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What’s New in Econometrics NBER, Summer 2007

Lecture 1, Monday, July 30th, 9.00-10.30am

Estimation of Average Treatment Effects Under Unconfoundedness

1. Introduction

In this lecture we look at several methods for estimating average effects of a program,

treatment, or regime, under unconfoundedness. The setting is one with a binary program.

The traditional example in economics is that of a labor market program where some individ-

uals receive training and others do not, and interest is in some measure of the effectiveness

of the training. Unconfoundedness, a term coined by Rubin (1990), refers to the case where

(non-parametrically) adjusting for differences in a fixed set of covariates removes biases in

comparisons between treated and control units, thus allowing for a causal interpretation of

those adjusted differences. This is perhaps the most important special case for estimating

average treatment effects in practice. Alternatives typically involves strong assumptions link-

ing unobservables to observables in specific ways in order to allow adjusting for the relevant

differences in unobserved variables. An example of such a strategy is instrumental variables,

which will be discussed in Lecture 3. A second example that does not involve additional

assumptions is the bounds approach developed by Manski (1990, 2003).

Under the specific assumptions we make in this setting, the population average treat-

ment effect can be estimated at the standard parametric
√
N rate without functional form

assumptions. A variety of estimators, at first sight quite different, have been proposed for

implementing this. The estimators include regression estimators, propensity score based es-

timators and matching estimators. Many of these are used in practice, although rarely is

this choice motivated by principled arguments. In practice the differences between the esti-

mators are relatively minor when applied appropriately, although matching in combination

with regression is generally more robust and is probably the recommended choice. More im-

portant than the choice of estimator are two other issues. Both involve analyses of the data

without the outcome variable. First, one should carefully check the extent of the overlap
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in covariate distributions between the treatment and control groups. Often there is a need

for some trimming based on the covariate values if the original sample is not well balanced.

Without this, estimates of average treatment effects can be very sensitive to the choice of,

and small changes in the implementation of, the estimators. In this part of the analysis

the propensity score plays an important role. Second, it is useful to do some assessment of

the appropriateness of the unconfoundedness assumption. Although this assumption is not

directly testable, its plausibility can often be assessed using lagged values of the outcome as

pseudo outcomes. Another issue is variance estimation. For matching estimators bootstrap-

ping, although widely used, has been shown to be invalid. We discuss general methods for

estimating the conditional variance that do not involve resampling.

In these notes we first set up the basic framework and state the critical assumptions in

Section 2. In Section 3 we describe the leading estimators. In Section 4 we discuss variance

estimation. In Section 5 we discuss assessing one of the critical assumptions, unconfounded-

ness. In Section 6 we discuss dealing with a major problem in practice, lack of overlap in the

covariate distributions among treated and controls. In Section 7 we illustrate some of the

methods using a well known data set in this literature, originally put together by Lalonde

(1986).

In these notes we focus on estimation and inference for treatment effects. We do not dis-

cuss here a recent literature that has taken the next logical step in the evaluation literature,

namely the optimal assignment of individuals to treatments based on limited (sample) in-

formation regarding the efficacy of the treatments. See Manski (2004, 2005, Dehejia (2004),

Hirano and Porter (2005).

2. Framework

The modern set up in this literature is based on the potential outcome approach developed

by Rubin (1974, 1977, 1978), which view causal effects as comparisons of potential outcomes

defined on the same unit. In this section we lay out the basic framework.

2.1 Definitions
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We observe N units, indexed by i = 1, . . . , N , viewed as drawn randomly from a large

population. We postulate the existence for each unit of a pair of potential outcomes, Yi(0)

for the outcome under the control treatment and Yi(1) for the outcome under the active

treatment. In addition, each unit has a vector of characteristics, referred to as covariates,

pretreatment variables or exogenous variables, and denoted by Xi.
1 It is important that

these variables are not affected by the treatment. Often they take their values prior to the

unit being exposed to the treatment, although this is not sufficient for the conditions they

need to satisfy. Importantly, this vector of covariates can include lagged outcomes. Finally,

each unit is exposed to a single treatment; Wi = 0 if unit i receives the control treatment

and Wi = 1 if unit i receives the active treatment. We therefore observe for each unit the

triple (Wi, Yi, Xi), where Yi is the realized outcome:

Yi ≡ Yi(Wi) =

{

Yi(0) if Wi = 0,
Yi(1) if Wi = 1.

Distributions of (Wi, Yi, Xi) refer to the distribution induced by the random sampling from

the population.

Several additional pieces of notation will be useful in the remainder of these notes. First,

the propensity score (Rosenbaum and Rubin, 1983) is defined as the conditional probability

of receiving the treatment,

e(x) = Pr(Wi = 1|Xi = x) = E[Wi|Xi = x].

Also, define, for w ∈ {0, 1}, the two conditional regression and variance functions:

µw(x) = E[Yi(w)|Xi = x], σ2
w(x) = V(Yi(w)|Xi = x).

2.2 Estimands: Average Treatment Effects

1Calling such variables exogenous is somewhat at odds with several formal definitions of exogeneity
(e.g., Engle, Hendry and Richard, 1974), as knowledge of their distribution can be informative about the
average treatment effects. It does, however, agree with common usage. See for example, Manski, Sandefur,
McLanahan, and Powers (1992, p. 28).



Imbens/Wooldridge, Lecture Notes 1, Summer ’07 4

In this discussion we will primarily focus on a number of average treatment effects (ATEs).

