
 
* Ph.D. Candidate in Public Policy, Harvard University, Cambridge, MA (gabe_chan@hksphd.harvard.edu). I 

would like to thank Laura Diaz-Anadon, Joe Aldy, F.M. Scherer, Bill Clark, Richard Freeman, Venky 

Narayanamurti, Arthur Spirling, Alberto Abadie, Sam Liss, and Maryanne Fenerjian for their advice at 

various stages of this project. I also thank seminar participants of the Harvard Environmental Economics 

Lunch, the Harvard Energy Technology Innovation Policy and Consortium for Energy Policy Seminar, the 

Harvard Science, Technology and Public Policy Seminar, the Harvard Sustainability Science Fellows 

Seminar, the Global TechMining Conference, the Atlanta Conference on Science and Innovation Policy, and 

the Technology Transfer Society Conference.  I thank Elsie Quaite-Randall, Juliet Hart, Cheryl Fragiadakis, 

Cheryl Cejka, Matthew Love, Walter Copan, Kimberley Elcess, Jessica Sosenko, Kathryn Klos, Alexandra 

Andrego, John Lucas, Matthew Ringer, and Sarah Jane Maxted at (or formerly at) the U.S. National 

Laboratories and U.S. Department of Energy for sharing data and providing helpful comments. I 

acknowledge support from the Sustainability Science Program and the Science, Technology, and Public 

Policy Program at the Harvard Kennedy School. All errors are my own.  

 

 

 

  

The Commercialization of Publicly Funded Science:  

How Licensing Federal Laboratory Inventions Affects 

Knowledge Spillovers 

 

Gabriel A. Chan* 

 

DRAFT: November 14, 2014 
 

Abstract 

The U.S. federal government invests $126 billion per year in research and development 

(R&D), 40% of which is allocated to R&D centers it exclusively funds. For over thirty years 

national policy has required inventions discovered in federally funded R&D centers to be 

transferred to the private sector to diffuse knowledge and to promote private sector follow-on 

innovation, but there is limited empirical evidence for whether these policies have worked. I 

quantify the effect of technology transfer on innovation spillovers in the context of patent 

licensing at the U.S. National Laboratories using data on over 800 licensed patents since 

2000. I demonstrate that licensing increases the annual citation rate to a patent by 31 – 48%, 

beginning two years after a license agreement is executed. I find that over 75% of follow-on 

innovation after a patent is licensed occurs outside of the licensing firm, indicating that 

knowledge from licensing diffuses broadly. These estimates rely on a novel matching 

algorithm based on statistical classification of the text of patent abstracts. I explore possible 

mechanisms for the effect of licensing on knowledge diffusion by examining the quality of 

patents that cite licensed patents and rule out the possibility of a strong strategic patenting 

effect. These results demonstrate that transactions over formal intellectual property enhance 

the benefits of publicly funded R&D in the “market for ideas.” 
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1. Introduction 

The federal government’s $126 billion annual investment in research and 

development (R&D) supports nearly one-third of all R&D in the United States1 (National 

Science Board, 2014). R&D is an economically important government function because 

inappropriable positive spillovers arise when research discoveries serve as the 

foundation for follow-on innovation (Nelson, 1959; Arrow, 1962)2. However, realizing the 

full social value of R&D spillovers, particularly spillovers from publicly sponsored R&D, 

requires complementary investment in downstream development and commercialization 

of follow-on innovations (Scotchmer, 1991; Green and Scotchmer, 1995). With this 

understanding, various policy instruments have been adopted over the past three 

decades to drive private investment towards commercializing federally funded 

inventions. These policies allow government sponsored inventors to transfer title of their 

invention to a private firm for exclusive use, aligning firms’ profit incentive with the 

commercialization of publicly funded technology. Yet because other firms and 

researchers cannot utilize a technology once it is exclusively transferred, there is a 

concern that a single firm holding the right to utilize a technology may slow the 

generation of innovation spillovers (Murray and Stern, 2007; Williams, 2013; Galasso 

and Schankerman, 2013).  

In this paper, I provide the first large-sample empirical evidence for the 

relationship between transferring federally funded inventions to the private sector and 

                                                
1 In 2011, a total of $424 billion was spent on R&D in all sectors. Of this total, $126 billion (30%) was 

provided by the federal government, and of the total federal government expenditure, $49 billion (39%) was 

performed directly by the federal government or by an FFRDC. For comparison, total R&D funding spent in 

universities was $63 billion in 2011 ($39 billion of university R&D was provided by the federal government). 

See Figure 1 for the full time series of these ratios from 1953 – 2011. The figure shows that while the share 

of Federal R&D in total R&D has been declining since the mid 1960’s, the share of intramural and FFRDC 

R&D in the federal R&D portfolio has been relatively constant.  (National Science Board, 2014)  

2 Most simply, R&D can be thought of as the process of knowledge creation. Knowledge is a public good, 

which implies that markets will undersupply the optimal level of R&D as long as created knowledge induces 

spillover benefits that cannot be appropriated by the firm conducting R&D. The government also has a role 

in conducting R&D in fields where it has market power, such as those of strategic national priority, e.g. 

national defense and space exploration (Cohen and Noll, 1996).  
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the subsequent rate of innovation spillovers. Contrary to the concern that exclusively 

transferred technologies are “held up” within a single firm, I find that technology 

transfer has a statistically significant and meaningfully large positive effect on the rate 

of spillovers. This finding is consistent with two socially beneficial effects of technology 

transfer: (1) information about a technology’s value is revealed when a firm declares its 

willingness to invest in the technology’s development (Drivas et al., 2014) and (2) 

knowledge about how to better produce or utilize a technology is created as a firm gains 

commercialization experience, sometimes referred to as “learning-by-doing.” I further 

demonstrate that the large majority of spillovers induced by technology transfer diffuse 

beyond the licensing firm with no evidence that this effect is driven by strategic 

patenting.  

In this paper I utilize a novel dataset of patents and licensing agreements 

originating from five U.S. Department of Energy (DOE) FFRDCs. This dataset includes 

nearly 3,000 utility patents filed from 2000 to 2012, of which over 800 have been 

licensed. I follow the literature on technological spillovers by using the forward citations 

to a patent as a measure of induced follow-on innovation (Jaffe et al., 1993, 2000). My 

empirical strategy utilizes variation in the timing of license agreements with respect to a 

patent’s age and a novel strategy to match licensed and unlicensed patents. I propose a 

new procedure for identifying patent matches that utilizes a machine learning algorithm 

for automated reading of patent abstracts to identify patents of similar technological 

scope. My proposed approach offers distinct methodological advantages relative to 

current approaches in the literature that rely on coarse classifications assigned by 

patent examiners. I demonstrate the advantages of my approach and show that 

matching based on classified patent abstracts is less susceptible to omitted variable bias.    

Utilizing a difference-in-differences regression design, I estimate that licensing 

increases the rate at which a patent accumulates citations by 0.22 – 0.34 citations per 

year above a pre-licensing average of 0.71 citations per year. This amounts to a 31 – 48% 
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increase in follow-on invention induced by licensing. This estimate of licensing-induced 

innovation is concentrated in a period two to eight years after licensing, as I am not able 

to accurately measure effects beyond eight years. Alone, this result does not speak to the 

social benefits of technology transfer since follow-on innovation could be isolated within 

a licensing firm. Therefore, I examine follow-on inventions stratified by patent assignee 

and find that in fact, more than 75% of follow-on inventions induced by licensing occur 

outside of the licensing firm. Taken together, I conclude that licensing a federally funded 

invention enhances rather than detracts from the realization of the full social value of 

publicly funded R&D. 

Several studies in the literature have examined innovation spillovers at the 

patent-level (see Section 4 for examples); however, only very recently has the literature 

examined the effect of formal technology transfer arrangements on innovation spillovers. 

In the most relevant study to this one, Drivas et al. (2014) examine the effect of patent 

licenses on subsequent citations with a different empirical approach and in a different 

institutional context, patents managed by the University of California, but find results of 

the same sign and of marginally greater magnitude to what I find. 

Forty percent of federal R&D is conducted directly by the federal government or 

by federally funded research and development centers (FFRDCs), resulting in over 1,000 

newly issued patents per year and a stock of over 4,000 invention license agreements 

(National Science Board, 2014). However, despite these totals and multiple policy 

reforms over the past three decades to enhance technology transfer at FFRDCs, there is 

limited evidence for the relationship between formal transactions over intellectual 

property and innovation spillovers from federally sponsored R&D outside of the 

university context3. There are two notable exceptions. Jaffe and Lerner (2001) study the 

effect of policy reforms and management practices on patenting and technology transfer 

                                                
3 For comparison, 50% of federal R&D is conducted by universities and colleges (National Science Board, 

2014), yet patenting in the university context, covered under the Bayh-Dole Act, has received significant 

attention in the innovation policy literature.   
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activities at FFRDCs; however, the authors were limited by data availability and only 

examined aggregate patterns without specifically studying knowledge diffusion 

outcomes. Additionally, in a more narrowly focused study, Adams et al. (2003) utilize two 

surveys on FFRDCs from the late 1990s to conclude that cooperative research and 

development agreements (CRADAs) between an FFRDC and an industrial lab induce 

greater patenting by the industrial lab. My contribution in this paper is to provide the 

first estimates of the spillover effects of transferring non-university federally funded 

inventions to the private sector, providing a relevant input into the ongoing policy 

process of reforming technology transfer policies at FFRDCs4. 

Beyond the direct results of this paper, this paper also makes two contributions to 

the broader literature. First, the method that I develop to construct matched control 

patents based on the text of patent abstracts offers a new tool to reduce omitted variable 

bias and model dependence in the large literature in innovation economics that relies on 

matching patents5. Because it is too costly for the researcher to read each document, 

existing studies treat the text of patents as unobservable noise. However, this is clearly 

an unreasonable assumption made for convenience, as the primary purpose of a patent’s 

text is to disclose novel information.  Second, I provide some of the first empirical 

evidence in the literature on the role of formal intellectual property transactions in 

enhancing knowledge diffusion in the “market for ideas.” While representative data on 

patent licenses between two private actors is not readily available due to secrecy 

                                                
4 In July 2014, the U.S House of Representatives passed H.R. 5120, the Department of Energy Laboratory 

Modernization and Technology Transfer Act of 2014, which would reduce certain bureaucratic requirements 

for technology transfer while giving new authority for DOE FFRDCs to adopt best practice technology 

transfer activities of other federal agencies. As of October 2014, the bill is in committee in the Senate. (113th 

Congress, 2014) In a parallel effort, the White House initiated a process in October 2011 under presidential 

memorandum to accelerate technology transfer at all FFRDCs by requiring federal agencies to develop five-

year plans to improve technology transfer goals and metrics, streamline technology transfer processes, and 

develop regional commercialization partnerships (The White House, 2011). Finally, the President’s Fiscal 

Year 2015 budget request included several relevant new initiatives, described in the President’s 

Management Agenda as priorities for “accelerating and institutionalizing lab-to-market practices,” which 

reflect “the Administration’s commitment to accelerating and improving the transfer of the results of 

Federally-funded research to the commercial marketplace” (The White House, 2014).   

5 A few example studies that match patents are Jaffe et al. (1993), Thompson and Fox-Kean (2005), and 

Singh and Agrawal (2011). 



  

 

6 

 

concerns, I was able to collect scrubbed information for license agreements that involved 

a public sector partner, making this a unique empirical opportunity to contribute to this 

literature which has thus far relied heavily on theoretical or sectorally limited evidence 

(Arora et al., 2004; Hellmann, 2007).    

The rest of this paper is organized as follows: Section 2 describes technology 

transfer at the U.S. National Labs and lessons to be learned from the literature on 

university technology transfer; Section 3 describes the data I use in my analysis; Section 

4 details the empirical framework of the paper, including a description of the matching 

algorithm and text-based classification of patents I develop; Section 5 presents the 

results of my empirical work; and Section 6 concludes by putting my results in the 

context of the broader literature.  

2. The U.S. National Labs and Technology Transfer  

The U.S. National Lab system emerged from the facilities created under the 

Manhattan Project to build the atomic bomb during World War II. Following the War, 

the newly created Atomic Energy Commission (AEC) assumed responsibility for the Labs 

and used its new authority to expand the mission of the Labs to cover fundamental 

scientific research in nuclear sciences. Following the 1973 Arab Oil Embargo, new 

legislation and executive actions expanded the mission of the AEC to cover non-nuclear 

forms of energy R&D, doubled total federal investment in energy R&D, and later shifted 

institutional management of the Labs from the AEC to the short-lived Energy Research 

and Development Administration (ERDA). In 1977, the cabinet-level Department of 

Energy was established to replace ERDA (as well as several other energy-related federal 

organizations), and assumed responsibility for managing the Labs6. Today, the National 

Lab system includes seventeen labs with a combined $13 billion R&D budget (FY 2011), 

                                                
6 For a general history of the Labs see Westwick (2003) and for a detailed history of each of the seventeen 

Labs see DOE Office of Scientific and Technical Information (2014b). 
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97% of which is provided by the federal government7. For comparison, total R&D 

expenditure at U.S. universities and colleges in 2011 was $63 billion. (National Science 

Board, 2014)  

The seventeen National Labs are heterogeneous. First, they are broadly 

geographically distributed across the country, as shown in Figure 2. Some are located 

near urban centers in close proximity to large research universities while others are in 

remote locations (by design as they were originally secretive nuclear research facilities). 

