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Abstract 

This research examines the strategic conditions that drive entrepreneurial innovators to 
pursue novel innovation rather than innovation that is closer to existing technologies. To 
an increasing extent, startups commercialize innovation in a cooperative setup. Because 
radical breakthrough innovation is more difficult to communicate than its incremental 
counterpart, entrepreneurial innovators may avoid breakthrough innovation for which the 
cost of developing credible information is exceedingly high. In the context of the Orphan 
Drug Act (ODA), this study uses a difference-in-difference approach to measure whether 
entrepreneurs are more likely to bring novel innovations to the market when the policy 
change unexpectedly lowers the cost of obtaining information that will convince 
investors through a small market test. Using a new measure of the novelty of innovation 
and a detailed panel dataset of therapeutic molecules, this empirical study finds that 
biotech startups bring more breakthrough drugs to markets affected by the ODA. This 
research also finds that in ODA-affected areas, entrepreneurs hold novel projects longer 
before contracting with partners and aim to generate more revenue streams from pursuing 
novel innovation. Taken together, the results of this study suggest that the cost of 
convincing investors prevents entrepreneurs from marketing novel innovation and that a 
public policy can moderate inefficiency in the “market for ideas” by decreasing 
communication costs. 
 
KEY WORDS: technology commercialization strategy (TCS), innovation, entrepreneurship, 
R&D alliance, information asymmetry, biotechnology, the pharmaceutical industry 
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 “Many investors want to finance drugs that depend on proven mechanisms. Once a novel 
pathway survives clinical studies, investors are herded into projects targeting the same 

mechanism, leaving other pioneering projects overlooked,” according to a manager of a San 
Francisco biotech company 

 

Introduction 
What types of innovation do startups bring to market through partnership? To an 

increasing extent, entrepreneurs have commercialized their inventions in a cooperative 

setup. Entrepreneurs license technological intermediaries to large incumbent firms to 

access partners’ well-established commercialization assets (Teece 1986, Pisano 1991, 

Gans and Stern 2003, Arora, Fosfuri et al. 2004). The market transaction of an immature 

technology, however, requires a costly exchange of information between two 

organizations (Williamson 1979, Hegde 2011, Tadelis and Zettelmeyer 2011, Hermosilla 

and Qian 2013). In particular, radical breakthrough innovation is often more difficult to 

communicate than its incremental counterpart because of a lack of available information 

necessary for valuation (Henderson 1993, Sorescu, Chandy et al. 2003, Hsu 2004, 

Rothaermel and Deeds 2004, Pisano 2006, Litov, Moreton et al. 2012, Marx, Gans et al. 

2014, Alvarez-Garrido 2015). When it is nearly impossible to convey credible 

information about the prospect of novel innovation, startups may avoid pursuing radically 

novel projects even when they are capable of undertaking such innovations. My research 

aims to understand what constraints entrepreneurs face in seeking to commercialize novel 

innovations and how they overcome these pitfalls using policy incentives.  

I use a difference-in-difference approach to measure whether entrepreneurs are 

more likely to bring novel innovations to market when a policy change unexpectedly 

helps them to convince partners of the prospect of novel technologies. The empirical 

context analyzed in this paper is the Orphan Drug Act (ODA). The act originally aimed to 

facilitate the development of treatments for rare diseases. Interestingly, small drug 

developers have found that the policy incentives ease the development of “proof-of-

concept” products of novel drugs that may attract partners (Howell 2015). Using a new 

measure of the novelty of innovation and a panel dataset of therapeutic molecules, this 

empirical study examines whether biotech startups are more likely to market 

breakthrough drugs in the areas affected by ODA. This research finds that in ODA-
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affected areas, entrepreneurs hold novel projects longer before contracting with licensee 

partners and generate more revenue streams from pursuing novel innovation. I note that 

the goal of this paper is not to evaluate the direct impact of the ODA on orphan drug 

development. Rather, this research provides new insight into a positive externality of 

ODA: the act reduces information asymmetry between entrepreneurial innovators and 

large incumbent firms seeking to collaborate for novel innovation. 

For example, consider the case of Remicade that was initially approved as an 

orphan drug but soon became a blockbuster drug. Centocor, Inc, a biotech company 

founded in 1979, developed Infliximab, one of the first drugs based on monoclonal 

antibody (mAb) that intervenes in tumor necrosis factor (TNF) to moderate inflammatory 

responses. The company believed that Infliximab could be used to treat a series of 

autoimmune diseases. However, the company could neither afford to conduct costly 

independent clinical studies nor find a financing partner without having prior evidence. 

Alternatively, the company developed Infliximab as a treatment for Crohn’s disease, a 

rare inflammatory disorder. By doing so, the firm took advantage of the incentives 

provided by the ODA. Moreover, because the rare disease affected only a small number 

of patients, the company did not need to recruit many patients for clinical studies, which 

generated considerable cost savings. When Infliximab was approved as Remicade in 

1998, Johnson & Johnson immediately recognized its potential to treat other—more 

common—inflammatory diseases, such as rheumatoid arthritis and psoriatic arthritis. 

Two years later, as an independent subsidiary of Johnson & Johnson, Centorcor, Inc, 

expanded the drug’s labels to treat more than eight disorders. Remicade became the first 

anti-TNF biologic therapy to treat one million patients worldwide, and it is considered 

one of the most successful orphan drugs. The Remicade example demonstrates how a 

biotech startup can convince a large partner of the value of a radical drug by showcasing 

it in a small market using ODA incentives. 

 Why should we care about the novelty of entrepreneurial innovation? The 

significant impact of breakthrough innovation on social welfare is well documented 

(Schumpeter 1942, Rothaermel 2000, Fleming 2001, Katila 2002). Moreover, 

entrepreneurs have better capabilities and incentives to bring radical innovations to 

market (Anderson and Tushman 1990, Henderson and Clark 1990, Cohen and Klepper 
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1996, Cohen and Klepper 1996, Tripsas 1997, Sosa 2009). However, as many small 

startups draw upon market mechanisms to bring their innovations to market, failure in the 

“market for ideas” may distort the incentives of entrepreneurial innovators. Prior research 

studying market inefficiency has primarily focused on the danger of unwanted spillovers 

(Arrow 1962, Gans, Hsu et al. 2008, Katila, Rosenberger et al. 2008). This study suggests 

that the enormous costs of transferring information to a partner can also be a source of 

market inefficiency. The empirical findings have practical implications for startups and 

policy makers regarding how to moderate the problem of translating the value associated 

with radical breakthrough innovations. Moreover, this research traces the entire stream of 

revenues generated from novel technologies beyond the initial commercialization success 

and thus provides novel insight into the long-term effect of pursuing novel innovation on 

the growth of an individual firm. 

 In addition, this study has methodological and therapeutic implications.  

With few exceptions (Chatterji and Fabrizio 2014, Teodoridis 2014), the direction of 

entrepreneurial innovation has been overlooked as a result of measurement challenges. 

Investigating the types of commercialized innovations is even more difficult because one 

cannot use patent data: filing a patent does not necessarily mean that a patent holder 

commercializes the technology. This empirical study brings a new measure of the novelty 

of marketed technologies based on the originality of the scientific mechanisms behind a 

drug.  