For a discussion of testing for the presence of any treatment effects under unconfoundedness

see Crump, Hotz, Imbens and Mitnik (2007). Focusing on average effects is less limiting

than it may seem, however, as this includes averages of arbitrary transformations of the

original outcomes.2 The first estimand, and the most commonly studied in the econometric

literature, is the population average treatment effect (PATE):

τP = E[Yi(1) − Yi(0)].

Alternatively we may be interested in the population average treatment effect for the treated

(PATT, e.g., Rubin, 1977; Heckman and Robb, 1984):

τP,T = E[Yi(1) − Yi(0)|W = 1].

Most of the discussion in these notes will focus on τP , with extensions to τP,T available in

the references.

We will also look at sample average versions of these two population measures. These

estimands focus on the average of the treatment effect in the specific sample, rather than in

the population at large. These include, the sample average treatment effect (SATE) and the

sample average treatment effect for the treated (SATT):

τS =
1

N

N
∑

i=1

(

Yi(1) − Yi(0)
)

, and τS,T =
1

NT

∑

i:Wi=1

(

Yi(1) − Yi(0)
)

,

where NT =
∑N

i=1 Wi is the number of treated units. The sample average treatment effects

have received little attention in the recent econometric literature, although it has a long

tradition in the analysis of randomized experiments (e.g., Neyman, 1923). Without further

assumptions, the sample contains no information about the population ATE beyond the

2Lehman (1974) and Doksum (1974) introduce quantile treatment effects as the difference in quantiles
between the two marginal treated and control outcome distributions. Bitler, Gelbach and Hoynes (2002)
estimate these in a randomized evaluation of a social program. Firpo (2003) develops an estimator for such
quantiles under unconfoundedness.
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sample ATE. To see this, consider the case where we observe the sample (Yi(0), Yi(1),Wi, Xi),

i = 1, . . . , N ; that is, we observe for each unit both potential outcomes. In that case the

sample average treatment effect, τS =
∑

i(Yi(1)−Yi(0))/N , can be estimated without error.

Obviously the best estimator for the population average effect, τP , is τS. However, we cannot

estimate τP without error even with a sample where all potential outcomes are observed,

because we lack the potential outcomes for those population members not included in the

sample. This simple argument has two implications. First, one can estimate the sample ATE

at least as accurately as the population ATE, and typically more so. In fact, the difference

between the two variances is the variance of the treatment effect, which is zero only when

the treatment effect is constant. Second, a good estimator for one average treatment effect

is automatically a good estimator for the other. One can therefore interpret many of the

estimators for PATE or PATT as estimators for SATE or SATT, with lower implied standard

errors.

The difference in asymptotic variances forces the researcher to take a stance on what the

quantity of interest is. For example, in a specific application one can legitimately reach the

conclusion that there is no evidence, at the 95% level, that the PATE is different from zero,

whereas there may be compelling evidence that the SATE is positive. Typically researchers

in econometrics have focused on the PATE, but one can argue that it is of interest, when one

cannot ascertain the sign of the population-level effect, to know whether one can determine

the sign of the effect for the sample. Especially in cases, which are all too common, where

it is not clear whether the sample is representative of the population of interest, results for

the sample at hand may be of considerable interest.

2.2 Identification

We make the following key assumption about the treatment assignment:

Assumption 1 (Unconfoundedness)

(

Yi(0), Yi(1)
)

⊥⊥ Wi

∣

∣

∣
Xi.
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This assumption was first articulated in this form in Rosenbaum and Rubin (1983a). Lech-

ner (1999, 2002) refers to this as the “conditional independence assumption,” Following a

parametric version of this in Heckman and Robb (1984) it is also referred to as “selection

on observables.” In the missing data literature the equivalent assumption is referred to as

“missing at random.”

To see the link with standard exogeneity assumptions, suppose that the treatment effect

is constant: τ = Yi(1)−Yi(0) for all i. Suppose also that the control outcome is linear in Xi:

Yi(0) = α +X ′
iβ + εi,

with εi ⊥⊥ Xi. Then we can write

Yi = α+ τ ·Wi +X ′
iβ + εi.

Given the constant treatment effect assumption, unconfoundedness is equivalent to inde-

pendence of Wi and εi conditional on Xi, which would also capture the idea that Wi is

exogenous. Without this constant treatment effect assumption, however, unconfoundedness

does not imply a linear relation with (mean-)independent errors.

Next, we make a second assumption regarding the joint distribution of treatments and

covariates:

Assumption 2 (Overlap)

0 < Pr(Wi = 1|Xi) < 1.

Rosenbaum and Rubin (1983a) refer to the combination of the two assumptions as ”stongly

ignorable treatment assignment.” For many of the formal results one will also need smooth-

ness assumptions on the conditional regression functions and the propensity score (µw(x)

and e(x)), and moment conditions on Yi(w). I will not discuss these regularity conditions

here. Details can be found in the references for the specific estimators given below.
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There has been some controversy about the plausibility of Assumptions 1 and 2 in eco-

nomic settings and thus the relevance of the econometric literature that focuses on estimation

and inference under these conditions for empirical work. In this debate it has been argued

that agents’ optimizing behavior precludes their choices being independent of the potential

outcomes, whether or not conditional on covariates. This seems an unduly narrow view.

In response I will offer three arguments for considering these assumptions. The first is a

statistical, data descriptive motivation. A natural starting point in the evaluation of any

program is a comparison of average outcomes for treated and control units. A logical next

step is to adjust any difference in average outcomes for differences in exogenous background

characteristics (exogenous in the sense of not being affected by the treatment). Such an

analysis may not lead to the final word on the efficacy of the treatment, but the absence of

such an analysis would seem difficult to rationalize in a serious attempt to understand the

evidence regarding the effect of the treatment.