Second, the management structure of the Labs varies. While each Lab is owned by the 

Federal government and must report to DOE, only one of the seventeen Labs, the 

National Energy Technology Laboratory, is actually operated by DOE. Seven of the Labs 

are currently operated by a university or university consortium, four are operated by a 

non-profit R&D company, and the remaining five are operated by an industrial 

corporation. The Labs also differ in the breadth of their research focus and thus vary in 

their technology transfer activities. Table 1, presents summary statistics for R&D 

expenditure, patenting activity, and licensing activity for the seventeen Labs 

disaggregated by their operator type. For a deeper discussion of the implications of 

different Lab operator types and other Lab management issues, see Jaffe and Lerner 

(2001), Logar et al. (2014), and Stepp et al. (2013). 

Under the 1980 Stevenson-Wydler Act (P.L. 96-480) and subsequent reforms, all 

FFRDCS, the National Labs included, are legislatively required to transfer inventions to 

the private sector8. As part of this mission, the FFRDCs have each established 

                                                
7 The R&D budget of the seventeen DOE labs constitute 75% of all U.S. expenditures at FFRDCs. The 

remaining 25% of FFRDC R&D is conducted by labs under the responsibility of other Federal agencies or 

organizations. Prominent examples and their sponsoring agencies are the Jet Propulsion Laboratory 

(NASA), Lincoln Laboratory (DOD), the National Center for Atmospheric Research (NSF), and the National 

Cancer Institute (HHS).   

8 Important legislation shaping technology transfer policy at FFRDCs include the 1980 Stevenson-Wydler 

Technology Innovation Act, the 1980 Bayh-Dole Act, the 1986 Federal Technology Transfer Act, the 1989 

National Competitiveness Technology Transfer Act, the 2000 Technology Transfer Commercialization Act, 

and the 2011 America Invents Act. For a discussion of these and other policies shaping the U.S. policy 

architecture for National Lab and FFRDC technology transfer, see Bozeman (2000), Jaffe and Lerner (2001), 
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technology transfer offices and appropriate a minimum of 0.5% of their R&D budget 

towards technology transfer, which can include several mechanisms of cooperation with 

the private sector (e.g. cooperative R&D agreements or “CRADAs”, leasing user 

facilities—such as bio-refineries and cyclotrons, spin-out company formation, and patent 

licensing). In this study I focus on patent licensing because it is both directly measurable 

in patent-level data and one of the defining activities to understand FFRDC technology 

transfer, as demonstrated by the central role licensing activity is given in technology 

transfer performance evaluation. Figure 3 compares the patenting and licensing activity 

enabled by Stevenson-Wydler across each federal agency.  

The reforms that followed Stevenson-Wydler slowly changed the way the federal 

government used intellectual property (IP) to protect government-sponsored inventions. 

In order to facilitate the transfer of the rights to develop a publicly funded invention 

effectively, government lab technology transfer offices were given the mandate to quickly 

and thoroughly apply for IP protection so that eventual licensees could be guaranteed 

clear rights to utilize an invention in new product development. The long-understood 

tradeoff with greater IP protection is that while new inventions are disclosed publicly, 

access to utilizing new inventions is made exclusive to the right holder. The effect is 

greater incentive to develop new technologies through the lure of monopoly profits at the 

societal expense of slowed diffusion of protected technologies, also raising the issue of 

equitable access to the fruits of innovation. With technology transfer of government 

inventions to a commercial partner, benefits of publicly sponsored innovations accrue 

back to the public in the form of access to new technologies and services developed by the 

commercial partner. Yet, there is a second important channel through which the public 

benefits from inventions discovered in the organizations it funds: Namely, due to the 

cumulative nature of innovation (Merton, 1973; Rosenberg, 1982), the introduction of 

                                                                                                                                                   

Margolis and Kammen (1999), Cannady (2013), and Federal Laboratory Consortium for Technology Transfer 

(2011) .  



  

 

9 

 

new technologies leads to inspiration for follow-on inventions. Thus, complete evaluation 

of a policy that affects an innovation system must account for its effect on spurring 

further inventions (referred to as “spillovers”), a form of positive externality (Scotchmer, 

1991).While greater IP protection slows the rate of knowledge diffusion ceretis paribus, 

using IP protection to leverage additional private investment in commercializing 

technologies that spurs follow-on innovation is a countervailing force.   

2.1. Lessons from University Technology Transfer 

The effect of greater IP protection in the context of university-sponsored research 

has been thoroughly studied in the context of the 1980 Bayh-Dole Act (Henderson et al., 

1998; Mowery et al., 2001, 2002; Hausman, 2010; Wright et al., 2014). Some of the 

concerns raised in the context of university research also apply to intramural and 

FFRDC government innovation.  Dasgupta and David (1994) summarize one of the most 

prominent concerns of greater IP protection in these contexts. They argue that 

promoting greater “industrial tranferrability” of basic research findings may induce 

short-run benefits through better utilization of existing scientific knowledge but could 

also have dynamic costs if these activities erode future development of new scientific 

knowledge. This erosion can occur if researchers are required to divert their effort 

towards technology transfer activities, for example by dedicating time towards the 

difficult task of transferring the tacit knowledge that enables the utilization of 

transferred technology (Arora, 1995; Arora et al., 2004).  

An additional dimension of technology transfer of university or government 

inventions is its effect on the strength of existing IP. Transferring title of an invention to 

the private sector increases the likelihood that a patent will be litigated for 

infringement. FFRDCs, like universities, may be unenthusiastic about pursuing costly 

litigation to enforce their patent rights (Rooksby, 2013), but once title is transferred to a 

private actor, it becomes in the licensee’s interest to pursue litigation for infringement. 
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Finally, there is an ethical concern that inventions discovered in universities or with 

public funds, once transferred to a single private actor, create benefits inequitably to 

licensees rather than the general public. 

2.2. National Lab Patent Licenses 

This section briefly describes the general features of National Lab patent 

licensing agreements. For more detail and a typical sample license agreement see DOE 

Technology Transfer Working Group (2013). It is difficult to generalize National Lab 

license agreements, as each license is negotiated individually with particular 

idiosyncratic terms. Patent license agreements are typically structured to incentivize the 

licensee to develop the technology (e.g. with performance diligence requirements 

delineating milestone targets for technology development) while returning a share of 

profits from commercializing the technology back to the Lab. A National Lab license 

agreement typically includes terms for a license issuance fee due when a license is 

executed, patent cost reimbursement, a minimum annual royalty, and a running royalty 

equal to a fixed percentage of sales. License agreements can be terminated by the 

licensee, typically at any point, or by the Lab if diligence requirements or royalty 

obligations are not met by the licensee. Finally, the U.S. government retains a “march-

in” right to re-license an already licensed patent or to use a licensed patent discovered in 

a National Lab for purposes in the national interest. (DOE Technology Transfer Working 

Group, 2013; LBNL, Innovation and Partnerships Office, 2014; PNNL, Technology 

Transfer, 2014)  

In my dataset, 49% of licensed patents are licensed on an exclusive basis, 

meaning the Lab agrees to not license the patent to any other interested licensee. The 

remaining licenses are nearly all partially exclusive, either for a particular field of use9 

                                                
9 An example of a patent that was non-exclusively licensed for two separate fields of use is patent 6,507,309, 

“Interrogation of an object for dimensional and topographical information” developed at the Pacific 

Northwest National Lab. This patent was licensed to a firm to develop millimeter wave body scanners for 
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or for a certain geographic region. While these non-exclusive licenses could lead to a 

single patent being licensed multiple times, it is very rare for a single patent to be 

licensed non-exclusively in such a way that licensees compete for the same market share. 

One additional distinction between exclusive and non-exclusive licenses is that the right 

to sublicense a patent to another firm is usually provided for in exclusive license 

agreements but not non-exclusive licenses. For the empirical section of this paper, I 

utilize the first date a patent is licensed to construct the main independent variable. 

In selecting licensees, federal policy requires Labs to give preference to small 

business licensees and licensees whose production activities are located domestically. In 

addition, Labs typically must justify their choice of licensee as following from a fair 

process, although whether or how this is enforced is unclear. In general though, licensing 

opportunities are advertised on DOE and Lab websites. Although from qualitative 

interviews, I understand that there is rarely competition among private firms to license 

the same Lab patent.    

Markets for licensing agreements are highly frictional due to the large 

information asymmetries inherent in transacting over technologies. Despite the 

existence of patents, which publicly disclose the primary functioning of a technology, 

nearly all technologies also require additional tacit knowledge possessed by the 

inventors to be maximally useful (Arora et al., 2004). Because this tacit knowledge is, by 

definition, not codified and because Lab inventors are typically not aware of the business 

challenges and technology needs of firms, potential licensees and Lab technology owners 

face large information asymmetries. This suggests that the role of technology transfer 

officers is important in finding the suitable matches between available Lab technologies 

and licensees (Hellmann, 2007). This also helps explain the long tail in the lag between 

                                                                                                                                                   

exclusive application in the fields of aviation, prison, building and border crossing security (these scanners 

are used extensively in U.S. airports). The same patent was later licensed to another company for a distinct 

field of use to create body measurements for custom-fit clothing. (Turner, 2004)  
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when the Labs file patents and when these patents are eventually licensed (See Figure 

4).  

3. Data 

In this study, I utilize data on 2,796 utility patents filed between January 1, 2000 

and December 31, 2012 and developed at, or in partnership with, five of the seventeen 

National Labs (Brookhaven National Laboratory, Sandia National Laboratory, Lawrence 

Berkeley National Laboratory, Pacific Northwest National Laboratory, and the National 

Energy Technology Laboratory)10. These five Labs include at least one Lab in each of the 

four management structure categories utilized by DOE FFRDCs (government operated, 

university operated, non-profit operated, and industry operated). Table 1 displays 

summary statistics of R&D expenditure, patenting, and licensing activity for the sample 

of five Labs I utilize in this study compared to the full set Labs. The five Labs in my 

sample are representative of the seventeen Labs in terms of the rate of patenting per 

R&D expenditure, but they licensed a slightly higher fraction of their patents (23% 

instead of 18%) while their average patent license brought in slightly less in terms of 

royalties ($20,057 instead of $27,484). For the empirical section of the paper, I only 

utilize data for the five Labs I have patent-level data on licensing. 

Data for National Lab patents comes from two DOE databases, the U.S. Energy 

Innovation Portal, maintained by DOE’s Office of Energy Efficiency & Renewable 

Energy (2014) and DOepatents, maintained by DOE’s Office of Scientific and Technical 

Information (2014a). For each patent, I collect detailed patent-level covariates from two 

patent databases, the U.S. Patent and Trademark Office’s (USPTO) Full-Text and Image 

Database (U.S. Patent and Trademark Office, 2014) and Google Patents (Google, 2014). 

These databases allow me to observe the DOE contract number of the R&D agreement 

                                                
10 I contacted the technology transfer offices at the other large National Labs engaged in applied R&D, but 

was not able to procure sufficient data from these labs to include in my analysis. To account for possible 

selection issues, I include lab fixed effects in all specifications that do not already include (co-linear) patent 

fixed effects.   
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the patent was developed under, the name of the inventors and initial assignee, the 

application, grant dates, priority date, the U.S. and international technology 

classification, and the text of the patent abstract and claims. 

For the five Labs in this study, I obtained comprehensive records of patent license 

agreements from each Lab’s technology transfer office. Of the 2,796 patents in the full 

dataset, I observe that 877 were licensed between January 1, 2000 and December 31, 

201211. For each licensed patent, I observe the date on which the licensing agreement 

went into effect and whether the license was issued exclusively or non-exclusively. 

Table 2 presents descriptive statistics for all patents and licensed patents in my 

dataset aggregated by observations at the patent-level (2,796 patent observations, of 

which 877 are licensed) and the patent-year-level (27,402 patent-year observations, 

9,852 of which are for patents that are licensed between 2000 and 2012).    

4. Estimating a Citation-Based Model of Knowledge 

Diffusion  

In this paper, I assess the public returns to patent licensing, as measured by the 

differential citation rates of licensed patents relative to non-licensed patents. To reduce 

selection bias that may arise from the non-random assignment of licensing status to 

patents in different technological areas, I carefully match patents based on their filing 

date, annual citations (pre-licensing), and a novel measurement of their technological 

scope derived from the text of their abstracts. I then compare citation rates after one of 

the matched patents is licensed using a difference-in-differences framework. 

Measuring knowledge diffusion using technology-level data is difficult due to a 

lack of available data at a granular level. Patents, however, have proven to be a useful 

source of data for measuring knowledge diffusion because they include detailed 

                                                
11 Some of the patents in the full dataset may have been licensed prior to January 1, 2000 or after December 

31, 2012. However, this is not problematic for my analysis as I limit comparisons to patents filed in similar 

time windows and the full database covers all unlicensed patents in the time period over which I have 

licensing data.  
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information about the antecedent inventions on which a patent builds. The citations 

included in a patent also play a legal role by demarcating prior art and thereby limiting 

the claims of a patent with respect to previous patents, and therefore citations are a 

noisy by still useful measure of knowledge diffusion. Patent citations are included on the 

front page of a patent document and are added by inventors, legal counsel, or patent 

examiners. For a detailed discussion of the role and significance of patent citations in the 

context of economic research, see Jaffe and Trajtenberg (2002). 