More importantly, less attention has been devoted to types of innovation because 

prior research has analyzed the commercialization choices of entrepreneurs through the 

lens of the sequential decision-making process: a startup innovates and then decides 

whether to market its technology and, if so, how to do so. In reality, however, 

entrepreneurs consider external factors that affect profit generation from the beginning in 

determining which projects to advance and ultimately bring to market. In this sense, the 

innovation and marketing decisions of entrepreneurs are endogenous to environmental 

conditions (Pinch and Bijker 1987, Lounsbury and Glynn 2001, Kuan 2015). My findings 

support the view of entrepreneurial decision making in the context of technology 

commercialization. 
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 This research joins the growing literature on technology commercialization 

strategies (TCSs). In particular, several recent studies focus on the dynamics of TCSs in 

which entrepreneurs alternate between different commercialization modes to acquire 

complementary assets (Wakeman 2010, Hsu and Wakeman 2013, Marx and Hsu 2013) or 

to develop information that is necessary for partnerships (Marx, Gans et al. 2014). My 

research aims to add new causal evidence on the dynamics of TCS, thereby connecting 

TCS research to the literature on radical breakthrough innovation.  

This paper proceeds as follows. Section 2 discusses related literature and derives 

testable hypotheses. Section 3 describes the empirical context and provides a brief 

scientific background. Section 4 introduces the data, and Section 5 explains the 

methodology. Empirical results are presented in Section 6. Section 7 concludes the paper.  

 

Theory and Hypotheses  
The sheer volume of studies on economics and innovation indicates that market 

outcomes depend on the quality of information available (Greenwald, Stiglitz et al. 1984, 

Myers and Majluf 1984, Tadelis and Zettelmeyer 2011) and that breakthrough 

innovations are more vulnerable to value translation problems than are innovations closer 

to the existing knowledge base (Alvarez-Garrido 2015). This research suggests that 

entrepreneurs promoting novel innovations have an additional burden in using the market 

mechanism for commercialization. Thus, changes in environmental factors affecting the 

cost of convincing may impact the types of innovations transferred in the “market for 

ideas.” 

This section first discusses why startups pursuing novel innovation find it more 

difficult to persuade incumbent partners than their counterparts developing technologies 

reliant on the existing scientific base. I then review the TCS literature and discuss the 

dynamic strategies that startups use to overcome these constraints. I derive a series of 

testable hypotheses by drawing upon the previous research. 
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Challenges of developing partnerships for novel innovation 

 Novel breakthrough innovations are vulnerable to information asymmetry 

problems. A developer knows the value of her novel technology better than anyone else 

but often fails to convey this information to a potential partner. Why does this value 

translation problem occur? 

 First, large incumbent firms often lack the scientific understanding necessary to 

evaluate radical new technologies. Many technologies outsourced from entrepreneurial 

innovators are at the scientific frontier, which could disrupt how an industry operates. In 

contrast, the strength of incumbent players lies in the deeper understanding of existing 

technologies and markets. For example, when biotechnology emerged in the 1980s and 

1990s, many pharmaceutical companies, most of which had developed drugs based on 

small chemical molecules, struggled to evaluate the potential of biotechnology-based 

drugs (Pisano 2006, Hughes 2011, Werth 2013). Even today, biotech firms are considered 

to have a better understanding of the new technology than large partners do, which 

accounts for the increasing trend of inter-firm collaboration. When a partner has 

insufficient knowledge to understand a technology subject to partnership, distinguishing 

true information from cheap talk is difficult and thus leaves a company vulnerable to a 

“lemons” problem (Akerlof 1970, Pisano 1997, Mirowski and Van Horn 2005). In this 

case, previous evidence on performance is critical to convince less informed parties of the 

prospect of a technology. By nature, however, a radically breakthrough innovation lacks 

a prior performance record, making most of the communication efforts of startups 

unverifiable.  

 Second, incumbent firms do not have the proper metrics to evaluate the potential 

of radical technologies. Initially, disruptive technologies perform poorly on dimensions 

that are currently valued by incumbent partners and consumers (Christensen and Bower 

1996, Christensen 2013, Marx, Gans et al. 2014). Consider the case of Pixar. Since its 

foundation, Pixar visited Disney annually in pursuit of a partnership, but Disney 

constantly declined the offer for ten years. “Even today there is no electronic process that 

produces anything close to ‘Snow White quality’ and there is little reason to believe there 

ever will be,” wrote Frank Thomas, a filmmaking giant at Disney, “and old-fashioned 

animation has more control and more freedom, and also offers a greater range of 
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expression.” Disney clearly believed that Pixar’s three-dimensional (3D) computer 

animation technologies could not match Disney’s capabilities, particularly in the aspects 

that Disney believed were valued by consumers of animation (Price 2009). 

 In addition to asymmetric information, the high costs involved in novel 

innovation also make partnerships challenging. The development of radical technologies 

involves high levels of uncertainty and, thus, high failure rates because of their unique 

and unprecedented nature. The low probability of success may not justify the costly 

investments required for the commercialization of new technology.  

Moreover, incumbent firms internally have greater costs of integrating radical 

technologies because of the fear of cannibalization of existing competences. A firm 

pursuing radical innovation must adopt both new knowledge and new organization 

processes (March 1991, Chandy and Tellis 1998, Sorescu, Chandy et al. 2003). 

Moreover, resources that have been concentrated on existing pipelines should be 

redistributed or dismissed, which creates resistance within a firm (Kelly and Amburgey 

1991, Tripsas and Gavetti 2000). An influential line of research classifies innovations as 

competence-destroying (those requiring new organizational skills to successfully 

commercialize) and competence-enhancing (those that build upon existing know-how) 

innovations (Marx, Gans et al. 2014). New entrants have greater incentives to pursue 

competence-destroying innovations, whereas established incumbent firms tend to support 

innovations that sustain or reinforce their existing portfolio (Levinthal and March 1993, 

Christensen and Bower 1996). When the smartphone market was emerging, for example, 

LG electronics decided not to enter into the smartphone market, stating “feature phone 

forever” as its informal slogan. This decision was not reversed until the eventual parent 

company of LG replaced most of the executive board members of the mobile phone 

division and ended a long-term partnership with a consulting partner. 

 Although both information asymmetry and high costs explain the difficulty of 

commercializing novel innovation through partnership, the latter does not necessarily 

distort the incentives of players in the “market for ideas.” However, the former factor can 

create inefficiency in the market. Thus, it is important to analyze the causal impact of 

reduced information asymmetry on the incentives of entrepreneurial innovators capable 

of novel innovation.  
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 One challenge of using the ODA is that the act affects startups’ choices 

simultaneously through two channels. A small market test using the ODA incentives 

partially solves the information asymmetry problem, but the incentives also decrease the 

development costs associated with radical innovation. I use a series of empirical tests to 

distinguish the impact of reduced information asymmetry from the impact of cost 

reduction. 

Technology commercialization strategies and types of technological innovation 

Inspired by the seminal work of Teece (1986), the TCS literature examines the 

determinants of the commercialization choices of entrepreneurial innovators between 

independent market entry and collaboration with incumbent partners. Although 

partnership with incumbent firms allows entrepreneurs to tap into well-established 

complementary assets in a timely and cost effective manner, the transfer of technologies 

at early stages also presents the risk of unwanted knowledge spillover (Arrow 1962, 

Caves, Crookell et al. 1983, Katila, Rosenberger et al. 2008). According to several TCS 

studies, the more significant incumbent firms’ complementary assets are for 

commercialization and the stronger protection the intellectual property regime provides, 

the more entrepreneurial innovators perceive cooperative commercialization choices as 

attractive (Gans and Stern 2003, Arora, Fosfuri et al. 2004, Gans, Hsu et al. 2008). 

