
inverted indexes):

Uk
S =


(
1 + τk

S
)

z d
(

Nk
S
)φ Nk

D V (0)− Rk k ∈ KG(
1 + τk

S
)

d
(

Nk
S
)φ

E∆ [β (∆)]− Rk k ∈ KC
S

(3.13)

where V (0) is the value of starting up a new firm and E∆ [β (∆)] is the expected return from
a conventional innovation.

Once the spatial distribution of innovators is determined, the innovation rates can be
derived as:

ζ =

�
KG

z d
[(

Nk
S

)φ+1
Nk
D +

(
Nk
D

)φ+1
Nk
S

]
dk (3.14)

ψ =

�
KC
S

d
(

Nk
S

)φ+1
dk +

�
KC
D

d
(

Nk
D

)φ+1
dk. (3.15)

In (3.14), the aggregate rate of unconventional innovation is given by the integral over all
the generic locations of the Poisson rate of arrival of ideas for S-type innovators (d

(
Nk
S
)φ

)
multiplied by the mass of S-type innovators in city k (Nk

S ) and multiplied by the probability
that the search for aD-type innovator is successful (z Nk

D), plus the same product forD-type
innovators. In (3.15), the aggregate rate of conventional innovation is given by the Poisson
rate of arrival of ideas for S-type innovators in S-specialized company towns, plus the same
rate for D-type company towns.

The following assumption, that will be maintained throughout, is necessary to insure
that agglomeration externalities are not sufficiently strong to perpetually dominate the con-
gestion force:

Assumption A: 1
α > 2 + φ.

3.2.3 Equilibrium

In spatial equilibrium, agents of the same type must be indifferent across active locations:

Uk
S = Uk′

S ∀k, k′ ∈ KG ∪KC
S

Uk
D = Uk′

D ∀k, k′ ∈ KG ∪KC
D.
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In what follows, we will focus on symmetric equilibria in which the contribution to ag-
gregate growth of the two types of innovators is the same. This simply requires ex-ante
utility to be equalized also across types:

Uk
D = Uk′

S ∀k ∈ KG ∪KC
D k′ ∈ KG ∪KC

S .

A local developer’s revenues are equal to the total rent paid by inventors to the compet-
itive landlord:

Revk = Rk Nk =
w (1− α)

q
1
α α

(
Nk
) 1

α .

Its expenses are equal to the total subsidies paid to the innovators:

Expk =


z d
[
τk
S
(

Nk
S
)φ Nk

D + τk
D
(

Nk
D
)φ Nk

S

]
V (0) k ∈ KG

τk
S d

(
Nk
S
)φ

E∆ [β (∆)] k ∈ KC
S

τk
D d

(
Nk
D
)φ

E∆ [β (∆)] k ∈ KC
D

.

In equilibrium, free entry of city developers will drive their profits to zero:

Revk = Expk ∀k ∈ KG ∪KC.

To save on notation, in deriving the equilibrium, we will normalize the returns on uncon-
ventional innovation and the unskilled wage rate by the expected returns on conventional
innovation (hence, the reurns on conventional ideas will be normalized to 1). Once the rel-
ative prices and the aggregate rates of innovation are found, the nominal returns can be
backed up through (3.8) and (3.9). The derivation of the resulting relative prices can be
found in the Appendix:

V ≡ V (0)
E∆ [β (∆)]

=
[(1 + λ0) λ1ψ (1− b) + λ0 (1 + λ1) [ρ + ζ]] [(1 + λ1) ζ + λ1ψ]

[ρ + ζ] bζλ1 (1 + λ1)
(3.16)

W ≡ w
E∆ [β (∆)]

=
(1 + λ1) [ρ + ζ] + ψ (1− b) λ1

bλ1LF . (3.17)

In (3.17), LF is the total amount of unskilled labor employed by intermediate producers (that
is, unskilled labor that is not emloyed in the housing sector):

LF =

� 1

0
li di = L−

�
KG∪KC

Lk dk. (3.18)
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The following proposition highlights a complementarity that will be key for finding the
equilibrium.

Proposition 3.1. The relative return on unconventional ideas, V , is increasing in the aggregate rate
of conventional innovation ψ and decreasing in the aggregate rate of unconventional innovation ζ.

Proof. Taking derivatives of (3.16) with respect to ψ and ζ immediately yields the result.

Proposition (3.1) can be strengthened by noticing that the relative returns are infinity if
the rate of unconventional innovation is zero (ζ = 0). Intuitively, developing a new product
is convenient if there is high availability of agents who are able to incrementally improve
upon it, and low probability of someone else taking over the product line.

We now have all the ingredients to provide a definition of a symmetric Balanced Growth
Path equilibrium for this economy.

Definition 3.2. A symmetric BGP equilibrium is a set of company towns and generic cities
K =

{
KC,KG} a utility level U, aggregate innovation rates ζ and ψ, relative prices V andW ,

subsidies
{

τk
S , τk
D
}

k∈K, local populations
{

Nk
S , Nk

D
}

k∈K, local rent
{

Rk}
k∈K, local unskilled

labor
{

Lk}
k∈K and unskilled labor employed in production LF such that:

1. City developers optimally choose τk
S and τk

D and make zero profits

2. ζ and ψ are defined as in (3.14) and (3.15)

3. U is defined as in (3.13) and is equal across types and active sites

4. V andW are defined as in (3.16) and (3.17)

5. Lk and Rk are defined as in (3.11) and (3.12)

6. Labor markets clear:
�
K Nk

S + Nk
D dk = N and LF = L−

�
K Lk dk.

3.3 Characterization

We start by solving the city developer’s problem of determining the type, size and compo-
sition of its location and the optimal subsidies. We can solve the problem of a developer
who aims to found a company and a generic town separately. The free-entry condition will
drive profits to zero and make the developer indifferent between establishing any of the two
categories of locations (and leave the site deserted).

33



The problem of a city developer who chooses to establish a company town can be written
as:

maxNk
S ,τk
S ,Nk

D ,τk
D

W (1− α)

q
1
α α

(
Nk
S + Nk

D

) 1
α − τk

S d
(

Nk
S

)φ+1
− τk
D d

(
Nk
D

)φ+1

subject to :
(
1 + τk

S
)

d
(

Nk
S
)φ − W

q
1
α α

(
Nk
S + Nk

D
) 1−α

α ≥ U(
1 + τk

D
)

d
(

Nk
D
)φ − W

q
1
α α

(
Nk
S + Nk

D
) 1−α

α ≥ U

In this problem, the maximand represents the developer’s profits, while the constraint rep-
resents the level of utility the developer must guarantee to the inventors to convince them
to join the location.30

The maximization of a city developer choosing to establish a diversified city is

maxNk
S ,τk
S ,Nk

D ,τk
D

W (1− α)

q
1
α α

(
Nk
S + Nk

D

) 1
α − τk

Sz d
(

Nk
S

)φ+1
Nk
DV − τk

Dz d
(

Nk
D

)φ+1
Nk
SV

subject to :
(
1 + τk

S
)

z d
(

Nk
S
)φ Nk

D V −
W

q
1
α α

(
Nk
S + Nk

D
) 1−α

α ≥ U(
1 + τk

D
)

z d
(

Nk
D
)φ Nk

S V −
W

q
1
α α

(
Nk
S + Nk

D
) 1−α

α ≥ U

The following proposition characterizes the solution to the developer’s problem and the
equilibrium system of cities, given relative prices V andW .