The matching method that I propose in this sectional is novel, but the way in 

which I estimate and measure spillovers draws heavily on the literature that has 

examined innovation spillovers at the patent-level. For example, Galasso and 

Schankerman (2013) examine the effect of patent invalidation on subsequent citations, 

Singh and Agrawal (2011) ask whether firms develop follow-on innovation through 

hiring already successful inventors, and Jaffe et al. (1993) study how geographic 

proximity between an initial and follow-on inventor affect subsequent citations. As I 

show below, my proposed matching method has several important advantages for 

reducing bias and improving the precision of estimates, making it a useful tool to 

reevaluate some of this earlier literature.  

4.1. Matching 

My analysis relies on comparing patents within and across technology application 

areas. It is well known that the USPTO’s patent classification system poorly measures 

what researchers seek to use the classification as a proxy for (Scherer, 1982). Existing 

patent classification schemes are not well suited to this task because (1) in the USPTO, 

patents are not classified by their potential areas of application, but instead are 

classified by their technical characteristics (Hirabayashi, 2003) (2) the level of 

granularity in patent classifications is inconsistent across technology areas, and further, 

within a single class there may be substantial heterogeneity across patents (Thompson 
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and Fox-Kean, 2005), (3) classifications are continuously revised over time, (4) 

classification relies on idiosyncratic decisions by patent examiners and exploratory 

analysis reveals that very similar technologies (even pairs of patents that are co-licensed 

by the same specialized company) are not consistently classified12. In addition, 

inventions, particularly high-value breakthrough inventions, very often involve the 

combination of technologies from distinct fields (Weitzman, 1998; Fleming, 2001; Arthur, 

2009), and thus may span multiple USPTO categories. While patents can be placed in 

multiple categories, they must also have a single declared primary category. In most 

empirical studies, the single primary category is used for analytic traction. In addition, 

because of finite sample size, the coarse nature of patent classifications implies that 

studies that rely on matching have to discard a large number of patents due to the lack 

of suitable matches. All matching approaches applied to patents will result in a 

substantial fraction of discarded observations, as by definition, each patent must be 

“novel,” but coarse measures like the USPTO classification make identifying more 

similar patents difficult.    

Fortunately, patent documents do contain a plethora of information concerning 

the underlying innovation (that is explicitly what they are designed to do). Patents often 

                                                
12 One striking example of the idiosyncratic nature of USPTO classifications is shown by the example of the 

Combustion Controls and Diagnostics Sensors technology developed at the National Energy Technology 

Laboratory in the early 2000s. This technology involved an initial patent, 6,429,020 titled “Flashback 

detection sensor for lean premix fuel nozzles,” which was filed in June 2000 and granted in August 2002. 

This patent was followed up with a continuation in part patent, 6,887,069 titled “Real-time combustion 

controls and diagnostics sensors (CCADS)” which was filed in September 2001 and granted in May 2005. 

Demonstrating the similarity of these two patents, they shared three inventors, were jointly licensed by 

Woodward Industrial Controls in December 2001, and were the subject of two CRADA agreements between 

NETL and Woodward. The abstracts of the two patents are extremely similar: Patent 6,887,069 states it is 

“an apparatus for the monitoring of the combustion processes within a combustion system,” and patent 

6,429,020 is described as “a sensor for detecting the flame occurring during a flashback condition in the fuel 

nozzle of a lean premix combustion system.”  However, they were given two different primary classifications 

by the USPTO. The initial patent, 6,429,020, was given the primary classification 436/153. Class 436 is 

described as “a generic class for … process[es] which involve a chemical reaction for determining 

qualitatively or quantitatively the presence of a chemical element, compound or complex,” and its 153 

subclass specifies that “measurement of electrical or magnetic property or thermal conductivity … of an 

ionized gas.” The continuation patent, 6,887,069, was classified not just in a different subclass but also in a 

different class, 431/12, which is described as “processes of combustion or combustion starting,” and its 

subclass specifies “processes controlling the supply of fuel or air discharged into the combustion zone.” 

Admittedly, the two patents do share three classes designated by at least one of them as a secondary class, 

but neither patent contains the subclass of the other’s primary subclass. 
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contain pages of text and figures, but in previous research, actual reading of the text of 

patents has proved too time-consuming and too substantively demanding for social 

science researchers use to determine which patents are most similar in statistical 

analysis with large sample sizes13. Therefore, studies in the innovation literature that 

utilize patent data have not widely incorporated the fundamental information in 

patents. This leads to greater omitted variable bias and model dependence as there will 

be potentially greater endogeneity concerns in these studies due to a lack of meaningful 

observables on which to account for selection bias.  

Because of the issues of using USPTO classifications and recent development in 

automated content analysis in computer science, I am able to implement a more 

sophisticated patent classification algorithm. I classify the patents in my dataset using a 

machine learning algorithm based on the textual content of the patent abstracts. I use 

the Latent Dirichlet Allocation (LDA) algorithm, which uses a Bayesian model of word 

co-occurrence, to classify documents into endogenously defined technology topic areas 

(Blei et al., 2003; Blei and Lafferty, 2007; Blei, 2010).  

4.1.1. Topic Modeling 

Using text as a primary data source in a causal inference framework is not 

straight forward. In particular, it is difficult to discern the difference between changes in 

behavior and changes in the way people use language to describe a particular behavior. 

One advantage of using data from the abstracts of patents, is that innovators themselves 

tend to write patent abstracts (lawyers are typically more involved in writing the claims 

in the body of a patent); therefore, it is less likely that the abstracts contain strategically 

motivated language. In addition, because of the legal function patents play and because 

of the U.S. common law system (based on precedent), the use of language within patents 

may be more stable than other corpuses with long time series. 

                                                
13 One notable exception is Scherer (1982) who, with a team of four engineering and chemistry students, 

read and classified 15,000 quasi-randomly selected patents. 
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Text-based analysis of natural language has a strong legacy in computer science 

and statistics14. More recently, advances in computational power, the growing acceptance 

of text-based data in social science research, and the digitization of text sources have led 

to a proliferation of text-based analyses in the social sciences (A few recent examples 

include: Hoberg and Phillips, 2010; Hopkins and King, 2010; Quinn et al., 2010; 

Alexopoulos, 2011; King et al., 2013; Grimmer and Stewart, 2013; Kaplan and Vakili, 

2014). Text-based analysis relevant for social science research has developed several 

different approaches for classification of documents into similar (predefined or unknown) 

categories15.  

In this paper, I classify patents based on the text of their abstracts to account for 

otherwise-unobserved heterogeneity in the technological scope of an invention. Text-

based classification requires the selection of the appropriate method. Because 

technologies arise through the recombination of existing technologies (Weitzman, 1998; 

Fleming, 2001; Arthur, 2009), they can often span the multiple technological categories 

of their predecessor technologies, making classification methods that allow for multi-

category membership well-suited. Further, patents are highly technical documents, 

which gives multi-membership models greater power in modeling the facets of individual 

documents (Quinn et al., 2010). Finally, the complexity of patents greatly increases the 

cost of implementing a supervised method that would require human coding. Therefore, I 

have chosen the Latent Dirichlet Allocation (LDA) model (Blei et al., 2003; Blei, 2010), 

which is an unsupervised mixed-membership classification method utilizing a Bayesian 

machine learning algorithm. A notable disadvantage of unsupervised classification is 

that the resulting grouping are difficult to interpret since they are not pre-defined. 

                                                
14 See for example, Mostellar and Wallace (1964) for an early text classification analysis in statistics 

15 Depending on the complexity of the classification task, text-based analysis can be supervised (meaning 

human input is required to “teach” an algorithm which documents belong in a category) or unsupervised 

(meaning the algorithm incorporates a method to “learn” how documents should be divided into categories). 

Quinn et al. (2010) and Grimmer and Stewart (2013) provide guidance for selecting appropriate 

classification methodologies in the context of political science research. 
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However, my main objective in classification is to identify similar patents which doesn’t 

require directly interpreting classes of patents. 

Abstractly, the LDA model estimates two simultaneous types of probability 

distributions. First, for the corpus of documents as a whole, LDA estimates a specified 

number of latent “topics,” representing the likelihood that words co-occur within a 

document. Each topic is a probability distribution over all words in the vocabulary, with 

greater probability weight assigned to words that are more likely to occur when that 

topic appears in a document. LDA requires the number of topics to be pre-specified by 

the researcher; greater number of topics gives more granular information about the 

structure of a document. The second set of distributions LDA estimates are the 

probabilities that any one word in a document originates from one of the topics. For this 

paper, the relevant output of the LDA model is a document-level probability vector of 

topic frequencies. These frequencies provide a continuous measure of a patent’s 

substantive content and can be used to assess the topical similarity of two different 

patents.  

The hierarchical classification of LDA provides useful advantages in a causal 

inference framework relative to alternative approaches, such as word-frequency 

clustering (e.g. k-means), that directly classify documents based on word frequencies. 

First, LDA allows the researcher to control the granularity of the classification by 

choosing the number of topics, giving the researcher a principled method to determine 

the specificity of patent classification, and therefore the closeness of matches, in a way 

that scales with the sample size. The frequency of topics also gives a chosen number of 

covariates to describe a patent, and thus can help separate meaningful words and 

combinations of words from meaningless words (whereas direct word frequencies give an 

intractable number of covariates, often more than the number of documents). Second, 

the hierarchical structure provided by the topic distributions allows for words to take on 

distinct meanings depending on the words they are likely to co-occur with. For example, 
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the word “compound” is likely to have a distinct meaning mean it is used with words 

concerning chemical compounds compared to when it co-occurs with words that describe 

inventions with two compounded sub-components.  

In Figure 5, I provide a visual representation of the LDA model applied to 

classifying the subset of patents in my dataset from the National Energy Technology 

Lab. In the example, I implement the LDA model with 25 topics, and show, for a single 

patent, the document-level distribution of topics, the ranking of most likely words to 

occur within the topic, and the classification of words within the document to individual 

topics.   

While the LDA model has been applied to classifying patents before (see, for 

example, the recent work of Kaplan and Vakili [2014] and Venugopalan and Rai [2014]), 

to my knowledge, this is the first paper that incorporates LDA-based classification to 

account for otherwise-unobserved heterogeneity in a model of causal inference. The LDA 

model, including full mathematical representation, is described in detail in the 

Appendix. 

4.1.2. Matching Implementation 

The matching method I implement has several steps which seek to vastly improve 

the number of observable characteristics extracted from the underlying patents. There 

are several methodological choices required to implement a matching method with many 

types of covariates of different relative importance. I describe alternative methods for 

matching licensed to unlicensed patents and implement several alternative algorithms to 

assess robustness. These choices apply different combinations of exact matching, 

coarsened exact matching (CEM) (Iacus et al., 2012) and nearest neighbor matching on 

available covariates and estimated balancing scores derived from the text-based 

classification described in Section 4.1.1. In all approaches, I apply coarsened exact 

matching to filing date and average annual pre-licensing citations. 
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I consider three approaches to matching patents on their estimated topical 

structure from the LDA analysis: I consider matching patents based on a balancing score 

that is a function of the estimated topic proportions, direct Mahalanobis distance 

between estimated topics proportions, and the USPTO classification. For the methods 

that rely on the LDA classification, I estimate matches with a 25-topic and 50-topic 

model. The remainder of this section refers to Table 8, where regression results from 

models described in Section 4.2 are estimated with different matching approaches.  

In the balancing score approach, I match licensed and unlicensed patents based 

on a balancing score that captures the probability of a patent being licensed in a panel 

data setting. A filed patent can be licensed at any point and I have information on the 

timing of each patent’s filing and license; therefore, the simple propensity score of being 

licensed does not fully utilize the information available to estimate licensing probability. 

To construct a more appropriate balancing score, I implement a Cox proportional hazard 

(Cox, 1984) model to estimate the (constant) hazard that a patent is licensed in any one 

year as a function of a patent’s topical structure. The predicted hazard is a balancing 

score appropriate for panel data where treatment occurs at different points for 

observations. The use of the predicted hazard as a balancing score is analogous to 

propensity score matching in cross-section data or panel data where treatment occurs at 

the same time. (Stange, 2011) I also include lab fixed effects in the hazard regression to 

account for heterogeneity in lab ability to license. This allows me to utilize the 

information about the delay between a patent being filed and licensed as a key input for 

determining licensing probability. Matching on the estimated hazard ratios is assessed 

in specifications (1) and (2) in Table 8. The outcome of the hazard regression is predicted 

hazard ratios for each topic in the topic model, which can be used to calculate expected 

hazards of being licensed for each patent. Figure 6 displays the range of topic coefficients 

estimated in the hazard regression which could serve as an input to such a calculation. 

The results of calculating patent-level predicted hazard based on these coefficients could 
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be useful to technology transfer offices seeking to identify technology areas more 

promising for licensing. The figure also reveals that the majority of topics are not 

significant predictors of licensing and thus shouldn’t strongly affect how patents are 

matched – a nuance not captured by Mahalanobis distance matching.  