Several recent studies note that prior research does not reflect the dynamics of 

TCS. The commercialization of a technology is not a static game. Rather, startups 

“switch back” between independent market entry and cooperation with incumbents to 

either acquire essential assets and skills or develop convincing information with which to 

persuade potential partners (Wakeman 2010, Hsu and Wakeman 2013, Marx and Hsu 

2013). In particular, Marx, Gans, and Hsu (2014) find that when entrepreneurial 

innovation involves a disruptive technology, startups initially pursue market entry before 

switching to a cooperative commercialization strategy to reduce the high integration cost 

for incumbent firms.   

 The example of Pixar and Disney demonstrates the use of initial market entry in 

pursuit of future partnership. When Pixar had repeatedly failed to attract the attention of 

Disney, Lucasfilm suggested a partnership with Pixar to generate the famous scene in 

Star Trek where the Enterprise spaceship crewmembers practice battles using a virtual 
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simulation machine. The Star Trek scene created by Pixar became the first movie scene 

that adopted rigorous 3D computer animation technology. Soon after the successful debut 

of Pixar, the technology division of Disney began seriously considering the potential of 

3D technology. Several years later, Disney finally partnered with Pixar to use disruptive 

technology to produce animation (Price 2009).  

 However, the independent market entry of a startup is not a feasible option in 

many high-tech sectors, as advanced development and commercialization require capital-

intensive processes and tacit knowledge. For example, a biotech firm rarely can afford to 

conduct a standard Phase III clinical trial alone. The sponsor of a clinical study must 

recruit a large number of patients—more than 3,000 in some Phase III clinical trials. 

Moreover, such a company must monitor whether multiple testing regions apply the same 

trial protocols and make judgments about the efficacy and safety of tested drugs based on 

information collected on a regular basis. This task is not easy for a small entrant firm to 

conduct independently. The vast costs of independent market entry, together with the 

challenge of partnering with incumbent firms, leave limited commercialization options to 

startups developing breakthrough innovations.  

 When an external factor enables startups to conduct small-sized market tests 

independently, however, startups can develop credible information regarding a novel 

technology at an affordable cost (Howell 2015). The ODA provides a variety of 

incentives and guidance for developers of treatments for rare diseases, and small startups 

take advantage of this act to test novel drugs in small clinical trials targeting small 

markets for rare diseases. Therefore, this context serves as an useful setting to explore the 

impact of information friction on the types of innovation delivered by entrepreneurs.  

 

Hypothesis 1-1. The Orphan Drug Act encourages entrepreneurs to develop radical 

breakthrough innovations. 

 

 One challenge of using the ODA in this study is that the act affects the incentives 

of drug developers through multiple channels. Specifically, distinguishing the impact of 

the decrease in information asymmetry from the impact of cost reduction is challenging. 

Two mechanisms may impact entrepreneurs’ behaviors in different ways. If an 
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information friction problem is the main reason that firms seek orphan designation, we 

should observe that the molecules developed by the applicants are novel and are thus 

difficult to communicate. By contrast, cost reduction leads firms to develop “marginal” 

drugs that would not have been developed otherwise because of excessively high 

uncertainty or mediocre economic value. Such marginal drugs are not necessarily novel. 

Moreover, if the cost reduction channel is the main driver, there should be no difference 

in the magnitude of impact between distinct groups facing different level of information 

asymmetry problems.  

To distinguish the impacts stemming from different channels, I compare the 

behaviors of US-based biotech firms and EU-based biotech firms. I argue that the ODA 

affects two groups through different mechanisms: the former through the information 

asymmetry mechanism and the latter through the cost reduction mechanism.  

The difference in the timing of ODA enactment across two regions and regional 

variation justify the use of this approach. The ODA has existed since 1983 in the US, 

allowing US firms to benefit from cost reduction generated by the ODA. If an US firm 

wanted to take advantage of cost benefits to advance marginal drugs, it could apply for 

orphan status in the US without waiting for adoption of the ODA by the EU. Although 

the additional cost reduction may still impact the incentives of US firms, the cost 

reduction impact is relatively marginal compared with the impact on EU firms. By 

contrast, because the EU introduced the act in 1999, EU-based firms should observe a 

relatively dramatic decrease in drug development costs at that time. In summary, the cost 

reduction channel has a more significant impact on EU firms than on US firms.  

However, the information friction channel has greater effects on US firms. 

Although both US and EU biotech firms can reduce the value translation problem using 

ODA incentives, the group of US firms ex ante suffers more from the information 

asymmetry problem in the EU market. Compared with EU firms, US firms have 

relatively little contact with the European Medicine Agency (EMA) and with European 

pharmaceutical companies. Networks, reputations, geographic distance, the regulatory 

environment, and language and cultural barriers all create disproportionate obstacles for 

US firms compared with EU firms. The EU version of the ODA enables foreign firms 

entering the EU market to reduce the initially higher level of information friction.  
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Figure 2 depicts the differential impact of the ODA on US firms and EU firms. I 

predict that a group of firms that has experienced greater communication challenges is 

more likely to develop novel drugs as a result of the ODA. An assumption behind the 

next hypothesis is that the EU version of the ODA affects US firms more through the 

information asymmetry channel than through the cost reduction channel and affects EU 

firms more through the cost reduction channel than through the information asymmetry 

channel.  

 

Hypothesis 1-2. The impact of the Orphan Drug Act on the novelty of innovation is 

greater for US-based biotech firms than for EU-based biotech firms. 

 

 Meanwhile, the availability of small market tests led by the ODA also affects the 

ways in which startups and incumbent partners collaborate as well as market outcomes. 

Startups often transfer technological intermediates in an early development stage to 

finance projects. This approach does not cause a problem when startups and incumbent 

partners can correctly estimate the value of technologies at an early stage. For example, 

when two firms collaborate to develop technologies that are closer to the existing 

scientific base, both parties have sufficient information available for valuation. For the 

transfer of radical technologies, however, transactions at an early development stage have 

a greater information asymmetry problem, and thus, negative effects on market outcomes 

stem from a lack of information. When a prototype product becomes available to 

showcase in a small market, startups developing a novel innovation may seek to advance 

the project to the extent that the firms can credibly persuade partners of the prospect of 

radical technologies. John Lewicki, the head of research and development at OncoMed 

Pharmaceuticals, addresses this point clearly: 2 the novel drug company wants to “hold 

onto the (novel) drugs for as long as possible and create as much value as we can before 

partnering our products with large pharmaceutical companies,” and “this takes a lot of 

money.” 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 OncoMed Pharmaceutical is a clinical-stage biotech company that seeks to develop an 
innovative cancer therapy based on cancer stem cell research. 
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Hypothesis 2-1. The Orphan Drug Act causes entrepreneurs to hold their drug 

development projects longer before contracting with partners. 

 

 Understanding the change in partnership practice helps us to answer the following 

question: who should conduct market testing of radical technologies? From a startup’s 

perspective, conducting initial market testing by itself is beneficial because market test 

outcomes reduce information friction and thus place the firm in a superior bargaining 

position during partnership negotiation. This capability also benefits a large partner 

because it has access to more information at the time of the deal. Moreover, from the 

social welfare perspective, allowing startup innovators to play active roles in developing 

radical technologies can lead to efficient resource allocation among alliance partners 

(Grossman and Hart 1986, Aghion and Tirole 1995), resulting in superior market 

outcomes. The next hypothesis investigates the impact of the ODA on the performance of 

the “market for ideas.” 