Proposition 3.3. City developers in company towns (C) and generic towns (G) set the optimal
subsidy to:

τC = φ τG = 1 + φ. (3.19)

The optimal population in the two types of locations is:

NC =

[
d φ α q

1
α

1−α

] α
1−α (φ+1) [ 1

W

] α
1−α (φ+1)

NG =

[
2−(φ+1) z d (1+φ) α q

1
α

1−α

] α
1−α (φ+2) [ V

W

] α
1−α (φ+2)

(3.20)

Company towns are perfectly specialized. Generic towns are perfectly diversified (NG
S = NG

D = NG

2 )
and are more densely populated than company towns.

Proof. See Appendix.

30Notice that we have written the maximization normalizing everything by E∆ [β (∆)], including U =
U

E∆ [β(∆)]
. Hence, the returns on conventional ideas that enter the developer’s cost and the inventors utility

is normalized to one.
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Proposition 3.3 represents the model counterpart to Figures 2.4 and 2.5, that show the
empirical correlation between density and unconventionality of patenting and diversifica-
tion of the knowledge pool, respectively. The developer’s optimal strategy maximizes the
value of local output per person, given the relative prices V and W ,31 but the equilibrium
is in general constrained-inefficient. The intuition behind Proposition 3.3 is that agents per-
ceive an additional benefit from agglomerating in diversified cities compared to specialized
clusters, and this induces them to trade off additional congestion costs and lower intra-field
spillovers for the opportunity of having a higher exposure to inter-field interactions. To see
this, compare the elasticity of the local externalities in a specialized company town with the
elasticity in a diversified city. In the former case, it is simply φ, i.e. the elasticity of intra-field
spillovers, whereas in the latter case it is φ + 1, where the +1 results from the fact that join-
ing a diversified town increases the matching probability for the inventors of the other field.
The developer internalizes this additional externality and, as a result, diversified towns are
more densely populated than specialized ones.

The equilibrium solution laid out in Proposition 3.3 also sheds light on the relationship
between density of population and patenting per capita (Figure 2.2 and Table A.2), as de-
tailed in the following:

Corollary 3.4. In equilibrium, patenting per capita is larger in specialized sites if and only if the
following inequality is satisfied:

z
(

NG

2

)φ+1

<
(

NC
)φ

(3.21)

A sufficient condition for (3.21) to hold is:

[1− α (φ + 1)] (φ + 1)
[1− α (φ + 2)] φ

z
1
φ < 2

φ+1
φ (3.22)

Proof. See Appendix.

Condition (3.22) requires congestion forces and intra-field spillovers not to be too small.
Figure A.14 (in Appendix) shows some comparative statics with respect to α and φ and
argues that the Condition is indeed satisfied in all empirically relevant cases. In particular,
Condition (3.22) is satisfied at our calibrated parameters.

Once the optimal strategy of city developers has been characterized, it can be combined
analytically with the equilibrium definitions, as shown in the Appendix. This leads to a
system of two equations in two unkowns (the relative return on innovation V and the equi-

31This property was named Henry George Theorem by Stiglitz (1977).
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librium mass of diversified cities IG)32 that can be easily solved numerically:V = γ
(
IG)

V = χ
(
IG) . (3.23)

The Appendix describes in details the derivation of γ (·) and χ (·) and the conditions
that guarantee existence of the equilibrium with asymmetric locations. Once a solution to
(3.23) is found, all the other endogenous variables can be backed up analytically.

3.4 Calibration

In this section we perform a calibration to study the combination of forces that control the
geographical organization of innovation and to discipline the parameters for the normative
analysis in the next Section. The model has only 11 structural parameters that need to be
assigned or estimated. We set 5 of them externally and calibrate the remaining 6 to match
relevant moments extracted from the dataset.

The time discount rate ρ is set to 0.05 to obtain an annual discount factor of roughly
0.95%. The mass of unskilled labor is normalized to 3 and the mass of skilled labor is set to
1.74 , so that 36% of the labor force is skilled. Since the estimation of intra-sectoral local tech-
nological spillovers is beyond the purposes of this paper, we rely on the extensive empirical
literature on the subject to calibrate the elasticity of patenting with respect to neighbor in-
novators, φ. Matray (2014) estimates the local elasticity of patenting activity of small firms
to patenting of geographically close listed firms to range between 0.17 and 0.24. In the main
calibration, we set φ to 0.2 and we experiment with different values of φ to see how this
choice affects our results. The three parameters controlling growth (d, λ0 and λ1) cannot be
separately identified. Hence, we normalize λ0 = 0.02 and calibrate the other two.

We are left with 7 parameters (λ1, q, α, d, b, z and p),33 that we set in such a way as to
minimize the distance between some observed moments and their model generated coun-
terpart, as shown in Table 3.2, according to the following metric:

D = ∑
j

∣∣modelj − dataj
∣∣∣∣dataj

∣∣ .

The resulting parameter values are listed in Table 3.1.

32Namely, IG =
�
KG dk.

33The parameter p is the step factor of the patent citation distribution and is introduced exclusively to match
the average of the observed citation distribution. See the “Expected citations” section in the Appendix for
details on the assumed citation structure and the role played by the parameter p.
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Parameter Value Source/Target

Assigned Parameters
ρ 0.05 Annual discount factor ∼ 0.95

λ0 0.02 Normalized
L 3 Normalized
N 1.74 36% of skilled workers
φ 0.2 Spillover elasticity

Calibrated Parameters
λ1 0.039 Step factor conv.
q 0.83

Housing
α 0.41
d 0.77 Poisson arrival of ideas
b 0.22 Appropriability of conv.
z 0.42 Efficiency of search
p 0.49 Patent citations step factor

Table 3.1: Parameter Values

We target an annual growth rate of output of 2% per year. The relative supply of conven-
tional and unconventional innovation depends crucially on two parameters that are novel
to the literature, namely, the appropriability of conventional improvements, b, and the ef-
ficiency of the inter-sectoral search process, z. These parameters can be identified by the
labor share (that has a well known analytical expression) and the average and standard
deviation of the citation distribution. Although the average is not per se an interesting mo-
ment to match (it depends on the assumed citation structure and requires to introduce an
ad-hoc patameter, p), for given average, the dispersion of citations is an important indicator
of the degree of incrementalism in the economy. In the “Expected citations” section in the
Appendix, we explain the details of the assumed citation distribution, formally derive an
analytical expression for the latter and discuss the relationship between the dispersion of
citations and the composition of innovation.