The Mahalanobis distance matching approach simply takes the distance between 

the vector of estimated topics and finds nearest neighbor matches. I implement both the 

Cox proportional hazard model and the Mahalanobis distance matches on the panel of 

patents using the log of the estimated topic proportions from the topic model as the 

covariates. I use the log of estimated topic proportions to normalize the distribution of 

topic frequencies16.  Matching on the Mahalanobis distance s assessed in specifications 

(3) and (4) in Table 8.  

To reduce the noise from small document-level estimated topic proportions, I also 

apply a calipers approach that sets all estimated topic proportions below the 90th 

percentile of topic proportions to zero. These approaches utilize only the estimated topic 

proportions that describe a substantial proportion of the patents. I then perform CEM on 

a binary indicator for the patent having an above-90th percentile estimated proportion of 

each topic and then resolve CEM matches with nearest neighbor matching based on the 

estimated hazard (specificaions (5) and (6) in Table 8) and with Mahalanobis distance 

(specifications (7) and (8) in Table 8).   

In the USPTO classification approach, I match patents exactly on their primary 

assigned class, ignoring secondary classes and subclasses to increase the number of 

matches. Still, while matching for topical scope using the hazard ratio or distance 

metrics preserves more than 9,000 patent-year observations, matching just on the 

primary USPTO classification reduces the number of observations to below 3,000 patent-

year observations due to the lack of suitable controls. This again highlights the strength 

                                                
16 The distribution of topic frequencies is strongly right-skewed, which is a desirable property of the LDA 

model as it demonstrates stronger differentiation of topics.  
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of the LDA classification approach in allowing for the granularity of topic matches to be 

defined relative to the sample size. Within PTO classes, I choose one-to-one matches 

randomly (specification (9) in Table 8) and also according to nearest neighbor matches in 

terms of the estimated hazard (specifications (10) and (11) in Table 8) and Mahalanobis 

distance (specifications (12) and (13) in Table 8).    

In what I call the “preferred matched sample” I apply CEM matching on patent 

filing year and pre-license average annual citations. I then use the 50-topic LDA model 

and match patents one-to-one based the topic-dependent estimated hazard of being 

licensed.  

A simple assessment of the matches is shown in Table 3, which gives naïve 

difference-in-difference estimates based on conditional means, using the matching to 

control for pre-treatment heterogeneity in observables. Assessment of balance after 

matching under the preferred specification is shown in Table 4, which shows that filing 

year, grant year, priority year, and grant delay are all statistically distinct for licensed 

and unlicensed patents in the full sample, but balanced in the preferred matched 

sample.  

4.1.3. Evaluating Matching Covariates with 

Rosenbaum Bounds 

Unbiasedness of matching estimators for causal inference depends on the 

conditional independence condition, which requires that after conditioning on the 

observable covariates used in matching, treatment assignment is independent of 

potential outcomes, or “as good as randomly assigned.” The fundamental identification 

concern with matching is therefore whether there are unobserved factors that affect 

treatment assignment and bias causal estimates. An unobserved factor will bias a causal 

estimate only if it is correlated with the outcome variable and with treatment 

assignment. With this motivation, Rosenbaum (2002, 2005), proposes assessing 

sensitivity to the conditional independence assumption by calculating the maximum 
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value of the quantity Γ that would make a causal estimate of interest no long 

statistically significant, where Γ is the largest difference in odds of treatment for two 

units with the same value of observed covariates. In effect, Γ can be thought of as a 

measure of the maximum co-variation in unobservable covariates and treatment 

assignment that preserves the conclusion of a hypothesis test based on a matching 

estimator. By assessing sensitivity of a matching estimator to Γ, overall sensitivity to all 

unobservables can be assessed, thus providing a useful assessment of the conditional 

independence assumption. 

I compare several matching approaches using Rosenbaum Bounds to assess 

sensitivity of matching to violations of the conditional independence assumption. I do 

this on a subset of my dataset that provides a more straightforward comparison based on 

binary treatment and a single dependent variable. The objective of this analysis is to 

compare matching approaches that control for the technological scope of patents to 

account for non-random “assignment” to being licensed. For this section, I only examine 

licensed patents that were licensed in the same year that they were filed. I further 

restrict this subsample to patents with PTO classifications in which there is at least one 

licensed and one unlicensed patent (for fair comparison across methods). The final size of 

this subsample contains 140 licensed patents, for which I attempt to find a match in a 

pool of 1,131 unlicensed “control” patents. I search for non-licensed patent matches using 

seven approaches and calculate the average change in citations for licensed patents due 

to licensing, which can be thought of as an average treatment effect on the treated 

(ATT). The approaches control for technological scope of patents in different ways, and 

thus are biased to different degrees depending on how well they capture the 

unobservable factors driving whether a patent is licensed. The key question I want to 

understand with this analysis is whether capturing the technological scope of a patent 

using the topic modelling approach is less susceptible to omitted variable bias relative to 
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approaches that use the examiner-assigned primary PTO classification (as previous 

papers in the literature have used).  

For each of the seven approaches, I present the average treatment effect (on the 

treated) and its standard error, and the Rosenbaum Bound that would make the average 

treatment effect not statistically different from zero. It should be noted that the 

estimates presented in this section are not meant to be directly compared to the 

estimates in the remainder of the paper as these estimates do not take advantage of the 

panel nature of the data (and therefore do not include important control strategies that I 

utilize elsewhere, such as patent fixed effects). 

Table 5 summarizes the results from the analysis of Rosenbaum Bounds. Without 

matching, this subsample of the data contains licensed patents that receive 0.71 (S.E. = 

0.11) additional citations per year compared to unlicensed patents (which receive 0.46 

citations per year). In the simplest approach, I match licensed and unlicensed patents 

based on a propensity score model with two sets of fixed effects for the patent’s filing 

year and its originating Lab. With just this simple matching, the estimated difference in 

citations is 0.24 (S.E. = 0.36). However, this effect is not statistically significant (so there 

is no relevant Rosenbaum Bound). Next, I add onto this propensity score model by 

including fixed effects for each primary PTO classification. This increases the treatment 

effect estimate to 0.62 (S.E. = 0.16). The associated Rosenbaum Effect for this matching 

procedure is 1.34, which can be interpreted as follows: if two patents have the same 

probability of being licensed based only on their filing year, originating Lab, and PTO 

classification, unobservable factors can cause at most a 1.34 factor difference in the odds 

of being licensed before the estimated difference in citations is no longer statistically 

different from zero at the 5% level (for a two-sided test).  

I compare this result to two approaches that use the topic modeling approach 

described earlier in this section: once using a 25 topic model and once using a 50 topic 
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model. I include the log of the estimated patent-level topic proportions17 along with the 

same three baseline fixed effects in the propensity score model. I find similar average 

treatment effects with these two approaches, 0.58 (S.E. = 0.18) and 0.63 (S.E. 0.17), 

respectively. Most importantly, I find larger values of Γ in the analysis of Rosenbaum 

Bounds: 1.64 and 1.45, respectively. A direct comparison of values of Γ is possible 

because the effect estimates from the topic modelling matches are either smaller or 

approximately the same as the PTO propensity score matches. In both cases, the topic 

models perform better than the PTO matching, and the 25-topic model performs better 

than the 50-topic model. 

Finally, I implement two additional matching approaches that combine the PTO 

classification with the two topic model outputs. In these models I find treatment effect 

estimates of 0.55 (S.E. = 0.18) and 0.69 (S.E. = 0.20) with corresponding values of Γ 1.20 

and 1.59.  

The results from this sensitivity analysis highlight several considerations for 

matching design. First, matching with the topic model with 25 and 50 topics performs 

better than with the PTO classification. The matching procedure with 25 topics appears 

to be the most robust to confounders. Second, the 25 topic model performs better than 

the 50 topic model, but when combined with the PTO classification, this is reversed. This 

finding exemplifies the bias-variance tradeoff in matching (Black and Smith, 2004). 

Third, while the topic model performs better than the PTO classification, it is not clear 

whether combining the two approaches together is preferable, again because of the bias-

variance tradeoff. Finally, it is important to note that the matching procedure relying on 

the topic models has a potentially large advantage over the PTO classification matching 

due to the condition of common support. Matching on the PTO classification requires 

dropping all patents in PTO classes in which all patents in the sample were licensed or 

                                                
17 Taking the log regularizes the topic proportions and makes the distribution of topic proportions across 

documents close to Normal.  
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all were unlicensed (in these cases the PTO class perfectly predicts licensing). This could 

be a potentially large loss of data (in this example, I dropped eight licensed patents out 

of 148 that met the other criteria for the subsample, but I was fortunate to have a large 

control group to pull from). The topic modeling matching approach allows the “distance” 

between any two patents of different technological scope to be compared, and therefore 

significantly reduces matching issues that arise from the common support condition.  

4.1.4. Remaining Selection Bias Concerns 

The fundamental challenge in estimating the causal effect of licensing is that 

patents are selected for licensing by interested agents. This can be problematic for causal 

identification if patents that are licensed are also cited more, for example because they 

are of greater value (see Table 3, which shows that the conditional mean of annual 

citations to licensed patents before licensing is 1.40 but 0.85 for unlicensed patents). A 

more nuanced version of selection bias can occur if patents that are available for 

licensing are actually licensed at a time when they would be of greater value, for 

example when complementary discoveries are made elsewhere in the economy. This 

second form of selection bias shows that controlling for pre-licensing citations, a proxy 

for patent value, alone may not solve the selection issue if there are secular trends in 

technology-area value.  A third and related issue is that of simultaneity, patent licensing 

may occur in anticipation of a technology becoming more useful. In this case, patents 

may appear to be cited more after licensing but they would have had greater citations 

even without licensing.  

Matching reduces pre-treatment imbalance, importantly bias from secular 

technology trends. However, all matching approaches rely on an identification 

assumption that all relevant variables determining selection (in this case, being licensed) 

are observable and controlled for to mitigate selection bias (Heckman and Navarro-

Lozano, 2004; Imbens, 2004). Without random assignment of patents to licensing status, 
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it is impossible to rule out selection bias concerns. Nevertheless, the matching 

approaches I present in this paper make an important contribution by providing a 

method to incorporate a large number of relevant characteristics of patents described by 

the text of the patent documents, previously treated as unobservable. Introducing these 

additional covariates reduces bias relative to other approaches that ignore the text of the 

patents as long as the text of the patent abstracts contain information relevant to 

whether a patent is licensed that is not incorporated elsewhere. This almost certainly 

has to be the case in this context if we believe licensees carefully select the patents that 

they license, so my approach reduces selection bias concerns relative to simpler 

approaches to matching on observables.  

In addition to matching, I utilize patent-level fixed effects in my preferred 

specifications which focuses the identifying assumption on the timing of licensing 

relative to unobservable factors that differentially affect a patent over time. Patent fixed 

effects control for all unobservable time-invariant characteristics of patents, such as the 

patent’s inherent value, so the most concerning omitted variable bias must stem from 

factors that simultaneously affect the timing of licensing and cause citations to licensed 

patents to relatively increase. Examples include a shock to a patent’s value that isn’t 

picked up by the topic model that affects license probability and citation rate, such as the 

discovery of a complementary technology. I feel confident that this is not likely to be a 

strong factor as there are huge frictions in the market to license these technologies. 

From qualitative interviews with technology transfer offices, Lab employees describe the 

huge effort and time lags required to market technologies to the right companies, 

implying that licensing is very slow to respond to secular technology-sector trends. 

4.2. Regression Framework 

I use patent citations to infer the effect that a patent has had on knowledge 

diffusion; when a patent is cited, I interpret this as the patent in question having 
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spurred a subsequent invention (Jaffe et al., 1993; Jaffe and Trajtenberg, 1996, 1999). In 

the baseline specifications, the key dependent variable of interest is the annual citations 

that a patent receives. In each specification, I estimate the causal effect of a patent being 

licensed on the rate of citations it receives. In this section, I present a set of regression 

models that build up from simple cross-section and time-series regressions to full 

difference-in-difference regressions. The specifications that I implement are inspired by 

previous work that has estimated the causal effect of events on patent or paper-level 

citation rates (e.g. inventors changing firms, filed patents being eventually granted, and 

contested patents being ruled invalid) (Murray and Stern, 2007; Singh and Agrawal, 

2011; Furman and Stern, 2011; Galasso and Schankerman, 2013; Drivas et al., 2014). In 

the specifications I discuss below, I also apply the matching approaches described in 

Section 4.1 to preprocess the data to reduce selection bias and model dependence.  

The simplest models to quantify the effect of a patent being licensed takes either 

1) a cross-section of licensed and unlicensed patents and compares citation rates or 2) a 

time series of licensed patents and compares citation rates before and after licensing. 

These two models suffer from selection bias as they do not account for the differential 

quality of licensed versus unlicensed patents nor possible secular trends driving both 

licensing and citations. Nevertheless, I present these models for comparison. 