 

Hypothesis 2-2. The Orphan Drug Act increases the probability that an entrepreneurial 

innovator contracts a partnership agreement.  

 

 Finally, I examine how the ODA affects long-term commercialization 

performance in pursuing novel innovation. A firm’s expected returns from investing in a 

particular type of knowledge arise not only from its current product building on this 

knowledge but also from the entire stream of potential products in the future that may 

exploit this knowledge (Toh and Polidoro 2013). Do startups promoting radical 

innovation make more profitable and sustainable revenue streams? How do external 

conditions moderate compensation? The third hypothesis seeks answers to these 

questions.  

 

Hypothesis 3. The Orphan Drug Act causes startups to generate greater and sustainable 

revenue streams from pursuing radical innovation.  
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A strength of this research is that the empirical study traces the entire stream of 

revenues generated from breakthrough innovation beyond the initial commercialization 

success. This work deepens our understanding of the process through which a startup 

expands an initially marketed technology to multiple markets to recoup R&D costs 

accrued in the early stages.  

 

Empirical Context 

Drug approval process  

 A series of strict regulatory procedures and requirements governs the 

pharmaceutical sector to guarantee the efficacy and safety of approved drugs. The typical 

process requires 12 to 18 years for a therapeutic molecule to obtain marketing approval 

from a regulatory agency such as the Food and Drug Administration (FDA) in the US. 

Although I discuss the drug approval process in the US in this section, the general 

procedures are similar for other regions, including the EU.  

 Figure 1 depicts the drug approval process in the US. A drug developer first 

identifies a therapeutic molecule or a target that may treat one or multiple disorders. The 

process requires 2–8 years to optimize a lead molecule. With the lead molecule, a 

company then conducts preclinical studies including animal studies to test the basic 

safety and efficacy of the molecule, a process requiring approximately 5 years. When the 

drug candidate survives all required preclinical studies, the developer submits an 

Investigational New Drug (IND) application to the FDA to conduct clinical studies.  

 Clinical trials consist of three phases. A Phase I study tests the general safety of a 

drug candidate with 20–100 healthy volunteers. A Phase II study validates the efficacy of 

a drug with 100–300 patients who suffer from an initially targeted disease. Finally, in a 

Phase III trial, trial sponsors perform randomized and controlled multicenter trials to 

confirm the safety and efficacy of a drug with 1,000–3,000 patients. The phases take 

approximately 1.5 years, 2 years, and 3 years, respectively. When a drug has undergone 

all clinical studies, the developer then submits a New Drug Application (NDA). A year is 

needed for FDA to review all procedures and to finally approve the marketing of a drug. 

Only 16% of drugs tested in clinical trials successfully progress to the approval stage.  
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 In many cases, a developer seeks to expand the label of an approved drug beyond 

the initially targeted disease indication (Shineman, Alam et al. 2014). The “re-purposing” 

of existing drugs requires another set of clinical studies, but the risks and costs related to 

label expansion are much lower than the risks and costs of developing a brand-new 

molecule because the safety and efficacy of an existing drug have previously been 

proven.  

 

Orphan Drug Act (ODA) 

The ODA was first enacted by the US in 1983 to facilitate the development of 

treatments for rare diseases. In the US, a rare disease is defined as one that affects fewer 

than 200,000 people each year. In the past, most rare diseases remained “orphans” 

because market sizes were too small to justify the costly development of medications. To 

intervene in this market failure problem, the policy provided orphan drug developers with 

a variety of incentives, including 50% tax benefits associated with clinical trial costs, 

regular guidance meetings with the FDA and market exclusivity. The considerable 

success of the act encouraged the EU and other countries to adopt similar legislation 

(Lichtenberg and Waldfogel 2003, Cheung, Cohen et al. 2004, Yin 2008). The EU’s 

adoption of the ODA in 1999 marked the greatest change since the enactment of the 

ODA by the US. This research examines the marginal impact of ODA enactment by the 

EU because the number of biotech startups was small when the US adopted the act in 

1983. 

To make use of the incentives provided by the ODA, a drug developer must file 

an application that states 1) which molecule is being used, 2) which disease indication is 

being targeted, and 3) why the molecule is the best therapy for the specified disease. An 

applicant must validate that the target disease satisfies the criteria for a rare disease. 

When a regulatory agency approves the application and grants the molecule an orphan 

designation, the developer can enjoy the ODA incentives to develop the designated 

molecule as an orphan drug (Grabowski 2005).  

 Currently, there are 7,000 rare diseases worldwide, affecting approximately 30 

million patients in the US and 350 million worldwide. Approximately 95% of rare 

diseases lack a single FDA-approved treatment. Nearly 360 orphan drugs have been 



! 14!

marketed, and 2,500 compounds have been granted orphan designation. Marketed orphan 

drugs include the well-known drugs Gleevec, Rituxan and Humira. Some orphan drugs 

have had enormous success. Rituxan, for example, was granted orphan status for the 

treatment of B-cell Non-Hodgkin’s lymphoma. With expanded use for other types of 

cancer and rheumatoid arthritis, the drug had sales of $5.24 billion in 2010, becoming the 

world’s second most profitable drug (EvaluatePharma 2013).  

Recently, an interesting controversy surrounding the expansion of orphan drugs 

for multiple indications has arisen. Some advocates of the ODA are concerned that drug 

development firms are abusing ODA incentives to develop drugs that potentially cure a 

broad range of indications, including non-orphan diseases that would thus have been 

developed without the ODA (Wellman-Labadie and Zhou 2010, Stephens and Blazynski 

2014). In the following statement, the FDA recently admitted that this gamesmanship 

exists: 

 

[...Nevertheless, controversy has existed over some drug manufacturers exploiting the 

ODA by marketing orphan-approved drugs for non-orphan use or by monopolizing drug markets. 

Recently, the FDA has issued final regulations that seek to clarify the ODA in an attempt to 

ameliorate these problems. ... The FDA believes that drug companies were previously seeking out 

the narrowest possible orphan subsets “to avail themselves of orphan-drug benefits when the 

overall approved use is not an orphan use.” ...] 

 

Others argue that the potential for expanding the label of orphan drugs motivates 

drug developers to invest in orphan drug development (Johnson 2014). From this 

perspective, the re-purposing of a novel orphan drug for non-rare indications benefits 

both patients who suffer from rare diseases and those who suffer from common diseases.  

  

Data 
 I develop a panel dataset that includes the detailed development and 

commercialization histories of therapeutic molecules. The dataset includes all drug 

development projects across the globe from 1980 to 2014. I combine multiple sources to 

develop this dataset.  
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The study primarily draws upon the Pharmaproject database to collect the list of 

pharmacological research projects and associated characteristics. I collect the unique drug 

ID; drug name; originator; licensees; target disease indications; related patent numbers; 

and dates of main events such as dates of entry, patent application, licensing agreement, 

approval, and expansion to new disease indications. Additionally, the dataset comprises 

detailed molecule-specific characteristics including the Mechanism of Action (MOA), 

route, origin, weight, molecule structure (the number of hydrogen bond (H.Bond) donors, 

H.Bond acceptors, and rotatable bonds), diffusion speed within a human body (logP), 

whether a molecule is patented, and whether it is a New Chemical Entity (NCE). The 

database is widely used by researchers in life science as well as in innovation and 

management (Metrick and Nicholson 2006, Alcacer, Cantwell et al. 2007, Sorescu, 

Chandy et al. 2007, Blume-Kohout and Sood 2008, Adams and Brantner 2010, Berndt 

and Trusheim 2012). 