A second argument is that almost any evaluation of a treatment involves comparisons

of units who received the treatment with units who did not. The question is typically not

whether such a comparison should be made, but rather which units should be compared, that

is, which units best represent the treated units had they not been treated. Economic theory

can help in classifying variables into those that need to be adjusted for versus those that do

not, on the basis of their role in the decision process (e.g., whether they enter the utility

function or the constraints). Given that, the unconfoundedness assumption merely asserts

that all variables that need to be adjusted for are observed by the researcher. This is an

empirical question, and not one that should be controversial as a general principle. It is clear

that settings where some of these covariates are not observed will require strong assumptions

to allow for identification. Such assumptions include instrumental variables settings where

some covariates are assumed to be independent of the potential outcomes. Absent those

assumptions, typically only bounds can be identified (e.g., Manski, 1990, 1995).

A third, related, argument is that even when agents optimally choose their treatment, two

agents with the same values for observed characteristics may differ in their treatment choices
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without invalidating the unconfoundedness assumption if the difference in their choices is

driven by differencese in unobserved characteristics that are themselves unrelated to the

outcomes of interest. The plausability of this will depend critically on the exact nature

of the optimization process faced by the agents. In particular it may be important that

the objective of the decision maker is distinct from the outcome that is of interest to the

evaluator. For example, suppose we are interested in estimating the average effect of a

binary input (e.g., a new technology) on a firm’s output. Assume production is a stochastic

function of this input because other inputs (e.g., weather) are not under the firm’s control,

or Yi = g(W, εi). Suppose that profits are output minus costs, πi(w) = g(w, εi) − ci ·w, and

also that a firm chooses a production level to maximize expected profits, equal to output

minus costs:

Wi = arg max
w

E[πi(w)|ci] = arg max
w

E[g(w, εi) − ci · w|ci],

implying

Wi = 1{E[g(1, εi) − g(0, εi) ≥ ci|ci]} = h(ci).

If unobserved marginal costs ci differ between firms, and these marginal costs are independent

of the errors εi in the firms’ forecast of production given inputs, then unconfoundedness will

hold as

(g(0, εi), g(1, εi)) ⊥⊥ ci.

Note that under the same assumptions one cannot necessarily identify the effect of the input

on profits since (πi(0), πi(1)) are not independent of ci. See for a related discussion, in the

context of instrumental variables, Athey and Stern (1998). Heckman, Lalonde and Smith

(2000) discuss alternative models that justify unconfoundedness. In these models individuals

do attempt to optimize the same outcome that is the variable of interest to the evaluator.

They show that selection on observables assumptions can be justified by imposing restrictions
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on the way individuals form their expectations about the unknown potential outcomes. In

general, therefore, a researcher may wish to, either as a final analysis or as part of a larger

investigation, consider estimates based on the unconfoundedness assumption.

Given strongly ignorable treatment assignment one can identify the population average

treatment effect. The key insight is that given unconfoundedness, the following equalities

holds:

µw(x) = E[Yi(w)|Xi = x] = E[Yi(w)|Wi = w,Xi = x] = E[Yi|Wi = w,Xi = x],

and µw(x) is identified. Thus one can estimate the average treatment effect τ by first

estimating the average treatment effect for a subpopulation with covariates X = x:

τ (x) ≡ E[Yi(1) − Yi(0)|Xi = x] = E[Yi(1)|Xi = x] − E[Yi(0)|Xi = x]

= E[Yi(1)|Xi = x,Wi = 1] − E[Yi(0)|Xi = x,Wi = 0]

= E[Yi|Xi,Wi = 1] − E[Yi|Xi,Wi = 0].

To make this feasible, one needs to be able to estimate the expectations E[Yi|Xi = x,Wi = w]

for all values of w and x in the support of these variables. This is where the second assumption

enters. If the overlap assumption is violated at X = x, it would be infeasible to estimate

both E[Yi|Xi = x,Wi = 1] and E[Yi|Xi = x,Wi = 0] because at those values of x there would

be either only treated or only control units.

Some researchers use weaker versions of the unconfoundedness assumption (e.g., Heck-

man, Ichimura, and Todd, 1998). If the interest is in the population average treatment effect,

it is in fact sufficient to assume that

E[Yi(w)|Wi, Xi] = E[Yi(w)|Xi],

for w = 0, 1. Although this assumption is unquestionably weaker, in practice it is rare that

a convincing case is made for the weaker assumption without the case being equally strong
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for the stronger Assumption 1. The reason is that the weaker assumption is intrinsically

tied to functional form assumptions, and as a result one cannot identify average effects on

transformations of the original outcome (e.g., logarithms) without the strong assumption.

One can weaken the unconfoundedness assumption in a different direction if one is only

interested in the average effect for the treated (e.g., Heckman, Ichimura and Todd, 1997).

In that case one need only assume Yi(0) ⊥⊥ Wi

∣

∣

∣
Xi. and the weaker overlap assumption

Pr(Wi = 1|Xi) < 1. These two assumptions are sufficient for identification of PATT because

moments of the distribution of Y (1) for the treated are directly estimable.

An important result building on the unconfoundedness assumption shows that one need

not condition simultaneously on all covariates. The following result shows that all biases due

to observable covariates can be removed by conditioning solely on the propensity score:

Result 1 Suppose that Assumption 1 holds. Then:

(

Yi(0), Yi(1)
)

⊥⊥ Wi

∣

∣

∣
e(Xi).