The cross-section regression is estimated with the equation 

𝐶𝐼𝑇𝐸𝑆𝑖,𝑡 = 𝑓(𝜓𝐿 𝐸𝑉𝐸𝑅_𝐿𝐼𝐶𝐸𝑁𝑆𝐸𝐷𝑖 + 𝛿𝑖,𝑡 + 𝛾𝑡 + 휀𝑖,𝑡). (1) 

In this equation, 𝐶𝐼𝑇𝐸𝑆𝑖,𝑡 are citations received by patent 𝑖 in year 𝑡, 

𝐸𝑉𝐸𝑅_𝐿𝐼𝐶𝐸𝑁𝑆𝐸𝐷𝑖 is a dummy variable equal to 1 if patent 𝑖 is licensed and 0 if the patent 

is not licensed, 𝛿𝑖,𝑡 are fixed effects for a patent’s age (based on the filing year of the 

patent), and 𝛾𝑡 are fixed effects for the citing year. 𝜓𝐿 is the coefficient of interest as it 

estimates the difference in citation rate for licensed patents relative to unlicensed 

patents. This regression is estimated using data on the post-licensing period only, using 

the post-period for unlicensed patents defined by their matched pair that was licensed.  
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The time series regression is estimated with the equation 

𝐶𝐼𝑇𝐸𝑆𝑖,𝑡 = 𝑓(𝜓𝐿𝑃 𝐿𝐼𝐶𝐸𝑁𝑆𝐸𝐷𝑖,𝑡 + 𝛿𝑖,𝑡 + 𝛾𝑡 + 휀𝑖,𝑡). (2) 

𝐿𝐼𝐶𝐸𝑁𝑆𝐸𝐷𝑖,𝑡 is a dummy variable that takes the value 1 if patent 𝑖 in year 𝑡 has 

been licensed and is 0 otherwise. This equation is estimated only for patents that are 

eventually licensed. 𝜓𝐿𝑃 is the coefficient of interest as it represents the change in 

citation rate for a patent that is licensed relative to its citation rate before it is licensed.  

The cross-section and time series regressions are biased due to selection. I 

estimate these models for a sample of patents where licensed patents are matched to 

unlicensed patents based on their pre-licensing characteristics. This helps to partially 

correct for bias by balancing observed omitted variables. However, bias still clearly 

remains due to unobserved patent-level factors.  

A difference-in-difference approach more rigorously estimates causal effects by 

accounting for systematic time-invariant differences between licensed and unlicensed 

patents and patent-invariant differences between patents of different ages. The basic 

difference-in-difference regression is estimated with the equation 

𝐶𝐼𝑇𝐸𝑆𝑖,𝑡 = 𝑓(𝜓𝐿 𝐸𝑉𝐸𝑅_𝐿𝐼𝐶𝐸𝑁𝑆𝐸𝐷𝑖 + 𝜓𝐿𝑃 𝐿𝐼𝐶𝐸𝑁𝑆𝐸𝐷𝑖,𝑡 + 𝜓𝑃 𝑃𝑂𝑆𝑇𝑖,𝑡 + 𝛿𝑖,𝑡 + 𝛾𝑡 + 휀𝑖,𝑡). (3) 

𝑃𝑂𝑆𝑇𝑖,𝑡 is a dummy variable equal to 1 if a licensed patent has been licensed by 

year 𝑡 or if the matched licensed patent for a never licensed patent has been licensed by 

year 𝑡. This approach makes a strong assumption that matching finds comparable pairs, 

as contrasted with the more lenient assumption that matching achieves covariate 

balance overall between licensed and unlicensed patents (Rubin, 2006). A natural 

extension to this model is to add, 𝛼𝑖 matched-pair fixed effects to account for the fixed 

characteristics of matched pairs: 

𝐶𝐼𝑇𝐸𝑆𝑖,𝑡 = 𝑓(𝜓𝐿 𝐸𝑉𝐸𝑅_𝐿𝐼𝐶𝐸𝑁𝑆𝐸𝐷𝑖 + 𝜓𝐿𝑃 𝐿𝐼𝐶𝐸𝑁𝑆𝐸𝐷𝑖,𝑡 + 𝜓𝑃 𝑃𝑂𝑆𝑇𝑖,𝑡 + 𝛼𝑖 + 𝛿𝑖,𝑡 + 𝛾𝑡 + 휀𝑖,𝑡). (4) 

A more rigorous approach to estimating a difference-in-difference regression 

relaxes the assumption of strict matched-pair design, instead relying on matching for 

covariate balance. In this approach, patent-level fixed effects account for all fixed 
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unobserved heterogeneity of individual patents. This regression is estimated with the 

equation 

𝐶𝐼𝑇𝐸𝑆𝑖,𝑡 = 𝑓(𝜓𝐿𝑃 𝐿𝐼𝐶𝐸𝑁𝑆𝐸𝐷𝑖,𝑡 + 𝜎𝑖 + 𝛿𝑖,𝑡 + 𝛾𝑡 + 휀𝑖,𝑡) (5) 

where 𝜎𝑖 represent patent-level fixed effects. As before, 𝜓𝐿𝑃 is the coefficient of 

interest. However, in this equation, the coefficient represents the difference in citations 

from licensing relative to the change in citations for unlicensed patents at similar 

relative ages.  

Finally, the difference-in-difference regression can be disaggregated to estimate 

yearly effects of licensing, meaning the effect of licensing on citations in specific years 

prior to and following licensing. This regression is estimated with the equation 

𝐶𝐼𝑇𝐸𝑆𝑖,𝑡 = 𝑓 ( ∑ 𝜓𝑃𝑅𝐸𝑗

𝑗=1…10

𝑃𝑅𝐸_𝐿𝐼𝐶𝐸𝑁𝑆𝐸(𝑗)𝑖,𝑡 + ∑ 𝜓𝑃𝑂𝑆𝑇𝑘

𝑘=1…10

𝑃𝑂𝑆𝑇_𝐿𝐼𝐶𝐸𝑁𝑆𝐸(𝑘)𝑖,𝑡

+ 𝜎𝑖 + 𝛿𝑖,𝑡 + 𝛾𝑡 + 휀𝑖,𝑡) 

(

(6) 

which estimates ten coefficients on yearly difference-in-difference effects prior to 

licensing, 𝜓𝑃𝑅𝐸_𝑗, and ten yearly coefficients after licensing, 𝜓𝑃𝑂𝑆𝑇_𝑘. Matching to improve 

balance in pre-licensing covariates should effectively make each estimated 𝜓𝑃𝑅𝐸_𝑗 close to 

zero, as these coefficients represent differences in citation rates prior to licensing.  

Each of these regression models uses annual forward citations as the dependent 

variable. Most simply and easiest to interpret is a linear model which is well suited to 

applications with many fixed effects (the incidental parameter problem with non-linear 

models is not a concern with OLS). However, because citations are a right-skewed  count 

variable (Scherer and Harhoff, 2000), there are several options available to specify 

alternative functional forms. Non-linear models for count data, such as the negative 

binomial model, explicitly account for features of count data and can be more appropriate 

in some contexts. The negative binomial model is a more-flexible extension of the Poisson 

regression but cannot account for patents that never receive any citations (see Angrist 
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and Pischke [2009] for a discussion of tradeoffs between linear models and non-linear 

models suited for different types of dependent variables). Finally, for comparability to 

other studies in the literature, I also estimate a log-linear specification. To avoid the 

problem of the negative binomial model in accounting for never-cited patents, other 

studies in the patent literature transform the dependent variable by adding 1 before 

taking the log (Murray and Stern, 2007). For comparability to the previous literature, I 

present this functional form, but it is known to be problematic.     

5. Results 

This section presents the results from the application of the text analysis, 

matching, and regression frameworks presented in Section 4. First, I present the main 

regression results from applying Equations (1)-(6) to the preferred matched dataset of 

patents. I then examine the extent to which diffusion may be localized to one firm 

repeatedly innovating. Turning to mechanisms, one concern is that licensing could drive 

strategic patenting in technology areas that competitor firms now see as more desirable 

to enter. I account for this by looking at the citation rates of the citing patents 

themselves, noting that strategic patents are not cited often.  

5.1. Diffusion after Licensing 

The results of applying Equations (1)-(6) to the preferred matched dataset are 

presented in Table 6. Models (1)-(6) in Table 6 correspond to Equations (1)-(6). Model (1) 

shows that in the post-licensing period, licensed patents receive 0.344 (SE = 0.100) more 

citations than unlicensed patents. In this model and in models (2)-(4), the post-period for 

unlicensed patents is defined by the matched licensed patent. A cross-section regression 

of this form is typically biased because pre-treatment citation rates between licensed and 

unlicensed patents could differ. However, this is mitigated by the matching algorithm 

which used pre-treatment citations as a balancing covariate. Nevertheless, this 
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regression may still suffer from other forms of omitted variable bias due to differences in 

licensed and unlicensed patents.  

Model (2) in Table 6 shows that licensed patents receive 0.520 (SE = 0.155) 

additional citations per year after being licensed relative to their pre-license citation 

rate. Again this regression is biased if there are other factors that occur simultaneously 

at the time of licensing. Age and citing-year fixed effects do help reduce some of these 

concerns, but the lack of a suitable control group in this regression may bias this 

estimate.  

Models (3) and (4) in Table 6 present difference-in-difference regressions that now 

control for heterogeneity in time-invariant differences between licensed and unlicensed 

patents as well as differences between pre-license and post-license periods. Model (4) 

adds fixed effects for each matched pair, which controls for a more specific layer of time-

invariant heterogeneity. Because the matching algorithm already balanced licensed and 

unlicensed patents on pre-treatment citations, it is not surprising that the coefficient 

estimates in these regressions are similar to the results of Model (1) and that the 

coefficient on EVER_LICENSED is close to zero. In model (3), I estimate an effect of 

licensing of 0.328 (S.E. = 0.091) citations per year without matched-pair fixed effects and 

in model (4), I estimate an effect of licensing, which includes matched-pair fixed effects, 

of 0.335 (S.E. = 0.091).  

Model (5) extends Model (4) by replaced matched-pair fixed effects with patent-

level fixed effects. This relaxes the assumption of matching by allowing for separate 

estimates at the patent-level instead of the pair-level. As a result, EVER_LICENSED 

and POST drop and the coefficient on LICENSED remains the difference-in-difference 

coefficient of interest. I estimate that licensed patents receive 0.223 (SE = 0.066) 

additional citations after being licensed relative to unlicensed patents over similar time 

periods. This estimate represents a 31% increase in the citation rate for licensed patents 
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before they are licensed (from 0.71 cites/year for eventually licensed patents before they 

are licensed). 

Finally, Model (6) in Table 6 extends Model (5) by estimating yearly difference-in-

difference effects of licensing. The coefficients presented in this model are each relative 

to the citation rate in the year the patent (or its matched pair) is licensed. The coefficient 

on the pre-licensing dummy variables are not distinguishable from zero (except for the 

year eight years prior to licensing, although this may be an anomaly), indicating that 

matching on pre-treatment citations worked. In the post-licensing period, the coefficient 

on the second year after licensing dummy is also not distinguishable from zero. However, 

beginning in the third year after licensing, the difference-in-difference rate is 

statistically significant. This effect holds for years three through eight after licensing 

(although the dummy on seven years after licensing is not statistically significant). 

During this period, citations are between 0.253 – 0.465 cites/year higher to licensed 

patents relative to unlicensed patents of comparable age. This represents a 36 – 65% 

increase in the citation rate for licensed patents due to licensing. Nine to ten years after 

licensing, the estimated difference-in-difference coefficient drops, but this is likely due to 

insufficient data on patents that have been licensed for this length of time. The 

surprisingly negative coefficient on the ten year post-licensing dummy is also the least 

precisely estimated of the post-period dummies. The results of Model (6) are presented 

graphically in Figure 7.  

I assess sensitivity to functional form in Table 7. Models (1) and (2) in Table 7 

replicate Models (5) and (6) in Table 6 for comparison. Models (3) and (4) in Table 7 

apply a negative binomial functional form to Equations (5) and (6). Because of 

restrictions in the negative binomial model, patents with no citations over the panel are 

dropped, reducing the number of patent-year observations from 9,357 to 7,640. 

Nevertheless, the estimated coefficients in the negative binomial regressions closely 

match the OLS results in sign and statistical significance. Models (5) and (6) present 
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results from an augmented log-linear regression where the dependent variable is 

transformed by the function log (𝐶𝐼𝑇𝐸𝑆 + 1) to account for its skewness. Again, results 

match closely to the OLS results in both sign and statistical significance.  

Next, I assess sensitivity to the matching algorithm. I rely heavily on matching 

for causal identification, so assessing sensitivity to different decisions in the matching 

algorithm is important. Table 8 shows results from five matching algorithms applied to 

estimating Equation (5). Figure 8 displays these estimates graphically and Figure 9 

displays the results of the thirteen matching approaches applied to estimating Equation 

6. Model (2) in the table is the “preferred specification” and replicates Model (5) in Table 

6. The other models implement matching algorithms as described in Section 4.1. Overall, 

the choice of number of topics does not appear to affect the results as much as choice of 

what to do with the topics (matching on estimated hazard, Mahalanobis distance, or 

CEM on topic peaks). Other than the estimate in Model (6) for the 50-topic model with 

CEM on topic peaks with ties resolved by the estimated hazard, the estimates in models 

(9) – (13) which rely on exact matching on primary USPTO classification are 

systematically larger than the other estimates. These estimates also have larger 

standard errors, most likely due to having dropped a large number of observations to 

create exact matches on the USPTO classes. These findings are generally consistent with 

the Rosenbaum bounds approach shown in Table 5.  Overall, the range of estimates 

across matching approaches represent a 31 – 48% increase in the citation rate to licensed 

patents after licensing. The thirteen approaches to matching produce similar estimates, 

and each approach confirms the overall qualitative thesis of this paper. In fact, the 

preferred specification that I focus on is at the lower end of this range of estimates.   