I complement the database with clinical trial data and orphan designation data. 

The clinical trial data are collected from clincialtrial.gov. The US orphan designation data 

are obtained from the FDA website, and the EU data are obtained from the EMA. The 

final version of the dataset includes a detailed history of each drug candidate, including 

both successful drugs and discontinued drugs, from entry to approval and label expansion 

(or discontinuation in the case of discontinued products).  

Table 1 presents summary statistics. The original data include 49,890 unique 

therapeutic molecules that underwent testing between 1983 and 2014. There are 2,481 

available MOAs. Of the 1,189 disease indications, 12% are rare diseases. Diseases are 

categorized into 15 disease categories, including alimentary/metabolic, blood and 

clotting, cancer, cardiovascular, dermatological, genitourinary, hormonal, 

immunological, infectious disease, musculoskeletal, neurological, parasitic, respiratory 

and sensory disorders. Among all tested molecules, 42% apply to disease categories 

disproportionately affected by the ODA. Small biotech firms develop 57% of the 

therapeutic molecules in the dataset. I exclude established biotech companies such as 

Amgen and Genentech from a list of small biotech firms because the first-generation 

biotech firms possess levels of complementary resources, experience and reputation that 

are equivalent to those of large pharmaceutical companies.  
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Empirical Study Design 

Methodology 

I use a difference-in-difference (DiD) approach to test the main hypotheses. The 

unit of analysis is at the level of a therapeutic molecule, disease category, and year. To 

formalize the DiD method and to facilitate statistical interference, I estimate the 

following equation: 

Yijt =α j +γ t + Xi
!µi +β0Affectedij +β1AfterODAit +β2Affectedij *AfterODAit +εijt  

 

where Yijt  represents the outcome variable (the novelty of innovation, an indicator of 

whether it is to be licensed, the time between entry and the first licensing deal, and 

market expansion), i indexes individual therapeutic molecules (! � {1, ..., 49,890}), j  

indexes disease categories (! � {1, ...,15}), and t indexes the year (! � {1983, ..., 

2014}). AfterODA is a binary variable equal to 1 if a molecule begins testing after 1999 

and 0 otherwise. 

Affected is a binary variable equal to 1 if a molecule is developed to treat the 

disease categories disproportionately affected by the ODA and 0 otherwise. I use the 

nature of rare diseases to determine the treatment group and the control group. As shown 

in Figure 3, most rare diseases are either genetic disorders or abandoned disorders for 

economic reasons, generally falling into the categories of blood and clotting disorders, 

cancers, infectious diseases and parasitic diseases. The four categories are the treatment 

group in my study, and the other eleven categories are designated as the control group.  

The coefficient of interest is β2 . The coefficient captures the difference in the 

outcome variables of the treatment group relative to the control group. β0  and β1  explain 

any effect caused by shocks specific to the treated disease categories and by the shocks 

that occur concurrently with the ODA, respectively. I include disease category fixed 

effects and year fixed effects. Χ i  is a vector of control variables. Errors are clustered at 

the disease category level. 
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I use a triple DiD method to test Hypothesis 1-2. With a triple difference 

estimator, I compare the evolution of the gap between the less-known group and the more 

well-known group in the treated disease categories to the evolution of the gap between 

the less-known group and the more well-known group in the control disease group. The 

estimated formula is as follows:  

Yijkt =α j +γ t + Xi
!µ +β0Affectedij +β1AfterODAit +β2LessInfoik +

β3Affectedij *AfterODAit +β4Affectedij *LessInfoik +β5AfterODAit *LessInfoik +
β6Affectedij *AfterODAit *LessInfoik +εijkt

 

 

where LessInfoik is an indicator variable that equals 1 if a molecule is originated by a 

group of less-known firms (H1-2), i.e., US firms. Molecule-specific controls are 

included. As the dependent variable is a binary variable, I run binomial logit regressions 

for H1. 

To test the second hypothesis regarding the probability and timing of licensing 

contracts, I perform a survival analysis using a Cox proportional hazard model. The 

model requires two dependent variables. One is an indicator that equals 1 if an event of 

interest occurs and 0 otherwise. The other variable measures the time difference between 

the entry of an observation and the realization of an event of interest. I construct the latter 

variable by measuring the time difference between the entry of a molecule and the date of 

the first licensing contract. The estimated regression formula is the same as that for H1-1. 

I use the same DiD formula to test the third hypothesis, which examines the 

trajectories of label expansions for other disease indications beyond the initially targeted 

disease. Naturally, the dependent variable is a count variable. Thus, I test the outcomes 

with Poisson regressions and negative binomial regressions. 

Variables 

 Dependent variables 

 Novelty of innovation (H1) I measure the novelty of drugs using the originality 

of the mechanisms used by drugs. A drug intervenes in the human body through a 

specific mechanism. For example, angiogenesis-inducing cancer drugs block the oxygen 

delivery channels to tumor cells to induce the natural death of cancerous cells. mAb-
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based cancer drugs deliver toxins directly to the problematic cells. Most allergy 

medications block histamine receptors to reduce the level of histamine absorbed in the 

body. These mechanisms are called MOAs. MOA is not only a widely used term among 

drug developers and researchers in related fields (Danzon 2000, Higgins and Rodriguez 

2006, Toh and Polidoro 2013) but also an important measure of the novelty of drugs, as 

indicated in the following Nature article. 

 

 “As a productivity year I’d give [2014] a 3 out of 3,” says Chris Milne, Director of 

Research at the Tufts Center for the Study of Drug Development in Boston, Massachusetts, USA. 

In terms of innovation, however, Milne ranked the 2014 approvals only “a 2 out of 3.” The 

reasons being, drug companies seek approvals for agents that act on the same proven targets and 

indications. For example, among four drugs approved for type 2 diabetes, two are second- and 

third-in-class sodium-glucose cotransporter 2 inhibitors to treat type 2 diabetes and the other two 

are fourth- and fifth-in-class glucagon-like peptide 1-receptor agonists. “There is some of that 

herd mentality here,” he notes (Mullard 2015). 

 

I identify each MOA used by a therapeutic molecule. I then sort molecules by 

disease category and entry date to generate a sequence number. If the number is 1, then 

the molecule introduces a brand-new mechanism for the first time, whereas 2 indicates 

that the drug is the second drug adopting a novel mechanism. In a sense, the sequence 

number is a “novelty score.”3 Subsequently, I construct a binary variable that assigns a 

value of 1 to the first five drugs that use a novel mechanism and 0 to the others. The 

reported regression results use the binary variable as the dependent variable. I conduct 

robustness checks by adjusting the number of drugs that use a brand-new mechanism—1, 

3, 5 and 7—and by using the novelty score as a dependent variable. The empirical results 

are robust to the modifications. 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3!Note that an MOA is not subject to patenting. Although patents offer strong protection 

for pharmaceutical inventions, patents do not award exclusionary rights over the scientific 
principles underlying drugs. 

 
!
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Probability and timing of partnership (H2) I use a Cox proportional hazard 

model to examine changes in the timing (H2-1) of partnership agreements and the 

probability of making a partnership (H2 -2). The analysis requires two dependent 

variables. One is an indicator variable for whether an event of interest—a licensing deal, 

in this case—occurs. I construct a binary variable that assigns a value of 1 if a molecule is 

subject to at least one licensing agreement and 0 otherwise. The other dependent variable 

measures the time difference between the entry of a project and the first partnership 

contract. The Pharmaproject database traces conference presentations, press, patent 

filings, websites, and personal contacts to identify the entry of new therapeutic 

molecules. For the entry date, I use the date that each molecule first appears in the 

database. I then sort all licensing agreements related to a therapeutic molecule by dates 

and select the earliest deal. Finally, I calculate the time difference between the entry date 

and the date of the first licensing contract.  