The city size distribution is approximated by a Pareto-tail parameter computed using the
share of people living in the top 10% of most populated CSDs that lives in the top 1%. In
2000, this share is 38%. This gives a Pareto-tail index equal to:

η =
− log(0.1)

[log (0.38)− log(0.1)]
' 1.72.

The model counterpart identifies the Pareto-tail index through the share of agents living in
the top IH

IH+IL most populated locations. To identify the housing parameters, we target the
share of expenditure from individuals with a college degree or higher that are devoted to

37



Moment Data Model

Aggregate growth rate 0.02 0.02
Share of expenditure to housing and non-tradebles 0.48 0.47

Labor Share 0.58 0.58
Skill premium 1.8 1.8

Pareto tail - city distribution 1.72 1.56
Std. Dev. Citation distr. in T = 12 28.8 28.8

Ave. Citation distr. in T = 12 16.5 16.4

Table 3.2: Moments: Data and Model

housing and non-tradables.34

3.5 Mechanism

Table 3.3 reports some statistics on the equilibrium quantities and prices at the calibrated
parameters. The model generates the geographical sorting of innovation illustrated in Fig-
ure A.13. The equilibrium is characterized by the symultaneous emergence of a large mass
of low-density specialized clusters and a smaller mass of high-density diversified cities.

This endogenous geography completely pins down the innovation variables. The degree
of incrementalism is ψ

ζ = 18.3: every unconventional idea receives on average 18.3 incre-
mental improvements before being replaced by another unconventional idea. At the esti-
mated parameters, this results in a relative price of unconventional innovation of V = 42.53.
The estimated parameter for the efficiency of the search process z is 0.42. This relatively
low value implies that informal interactions are a risky activity and must be compensated
by a relatively high price of unconventional innovation. Most of the surplus generated by
conventional improvements goes to the current leader in the product line, as reflected by
the estimate of b = 0.22. The calibration further reveals that the step factor of conventional
ideas, λ1,35 is substantially larger than the step factor assumed for unconventional innova-
tion, λ0. An important implication of this result is that, other things being equal, there is
a trade-off between growth and creative destruction. We will analyze this tradeoff more in
detail when studying the planner’s problem.

Figure A.17 shows how different values for the elasticity of intra-sectoral spillovers, φ,
and for the appropriability of conventional innovation, b, affect the degree of incremental-
ism, ψ

ζ and the growth rate of output. Higher φ increases the relative benefit from agglomer-

34This value is obtained from the 2014 Survey of Consumer Expenditure by adding the share of expenditure
of households with maximum educational attainment of college or higher that goes to Food away from home,
Housing, Public transportation, Entartainment, Apparel services, Vehicle maintainance and Medical services.

35This estimated value is in line with the estimated value in Peters (2013).
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Moment Equilibrium Value

Mass of diversified cities IG 1.05
Mass of specialized clusters IC 35.43

Unocnventional innovation rate ζ 0.027
Conventional innovation rate ψ 0.49
Density of diversified cities NG 0.45

Density of specialized clusters NC 0.03
Relative returns to unconventional innovation V 42.53

Relative wageW 3.96

Table 3.3: Equilibrium: Statistics

ating with innovators from the same field. This implies higher incrementalism, but mechan-
ically it reduces the arrival rate of ideas and lowers aggregate growth. The appropriability of
conventional innovation, b, unambigously increases the propensity towards specialization.
This results in higher incrementalism and higher growth, as it increases the incentives of in-
novators with the same background to cluster in the same location. Note that changes in the
value of b affect the equilibrium allocation but by construction cannot affect the planner’s
solution. Figure A.16 shows the relationship between the relative returns to unconventional
ideas V and other equilibrium outcomes. Higher V increases the share of innovators living
in diversified cities and reduces the degree of incrementalism.

To illustrate the key relationship between geography and macroeconomic outcomes, in
Figure A.19 we fix the urban structure K =

{
KG,KC} at the equilibrium of the baseline

calibration and we then artificially impose a different distribution of inventors across com-
pany and generic towns (this exercise will be formalized in Section 4.1). In the top-left panel,
we show that increasing the share of innovators in diversified towns reduces the aggregate
growth rate of output. There are two reasons behind this: First, as discussed in Corollary 3.4,
reducing the share of innovators in specialized towns reduces the aggregate rate of inven-
tion. Second, the composition of innovation shifts towards more unconventionality, whose
step factor (1 + λ0) is estimated to be lower than the one of conventional ideas, (1 + λ1). In
the top-right panel, we show that increasing density in diversified cities reduces the static
misallocation of resources. The reason is that lower incrementalism, ψ

ζ is associated to a
more compressed distribution of markups across firms. However, since NG > NC and the
congestion function is convex, this requires diverting unskilled labor from production of the
final good to the non-tradeable sector, as shown in the bottom-left panel.36

36It is also interesting to see how a change in the share of inventors in diversified towns is reflected in the
dispersion of patent citations. For low values, higher rate of unconventionality increases overall variation in
technological leads and produces an increase in the coefficient of variation of the citation distribution. For high
values, increasing unconventionality further compresses the distribution of technological leads and decreases
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4 Welfare and Policy

We now turn to the problem of optimality of the equilibrium. Although city developers in-
ternalize knowledge externalities at the local level and the associated congestion costs, they
cannot internalize the impact of local acivities on aggregate growth and other macroeco-
nomic outcomes. In general, the equilibrium will be suboptimal. In this section, we analyze
the optimal local policy of a constrained planner who can tax the innovators and provide
local-based subsidies. The planner can affect the locational choice of innovators, but can-
not effectively control pricing and production operations carried out by monopolistic firms.
In our setting, aggregate welfare has a well known form that corresponds to the balanced
growth version of (3.1):

W0 =

� ∞

0
e−ρt [log

(
c0egt)] dt (4.1)

where c0 represents consumption at time 0 and includes all the static factors that deter-
mine equilibrium output for a given level of technology, while g represents the endogenous
growth rate of technology. We now analyze these two components separately.

Initial consumption c0 is determined by the congestion costs and by the static monopo-
listic distortion in (3.6). Congestion costs are captured by the amount of unskilled labor that
is employed in the production of housing: given the convex cost function for landlords, the
higher the geographical concentration the higher the amount of labor employed in housing,
which reduces c0. To see this, we can look at the amount of unskilled labor employed in
production:

LF = L−
�
KG∪KC

Nk
q

1
α

.