5.2. Exclusive vs. Non-Exclusive Licenses 

I collected information from the Labs on which patents were exclusively licensed 

or non-exclusively licensed. In general, Lab technology transfer offices prefer to offer less 
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exclusive licenses so as to increase the number of users who can access their 

technologies, whereas licensees prefer greater exclusivity so as to protect their right. In 

my sample, 49% (430 of 877 patents in the full sample) of licensed patents are 

exclusively licensed. Table 9 adds in a separate variable that interacts the LICENSED 

dummy with a dummy indicating whether the license was on an exclusive basis. The 

coefficient on the interaction term is positive and suggests a 50% increase in follow-on 

innovation relative to non-exclusive licenses. However this difference is not statistically 

significant, indicating that this difference is not precisely estimated. Because non-

exclusive licenses still typically are exclusive within their field of use or within a 

geographic region, this finding is not completely surprising.  

In terms of mechanisms, a license agreement can cause greater follow-on 

innovation either through a signaling effect or a learning-by-doing effect. A non-

exclusive license and exclusive license would seem to suggest an equal signal but provide 

greater incentives for learning-by-doing, as a firm is likely to have a greater market 

share under exclusive licensing. This result provides preliminary evidence that the 

learning-by-doing effect is greater than the signaling effect, as exclusive licensing adds 

approximately 50% additional citations.   

5.3. Breadth vs. Concentration of Spillovers 

When follow-on innovation occurs only within a licensing firm, there is no positive 

externality associated with licensing. Therefore, the broad diffusion of follow-on 

innovation is important to understand for evaluating the impact of licensing.  

Licensing grants a single firm the right to commercialize a patented invention in 

a field of use. One concern with the empirical findings presented in Section 5.1 is that 

the increased citation rate to licensed patents could be driven by the licensing firm 

repeatedly developing follow-on inventions from its licensed patent. This would suggest 

that while licensing leads to follow-on innovation, benefits from induced innovations 
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would be captured by the licensing firm exclusively. To investigate this concern, I create 

a new dependent variable that counts citations only from patents with assignees who 

have not already filed a patent citing this same patent. For example, if a patent is cited 

five times by a single firm, I only count this as one unique citation. Table 10 presents 

results from regressions with this modified dependent variable. Model (1) replicates 

Model (5) from Table 6 for comparison. Model (2) uses the dependent variable of only 

citations from first-time citers. This model estimates a positive and significant 

difference-in-difference coefficient, showing that knowledge diffusion from licensing does 

occur beyond just the licensing firm.  

Comparing the magnitudes of the coefficients in Model (1) to Model (2) in Table10 

reveals that citations are still concentrated in assignees to a degree. Although I am not 

able to observe which citing assignees are the licensees, the most conservative 

interpretation would be to assume that all citations from repeated assignees could be 

from the licensee. Therefore, comparing these coefficients suggests that at least 76% 

(0.169 / 0.223) of the estimated effect in Model (1) is driven by citations from assignees 

other than the licensing firm.      

5.4. Accounting for Strategic Patenting and Signaling  

Sections 5.1 – 5.3 have established that licensing increases the rate of citation to 

licensed patents relative to unlicensed patents of comparable age. The increased rate of 

citations may not necessarily suggest that knowledge is diffusing if citations are 

accruing to licensed patents for strategic reasons. For example, when a National Lab 

patent is licensed to a firm, competitor firms may take this as a signal that firms are 

moving in a certain technological direction. In response these firms could file defensive 

or “strategic” patents in the area to protect their competitive positions rather than take 

the information signal as a useful indicator of technological promise, as suggested by 

Drivas et al. (2014). Strategic patents are for defensive purposes and do not represent 
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actual knowledge spillovers, yet they still may drive increased citations to the licensed 

patent – in which case these citations would represent demarcations of prior art rather 

than inspiration for follow-on innovation. Previous studies have found that strategic 

patents are cited less often than patents that represent novel inventions (Harhoff et al., 

2003). Therefore, to investigate the mechanisms underlying the results presented 

previously, I define two new independent variables. First, I create a new variable of 

citations that only counts citations from patents that themselves have been cited at least 

once. Second, I create a variable of citations that only counts citations from patents that 

have received at least the median annual rate of citations. This effectively drops all 

citation counts in the dependent variable from patents that received fewer than 0.27 

citations per year. 

Table 11 presents the results of regressions applying Equation (5) to three 

dependent variables: all citations, citations only from patents cited at least once, and 

citations only from patents with at least median citations per year.  Model (1) in Table 

11 again repeats Model (5) in Table 6. In my sample, 35% of citing patents are 

themselves never cited. If never-cited patents were proportionally represented as citers 

to all patents, then the estimate in Model (2) should be approximately 35% less than the 

estimate in Model (1). The estimate from Model (2) is 33% less than the estimate from 

Model (1), suggesting that never-cited patents cite licensed patents approximately just 

as often as average. A similar comparison for Models (3) and (1) can be made. By 

definition, 50% of citing patents are cited less than the median of 0.27 cites per year. 

Therefore, if above-the-median citing patents were evenly distributed, the expected 

coefficient in Model (3) would be half of the coefficient in Model (1). Table 7 shows that 

the coefficient in Model (6) is indeed 50% smaller than the coefficient in Model (1). Taken 

together, these results provide evidence that the additional citations to licensed patents 

due to having been licensed are from patents that are representative of average citing 
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patents and do not tend to be less often cited themselves. Given that strategic patents 

are cited less often, this provides evidence against a strong strategic patenting effect.  

6. Discussion and Conclusion 

Public innovation policy is oriented toward enhancing basic scientific 

understanding and developing fundamental inventions without immediate commercial 

application. Yet public R&D has led to new technologies, such as the Internet, GPS, and 

radar, which have dramatically altered the economy and improved well-being. While 

initial investment in these inventions relied on public support, development of the 

majority of these inventions into the products and processes that made these inventions 

revolutionary required large private investment.  

Beginning with the Stevenson-Wydler and Bayh-Dole Acts of 1980, national 

policy reforms over the past 30 years have greatly increased the intellectual property 

protection surrounding publicly sponsored inventions, decreasing public access to 

utilizing these technologies. Yet despite this decreased access, the diffusion of 

technological knowledge created by public R&D funding has not similarly decreased.  

In this paper, I have shown that in the context of five U.S. National Labs, 

technology transfer agreements that license patents to private firms have increased the 

rate of spillovers from publicly sponsored inventions. This empirical finding, 

corroborated through a variety of statistical methods to account for unobserved 

heterogeneity and selection bias, provides new evidence for the role of intellectual 

property protection in increasing the benefits to publicly funded R&D. By making 

technological knowledge appropriable, patenting allows public institutions to transfer 

the right to utilize a public invention for the purpose of commercializing the technology 

in the “market for ideas” (Gans and Stern, 2010). In this paper, I find evidence that the 

incentives to commercialize a licensed technology lead to a net positive change in follow-

on invention and that this effect is driven not just by the licensing firm, but by invention 
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in firms that did not have access to the licensed technology. Instead these firms may 

either learn useful information about licensed government patents or may have still 

gained experience with downstream products and processes resulting from 

commercialization. This implies that at least for the case of publicly sponsored 

inventions, the spillover effects of licensing a patent cannot be fully appropriated by the 

licensing firm.  

This research is also provides an important improvement on existing approaches 

to evaluating technology transfer, which have often relied on short-term and easy-to-

measure metrics. Recent policy evaluation initiatives have called for improved 

measurement of technology transfer efforts (U.S. Government Accountability Office, 

2009; The White House, 2011, 2014; Stepp et al., 2013), and the focus of this paper on 

measuring the social impacts of technology transfer through its effect on follow-on 

innovation would be a useful contribution to this discussion.  

Methodologically, the matching algorithms presented in this paper could be 

usefully extended to study other problems in the innovation literature. In this work, I 

have focused on patent abstracts to find comparable patents, but future work could apply 

text classification to the claims within patents to understand which patents draw on 

more diverse prior art or establish new technologies that are cross-disciplinary. This 

would be a particularly useful extension of this mixed-membership model.  

Clearly, not all innovations (and not even all important innovations) are captured 

by patents. While the results presented in this paper apply to patented inventions, the 

recurrent problems associated with drawing inferences about innovation more broadly 

from patent data persist. However, the context for this work is over transactions in the 

market for innovations, and these markets rely on patents heavily to develop 

contractible assets. Therefore, the conclusions of this work do have important 

implications for understanding the general dynamics of innovation and knowledge 

diffusion. 
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Licensing a technology to a private firm requires IP protection. In this paper, I 

show that licensing an already patented invention increases the rate of knowledge 

diffusion. The magnitude of the effect I estimate can be usefully compared to other 

research that has studied the effect of patenting on knowledge diffusion. Such 

comparisons can provide insight on whether patenting and licensing considered together 

positively or negatively effects knowledge diffusion relative to putting a publicly 

discovered invention into the public domain. Galasso and Schankerman (2013) estimate 

that removing patent protection on highly valuable patents increases the citation rate to 

these patents by 50%18. The estimates I present in this paper would suggest that 

licensing cuts the effect of patenting on knowledge diffusion impediment by more than 

half. This suggests that for the sole objective of increasing knowledge diffusion, patented 

inventions should be licensed but unpatented inventions should not be patented because 

diffusion effects are even higher for inventions in the public domain. However, from the 

perspective of maximizing the net social benefit of public R&D over time, policy must 

assess the tradeoff between developing discovered inventions for use in the short-run 

through greater IP protection with greater knowledge diffusion to create new inventions 

in the long-run. At the margin, technology transfer is a win-win policy as it both drives 

private investment into developing technologies in the short-run and also increases the 

rate of follow-on innovation for the long-run. 

 

  

                                                
18 Murray and Stern (2007) find that citations to academic papers decline 10-20% when a patent that covers 

the same invention disclosed in the paper is granted. While citations to papers and patents are very 

different, the magnitude of the effect is still a useful benchmark.  
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Figures and Tables 

 

Figure 1. Time series of federal funding for R&D. The red line shows the fraction of 

R&D funded by the federal government from 1953 – 2011. The black line shows the 

fraction of federally funded R&D that is performed by the federal government directly or 

by a federally funded R&D center (FFRDC). Data and definitions adopted from the 

National Science Board (2014).  
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Figure 2. Location of the 17 U.S. National Labs under DOE. The U.S. 

Department of Energy is the steward for seventeen National Labs. Within DOE, ten of 

the labs are managed by the Office of Science, three are managed by the National 

Nuclear Security Administration, and the remaining four are managed by the Office of 

Energy Efficiency & Renewable Energy, the Office of Fossil Energy, the Office of 

Nuclear Energy, and the Office of Environmental Management. The five labs that I 

study in this paper are the Brookhaven, Lawrence Berkeley, Pacific Northwest, Sandia, 

and National Energy Technology Laboratories. Figure credit: DOE Office of Science 

(2013).  
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Figure 3. Patenting and Licensing of Federally Funded R&D by Sponsoring 

Agency (2008 – 2010). Data collected from federal agencies by the National Institute of 

Standards and Technology (2011).  

 

 

 

 

Figure 4. Distribution in the Lag between Patent Filing and Licensing  
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Figure 5. Example classification of a patent using the LDA model. In this 

example, I show how U.S. patent 6,887,069 was classified under and LDA model with 25 

topics applied to the subgroup of patents in my dataset from the National Energy 

Technology Lab. The patent abstract is shown at the top, with individual words 

highlighted in colors corresponding to the five most frequent topics for this document. In 

the box below the abstract, the topic distributions for the corpus are shown with words 

within topics arranged in descending order of likelihood to occur within the topic. 

Overlaid on top of the word-within-topic distributions is the distribution of topics within 

this particular patent, shown in blue bars. This distribution is the key output of the LDA 

model for my analysis as it gives a continuous measure of the patent abstract’s 

substantive content.  
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Figure 6. Estimated Hazard Ratios for Each Topic. Estimated hazard ratios can be 

used to predict how likely a given patent is to be licensed. Topics are arranged from 

lowest to highest hazard, where HR = 1 means no effect on probability of license. These 

estimates inform the predicted HR’s for each patent, the key input for matching 
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Figure 7. Annual Difference-in-Difference Estimates. Estimated diff-in-diff coefficients 

associated with individual years before and after licensing. Beginning 2 years after licensing, 

citations increase by about 0.25 – 0.47 cites/year through 8 years after licensing. Quantitative 

estimates shown in Model (6) in Table 2  
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Figure 8. Sensitivity of coefficient estimates under different matching 

procedures. Estimates and 95% confidence intervals are shown for the matching 

procedures described in Section 4.1 for the regression model described by Equation 

5.  
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Figure 9. Sensitivity of coefficient estimates under different matching 

procedures. Estimates (red lines) and 95% confidence intervals (black dashed lines) are 

shown for the matching procedures described in Section 4.1 for the regression model 

described by Equation 6. 
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Table 1. Summary Statistics of R&D, Patenting, and Licensing by Lab Operator. Summary of 

R&D expenditure, patenting, and licensing for the National Labs disaggregated by Lab operator type and 

also showing the sample of five labs examined in this paper. Summaries of ratios of patenting per million 

dollars of R&D expenditure and licensing income per license also shown. All variables are three-year 

averages for 2009-2011 except for R&D expenditure, which is shown at 2011 levels. For comparison, in 

2011, all U.S. universities patented at a rate of 0.19 patent applications and 0.07 granted patents per 

million dollars of R&D (DOE Office of Energy Efficiency and Renewable Energy, 2012; National Science 

Board, 2014). 