Proof: We will show that Pr(Wi = 1|Yi(0), Yi(1), e(Xi)) = Pr(Wi = 1|e(Xi)) = e(Xi),

implying independence of (Yi(0), Yi(1)) and Wi conditional on e(Xi). First, note that

Pr(Wi = 1|Yi(0), Yi(1), e(Xi)) = E[Wi = 1|Yi(0), Yi(1), e(Xi)]

= E

[

E[Wi|Yi(0), Yi(1), e(X), Xi]
∣

∣

∣
Yi(0), Yi(1), e(Xi)

]

= E

[

E[Wi|Yi(0), Yi(1), Xi]
∣

∣

∣
Yi(0), Yi(1), e(Xi)

]

= E

[

E[Wi|Xi]
∣

∣

∣
Yi(0), Yi(1), e(Xi)

]

= E [e(Xi)|Yi(0), Yi(1), e(Xi)] = e(Xi),

where the last equality but one follows from unconfoundedness. The same argument shows

that

Pr(Wi = 1|e(Xi)) = E[Wi = 1|e(Xi)] = E

[

E[Wi = 1|Xi]
∣

∣

∣
e(Xi)

]

= E [e(Xi)|e(Xi)] = e(Xi).
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�

Extensions of this result to the multivalued treatment case are given in Imbens (2000)

and Lechner (2001).

To provide intuition for the Rosenbaum-Rubin result, recall the textbook formula for

omitted variable bias in the linear regression model. Suppose we have a regression model

with two regressors:

Yi = β0 + β1 ·Wi + β ′
2Xi + εi.

The bias of omittingXi from the regression on the coefficient on Wi is equal to β ′
2δ, where δ is

the vector of coefficients on Wi in regressions of the elements of Xi on Wi. By conditioning on

the propensity score we remove the correlation between Xi and Wi because Xi ⊥⊥Wi|e(Xi).

Hence omitting Xi no longer leads to any bias (although it may still lead to some efficiency

loss).

2.4 Efficiency Bounds and Asymptotic Variances for Population Average

Treatment Effects

Next we review some results on the effiency bound for estimators of the average treat-

ment effects τP . This requires strong ignorability and some smoothness assumptions on the

conditional expectations of potential outcomes and the treatment indicator (for details, see

Hahn, 1998). Formally, Hahn (1998) shows that for any regular estimator for τP , denoted

by τ̂ , with

√
N · (τ̂ − τP )

d−→ N (0, V ),

we can show that

V ≥ E

[

σ2
1(Xi)

e(Xi)
+

σ2
0(Xi)

1 − e(Xi)
+ (τ (Xi) − τP )2

]

. (1)

Knowing the propensity score does not affect this efficiency bound.
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Hahn also shows that asymptotically linear estimators exist that achieve the efficiency

bound, and hence such efficient estimators can be approximated as

τ̂ = τP +
1

N

N
∑

i=1

ψ(Yi,Wi, Xi, τP ) + op(N
−1/2),

where ψ(·) is the efficient score:

ψ(y, w, x, τP) =

(

wy

e(x)
− (1 − w)y

1 − e(x)

)

− τP −
(

µ1(x)

e(x)
+

µ0(x)

1 − e(x)

)

· (w − e(x)). (2)

3. Estimating Average Treatment Effects

Here we discuss the leading estimators for average treatment effects under unconfounded-

ness. What is remarkable about this literature is the wide range of ostensibly quite different

estimators, many of which are regularly used in empirical work. We first briefly describe a

number of the estimators, and then discuss their relative merits.

3.1 Regression

The first class of estimators relies on consistent estimation of µw(x) for w = 0, 1. Given

µ̂w(x) for these regression functions, the PATE and SATE are estimated by averaging their

difference over the empirical distribution of the covariates:

τ̂reg =
1

N

N
∑

i=1

(

µ̂1(Xi) − µ̂0(Xi)
)

. (3)

In most implementations the average of the predicted treated outcome for the treated is

equal to the average observed outcome for the treated (so that
∑

i Wi · µ̂1(Xi) =
∑

iWi ·Yi),

and similarly for the controls, implying that τ̂reg can also be written as

τ̂reg =
1

N

N
∑

i=1

Wi ·
(

Yi − µ̂0(Xi)
)

+ (1 −Wi) ·
(

µ̂1(Xi) − Yi

)

.

Early estimators for µw(x) included parametric regression functions, for example linear re-

gression (e.g., Rubin, 1977). Such parametric alternatives include least squares estimators
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with the regression function specified as

µw(x) = β ′x+ τ · w,

in which case the average treatment effect is equal to τ . In this case one can estimate τ

simply by least squares estimation using the regression function

Yi = α+ β ′Xi + τ ·Wi + εi.

More generally, one can specify separate regression functions for the two regimes, µw(x) =

β ′
wx. In that case one estimate the two regression functions separately on the two subsamples

and then substitute the predicted values in (3).

These simple regression estimators can be sensitive to differences in the covariate dis-

tributions for treated and control units. The reason is that in that case the regression

estimators rely heavily on extrapolation. To see this, note that the regression function for

the controls, µ0(x) is used to predict missing outcomes for the treated. Hence on average

one wishes to use predict the control outcome at XT =
∑

iWi · Xi/NT , the average covari-

ate value for the treated. With a linear regression function, the average prediction can be

written as ȲC + β̂ ′(XT − XC). If XT and the average covariate value for the controls, XC

are close, the precise specification of the regression function will not matter much for the

average prediction. However, with the two averages very different, the prediction based on

a linear regression function can be sensitive to changes in the specification.