  

 Market expansion (H3) As shown in Figure 1, a drug developer can 

generate a subsequent stream of revenues by re-purposing a previously approved drug. 

Firms pursuing label expansion must specify which additional diseases to target and 

conduct a required set of clinical trials. The Pharmaproject database reports each attempt 

of label expansion with the name of the new target disease and the date of the statement. I 

construct a count variable that quantifies the market expansion events of drugs.  

 Independent variables 

 Affected This binary variable equals 1 if a molecule is developed to treat 

diseases within the blood and clotting, cancer, infectious disease or parasitic categories 

and 0 otherwise.  

 AfterODA This binary variable equals 1 if a molecule begins testing  after 

1999 and 0 otherwise.  

 LessInfo To clarify the channels through which the ODA impacts the 

novelty of entrepreneurial innovation, H1-2 compares the size of the impact between the 

group of firms that has a greater level of information friction and the group that is less 

vulnerable to information asymmetry. I restricted the sample to a group of biotech firms 

and construct a firm-level group dummy variable that assigns a value of 1 to US firms 



! 20!

and 0 to others. Because US biotech firms have access to less information in the EU with 

respect to players including the EMA and European pharmaceutical companies compared 

with their EU counterparts, the impact through the information asymmetry mechanism 

should be stronger among US firms than among EU firms.  

Control variables 

 Molecule-specific characteristics I control for whether a molecule is patented 

or whether it is an NCE. Additionally, I control the route, origin, drug diffusion rate 

(logP), weight and structure (H.Bond donors, H.Bond acceptors and rotatable bonds) of 

each therapeutic molecule. 

Results 

 Novelty of innovation (H1) 

Figure 4 presents the trend of the novelty of entrepreneurial innovation over time. 

The decrease in novelty over time is not surprising, as firms repeatedly use pre-existing 

MOAs. In the treated disease categories, the rate of decreasing speed is higher. However, 

after the ODA, the novelty of drugs rises again in the treated categories while continuing 

to decrease in the control categories.  

Table 2 shows the DiD estimates of the novelty of drugs developed by biotech 

startups. In the logit regression in Column (5), the coefficient of the ODA dummy is –-

0.801, which gives the odd ratios exp (-0.801) = 0.45. Firms are 63% less likely to 

develop drugs based on a novel mechanism after the ODA. A switch from the control 

disease categories to the treated disease categories yields a change in log odds of (-0.801 

+ 0.321) = -0.48. The ratio of these two odds ratios is the coefficient of interest in my 

study. The coefficient of the interaction term is 0.321, generating the odd ratios 

exp(0.321) = 1.38.  Firms within the treated categories are two times more likely to adopt 

new mechanisms to develop drugs.  

 Both causal impact and selection into the affected categories can explain the 

increase in the novelty of entrepreneurial innovation. On the one hand, the enactment of 

the ODA encourages firms to develop radically novel molecules that they would not have 

advanced otherwise. On the other hand, firms developing novel MOAs may decide to 

target the disease categories that are more affected by the ODA. To separate these two 
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mechanisms, I replicate the estimation in Table 2 using the Phase I clinical trial starting 

dates instead of the molecule entry dates. As shown in Figure 1, approximately 6 to 8 

years are needed for a newly studied molecule to enter into clinical studies. Moreover, for 

a firm to sponsor a Phase I clinical trial, the FDA or EMA must approve an IND 

application, which requires significant time and effort. Thus, if the novelty of drugs 

entering into Phase I clinical trials increases after the ODA, then the impact is causal 

rather than driven by selection.  

 Table 3 presents the estimation. The coefficient of the interaction term is not only 

greater but also more significant than that in Table 2. The ratio of the odds ratios in Table 

3 ranges from 4.74 to 5.16. According to Column (5), the probability that a firm adopts a 

new mechanism to develop a drug falls from 0.78 to 0.09 after the ODA. However, in the 

treated disease categories, the probability increases from 0.09 to 0.80, recovering the 

original level prior to the ODA.  Firms in the treated categories are approximately eight 

times more likely to advance novel drugs to Phase I clinical trials than are firms in the 

control categories. 

 Next, I test H1-2 to investigate the heterogeneous impact of the EU ODA over the 

region. The ODA simultaneously reduces information asymmetry and drug development 

costs. I compare the behaviors of US firms and EU firms, given that the act affects US 

firms primarily through the information asymmetry channel and affects EU firms through 

cost reduction. The trend of novelty by firm region in Figure 5 supports my prediction. In 

the control disease categories, the novelty of drugs developed by both EU firms and US 

firms steadily decreases, and no difference between the two groups emerges. In the 

treated categories, however, US firms bring more novel drugs to market than EU firms 

do.   

Table 4 shows the outcomes of triple DiD estimations. The coefficient of interest 

is one of Affectedij *AfterODAit *LessInfoik . The coefficient accounts for the evolution of 

the gap between US firms and EU firms in the treated categories compared with the 

control categories. The ratio is approximately 2 and is significant across all columns. 

According to Column (5),  the coefficient of the triple interaction term gives odd ratios 

exp(0.919) = 2.507. This result indicates that, in affected disease categories, 

approximately 6% of EU firms adopt novel mechanisms to develop drugs, while 13% of 
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US firms choose to introduce novel drugs as a result of the ODA by the EU. 

Alternatively, I restrict my samples to the molecules developed by US firms and those by 

EU firms to run DiD regressions with the restricted samples. Columns (6) and (7) suggest 

that that ODA causes US developers to adopt more radical technologies than EU firms 

do.  

 Collaboration practice (H2) 

I employ survival analysis to examine the practice of collaboration and the 

probability of entering into a partnership. Figure 6 presents the cumulative density 

functions of the survival functions. In the empirical context, “survival” means that at least 

one licensing agreement is reached for a subject molecule. Panel (c) in Figure 6 shows 

that in the ODA-affected group, firms have a higher probability of licensing deals at the 

end. Table 5 echoes this prediction. The coefficient of the interaction terms indicates that 

the odd ratio is exp(0.133) = 1.14. After the ODA, molecules in the treated disease 

categories have a 6% higher probability of being licensed.  

However, the density of the affected group continually lags behind its counterpart 

density within 1,800 days of entry. This result suggests that developers in the affected 

group postpone the first licensing deal to create as much information as possible before 

entering negotiations. To examine the difference in the timing of licensing deals, I 

perform a two-sample Kolmogorov-Smirnoff test. The test yields D = 0.0555 and p-value 

= 0.00006637, thus rejecting the null hypothesis. The finding is consistent with the 

prediction in H2-1. 

 Market expansion (H3) 

Finally, Table 6 shows the DiD estimates of label expansion (i.e., re-purposing of 

drugs). Through label expansion of approved drugs, developers are allowed to sell drugs 

in other disease markets beyond the initially targeted disease. Thus, re-purposing of an 

approved drug is an important means of generating sustainable revenues from investing 

in a technology. The Poisson regression yields a significant and positive coefficient of the 

interaction term. Exp(0.245) = 1.28 indicates that when the other predictor variables are 

held constant, the molecules in the affected group are extended for use in 28%  more 

disease indications.  
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The samples include many molecules that are never extended to other disease 

indications. Given this consideration, I run negative binomial regressions and confirm 

that the size and significance of the coefficients are similar. Figure 7 shows that among 

novel drugs that commenced testing after the ODA, the molecules in the treated disease 

categories are expanded to approximately three more disease indications than those in the 

control categories.  