 

 
 

 

 

  

Operator 

Type

R&D 

Expenditure 

($ mil, FY 2011)

Patents Filed per 

R&D 

Expenditure

(patents / $ mil)

Patents Granted 

per R&D 

Expenditure

(patents / $ mil)

Patents Licensed 

per Patent Filed 

Patent Licensing 

Income

($ mil)

Patent Licensing 

Income per 

Licensed Patent

($ / patent)

Patent Licensing 

Income as 

Fraction of R&D 

Expenditure

University 2,453 0.07 0.03 11% 13.48 62,235 0.74%

Non-Profit 3,568 0.07 0.03 35% 12.80 18,525 0.28%

Government 753 0.01 0.01 13% 0.05 4,674 0.00%

Industry 6,569 0.07 0.03 13% 12.81 25,305 0.19%

Aggregate 13,343 0.06 0.03 18% 39.15 27,484 0.30%

Sample 5,441 0.06 0.03 23% 15.68 20,057 0.23%
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Table 2. Descriptive Statistics at the Patent-Level and the Patent-Year-Level. Summaries of key 

parameters for all patents and the subset of patents that are ever licensed aggregated by observations at 

the patent-level and the patent-year level. 

 

(a) Descriptive statistics at the patent-level 

 

 
 

 

(b) Descriptive statistics at the patent-year-level 

 

 
 

 

  

Obs. Mean St. Dev. Min Max Obs. Mean St. Dev. Min Max

Lab = LBNL 2,796 0.16 0.36 0 1 877 0.14 0.34 0 1

Lab = NETL 2,796 0.10 0.30 0 1 877 0.02 0.14 0 1

Lab = PNNL 2,796 0.23 0.42 0 1 877 0.54 0.50 0 1

Lab = SNL 2,796 0.44 0.50 0 1 877 0.27 0.44 0 1

Lab = BNL 2,796 0.07 0.25 0 1 877 0.04 0.19 0 1

Filing Date (Year) 2,796 2005.78 3.60 2000.09 2013.99 877 2004.34 3.06 2000.09 2012.80

Grant Date (Year) 2,796 2008.87 3.83 2001.32 2014.79 877 2007.61 3.46 2001.42 2014.79

License Date (Year) 877 2005.50 3.61 2000.12 2013.42

Grant Delay (Years) 2,796 3.09 1.49 0.25 11.17 877 3.26 1.61 0.46 11.17

Total Cites 2,796 7.92 18.51 0 252 877 12.14 22.75 0 236

Ever Licensed 2,796 0.31 0.46 0 1 877 1.00 0.00 0 1

Ever Licensed Exclusive 2,796 0.15 0.36 0 1 877 0.49 0.50 0 1

All Patents Ever Licensed Patents

Obs. Mean St. Dev. Min Max Obs. Mean St. Dev. Min Max

Year 27,402 2008.94 3.69 2000 2014 9,852 2008.47 3.78 2000 2014

Age from Filing 27,402 5.06 3.69 0 14 9,852 5.53 3.78 0 14

Cites 27,402 0.80 2.32 0 51 9,852 1.08 2.58 0 42

Cites from Unique Assignees 27,402 0.38 1.06 0 33 9,852 0.63 1.50 0 33

Cites from Non-Zero Cited 27,402 0.43 1.62 0 35 9,852 0.59 1.85 0 34

Cites from Above Median Cited 27,402 0.33 1.37 0 30 9,852 0.45 1.50 0 24

Already Granted 27,402 0.69 0.46 0 1 9,852 0.71 0.45 0 1

Already Licensed 27,402 0.30 0.46 0 1 9,852 0.83 0.37 0 1

Already Licensed Exclusively 27,402 0.18 0.38 0 1 9,852 0.49 0.50 0 1

All Patents Ever Licensed Patents
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Table 3. Conditional means of annual citations for the full sample and matched sample 

approximating naïve single-difference and difference-in-difference regressions. 

 

(a) Citations per year for patents that are never licensed and patents that are licensed 

during the time period of the panel 

 

 
 

(b) Citations per year for patents in the preferred matched sample before and after licensing 

(or licensing of matched patent). The difference in difference estimate in the bottom right 

approximate the regression results shown below but without additional controls. 

 

 
 

 

 

 

  

Pre-Licensing Post-Licensing Post - Pre

Never Licensed 0.85 n/a n/a

Ever Licensed 1.40 1.59 0.20

Licensed - Unlicensed 0.54 n/a n/a

Pre-Licensing Post-Licensing Post - Pre

Never Licensed 0.70 0.83 0.14

Ever Licensed 0.71 1.53 0.82

Licensed - Unlicensed 0.01 0.70 0.69
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Table 4. Balance Check. Comparison of conditional means of key patent-level variables for licensed and 

unlicensed patents in the full sample and the preferred matched sample.  

 

 
 

 

 

Table 5. Sensitivity Analysis with Different Matching Approaches. Average treatment effects, 

standard errors, t-statistics, and Rosenbaum Bounds sensitivity parameters for seven matching 

approaches. Estimates are for a subsample of the data of treated patents that are licensed in the same 

year that they are filed in (making all citations in the post-licensing period for ease of comparison).  

 

Matching Model 
ATT Difference in Citations  

(Licensed - Unlicensed) 
Std. Error t-Statistic  Γ 

No Matching 0.71 0.11 6.66 n/a 

Baseline 0.24 0.36 0.67 n/a 

Baseline + PTO Class 0.62 0.16 3.97 1.34 

Baseline + 25 topic model 0.58 0.18 3.21 1.64 

Baseline + 50 topic model 0.63 0.17 3.82 1.45 

Baseline + PTO Class + 25 topic model 0.55 0.18 3.11 1.20 

Baseline + PTO Class + 50 topic model 0.69 0.20 3.43 1.59 

*Note: Baseline propensity score model includes filing year and lab fixed effects. Standard errors and t-statistics 

are heteroskedasticity-consistent as proposed by Abadie and Imbens (2006) using 20 nearest neighbors. 

 

  

p-value

2003.766 2005.855 2.088 *** <0.0001

2007.022 2008.865 1.843 *** <0.0001

2002.114 2004.684 2.570 *** <0.0001

1190.032 1099.118 -90.914 *** <0.0001

Observations

p-value

2003.365 2003.474 0.109 0.5850

2006.756 2006.739 -0.016 0.9473

2002.422 2002.519 0.096 0.6607

1231.788 1188.940 -42.847 0.2940

Observations

* p < 0.5, ** p < 0.01, ***, p < 0.001

Filing Year

Grant Year

(40.806)

Matched Licensed 

Patents

(0.139)

(0.173)   

(0.156)

(9.026)   

Grant Delay (Days)
(19.864)   (11.843) (22.073)

(28.679)

Priority Year

Grant Delay (Days)

Priority Year
(0.106) (0.097) (0.161)

(0.155)

Grant Year
(0.117)   (0.088) (0.152)

(0.172)

Filing Year
(0.103) (0.083) (0.141)

404

(0.142) (0.199)

(0.244)

(0.220)

Matched Unlicensed 

Patents

Difference

(Matched Sample)

404

877 1,919

Difference 

(Full Sample)
Licensed Patents All Unlicensed Patents
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Table 6. Baseline Regression Estimates. Regression equations as described in Section 4.2. Models (1) 

– (6) correspond to Equations (1) – (6). Standard errors clustered at the patent level in models (1) – (2) 

and (5) – (6) and clustered at the matched-patent level in models (3) – (4). 

 

Dependent Variable

Functional Form

Matched Sample

0.344 *** 0.015 -0.015

0.520 *** 0.328 *** 0.335 *** 0.223 ***

0.145 -0.046

-0.294

-0.310

-0.566 *

-0.040

0.106

0.049

0.007

0.095

-0.031

-0.055

0.184 *

0.123

0.372 **

0.358 **

0.445 ***

0.381 *

0.253

0.465 ***

0.155

-0.379 *

Age Fixed Effects?

Citing Year Fixed Effects?

Matched Pair Fixed Effects?

Patent Fixed Effects?

Observations

Number of Patents

Adj. R-Squared

* p < 0.5, ** p < 0.01, ***, p < 0.001

PRE_LICENSE(8)

PRE_LICENSE(9)

PRE_LICENSE(10)

POST

LICENSED

PRE_LICENSE(2)

PRE_LICENSE(3)

PRE_LICENSE(4)

PRE_LICENSE(5)

PRE_LICENSE(6)

PRE_LICENSE(7)

POST_LICENSE(5)

POST_LICENSE(4)

POST_LICENSE(3)

POST_LICENSE(2)

POST_LICENSE(1)

PRE_LICENSE(1)

Yes

Yes

No

Yes

EVER_LICENSED

POST_LICENSE(10)

POST_LICENSE(9)

POST_LICENSE(8)

POST_LICENSE(7)

POST_LICENSE(6)

Yes

Yes Yes

Yes

No

No

0.093 0.102

No

No No

No

Yes

No

(0.191)

9,357 9,357

808 808

Yes

Yes

No

Yes

(0.140)

(0.140)

(0.144)

(0.114)

(0.126)

(0.164)

(0.091)

(0.090)

(0.123)

(0.084)

(0.080)

(0.066)

(0.126)

(0.137)

(0.121)

(0.269)

(0.246)

(0.218)

(0.066)

(0.249)

OLS OLS

Preferred matching Preferred matching

0.096 0.086

(5) (6)

Diff-in-Diff

patent FE

Diff-in-Diff

patent FE

yearly effects

All Cites All Cites

9,357 9,357

808 808

Yes

Yes

Yes

Yes

(0.091) (0.091)

(0.110) (0.067)

OLS OLS

Preferred matching Preferred matching

(0.021) (0.015)

(3) (4)

Diff-in-Diff Diff-in-Diff

matched pair FE

All Cites All Cites

4,712

404

0.127

(0.155)

(2)

Time-Series

All Cites

OLS

Preferred matching

licensed patents only

(1)

(0.100)

0.094

808

6,621

Preferred matching 

post-license period

All Cites

OLS

Post-Licensing

Cross-Section
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Table 7. Robustness to Functional Form.  

 

Dependent Variable

Functional Form

Matched Sample

0.223 *** 0.265 *** 0.067 **

-0.294 -0.659 -0.180

-0.310 -0.966 * -0.220 *

-0.566 * -1.018 ** -0.248 **

-0.040 -0.422 -0.051

0.106 -0.170 0.012

0.049 -0.246 -0.026

0.007 -0.152 -0.034

0.095 0.036 0.030

-0.031 -0.076 -0.036

-0.055 0.001 -0.025

0.184 * 0.231 * 0.040

0.123 0.176 0.013

0.372 ** 0.375 *** 0.075 *

0.358 ** 0.396 *** 0.096 **

0.445 *** 0.500 *** 0.119 ***

0.381 * 0.486 *** 0.104 **

0.253 0.464 *** 0.064

0.465 *** 0.783 *** 0.182 ***

0.155 0.605 *** 0.097

-0.379 * 0.338 -0.043

Age Fixed Effects?

Citing Year Fixed Effects?

Matched Pair Fixed Effects?

Patent Fixed Effects?

Observations

Number of Patents

Log Likelihood

Wald Chi-Squared

Adj. R-Squared

* p < 0.5, ** p < 0.01, ***, p < 0.001

-5,967.6

880.4

(0.096)

(0.079)

(0.049)

(0.050)

(0.042)

(0.035)

(0.036)

(0.037)

(0.044)

(0.047)

(0.050)

(0.062)

(0.030)

(0.029)

(0.029)

(0.029)

(0.033)

(0.033)

-5,993.1

839.6

0.093 0.102 0.152 0.160

808 808 615 615 808 808

9,357 9,357 7,640 7,640 9,357 9,357

Yes Yes Yes Yes Yes Yes

No No No No No No

Yes Yes Yes Yes Yes Yes

(0.195)

Yes Yes Yes Yes Yes Yes

POST_LICENSE(10)
(0.191)

(0.134)

POST_LICENSE(9)
(0.144) (0.157)

POST_LICENSE(8)
(0.140)

(0.119)

POST_LICENSE(7)
(0.140) (0.132)

POST_LICENSE(6)
(0.164)

(0.104)

POST_LICENSE(5)
(0.126) (0.109)

POST_LICENSE(4)
(0.114)

(0.100)

POST_LICENSE(3)
(0.123) (0.099)

POST_LICENSE(2)
(0.090)

(0.109)

POST_LICENSE(1)
(0.091) (0.098)

PRE_LICENSE(1)
(0.066)

(0.130)

PRE_LICENSE(2)
(0.080) (0.124)

PRE_LICENSE(3)
(0.084)

(0.174)

PRE_LICENSE(4)
(0.121) (0.155)

PRE_LICENSE(5)
(0.137)

(0.238)

PRE_LICENSE(6)
(0.126) (0.191)

PRE_LICENSE(7)
(0.218)

(0.411)

PRE_LICENSE(8)
(0.246) (0.340)

PRE_LICENSE(9)
(0.269)

PRE_LICENSE(10)
(0.249) (0.455) (0.093)

(0.095)

LICENSED
(0.066) (0.068) (0.022)

Preferred matching Preferred matching Preferred matching Preferred matching Preferred matching Preferred matching

OLS OLS Negative Binomial Negative Binomial OLS Log-Linear OLS Log-Linear

All Cites All Cites All Cites All Cites ln(All Cites + 1) ln(All Cites + 1)

Diff-in-Diff

patent FE

Diff-in-Diff

patent FE

yearly effects

Diff-in-Diff

patent FE

Diff-in-Diff

patent FE

yearly effects

Diff-in-Diff

patent FE

Diff-in-Diff

patent FE

yearly effects

(1) (2) (3) (4) (5) (6)
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Table 8. Robustness to Matching Design.  