More recently, nonparametric estimators have been proposed. Imbens, Newey and Ridder

(2005) and Chen, Hong, and Tarozzi (2005) propose estimating µw(x) through series or sieve

methods. A simple version of that with a scalar X would specify the regression function as

µw(x) =

LN
∑

l=0

βw,l · xk,

with LN , the number of terms in the polynomial expansion, an increasing function of the

sample size. They show that this estimator for τP achieves the semiparametric efficiency
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bounds. Heckman, Ichimura and Todd (1997, 1998), and Heckman, Ichimura, Smith and

Todd (1998) consider kernel methods for estimating µw(x), in particular focusing on local

linear approaches. Given a kernel K(·), and a bandwidth hN let

(

α̂w,x, β̂w,x

)

= arg min
αw,x,βw,x

N
∑

i=1

K

(

Xi − x

hN

)

· (Yi − αw,x − βw,x ·Xi)
2 ,

leading to the estimator

µ̂w(x) = α̂w,x.

3.2 Matching

Regression estimators impute the missing potential outcomes using the estimated regres-

sion function. Thus, if Wi = 1, Yi(1) is observed and Yi(0) is missing and imputed with a

consistent estimator µ̂0(Xi) for the conditional expectation. Matching estimators also im-

pute the missing potential outcomes, but do so using only the outcomes of nearest neighbours

of the opposite treatment group. In that sense matching is similar to nonparametric kernel

regression methods, with the number of neighbors playing the role of the bandwidth in the

kernel regression. In fact, matching can be inrrepreted as a limiting version of the standard

kernel estimator where the bandwidth goes to zero. This minimizes the bias among nonneg-

ative kernels, but potentially increases the variance relative to kernel estimators. A formal

difference with kernel estimators is that the asymptotic distribution is derived conditional on

the implicit bandwidth, that is, the number of neighbours, which is often fixed at one. Using

such asymptotics, the implicit estimate µ̂w(x) is (close to) unbiased, but not consistent for

µw(x). In contrast, the regression estimators discussed earlier relied on the consistency of

µw(x).

Matching estimators have the attractive feature that given the matching metric, the re-

searcher only has to choose the number of matches. In contrast, for the regression estimators

discussed above, the researcher must choose smoothing parameters that are more difficult

to interpret; either the number of terms in a series or the bandwidth in kernel regression.
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Within the class of matching estimators, using only a single match leads to the most credible

inference with the least bias, at most sacrificing some precision. This can make the matching

estimator easier to use than those estimators that require more complex choices of smoothing

parameters, and may explain some of its popularity.

Matching estimators have been widely studied in practice and theory (e.g., Gu and Rosen-

baum, 1993; Rosenbaum, 1989, 1995, 2002; Rubin, 1973b, 1979; Heckman, Ichimura and

Todd, 1998; Dehejia and Wahba, 1999; Abadie and Imbens, 2002, AI). Most often they

have been applied in settings with the following two characteristics: (i) the interest is in

the average treatment effect for the treated, and (ii), there is a large reservoir of potential

controls. This allows the researcher to match each treated unit to one or more distinct con-

trols (referred to as matching without replacement). Given the matched pairs, the treatment

effect within a pair is then estimated as the difference in outcomes, with an estimator for the

PATT obtained by averaging these within-pair differences. Since the estimator is essentially

the difference in two sample means, the variance is calculated using standard methods for

differences in means or methods for paired randomized experiments. The remaining bias is

typically ignored in these studies. The literature has studied fast algorithms for matching

the units, as fully efficient matching methods are computationally cumbersome (e.g., Gu

and Rosenbaum, 1993; Rosenbaum, 1995). Note that in such matching schemes the order in

which the units are matched is potentially important.

Here we focus on matching estimators for PATE and SATE. In order to estimate these

targes we need to match both treated and controls, and allow for matching with replacement.

Formally, given a sample, {(Yi, Xi,Wi)}N
i=1, let `m(i) be the index l that satisfies Wl 6= Wi

and

∑

j|Wj 6=Wi

1
{

‖Xj −Xi‖ ≤ ‖Xl −Xi‖
}

= m,

where 1{·} is the indicator function, equal to one if the expression in brackets is true and

zero otherwise. In other words, `m(i) is the index of the unit in the opposite treatment group

that is the m-th closest to unit i in terms of the distance measure based on the norm ‖ · ‖.



Imbens/Wooldridge, Lecture Notes 1, Summer ’07 16

In particular, `1(i) is the nearest match for unit i. Let JM(i) denote the set of indices for

the first M matches for unit i: JM(i) = {`1(i), . . . , `M (i)}. Define the imputed potential

outcomes as:

Ŷi(0) =

{

Yi if Wi = 0,
1
M

∑

j∈JM(i) Yj if Wi = 1,
Ŷi(1) =

{

1
M

∑

j∈JM(i) Yj if Wi = 0,

Yi if Wi = 1.

The simple matching estimator is then

τ̂ sm
M =

1

N

N
∑

i=1

(

Ŷi(1) − Ŷi(0)
)

. (4)

AI show that the bias of this estimator is of order O(N−1/K), where K is the dimension

of the covariates. Hence, if one studies the asymptotic distribution of the estimator by

normalizing by
√
N (as can be justified by the fact that the variance of the estimator is of

order O(1/N)), the bias does not disappear if the dimension of the covariates is equal to

two, and will dominate the large sample variance if K is at least three.

Let us make clear three caveats to the AI result. First, it is only the continuous covariates

that should be counted in K. With discrete covariates the matching will be exact in large

samples, therefore such covariates do not contribute to the order of the bias. Second, if

one matches only the treated, and the number of potential controls is much larger than the

number of treated units, one can justify ignoring the bias by appealling to an asymptotic

sequence where the number of potential controls increases faster than the number of treated

units. Specifically, if the number of controls, N0, and the number of treated, N1, satisfy

N1/N
4/K
0 → 0, then the bias disappears in large samples after normalization by

√
N 1.