 

Discussion and Conclusion 
 Breakthrough innovations significantly improve social welfare as well as the 

growth of individual firms, yet relatively little is known about what leads entrepreneurial 

firms to commercialize novel innovations. As startups rely heavily on partnerships with 

incumbent firms to bring their inventions to market, startups may avoid developing 

radical technologies that are not communicated well because of information friction. The 

ODA provides a useful empirical context with variation in the novelty of entrepreneurial 

innovations across a group of ex ante similar disease categories. I find evidence that 

entrepreneurs are two times more likely to develop radical technologies when the ODA 

lowers the cost of generating credible information by easing the path for startups to 

operate small markets of novel drugs. The magnitude of the impact is greater among a 

group of firms with ex ante less available information; this result implies that information 

asymmetry largely accounts for the lack of investment in breakthrough innovation. The 

results also show that entrepreneurs hold their projects longer before contracting with 

partners. Finally, in the ODA-affected disease categories, startups generate a greater and 

more sustainable stream of revenues from developing novel drugs by expanding the novel 

drugs to be used for a greater number of disease indications. 

To the best of my knowledge, the research is one of the first papers to study the 

qualitative aspect of innovation transferred through the “market for ideas,” responding to 

the growing literature on TCSs. The findings suggest that although small innovators are 

capable of breakthrough innovation, firms in need of collaboration may be steered toward 

technologies that are easier to communicate. From this perspective, this research seeks an 

answer to the Schumpeterian question regarding which firms (small or large) introduce 

novel innovations in the context of collaborative technology commercialization.  
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My findings are also related to the question regarding firm boundaries. This 

research shows how the type of technological innovation affects the division of labor 

among alliance partners. As a transaction of novel innovation requires more information, 

it is efficient for a developing firm—a more informed party—to hold a technology for a 

period sufficiently long to develop a prototype product or to conduct a small market test. 

Public policy could encourage the efficient allocation of resources among partnering 

firms by financing an informed party when its technology has a high degree of 

uncertainty.   

 Finally, the evidence in this paper provides new insight into the ongoing 

controversy surrounding the exploitation of the ODA. While proponents claim that firms 

are abusing public resources to develop drugs that would have been developed even 

without such resources, my research on the positive externality of the ODA implies that 

developers of novel drugs face as much barriers as orphan drug developers do as a result 

of information friction, and the act moderates this problem. Hence, we might need further 

public interventions beyond the ODA to help reduce the information asymmetry 

associated with breakthrough innovation. 

 This study encourages me to examine other aspects related to radical innovation 

by entrepreneurs. First, a firm promoting novel innovation is likely to need additional 

funding to develop a prototype product before bringing it to a large financing partner. 

Private venture capitalists (VCs) and angels may fill this financing gap. In addition, 

mechanisms underlying the impact of VC investments may vary based on the types of 

innovation. The subsequent chapter of my dissertation studies changes in the composition 

of investors.  

Second, it is important to understand the welfare effect of novel drugs brought by 

the ODA. The development and expansion of ODA-driven novel drugs benefit both 

patients who suffer from rare diseases and those who suffer from common diseases. 

However, because novel drug developers need to develop treatments for rare diseases 

first to benefit from ODA incentives, patients with common diseases must endure a delay 

in the production of novel treatments. If the loss of welfare created by the delay is 

considerable, then we may need more interventions similar to the ODA to ensure the 
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timely delivery of novel drugs to both patients with rare diseases and those with common 

diseases (Budish, Roin et al. 2013, Howell 2015). 

Finally, what types of entrepreneurs market radical technologies? Technological 

startups have diverse origins, including corporation spin-offs and academic 

entrepreneurs. Accelerators and angel investors, private and corporate VCs, and public 

grant provision programs such as the National Institutes of Health (NIH) and the Small 

Business Innovation Research Program (SBIR) may provide varying guidance and 

funding with different influences on the incentives and behaviors of financed startups 

(Chatterji 2009). It would be interesting to observe how different entrepreneurs respond 

to the changes in environmental conditions initiated by the ODA. 

 

! !



! 26!

Figures and Tables 

!
Figure'1.'Drug'Approval'Process'in'the'US'
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'
Figure'2.'Mechanisms'Behind'the'Impact'of'the'ODA'
' '
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'
Figure'3.'Category'Classification'of'Common'Diseases'and'Rare'Diseases'
' '
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Figure'4.'Novelty'of'Entrepreneurial'Innovation'over'Time'
Note:&the&y&variable&is&1&if&a&drug&adopts&a&brand7new&mechanism&of&action&and&0&otherwise.&&&
' '
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'
'

'
Figure'5.'Changes'in'the'Novelty'of'Innovation'by'Firm'Region'and'Disease'Groups'
' '
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'
Figure'6.'Cumulative'Survival'Functions'of'Licensing'Probability'
' '
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'
'
Note:&The&sample&includes&novel&drugs&introduced&after&the&ODA.&
Figure'7.'Label'Expansion'of'Novel'Drugs'
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Descriptive Statistics 

 Statistic N Mean St. Dev. Min Max 
 Entry year 72,972 2,002.894 7.393 1,983 2,014 

Phase I trial year 16,005 2,004.431 6.441 1,989 2,014 
Phase II trial year 17,234 2,004.298 6.668 1,989 2,014 
Phase III trial year 9,310 2,003.664 6.987 1,989 2,014 
Novelty score 72,972 70.061 174.427 1 1,344 
Novel MOA (binary) 72,972 0.163 0.369 0 1 
Molecular.Weight 34,527 466.767 282.251 0.000 3,736.210 
logP 33,788 2.265 3.178 -28.460 20.680 
H.Bond.Donors 34,207 2.489 3.617 0 53 
H.Bond.Acceptors 34,207 5.594 4.738 0 66 
Rotatable.Bonds 34,207 7.374 7.610 0 112 
Small originators 87,523 0.574 0.495 0 1 
Affected category 85,669 0.421 0.494 0 1 
Licensed 87,523 0.166 0.372 0 1 
Times from entry to licensing 13,060 1,473.975 1,422.639 0 10,655 
Rare diseases 87,523 0.125 0.330 0 1 
Entry after ODA 72,972 0.692 0.462 0 1 
Patented 87,523 0.222 0.416 0 1 
EUfirm 87,523 0.328 0.469 0 1 
USfirm 87,523 0.429 0.495 0 1 
Number of unique molecules 49,890     
Number of unique diseases 1,188     
Number of unique categories 15     
Number of unique MOAs 2,481     
Table'1.'Descriptive'Statistics'
' '
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 Dependent variable: 

  
 Novelty of MOA used in drugs 

 (1) (2) (3) (4) (5) 
 AffectedCategory -0.634** -0.669** -0.045*** -0.230*** -0.508** 

 (0.250) (0.272) (0.015) (0.070) (0.221) 
      AfterODA -0.981*** -1.839*** -0.996*** -1.693*** -0.801*** 

 (0.067) (0.170) (0.073) (0.097) (0.128) 
AffectedCategory:AfterODA 0.142* 0.148 0.115 0.120 0.321** 