 
 

  

Dependent Variable

Functional Form

Matched Sample

0.217 *** 0.223 *** 0.244 *** 0.248 *** 0.243 ***

Age Fixed Effects?

Citing Year Fixed Effects?

Matched Pair Fixed Effects?

Patent Fixed Effects?

Observations

Number of Patents

Adj. R-Squared

Dependent Variable

Functional Form

Matched Sample

0.340 *** 0.251 *** 0.337 *** 0.313 ** 0.284 **

Age Fixed Effects?

Citing Year Fixed Effects?

Matched Pair Fixed Effects?

Patent Fixed Effects?

Observations

Number of Patents

Adj. R-Squared

Dependent Variable

Functional Form

Matched Sample

0.334 *** 0.304 ** 0.324 ***

Age Fixed Effects?

Citing Year Fixed Effects?

Matched Pair Fixed Effects?

Patent Fixed Effects?

Observations

Number of Patents

Adj. R-Squared

* p < 0.5, ** p < 0.01, ***, p < 0.001

No

2,869 2,962 2,979

Yes Yes Yes

Diff-in-Diff

patent FE

Diff-in-Diff

patent FE

Diff-in-Diff

patent FE

Yes

648 711 655 273 277

(0.099) (0.097)

Yes Yes Yes Yes Yes

All Cites

Topic Peaks + Hazard

(50 topics)

Topic Peaks + 

Distance (25 topics)

Topic Peaks + 

Distance (50 topics)
PTO Primary Class

PTO Primary Class + 

Hazard (25 topics)

0.090 0.093 0.108 0.099 0.090

809 808 810 815 709

9,377 9,357 9,366 9,441 8,134

Yes Yes Yes Yes Yes

No No No No No

Yes Yes Yes Yes Yes

Yes Yes Yes Yes Yes

(6) (7) (8)

0.087 0.093 0.092

268 278 280

Yes Yes Yes

No No

LICENSED

Yes Yes Yes

(0.102) (0.098) (0.098)

PTO Primary Class + 

Hazard (50 topics)

PTO Primary Class + 

Distance (25 topics)

PTO Primary Class + 

Distance (50 topics)

OLS OLS OLS

All Cites All Cites All Cites

(11) (12) (13)

0.099 0.103 0.099 0.097 0.088

7,349 8,176 7,431 2,904 2,968

Yes Yes Yes Yes

No No No No No

LICENSED

Yes Yes Yes Yes Yes

(0.064) (0.062) (0.064)

OLS OLS OLS OLS OLS

All Cites All Cites All Cites All Cites

Diff-in-Diff

patent FE

Diff-in-Diff

patent FE

Diff-in-Diff

patent FE

Diff-in-Diff

patent FE

Diff-in-Diff

patent FE

(9) (10)

LICENSED
(0.067)       (0.066) (0.060) (0.059) (0.070)

Hazard

(25 topics)

Hazard

(50 topics)

Distance

(25 topics)

Distance

(50 topics)

Topic Peaks + Hazard

(25 topics)

OLS OLS OLS OLS OLS

All Cites All Cites All Cites All Cites All Cites

Diff-in-Diff

patent FE

Diff-in-Diff

patent FE

Diff-in-Diff

patent FE

Diff-in-Diff

patent FE

Diff-in-Diff

patent FE

(1) (2) (3) (4) (5)
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Table 9. Exclusive versus Non-Exclusive Licenses.  

 
 

 

 

 

Table 10. Concentration of Diffusion.  

 
 

  

Dependent Variable

Functional Form

Matched Sample

0.223 *** 0.179 *

0.091

Age Fixed Effects?

Citing Year Fixed Effects?

Matched Pair Fixed Effects?

Patent Fixed Effects?

Observations

Number of Patents

Adj. R-Squared

* p < 0.5, ** p < 0.01, ***, p < 0.001

0.093 0.093

808 808

9,357 9,357

Yes Yes

No No

Yes Yes

Yes Yes

EXCLUSIVE_LICENSED
(0.097)

LICENSED
(0.066) (0.080)

Preferred matching Preferred matching

OLS OLS

All Cites All Cites

Diff-in-Diff Diff-in-Diff

(1) (2)

Dependent Variable

Functional Form

Matched Sample

0.223 *** 0.169 ***

Age Fixed Effects?

Citing Year Fixed Effects?

Matched Pair Fixed Effects?

Patent Fixed Effects?

Observations

Number of Patents

Adj. R-Squared

* p < 0.5, ** p < 0.01, ***, p < 0.001

808 808

0.093 0.092

No No

Yes Yes

9,357 9,357

Yes Yes

Yes Yes

OLS OLS

Preferred matching Preferred matching

LICENSED
(0.066) (0.042)

(1) (2)

Diff-in-Diff Diff-in-Diff

All Cites
Cites from Uniquely 

Assigned Patents
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Table 11. Accounting for Strategic Patenting.  

 
  

Dependent Variable

Functional Form

Matched Sample

0.223 *** 0.150 *** 0.111 **

Age Fixed Effects?

Citing Year Fixed Effects?

Matched Pair Fixed Effects?

Patent Fixed Effects?

Observations

Number of Patents

Adj. R-Squared

* p < 0.5, ** p < 0.01, ***, p < 0.001

No

Yes

9,357

808

0.0810.093 0.101

(3)

Diff-in-Diff

Cites from Median 

Cited Patents

OLS

Preferred matching

(0.036)

Yes

Yes

Yes Yes

9,357 9,357

808 808

Yes Yes

Yes Yes

No No

OLS OLS

Preferred matching Preferred matching

LICENSED
(0.066) (0.044)

(1) (2)

Diff-in-Diff Diff-in-Diff

All Cites
Cites from Non-Zero 

Cited Patents
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Appendix I – The Latent Dirichlet Allocation Method 

The general process to model the data begins by preprocessing the text, 

constructing a document-term matrix (DTM), and fitting an unsupervised model to the 

data. I use the R package “tm” (Feinerer et al., 2008) to preprocess the text and create 

the DTM and the R package “topicmodels” (Gruen and Hornik, 2011) to handle the topic 

modeling.  

The preprocessing step involves six iterations over the corpus. First, I remove the 

metadata, which was stored in the first lines of the scraped files. Next, I strip excess 

white space, remove capitalization, and remove punctuation. Next I delete stopwords, 

commonly used words which carry little substantive meaning, such as “the” or “and,” 

using the tm package's list of English stopwords. Finally, I stem all words in the corpus 

using the “Snowball” package (Hornik, 2007). Stemming removes suffixes, such that the 

same word used in a different part of speech is recognized as the same word. For 

example, with stemming, the words “position,” “positioned,” and “positions” would be 

reduced to just the single word “position.” While stemming could potentially introduce 

additional bias into the analysis, the additional power gained by reducing the complexity 

of the underlying data is typically considered a worthwhile tradeoff.  

In the next step, I construct the document term matrix (DTM). The DTM is a 

matrix with N rows and D columns, where N is the number of unique stemmed words in 

the corpus and D is the number of documents in the corpus. The DTM is a highly sparse 

matrix; in one example dataset I collected of 2,176 patents, there were 9,115 unique 

word stems and only 0.37% of the cells in the DTM were non-zero. The DTM is the basis 

for all subsequent text processing. By simplifying the data to only the DTM, two 

important and related features of the data are removed: 1) the ordering of words 

(including syntax and grammar), and 2) the proximity of words. These restrictions 

together are known as the “bag of words” assumption. Clearly, representing the corpus of 
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documents by the DTM greatly simplifies analysis, but as with any simplification that 

removes information, important features of the raw data may be lost.  

The approach I take to classifying the patent corpus is a probabilistic topic 

modeling approach using the latent Dirichlet allocation (LDA) model. This methodology 

is inspired by Blei and Lafferty (2007) and described in detail in Blei (2010). LDA 

requires that the number of topics be specified ex-ante (in a similar manner to other 

approaches I have experimented with, such as k-means, but unlike other possible 

methods, such as hierarchical clustering). A potential avenue for subsequent theoretical 

work could attempt to develop guidelines for thinking about the “optimal” (in some as-

yet undefined way) number of topics to model.  

The basic logic of LDA is to uncover the underlying structure of documents that 

likely generated the DTM extracted from the corpus. A “topic” is defined as a probability 

distribution over a finite vocabulary of words. Documents within the corpus have a 

distribution over the topics, while each word within the document is a draw from the 

distribution of words conditional on a topic. Beginning to move to a full parametric 

model, the distribution of unique words is Dirichlet19 (i.e. the probability of a word 

occurring in a topic has a Dirichlet distribution) and the distribution of proportions of 

the topics within a document is a second Dirichlet distribution. For each of the N 

documents, the topics within the document have a Multinomial distribution with 

parameter drawn from the Dirichlet distribution of topics within the document. The 

individual words are drawn from a second Multinomial distribution conditional on the 

topic (drawn from the Multinomial distribution of topics) and the distribution of unique 

words in a topic (Gruen and Hornik, 2011).  

                                                
19 The Dirichlet distribution is a multivariate generalization of the Beta distribution. In each dimension, 

Dirichlet variates are bound on {0,1}. Dirichlet distributions are typically used to model probabilities of (>2) 

rivalrous events. The canonical examples of the use of Dirichlet distributions are modeling the lengths 

resulting from cutting a string of length 1 into several pieces, and the ratios of colored balls in an (Polya) 

urn. 
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More formally, each of the 𝐾 topics, 𝛽1, … , 𝛽𝐾 is defined by a distribution over the 

entire vocabulary of 𝑁 words. Each of the 𝐷 documents are composed of some relative 

frequency of the K topics, where 𝜃𝑑,𝑘 is the proportion of the 𝑘th topic in the 𝑑th document. 

Similarly, words within a document are assigned to topics with 𝑧𝑑,𝑛 the topic assignment 

(𝑧 = 1, … , 𝐾) for the 𝑛th word in the 𝑑th document. The actual data from the DTM is 𝑤𝑑,𝑛, 

the (count or binary existence) of the 𝑛th word in document 𝑑. This setup frames the 

natural language processing statistical model as a missing data problem, hence the 

name latent Dirichlet allocation. The probability model that describes the data-

generation process is: 

𝑝(𝛽, 𝜃, 𝑧, 𝑤) = ∏ 𝑝(𝛽𝑖)

𝑖=1…𝐾

∏ 𝑝(𝜃𝑑)

𝑑=1…𝐷

( ∏ 𝑝(𝑧𝑑,𝑛|𝜃𝑑)𝑝(𝑤𝑑,𝑛|𝛽, 𝑧𝑑,𝑛)

𝑛=1…𝑁

) (7) 

In words, this states that the (unconditional) distribution of topics is independent 

of the proportion of topics within a document which is independent of individual topic 

assignment of words conditional on the proportion of topics within the document, which 

is independent of the observed words conditional on the distribution of topics in the 

corpus and the assignment of topics to words in documents. The data-generation process 

can then be thought of as topics being generated for the entire corpus and topic 

frequencies generated for each document. Then, potential words within documents are 

assigned to topics (the same word can have positive probability in different topics), and 

finally observed words are generated given the overall corpus-level distribution of topics 

and the distribution of words within topics (Blei, 2010). Inference for the unobserved 

variables is made by conditioning on the observed words and using the Gibbs sampler to 

estimate the joint posterior distribution of the unobserved variables. 

I base my implementation of the LDA algorithm on the R implementation 

provided in the “topicmodels” package (Gruen and Hornik, 2011). I fit the data with a 

full Bayesian model with diffuse weakly informative priors, using a Gibbs sampler. The 

LDA model estimates two distributions of interest: the distribution of topics within a 
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document (for each document), and the distribution of topics within the corpus. Potential 

document-level covariates are the modal topic within a document (e.g. the focus of 

Kaplan and Vakili, 2011), or the (multi-dimensional) relative frequency of topics within a 

document. One potential application of the latter set of covariates could use matching 

algorithms on the vector of topics to identify similar pairs or groups of documents. Figure 

5 gives a sense for the classification procedure described in this section. 

 