Third, even though the order of the bias may be high, the actual bias may still be small

if the coefficients in the leading term are small. This is possible if the biases for different

units are at least partially offsetting. For example, the leading term in the bias relies on the

regression function being nonlinear, and the density of the covariates having a nonzero slope.

If either the regression function is close to linear, or the density of the covariates close to

constant, the resulting bias may be fairly limited. To remove the bias, AI suggest combining

the matching process with a regression adjustment.
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Another point made by AI is that matching estimators are generally not efficient. Even

in the case where the bias is of low enough order to be dominated by the variance, the

estimators are not efficient given a fixed number of matches. To reach efficiency one would

need to increase the number of matches with the sample size, as done implicitly in kernel

estimators. In practice the efficiency loss is limited though, with the gain of going from two

matches to a large number of matches bounded as a fraction of the standard error by 0.16

(see AI).

In the above discussion the distance metric in choosing the optimal matches was the

standard Euclidan metric dE(x, z) = (x − z)′(x − z). All of the distance metrics used in

practice standardize the covariates in some manner. The most popular metrics are the

Mahalanobis metric, where

dM (x, z) = (x− z)′(Σ−1
X )(x− z),

where Σ is covariance matrix of the covairates, and the diagonal version of that

dAI(x, z) = (x− z)′diag(Σ−1
X )(x− z).

Note that depending on the correlation structure, using the Mahalanobis metric can lead to

situations where a unit with Xi = (5, 5) is a closer match for a unith with Xi = (0, 0) than

a unit with Xi = (1, 4), despite being further away in terms of each covariate separately.

3.3 Propensity Score Methods

Since the work by Rosenbaum and Rubin (1983a) there has been considerable interest in

methods that avoid adjusting directly for all covariates, and instead focus on adjusting for

differences in the propensity score, the conditional probability of receiving the treatment.

This can be implemented in a number of different ways. One can weight the observations

in terms of the propensity score (and indirectly also in terms of the covariates) to create

balance between treated and control units in the weighted sample. Hirano, Imbens and

Ridder (2003) show how such estimators can achieve the semiparametric efficiency bound.
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Alternatively one can divide the sample into subsamples with approximately the same value

of the propensity score, a technique known as blocking. Finally, one can directly use the

propensity score as a regressor in a regression approach or match on the propensity score.

If the researcher knows the propensity score all three of these methods are likely to be

effective in eliminating bias. Even if the resulting estimator is not fully efficient, one can

easily modify it by using a parametric estimate of the propensity score to capture most of

the efficiency loss. Furthermore, since these estimators do not rely on high-dimensional non-

parametric regression, this suggests that their finite sample properties would be attractive.

In practice the propensity score is rarely known, and in that case the advantages of

the estimators discussed below are less clear. Although they avoid the high-dimensional

nonparametric estimation of the two conditional expectations µw(x), they require instead

the equally high-dimensional nonparametric estimation of the propensity score. In practice

the relative merits of these estimators will depend on whether the propensity score is more

or less smooth than the regression functions, or whether additional information is available

about either the propensity score or the regression functions.

3.3.1 Weighting

The first set of “propensity score” estimators use the propensity score as weights to

create a balanced sample of treated and control observations. Simply taking the difference

in average outcomes for treated and controls,

τ̂ =

∑

WiYi
∑

Wi
−

∑

(1 −Wi)Yi
∑

1 −Wi
,

is not unbiased for τP = E[Yi(1)−Yi(0)] because, conditional on the treatment indicator, the

distributions of the covariates differ. By weighting the units by the inverse of the probability

of receiving the treatment, one can undo this imbalance. Formally, weighting estimators rely

on the equalities:

E

[

WY

e(X)

]

= E

[

WYi(1)

e(X)

]

= E

[

E

[

WYi(1)

e(X)

∣

∣

∣

∣

X

]]

= E

[

E

[

e(X)Yi(1)

e(X)

]]

= E[Yi(1)],
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and similarly

E

[

(1 −W )Y

1 − e(X)

]

= E[Yi(0)],

implying

τP = E

[

W · Y
e(X)

− (1 −W ) · Y
1 − e(X)

]

.

With the propensity score known one can directly implement this estimator as

τ̃ =
1

N

N
∑

i=1

(

WiYi

e(Xi)
− (1 −Wi)Yi

1 − e(Xi)

)

. (5)

In this particular form this is not necessarily an attractive estimator. The main reason is

that, although the estimator can be written as the difference between a weighted average of

the outcomes for the treated units and a weighted average of the outcomes for the controls,

the weights do not necessarily add to one. Specifically, in (5), the weights for the treated

units add up to (
∑

Wi/e(Xi))/N . In expectation this is equal to one, but since its variance

is positive, in any given sample some of the weights are likely to deviate from one. One

approach for improving this estimator is simply to normalize the weights to unity. One can

further normalize the weights to unity within subpopulations as defined by the covariates.