 (0.072) (0.097) (0.075) (0.087) (0.134) 
Constant 0.049     

 (0.131)     
Molecule Controls No No No No Yes 
Year Fixed Effect No Yes No Yes Yes 
Category Fixed Effect No No Yes No Yes 
                  Note: Molecule-level observation. All estimates are from binomial logit regressions. Samples are biotech 
firm-originated molecules only.  
*p<0.10; **p<0.05; ***p<0.01. 
Table'2.'DiD'Estimates:'Impact'of'the'ODA'on'the'Novelty'of'Entrepreneurial'
Innovation'
' '
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Dependent variable:  

Novelty of drugs advanced to Phase 1 clinical trials 
    

 (1) (2) (3) (4) (5) 
 AffectedCategory -2.440*** -2.580*** 1.582*** -2.087*** -2.209*** 

 (0.401) (0.432) (0.059) (0.335) (0.483) 
      Ph1_afterODA -2.548*** 0.368 -2.545*** 0.461** -2.080*** 

 (0.299) (0.254) (0.304) (0.192) (0.425) 
      AffectedCategory:Ph1_afterODA 1.640*** 1.710*** 1.598*** 1.675*** 1.556*** 

 (0.300) (0.356) (0.310) (0.362) (0.433) 
      Constant 3.509***     
 (0.359)     
Molecule Controls No No No No Yes 
Year Fixed Effect No Yes No Yes Yes 
Category Fixed Effect No No Yes No Yes 
       Note: Molecule-level observations. All estimates are from binomial logit regressions. Samples in  
Column (1) to (5) include all therapeutic molecules entered to the Phase I clinical trials.  
*p<0.10; **p<0.05; ***p<0.01. 
 

 

  
Table'3.'DiD'Estimates:'Impact'of'the'ODA'on'the'Novelty'of'Drugs'Entering'Phase'I'
Trials'
' '
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 Dependent variable: 

  
 Novelty of Innovation 

 (1) (2) (3) (4) (5) (6) (7) 
 AffectedCategory -0.723*** -0.777** 0.103 -0.446*** 0.703** -1.160*** -0.377 

 (0.262) (0.305) (0.065) (0.131) (0.307) (0.280) (0.269) 
        AfterODA -0.978*** -1.465*** -1.016*** -1.305*** -2.826* -1.330*** -0.721*** 

 (0.092) (0.149) (0.109) (0.120) (1.468) (0.118) (0.258) 
        USfirm 0.388*** 0.490*** 0.337** 0.437*** 0.886***   
 (0.137) (0.149) (0.151) (0.164) (0.127)   
        AffectedCategory:AfterODA 0.014 0.061 -0.013 0.038 0.048 1.013*** 0.116 

 (0.139) (0.145) (0.148) (0.138) (0.342) (0.153) (0.226) 
        AfterODA:USfirm -0.265** -0.388*** -0.212 -0.335** -0.556**   
 (0.123) (0.139) (0.140) (0.159) (0.232)   
        AffectedCategory:USfirm -0.203 -0.195 -0.175 -0.161 -0.383   
 (0.161) (0.177) (0.161) (0.179) (0.271)   
        AffectedCategory:AfterODA:USfirm 0.459*** 0.402** 0.441** 0.378** 0.919**   
 (0.169) (0.177) (0.173) (0.181) (0.364)   
        Constant 0.348***       
 (0.115)       
Molecule Controls No No No No Yes Yes Yes 
Year Fixed Effect No Yes No Yes Yes Yes Yes 
Category Fixed Effect No No Yes No Yes Yes Yes 
                Note: Molecule-level observations. All estimates are from binomial logit regressions. Samples in  
Columns (1) to (5) include all therapeutic molecules developed by small biotech firms.  
Columns (6) and (7) are DiD estimates with the molecules originating from American biotech firms  
and from European biotech firms, respectively.  
*p<0.10; **p<0.05; ***p<0.01. 

 
Table'4.'Triple'DiD'Estimates:'Heterogeneous'Impact'of'the'ODA'on'the'Innovation'of'
US'Biotech'Firms'and'EU'Biotech'Firms'
' '
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 Dependent variable: log(hazard ratio of being licensed) 
  
 Survival Analysis: Likelihood of Contracting a Licensing Agreement 

 (1) (2) (3) (4) (5) 
 AffectedCategory -0.179*** -0.165*** 0.296 0.180 -0.031 

 (0.038) (0.040) (0.205) (0.207) (0.056) 
      AfterODA 0.334*** 2.381*** 0.329*** 0.510 0.074 

 (0.034) (0.583) (0.034) (0.583) (0.053) 
            AffectedCategory:AfterODA 0.081* 0.099** 0.094* 0.110** 0.133* 

 (0.048) (0.049) (0.048) (0.049) (0.071) 
Molecule Controls No No No No Yes 
Category Fixed Effect No No Yes No Yes 
Year Fixed Effect No Yes No Yes Yes 
            Observations 7,676 7,676 7,676 7,676 3,452 
R2 0.033 0.139 0.040 0.143 0.120 
Max. Possible R2 1.000 1.000 1.000 1.000 1.000 
Log Likelihood -60,869.150 -60,425.380 -60,841.250 -60,404.640 -24,455.220 

Wald Test 246.390***  
(df = 3) 

1,300.770***  
(df = 31) 

303.600***  
(df = 15) 

1,334.830***  
(df = 43) 

489.960***  
(df = 23) 

LR Test 257.240***  
(df = 3) 

1,144.779***  
(df = 31) 

313.034***  
(df = 15) 

1,186.250***  
(df = 43) 

440.433***  
(df = 23) 

Score (Logrank) Test 249.475***  
(df = 3) 

1,524.387***  
(df = 31) 

307.086***  
(df = 15) 

1,568.237***  
(df = 43) 

521.423***  
(df = 23) 

      Note: Molecule-level observations. All estimates are from Cox proportional hazard models. 
*p<0.10; **p<0.05; ***p<0.01. 
Table'5.'Survival'Analysis'Estimates:'Impact'of'the'ODA'on'Licensing'Probability'and'
Timing'of'Deals'
' '
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 Dependent variable: 

  
 Drug Label Expansion (Re-purposing) 

 (1) (2) (3) (4) (5) (6) 
 AffectedCategory -0.024 -0.026 0.010 0.047 0.047 0.033 

 (0.024) (0.024) (0.041) (0.035) (0.036) (0.058) 
       ODA -0.021 0.074*** -0.298 0.056** 0.104 -0.549 

 (0.019) (0.029) (0.254) (0.027) (0.070) (0.569) 
AffectedCategory:ODA -0.005 0.00003 0.131** 0.017 0.030 0.245*** 

 (0.027) (0.028) (0.052) (0.043) (0.043) (0.079) 
Constant 0.243***   0.321***   
 (0.016)   (0.022)   
Molecule Controls No No Yes No No Yes 
Year Fixed Effect No Yes Yes No Yes Yes 
              Observations 24,140 24,140 4,880 7,106 7,106 1,710 
Log Likelihood -29,999.790 -29,882.590 -6,676.685 -10,323.580 -10,234.080 -2,674.318 
Akaike Inf. Crit. 60,007.580 59,831.190 13,459.370 20,655.170 20,534.170 5,454.637 
       Note: Molecule-level observations. All estimates are from Poisson regressions. Samples in  
Columns (1) to (3) include all therapeutic molecules. Samples in (4) to (6) only include novel 
therapeutic molecules. 
*p<0.10; **p<0.05; ***p<0.01. 
 
Table'6.'DiD'Estimates:'Impact'of'the'ODA'on'the'Subsequent'Commercialization'of'
Novel'Drugs'
'
! !
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