Since α ∈ (0, 1), a more concentrated geography results in a lower value of LF. Notice that
congestion costs can be fully internalized by city developers, but cannot be traded off for
higher growth or a different conventionality mix in a decentralized equilibrium. The mo-
nopolistic distortion is an increasing function of the rate of incrementalism ψ

ζ . Substituting
in (3.6) the relevant expressions, one gets:

� 1

0
log
(

µ−1
i,t

)
di− log

(
E
[
[µ (∆)]−1

])
= − log (1 + λ1)ψ

ζ
− log

(
ζ

ζ (1 + λ1) + ψλ1

)
.

It is easy to see that the above expression is decreasing in ψ
ζ . Note also that, by Jensen’s

inequality, the above expresion is always weakly negative, and is equal to zero only if the

the coefficient of variation. This delivers the inverted-U shape of the line in the bottom-right panel of Figure
A.19.
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dispersion of mark-ups is zero. This can only be the case if the rate of conventional innova-
tion ψ is itself zero.

The growth rate of technology, g, is determined by the aggregate rates of conventional
and unconventional innovation:

g = ζλ0 + ψλ1.

A planner can be interested both in increasing overall agglomeration, which would increase
both ζ and ψ via its impact on localized spillovers, or in changing the composition of inno-
vation. The decentralized equilibrium might have too little growth and too much uncon-
ventional innovation (ζ high but ψ low): this can result from the fact that business stealing
incentives from unconventional ideas are too strong. Conversely, the equilibrium might
have too much growth and too little creative destruction (ζ low and ψ high), which results
in a high monopolistic distortion.

Following the above discussion, by integrating (4.1), welfare can be rewritten as:

WP ∝ F +
λ1ψ + λ0ζ

ρ︸ ︷︷ ︸
Growth

+ log
(

LF
)

︸ ︷︷ ︸
Congestion

−
[

log (1 + λ1)ψ

ζ
+ log

(
ζ

ζ (1 + λ1) + ψλ1

)]
︸ ︷︷ ︸

Static Misallocation

. (4.2)

where F is a constant that only depends on strucutral parameters and the current level of
technology

� 1
0 ai di, which we normalize to one without loss of generality. This expression

decomposes welfare into its three main components: growth, congestion costs and monop-
olistic distortions.

As we will see, depending on the policy tools the planner has at its disposal, some of
these objectives will trade-off each other or will be achievable simultaneously. We will con-
sider two extreme types of constrained planners. First, we consider a planner who takes
the urban structure (KH and KL) as given and designs a system of transfers that can affect
the locational choice of innovators. Second, we consider a planner that has full flexibility in
affecting the urban structure.

4.1 Fixed urban structure

We first consider the extreme case of an urban structure that is fixed as prescribed by its
decentralized equilibrium. Existing sites can neither be withdrawn by their respective de-
velopers nor can their nature of diversified/specialized location be changed. Moreover, new
locations cannot be created. In this case, the zero profit condition of city developers does not
need to hold. The mass of locations IG and IC is fixed. The planner can simply reallocate
skilled workers across the different sites by designing a simple system of lump-sum transfers
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Figure 4.1: The figure shows the contribution to the welfare loss in equilibrium compared to the
planner allocation. By construction, the sum of the three columns is one.

{
Tk
S , Tk

D
}

k∈K that are technology and site specific, with the objective of shifting innovation
activity away or towards a given type of location.

The planner’s problem in a symmetric BGP reduces to the choice of a share η ∈ [0, 1]
representing the fraction of innovators living in diversified cities. Hence:

NG
S = NG

D =

(
ηN
2IG

)

NC
S = NC

D =
(1− η) N
IC .

This geographical allocation can be easily implemented by a pair of lump-sum transfers{
TG, TC} that, given the resulting prices and quantities, make innovators indifferent in their

locational choice. This constrained planner’s problem can be written as:

maxη∈(0,1)
λ1ψ + λ0ζ

ρ
+ log

(
LF
)
−
[

log (1 + λ1)ψ

ζ
+ log

(
ζ

ζ (1 + λ1) + ψλ1

)]

subject to : ζ =
(
2IG)−(φ+1) zd (ηN)φ+2 ψ = d

(
IC)φ

((1− η) N)φ+1

LF = L− IG
(

ηN
qIG

) 1
α − IC

(
(1−η)N

qIC

) 1
α IG, IC given

Figure A.20 shows the value of welfare as a function of η, while the horizontal line rep-
resents the decentralized equilibrium. Column 2 of Table 4.1 shows the solution to the plan-
ner’s problem under fixed urban structure compared with the corresponding decentralized
equilibrium. The planner can achieve an increase in welfare that corresponds to 3.05% annu-
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Equilibrium Fixed Geo Flexible Geo

Growth 0.02 0.019 0.024
NG 0.458 0.521 0.61
NC 0.035 0.033 0.12
IG 1.05 1.05 0.89
IC 35.43 35.43 9.76

Average Lead 18.26 12.95 13.97
Labor in production LF 2.73 2.64 2.48

Static Distortion −0.140 −0.062 −0.075
Labor Share 58% 65.8% 64.1%
Cons. equiv. 0 +3.05% +7.28%

Table 4.1: Equilibrium and Planner: Statistics

alized consumption equivalent units. In the left panel of Figure 4.1 we show the composition
of the welfare gain. The three columns in the histogram sum up to one by construction. With
fixed cities, under the calibrated parameters, the planner chooses to sacrifice growth and in-
crease congestion by moving innovators towards the diversified cities. This results in higher
rate of creative destruction and a lower static misallocation of labor.

At the estimated parameter values, the decentralized equilibrium produces too much
conventional innovation and too little creative destruction. Hence, welfare is maximized
by reallocating inventors where inter-field spillovers are stronger. In this case, improving
the static allocation and increasing growth are two contrasting objectives that cannot be
achieved at the same time. The increase in congestion costs comes as a pure byproduct of
this policy: since diversified cities are more dense, reallocating inventors from specialized
to diversified locations increases the spread between the two, and average congestion costs
increase because of the convexity of the housing cost function.

4.2 Flexible urban structure

We now turn to the opposite extreme case. We consider a planner that has full flexibility in
affecting the urban structure. In this case, the system of cities is not predetermined and the
zero profit condition of the developers must hold. To preserve tractability, we assume that
the planner’s policy tool consists of class/location specific transfers that multiplicatively
subsidize innovation outcomes, financed through a lump-sum tax. The planner chooses{

Tk
S , Tk

D
}

k∈K between−1 and +∞ and pays to successful innovators (1 + T) times the effec-
tive value of the innovation.