In the limit this leads to the estimator proposed by Hirano, Imbens and Ridder (2003) who

suggest using a nonparametric series estimator for e(x). More precisely, they first specify a

sequence of functions of the covariates, e.g., a power series, hl(x), l = 1, . . . ,∞. Next, they

choose a number of terms, L(N), as a function of the sample size, and then estimate the

L-dimensional vector γL in

Pr(W = 1|X = x) =
exp((h1(x), . . . , hL(x))γL)

1 + exp((h1(x), . . . , hL(x))γL)
,

by maximizing the associated likelihood function. Let γ̂L be the maximum likelihood esti-

mate. In the third step, the estimated propensity score is calculated as:

ê(x) =
exp((h1(x), . . . , hL(x))γ̂L)

1 + exp((h1(x), . . . , hL(x))γ̂L)
.
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Finally they estimate the average treatment effect as:

τ̂weight =
N

∑

i=1

Wi · Yi

ê(Xi)

/

N
∑

i=1

Wi

ê(Xi)
−

N
∑

i=1

(1 −Wi) · Yi

1 − ê(Xi)

/

N
∑

i=1

(1 −Wi)

1 − ê(Xi)
. (6)

Hirano, Imbens and Ridder (2003) show that this estimator is efficient, whereas with the true

propensity score the estimator would not be fully efficient (and in fact not very attractive).

This estimator highlights one of the interesting features of the problem of efficiently es-

timating average treatment effects. One solution is to estimate the two regression functions

µw(x) nonparametrically; that solution completely ignores the propensity score. A second

approach is to estimate the propensity score nonparametrically, ignoring entirely the two

regression functions. If appropriately implemented, both approaches lead to fully efficient

estimators, but clearly their finite sample properties may be very different, depending, for

example, on the smoothness of the regression functions versus the smoothness of the propen-

sity score. If there is only a single binary covariate, or more generally with only discrete

covariates, the weighting approach with a fully nonparametric estimator for the propensity

score is numerically identical to the regression approach with a fully nonparametric estimator

for the two regression functions.

One difficulty with the weighting estimators that are based on the estimated propensity

score is again the problem of choosing the smoothing parameters. Hirano, Imbens and Rid-

der (2003) use series estimators, which requires choosing the number of terms in the series.

Ichimura and Linton (2001) consider a kernel version, which involves choosing a bandwidth.

Theirs is currently one of the few studies considering optimal choices for smoothing param-

eters that focuses specifically on estimating average treatment effects. A departure from

standard problems in choosing smoothing parameters is that here one wants to use non-

parametric regression methods even if the propensity score is known. For example, if the

probability of treatment is constant, standard optimality results would suggest using a high

degree of smoothing, as this would lead to the most accurate estimator for the propensity

score. However, this would not necessarily lead to an efficient estimator for the average

treatment effect of interest.
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3.3.2 Blocking on the Propensity Score

In their original propensity score paper Rosenbaum and Rubin (1983a) suggest the fol-

lowing “blocking propensity score” estimator. Using the (estimated) propensity score, divide

the sample into M blocks of units of approximately equal probability of treatment, letting

Jim be an indicator for unit i being in block m. One way of implementing this is by dividing

the unit interval into M blocks with boundary values equal to m/M for m = 1, . . . ,M − 1,

so that

Jim = 1{(m− 1)/M < e(Xi) ≤ m/M},

for m = 1, . . . ,M . Within each block there are Nwm observations with treatment equal to

w, Nwm =
∑

i 1{Wi = w, Jim = 1}. Given these subgroups, estimate within each block the

average treatment effect as if random assignment holds,

τ̂m =
1

N1m

N
∑

i=1

JimWiYi −
1

N0m

N
∑

i=1

Jim(1 −Wi)Yi.

Then estimate the overall average treatment effect as:

τ̂block =
M

∑

m=1

τ̂m · N1m +N0m

N
.

Blocking can be interpreted as a crude form of nonparametric regression where the un-

known function is approximated by a step function with fixed jump points. To establish

asymptotic properties for this estimator would require establishing conditions on the rate

at which the number of blocks increases with the sample size. With the propensity score

known, these are easy to determine; no formal results have been established for the unknown

case.

The question arises how many blocks to use in practice. Cochran (1968) analyses a case

with a single covariate, and, assuming normality, shows that using five blocks removes at least

95% of the bias associated with that covariate. Since all bias, under unconfoudnedness, is
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associated with the propensity score, this suggests that under normality five blocks removes

most of the bias associated with all the covariates. This has often been the starting point

of empirical analyses using this estimator (e.g., Rosenbaum and Rubin, 1983b; Dehejia

and Wahba, 1999), and has been implemented in STATA by Becker and Ichino (2002).

Often, however, researchers subsequently check the balance of the covariates within each

block. If the true propensity score per block is constant, the distribution of the covariates

among the treated and controls should be identical, or, in the evaluation terminology, the

covariates should be balanced. Hence one can assess the adequacy of the statistical model

by comparing the distribution of the covariates among treated and controls within blocks.

If the distributions are found to be different, one can either split the blocks into a number

of subblocks, or generalize the specification of the propensity score. Often some informal

version of the following algorithm is used: If within a block the propensity score itself is

unbalanced, the blocks are too large and need to be split. If, conditional on the propensity

score being balanced, the covariates are unbalanced, the specification of the propensity score

is not adequate. No formal algorithm exists for implementing these blocking methods.

3.3.3 Regression on the Propensity Score

The third method of using the propensity score is to estimate the conditional expectation

of Y given W and e(X) and average the difference. Although this method has been used

in practice, there is no particular reason why this is an attractive method compared to the

regression methods based on the covariates directly. In addition, the large sample properties

have not been established.

3.3.4 Matching on the Propensity Score

The Rosenbaum-Rubin result implies that it is sufficient to adjust solely for differences in

the propensity score between treated and control units. Since one of the ways in which one

can adjust for differences in covariates is matching, another natural way to use the propensity

score is through matching. Because the propensity score is a scalar function of the covariates,

the bias results in Abadie and Imbens (2002) imply that the bias term is of lower order
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than the variance term and matching leads to a
√
N -consistent, asymptotically normally

distributed estimator. The variance for the case with matching on the true propensity score

also follows directly from their results. More complicated is the case with matching on

the estimated propensity score. We are not aware of any results that give the asymptotic

variance for this case.