Assuming symmetry in the planner’s solution, the optimal system of transfers reduces
to two numbers,

{
TG, TC} for diversified and specialized locations respectively. Given this
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policy choice, the resulting equilibrium can be found as in Proposition 3.3, with the excep-
tion that the inventor’s income is now incremented by a multiplicative factor of (1 + T). The
resulting geography has an analytical solution:

NG =
[

1+TG

1+TC

]− αφ
1−α CG

plV
−1

NC =
[

1+TG

1+TC

]− α(φ+1)
1−α CC

plV
−1

(4.3)

where CG
pl and CC

pl are constants to be determined in equilibrium and the value of V can
be found by solving a system of two equations in two unknowns as in (3.23). The optimal
policy can be found numerically.

The third column of Table 4.1 shows the solution to the planner’s problem under the
flexible urban structure. In this case, the planner can achieve an increase in welfare that cor-
responds to 7.28% annualized consumption equivalent units, which is substantially larger
than in the case of fixed urban structure. The right panel of Figure 4.1 shows the composi-
tion of the welfare gain. Again, the three columns add up to one by construction. In this
case, the objectives of higher growth and smaller static distortions are no longer in contrast:
they can both be achieved by increasing the geographical concentration of both types of
innovation. This is reflected in higher density NG and NC and a smaller mass of active loca-
tions IG and IC. The intuition behind this is that only part of the benefits from increasing
growth, and none of the benefits from reducing the static distortion, are internalized by the
city developers. On the contrary, congestion costs are fully internalized by them. Hence, the
equilibrium tends naturally towards too little congestion. The planner can trade off part of
the congestion cost to increase local knowledge spillovers.

5 Conclusion

Understanding the process through which creative ideas are generated is crucial to fully
exploit the comparative advantage of advanced economies in today’s world. In this paper,
we explore a specific aspect of this process, namely how the economic geography shapes
the creative content of innovation. We show that high-density regions have an advantage
in producing unconventional ideas. We do this by assembling a new dataset of georefer-
enced patents and by assigning a measure of creativity that is novel to the macro literature
on innovation. Our empirical analysis reveals that the combination of ideas embedded into
inventions is determined by the local technology mix. This supports the hypothesis that
knowledge spillovers across fields resulting from informal interactions are a key compo-
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nent of the innovation process. High-density areas promote diversification and facilitate
informal interactions, resulting in a higher degree of unconventionality in innovation. Our
analysis reconciles the fact that a big portion of innovative activity takes place outside cities
with the common wisdom, rooted in the literature, that density is an important catalyzer of
knowledge diffusion.

We integrate these findings into an endogenous growth model with spatial sorting and
heterogeneous innovation. In our setting, the choice between producing conventional and
unconventional ideas depends on their relative price and, crucially, on the local degree of
density and diversification. In equilibrium, low-density specialized cities coexist with high-
density diversified ones. This asymmetry is dictated by the complementarity of uncon-
ventional and conventional ideas in the innovation process and does not depend on the
existence of agents with ex-ante heterogeneous abilities. The composition of innovation de-
termines the balance between growth, static allocation of resources and congestion costs,
which in equilibrium is suboptimal. Our analysis reveals that a constrained planner would
sacrifice growth and congestion costs, increase urbanization, promote the creation of un-
conventional ideas and reduce the monopolistic distortions. Whether a planner has some
flexibility in adjusting the urban structure makes a big difference in determining the welfare
benefits from place-based policies.

Further research should be devoted to understanding the locational choice of large firms
and whether these are subject to the same type of incentives as small, typically more un-
conventional firms. Another promising avenue would be exploring what are the cultural
and economic factors that can be held responsible for the “urban revolution” that is rapidly
reshaping the geography and the path of technical change in advanced economies.
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Appendix

C-Score: Details and Example

The c-score of the class pair (A,B) is calculated according to the following algorithm:

1. The frequency of the citation pair (A,B) in the dataset is computed. To avoid that our
results are disproportionately driven by patents that give a large number of citations,
we weight every occurrence by the number of possible pair combinations in a certain
patent. Mathematically,

FREQOBS (A,B) = 1
N

N

∑
n=1

Cn−1

∑
m=1

Cn

∑
l=m+1

1(
Cn

2

)1{cm=A, cl=B ∨ cm=B, cl=A}

where N is the total number of patents in the dataset, Cn is the total number of citations
in patent n, ck and cl are the k-th and l-th citation of patent n, respectively. It is easy to
see that FREQOBS (A,B) is a symmetric function.

2. The theoretical frequency of the citation pair (A,B) is computed. This is the frequency
with which one would expect (A,B) to occur if the number of citations from and to
a certain class were to be respected. We weight the contribution of each patent by its
total number of citations given. Formally,

FREQRAND (A,B) =


∑H

h=1
Nh
N 2

(
1

Nh
∑g∈Ph ∑

Cg
k=1

1{ck=A}
Cg

)(
1

Nh
∑g∈Ph ∑

Cg
k=1

1{ck=B}
Cg

)
i f A 6= B

∑H
h=1

Nh
N

(
1

Nh
∑g∈Ph ∑

Cg
k=1

1{ck=A}
Cg

)2

i f A = B

where H is the total number of classes, Ph is the set of patents of class h, Cg the number
of citations of patent g patent, and ck is the k-th citation of patent g. The first term in
parenthesis in the first expression is the (weighted) empirical probability that a patent
of class i is cited in class h if we took a citation at random from the pool of all the
citations of class h. The second term is the (weighted) empirical probability that a
patent of class j is cited in class h if we took a citation at random from the pool of all the
citations of class h. The multiplication of these two terms is therefore the probability
of observing a citation pair (A,B) if two citations were taken at random from the
pool keeping the network of citations from class to class constant. This expression is
multiplied by two for symmetry reasons. Finally, these probabilities are weighted by
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Figure A.1: Example of c-score distribution for a patent. Tail-conventionality corresponds to the
10th percentile of the distribution, core-conventionality corresponds to the median. Similarly, we
define tail-unconventionality as one minus tail-conventionality.

the frequency of each class in the universe of patents.

The second expression implements the same idea in the case A = B.

3. The c-score of each citation pair is calculated as follows:

c (A,B) = FREQOBS (A,B)
FREQRAND (A,B)

when the c-score is smaller than 1, the pair (A,B) is observed in the data less often
than what one would expect by taking the some paper in a pseudo-random fash-
ion. We consider this a sign of novelty. On the contrary, when the c-score is bigger
than 1, the pair is observed more frequently than the pseudo-random distribution.
We consider this a sign of commonality. For expositional convenience, we refer to
unconventionality-score (u-score) as:

u (A,B) = 1− c (A,B)

4. Each of the

(
Cn

2

)
different citation pairs of each patent is assigned its corresponding

c-score. This gives the distribution of c-scores for each patent.

The following is an example of how a patent is assigned a distribution of c-scores. Con-
sider a patent that cites 6 patents of 3 different classes (CPU×3, MONITOR× 2, SHOES×
1):

{CPU, CPU, CPU, MONITOR, MONITOR, SHOES} .

51



Take all pairwise combinations of citations and assign each of these combinations the
corresponding c-score:

(CPU, CPU)︸ ︷︷ ︸
c=1.4

× 3 (MON, MON)︸ ︷︷ ︸×1

c=1.25

(CPU, MON)︸ ︷︷ ︸
c=1.1

× 6 (CPU, SH)︸ ︷︷ ︸×3

c=0.9

(SH, MON)︸ ︷︷ ︸×2

c=0.75

This generates a distribution of c-score for this specific patent (Figure A.1) from which we
can extract the 10th percentile (tail-conventionality) and its median (core-conventionality).

Figures and Tables

Filing Year # Patent Grants Filing Year # Patent Grants

2000 161,388 2006 202,601
2001 209,259 2007 204,957
2002 209,957 2008 199,802
2003 199,752 2009 180,558
2004 198,383 2010 166,985
2005 200,204 Total 2,155,901

Table A.1: This table reports the number of patents issued from January 2002 to August 2014 and
re-arranged by filing year.

Patents per capita

(1) (2) (3) (4) (5) (6) (7)
Log population -0.0003 0.00006 0.00004 -0.033** 0.00002 -0.00009 -0.034***

density (0.0007) (0.00004) (0.0005) (0.0012) (0.00006) (0.00004) (0.0121)
st/y f.e. No No No Yes Yes Yes CZ/y

Weighted N.Pat Pop No N.Pat Pop No N.Pat
Winsor Yes Yes Yes No No No No
N. Obs 18,095 18,095 18,095 18,095 18,095 18,095 18,095

R2 0.003 0.001 0.001 0.59 0.59 0.01 0.66

Table A.2: The dependent variable is patents per capita in the CSD/year observation. Standard
errors in all the regressions are clustered at the CSD level. Winsorization is by year at the 1% level.
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(a) Chicago (b) New York

(c) San Francisco (d) Boston

Figure A.2: The figure shows a map of county sub-divisions in the United States. Each CSD is
colored according to the number of patents produced between 2000 and 2010. The more red the
higher this value; the more blue, the lower. No patents have been filed in the CSD’s that are missing
in the map.
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(b) Patenting per capita and density: all CSD’s
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(c) Continuously innovative CZs: patents per capita
and density
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(d) Patents per capita and density: dens > 100/km2
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(e) Patents per capita and density: dens > 500/km2
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(f) Patents per capita and density: dens > 1000/km2

Figure A.3: All the bin-scatter plots are weighted by total population and control for year fixed
effects (except for (a)).
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(a) Controlling for share of college graduates
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(b) Density of College Graduates
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(c) Patents with assignee only and density of work-
ers
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(d) Patents with no assignee only

4 5 6 7 8 9 10
Log Density

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Pa
te

n
ts

 p
e
r 

ca
p
it

a

(e) Patents weighted by citation received (year fixed
effects included)
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(f) Controlling for year and state fixed effects

Figure A.4: Density of population and patents per capita: alternative specifications. All bin-scatter
plots except for (b) and (c) weight CSDs by total population and control for year fixed effects. Panel
(b) is weighted by total college graduates. Panel (c) is weighted by total workers.
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Figure A.5: Cumulative distribution of total population and total patents. In the graphs, CSDs are
ranked by their population density. The left-panel includes all the CSDs, the right-panel drops the
observations of the San Jose-Palo Alto CSD. The magenta line represents the 45 degree line.
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Figure A.6: Cumulative distribution functions of tail conventionality (left) and core conventionality
(right) in the universe of patents.

56



 

 

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

CHEMISTRY

MECH. ENG.

Figure A.7: Every pixel in the matrix indicates a patent class pair. The darker the pixel the higher the
c-score assigned to that class pair, the lighter the lower the c-score. Diagonal elements of the matrix
show a clear red tendency compared to the rest of the matrix. The “class-clusters” of Chemistry and
Mechanical Engineering, among the others, are clearly visible around the diagonal.

Median Tail Conventionality

Log population 0.0131*** 0.0136***
density (0.0032) (0.0035)
Chicago -0.0113

(0.0100)
Boston 0.0348**

(0.0172)
New York -0.0118

(0.0097)
San Francisco -0.0145***

(0.0055)
st/y f.e. yes yes
N. Obs 18,095 18,095

R2 0.14 0.14

Figure A.8: All regressions are weighted by the total number of patents filed in the CSD/Year ob-
servation. Standard errors in all the regressions are clustered at the CSD level.
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(a) Controlling for share of college graduates
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(b) Density of College Graduates
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(c) Patents with assignee only and density of work-
ers
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(d) Patents with no assignee only
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(e) Unweighted
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(f) Unconditional

Figure A.9: Density of population and Tail Conventionality of the median patent: alternative speci-
fications. All bin-scatter, except for (f) control for state-year fixed effects. All bin-scatter plots except
for (e) weight CSDs by number of patents produced.
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(a) Chicago (b) New York

(c) San Francisco (d) Boston

Figure A.10: Four major urban areas divided into County Sub-Divisions. The CSDs colored to-
wards blue produced on average more unconventional patents, whereas CSDs leaning towards red
produced more conventional patents according to the associated c-scores. The maps include only
CSDs that produced at least 10 patents per year.
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Figure A.11: Placebo experiment: Estimated coefficients from 50 regressions of log-density on con-
centration index on simulated patent networks.
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Figure A.12: Sign of the coefficient of the regression in (2.3). Red pixel denotes βAB > 0, blue pixel
denotes βAB < 0. White pixel denotes class pairs for which there are no observations for which
1{A∧B} is true. The matrix is symmetric by construction.
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Proofs and Derivations

Derivation of (3.16) and (3.17)

To derive (3.16), simply evaluate V (∆) at ∆ = 0 and divide by:

E∆ [β (∆)] =
bBλ1

(1 + λ1)
E
[
µ (∆)−1

]
=

bBλ1ζ

(1 + λ0) [(1 + λ1) ζ + λ1ψ]
.

To derive (3.17), we need an expression for the normalized wage w = wt
Yt

. The labor
demand of an individual firm is:

lit =
yit

aL
it
=

Yt

pitaL
it
=

YtaF
it

wtaL
it
=

Yt

wt
µit.

In BGP, integrating over all i’s:

LF ≡
� 1

0
li di =

E
[
µ (∆)−1

]
w

and rearranging:

w =
ζ (1 + λ1)

LF (1 + λ0) [(1 + λ1) ζ + λ1ψ]
.

Dividing w by E∆ [β (∆)] yields (3.17).

Proof of Proposition 3.3

We start with the maximization problem of the developer that sets up a company town.
We conjecture and verify at the end of the proof that company towns are fully specialized.
We focus on the case of a S-specialized location, the one for D-specialized sites is identi-
cal. Letting θC denote the Lagrange multiplier on its participation constraint, the first order
conditions of its problem can be expressed as:

θC = NS

τC
S = φ.

Plugging this solution in the profit function and imposing the zero profit condition yields:

NC
S =

[
dφαq

1
α

1− α

] α
1−α(φ+1) [ 1

W

] α
1−α(φ+1)

.
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As for the case of a generic town, let θG
S and θG

D denote the Lagrange multipliers on
the participation constraints on innovators of type S and D respectively. The first order
conditions for the developer’s maximization problem yield:

θG
S = NG

S θG
D = NG

D

τG
S = φ +

(
NG
D

NG
S

)φ

τG
D = φ +

(
NG
S

NG
D

)φ

while symmetry implies that UG
S = UG

D , which gives:

(
NG
S

NG
D

)1−φ

=
1 + τS
1 + τD

.

It is easy to see that this problem admits a unique solution in which NG
S = NG

D = NG

2

and:
τG
S = φ + 1 τG

D = φ + 1.

Plugging this solution in the profit function and imposing the zero profit condition gives:

NG =

[
2−(φ+1)zd (1 + φ) αq

1
α

1− α

] α
1−α(φ+1) [ V

W

] α
1−α(φ+2)

.

Finally, we need to show that NG > NC. Plugging the expressions for NG and NC in the
utility of the inventor and imposing UG = UC allows us to write:

W =

2−(φ+1)zd (2 + φ)
(
CG

1
)φ+1 − q−

1
α

α

(
CG

1
) 1−α

α

d (1 + φ)
(
CC

1

)φ − q−
1
α

α

(
CC

1

) 1−α
α

V 1−α(φ+1)
α

where

CG
1 ≡

[
2−(φ+1)zd (1 + φ) αq

1
α

1− α

] α
1−α(φ+1)

CC
1 =

[
dφαq

1
α

1− α

] α
1−α(φ+1)

.

Define:

CW ≡

2−(φ+1)zd (2 + φ)
(
CG

1
)φ+1 − q−

1
α

α

(
CG

1
) 1−α

α

d (1 + φ)
(
CC

1

)φ − q−
1
α

α

(
CC

1

) 1−α
α


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Figure A.13: Spatial economy: Illustration. Innovators from background S and D (programmers
and designers) sort themselves into the downtown areas of cities. Unskilled labor lives in the out-
skirts of cities and in the rural areas. Production takes place in rural areas between cities.

then, NG > NC if and only if:

CG
1 > CC

1

(
CW
) α2

[1−α(φ+2)][1−α(φ+1)] .

Working out the expression explicitely, after some algebra, reveals that this is always the
case.

It is left to show that company towns are fully specialized. This follows directly from the
fact that in a company town, for a given city population, the value of innovation per person
is maximized by maximizing intra-field spillovers, i.e. by setting Nk = Nk

S or Nk = Nk
D.�

Proof of Corollary 3.4

Patents per capita in diversified cities and specialized clusters can be written respectively
as:

ιD = d z
(

NG

2

)φ+1

ιS = d
(

NC)φ
.
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Figure A.14: The two lines represent Condition (3.22) expressed as LHS− RHS for different
values of φ and α. The baseline parametrization is φ = 0.2. The vertical line denotes the
estimated value of α = 0.41.

The condition ιS > ιD is equivalent to (3.21). Moreover, since in equilibrium NG < 1, a
sufficient condition for (3.21) to hold is:

z
(

NG

NC

)φ

< 2φ+1.

Using the equilibrium expressions for NG and NC in Proposition 3.3 and rearranging
yields (3.22). �

Derivation of (3.23)

Innovators must earn the same utility from living in a diversified city or in a specialized
cluster. Plugging (3.19) and (3.20) into (3.13) and equalizing across locations:

UG = zd (2 + φ)CG
1

[
V
W

] α(φ+1)
1−α(φ+2)

2−(φ+1)V − W
αq

1
α

(
CG

1

) 1−α
α

[
V
W

] 1−α
1−α(φ+2)

=

= d (1 + φ)CC
1

[
1
W

] αφ
1−α(φ+1)

− W
αq

1
α

(
CC

1

) 1−α
α

[
1
W

] 1−α
1−α(φ+1)

= UC
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where CG
1 and CC

1 are constant that only depend on the structural parameters (defined as in
the proof of Proposition 3.3). Rearranging this equation yields:

W = CWV
1−α(φ+1)

α (A.1)

where, again, CW only depends on structural parameters. The equilibrium conditions can
be restated as:

IGNG + ICNC = N IG
(

NG

q

) 1
α

+ IC
(

NC

q

) 1
α

+ LF = L

ζ = 2−(φ+1)zdIG
(

NG
)(φ+2)

ψ = dIC
(

NC
)(φ+1)

in addition to (A.1), (3.16), (3.17) and the two equations in (3.20). This defines a system of 9
equations in 9 unknowns (IC, IG, LF, ζ, ψ,W , V , NC and NG) that can be solved analytically
up to a system of two equations in two unknowns (IG and V):

CWV
1−α(φ+1)

α =

(1 + λ1)

[
ρ + 2−(φ+1)zdIG

(
CG

2
V

)(φ+2)
]
+ d

(
NV
CC

2
− I

GCG
2

CC
2

) (
CC

2
V

)(φ+1)
(1− b) λ1

bλ1

[
L−

(
NV
CC

2
− I

GCG
2

CC
2

) (
CC

2
Vq

) 1
α − IG

(
CG

2
Vq

) 1
α

] (A.2)

V =

{
(1+λ0)λ1d

(
NV
CC

2
− I

GCG
2

CC
2

)(
CC

2
V

)(φ+1)

(1−b)+λ0(1+λ1)

[
ρ+2−(φ+1)zdIG

(
CG

2
V

)(φ+2)
]}

[
ρ+2−(φ+1)zdIG

(
CG

2
V

)(φ+2)
]

b2−(φ+1)dIG
(

CG
2
V

)(φ+2)

λ1(1+λ1)

×

×
[
(1 + λ1) 2−(φ+1)zdIG

(
CG

2
V

)(φ+2)
+ λ1d

(
NV
CC

2
− I

GCG
2

CC
2

) (
CC

2
V

)(φ+1)
]

.

(A.3)

It is easy to see that equations (A.2) and (A.3) define two implicit functions from V to IG

that we can rename γ (·) and χ (·). In particular, for fixed V , equation (A.2) can be rewritten
as linear equation in IG, which admits one and only one solution, while for fixed V , the
right-hand side of (A.3) is strictly decreasing in IG.

In order to guarantee a solution to (A.2), we need that when IG is maximum, i.e. IG =
NV
CG

2
and IC = 0, RHS>LHS. This defines a level V̄ such that any equilibrium must have

V ≤ V̄ . Also, we need that when IG = 0, LHS>RHS. This defines a level V such that any
equilibrium must have V ≥ V .37 Finally, we need to impose that in (A.3) when IC = 0,
LHS>RHS (when IG = 0 the RHS is equal to infinity, so the other inequality is always true).

37It can be shown that V̄ and V are uniquely identified as functions of the structural parameters.
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Figure A.15: Intersection of (A.2) and (A.3) under condition (A.4), at benchmark parameter values.

This defines another minimum level of V as:

V∗ = λ0 (1 + λ1)

bλ1
.

In order to guarantee the existence of the equilibrium, we need to impose conditions on
the parameters such that:

V∗ < V < V̄ . (A.4)

Under condition (A.4), the equilibrium can be found as the intersection of (A.2) and (A.3)
as shown in Figure A.15.

Eliminating the ex-ante distinction between generic and company towns

The model described in the main text assumes that city developers, upon establishing a
town, must decide ex-ante whether to make it a generic or a company town, the first one
allowing for inter-field interactions, while the second only allowing for intra-field interac-
tions (e.g. interaction within a firm). We now argue that this assumption is useful but it is
not restrictive in our case. This ex-ante distinction is necessary to eliminate a layer of choice
from the side of the innovator: upon arrival of an idea, innovators in a company town can
only sell it to an existing firm, while innovators in a generic town can only search for a
partner from the other field. A less restrictive definition of the equilibrium eliminates this
ex-ante distinction and leaves to the innovator the choice of looking for a partner or selling
the idea to an existing firm. Innovators in town k would choose to look for a partner from
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Figure A.16: Equilibrium share of innovators in diversified towns and degree of incrementalism as
a function of the relative returns to unconventional ideas V . The parameters are fixed at the baseline
calibration.
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Figure A.17: Equilibrium: Comparative Statics. All the other parameters are kept at their baseline
values.
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Figure A.18: Condition A.5 under baseline calibration for different values of z. The vertical dashed
line corresponds to the calibrated value.

the opposite type if the following conditions are satisfied:zNk
DV ≥ 1 for type S

zNk
SV ≥ 1 for type D

(A.5)

where zNk
D (or zNk

S ) is the probability of being matched with a partner, and V is the return
on finding the partner compared to selling the idea to a firm.

This alternative setting complicates the definition of the equilibrium as it requires the
inclusion of a set of inequality constraints in the city developer’s maximization problem.
Nonetheless, here we show that the baseline equilibrium computed with the calibrated pa-
rameters in Table 3.1 satisfies Condition (A.5). Figure A.18 shows the left hand side of Con-
dition (A.5) for diversified towns for several values of z, while keeping the other parameters at
their baseline calibration. The vertical dashed line corresponds to the calibrated value of z.
The Condition is satisfied for all values of z above z̄ ' 0.1, which is substantially below the
calibrated value of 0.42. Finally, note that since company towns are perfectly specialized,
Condition (A.5) is never satisfied: upon arrival of an idea, innovators in company towns
will always prefer to sell the idea to the firm.
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Figure A.19: The figure shows a set of equilibrium outcomes when the urban structure K ={
KG,KC} is fixed at the benchmark equilibrium, but the share of innovators living in generic towns

(KG) is let vary. The growth rate is defined in (3.10), Static Misallocation is defined in (3.6), Labor
in Production is defined in (3.18) and the Coefficient of Variation for the citation distribution is com-
puted according to the distribution in (A.6) and (A.7).
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Figure A.20: Welfare gains in annualized consumpiton equivalent units as a function of the share of
innovators living in diversified towns. Parameters fixed at their baseline values.
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Expected citations

We assume a simple citation structure for patents in the model that is used to pin down
the relative frequency of conventional and unconventional innovation. As we show below,
higher dispersion in the citations received is associated with more incrementalism, while a
more compressed distribution is associated with higher creative destruction.

The citation structure works as follows. Every patent is born with one citation. Upon
receiving a conventional improvement, every patent in the product line (since the last un-
conventional patent) receives p C where p > 0 is a parameter that we calibrate to match
the average number of citations in T = 12 years, and C is the number of citations received
by the patent prior to the shock. Hence, after the incremental improvement is received,
each patent in the product line will have (1 + p)C citations. In this section, we derive an
expression for the measure of citations at a generic time T of patents produced at time 0.
We denote this function M̃ (C, T). Since M̃ (1, 0) = 1 and every mass point in M̃ can be
expressed as (1 + p)∆−1 for some integer ∆ ≥ 1, we can think of M̃ without loss of general-
ity as M (∆, T) ≡ M̃

(
(1 + p)∆−1 , T

)
. We will distinguish between patents in product lines

that have been innovated upon by unconventional inventions and will no longer receive
citations (Inactive) and patents that have still the ability of receiving citations (Active). The
corresponding measures will be denoted by MI and MA respectively.38 The low of motion
of the measure of Inactive patents can be described by the following differential equation:

ṀI (∆, T) = ζ MA (∆, T)

for any integer ∆ ≥ 1, with associated initial condition MI (∆, 0) = 0. The low of motion of
the cdf of Active patents can be described by the following recursive system: ṀA (∆, T) = −MA (∆, T) [ζ + ψ] ∆ = 1

ṀA (∆, T) = ψ MA (∆− 1, T)−MA (∆, T) [ζ + ψ] ∆ ≥ 2

The associated initial conditions are MA (1, 0) = 1 and MA (∆, 0) = 0 for ∆ ≥ 2.
The solution of the system described above has a simple solution:

MA (∆, T) =
1

(∆− 1)!
(ψ T)∆−1 e−(ζ+ψ)T (A.6)

38Clearly, M (∆, T) = MA (∆, T) + MI (∆, T).
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Figure A.21: Average citations and dispertion under different values of ψ and ζ at T = 12.

Indeed, for a fixed T, summing over ∆’s yields the measure of patents that are still Active:

∞

∑
∆=1

1
(∆− 1)!

(ψ T)∆−1 e−(ζ+ψ)T = e−ζT.

Similarly for Inactive patents:

MI (∆, T) =
ζ ψ∆−1

(ζ + ψ)∆

[
1− e−T(ζ+ψ)

∆−1

∑
i=0

1
i!
((ζ + ψ) T)i

]
.

Using the fact that
∆−1

∑
i=0

1
i!
((ζ + ψ) T)i = eT(ζ+ψ) Γ (∆, (ζ + ψ) T)

(∆− 1)!

yields the close-form solution for the mass of inactive patents with (1 + p)∆−1 citations:

MI (∆, T) =
ζ ψ∆−1

(ζ + ψ)∆

[
1− Γ (∆, (ζ + ψ) T)

(∆− 1)!

]
(A.7)

where Γ (·, ·) is the incomplete Gamma function. Note that, by construction:

∞

∑
∆=1

MI (∆, T) + MA (∆, T) = 1.
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