3.4. Mixed Methods

A number of approaches have been proposed that combine two of the three methods de-

scribed earlier, typically regression with one of its alternatives. These methods appear to be

the most attractive in practice. The motivation for these combinations is that, although one

method alone is often sufficient to obtain consistent or even efficient estimates, incorporating

regression may eliminate remaining bias and improve precision. This is particularly useful

because neither matching nor the propensity score methods directly address the correlation

between the covariates and the outcome. The benefit associated with combining methods is

made explicit in the notion developed by Robins and Ritov (1997) of “double robustness.”

They propose a combination of weighting and regression where, as long as the parametric

model for either the propensity score or the regression functions is specified correctly, the re-

sulting estimator for the average treatment effect is consistent. Similarly, because matching

is consistent with few assumptions beyond strong ignorability, thus methods that combine

matching and regressions are robust against misspecification of the regression function.

3.4.1 Weighting and Regression

One can rewrite the HIR weighting estimator discussed above as estimating the following

regression function by weighted least squares,

Yi = α+ τ ·Wi + εi,

with weights equal to

λi =

√

Wi

e(Xi)
+

1 −Wi

1 − e(Xi)
.
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Without the weights the least squares estimator would not be consistent for the average

treatment effect; the weights ensure that the covariates are uncorrelated with the treatment

indicator and hence the weighted estimator is consistent.

This weighted-least-squares representation suggests that one may add covariates to the

regression function to improve precision, for example as

Yi = α+ β ′Xi + τ ·Wi + εi,

with the same weights λi. Such an estimator, using a more general semiparametric regression

model, is suggested in Robins and Rotnitzky (1995), Robins, Rotnitzky and Zhao (1995),

Robins and Ritov (1997), and implemented in Hirano and Imbens (2001). In the parametric

context Robins and Ritov argue that the estimator is consistent as long as either the regres-

sion model or the propensity score (and thus the weights) are specified correctly. That is, in

the Robins-Ritov terminology, the estimator is doubly robust.

3.4.2 Blocking and Regression

Rosenbaum and Rubin (1983b) suggest modifying the basic blocking estimator by using

least squares regression within the blocks. Without the additional regression adjustment the

estimated treatment effect within blocks can be written as a least squares estimator of τm

for the regression function

Yi = αm + τm ·Wi + εi,

using only the units in block m. As above, one can also add covariates to the regression

function

Yi = αm + τm ·Wi + β ′
mXi + εi,

again estimated on the units in block m.

3.4.3 Matching and Regression
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Since Abadie and Imbens (2002) show that the bias of the simple matching estimator

can dominate the variance if the dimension of the covariates is too large, additional bias

corrections through regression can be particularly relevant in this case. A number of such

corrections have been proposed, first by Rubin (1973b) and Quade (1982) in a parametric

setting. Let Ŷi(0) and Ŷi(1) be the observed or imputed potential outcomes for unit i; where

these estimated potential outcomes equal observed outcomes for some unit i and its match

`(i). The bias in their comparison, E[Ŷi(1) − Ŷi(0)] − (Yi(1) − Yi(0)), arises from the fact

that the covariates for units i and `(i), Xi and X`(i) are not equal, although close because

of the matching process.

To further explore this, focusing on the single match case, define for each unit:

X̂i(0) =

{

Xi if Wi = 0,
X`(i) if Wi = 1,

X̂i(1) =

{

X`(i) if Wi = 0,
Xi if Wi = 1.

If the matching is exact X̂i(0) = X̂i(1) for each unit. If not, these discrepancies will lead to

potential bias. The difference X̂i(1) − X̂i(0) will therefore be used to reduce the bias of the

simple matching estimator.

Suppose unit i is a treated unit (Wi = 1), so that Ŷi(1) = Yi(1) and Ŷi(0) is an imputed

value for Yi(0). This imputed value is unbiased for µ0(X`(i)) (since Ŷi(0) = Y`(i)), but not

necessarily for µ0(Xi). One may therefore wish to adjust Ŷi(0) by an estimate of µ0(Xi) −
µ0(X`(i)). Typically these corrections are taken to be linear in the difference in the covariates

for units i and its match, that is, of the form β ′
0(X̂i(1)−X̂i(0) = β ′

0(Xi−X`(i)). One proposed

correction is to estimate µ0(x) directly by taking the control units that are used as matches for

the treated units, with weights corresponding to the number of times a control observations

is used as a match, and estimate a linear regression of the form

Yi = α0 + β ′
0Xi + εi,

on the weighted control observations by least squares. (If unit i is a control unit the correc-

tion would be done using an estimator for the regression function µ1(x) based on a linear
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specification Yi = α1 + β ′
1Xi estimated on the treated units.) AI show that if this correction

is done nonparametrically, the resulting matching estimator is consistent and asymptotically

normal, with its bias dominated by the variance.

4. Estimating Variances

The variances of the estimators considered so far typically involve unknown functions.

For example, as discussed earlier, the variance of efficient estimators of PATE is equal to

VP = E

[

σ2
1(Xi)

e(Xi)
+

σ2
0(Xi)

1 − e(Xi)
+ (µ1(Xi) − µ0(Xi) − τ )2

]

,

involving the two regression functions, the two conditional variances and the propensity

score.

4.1 Estimating The Variance of Efficient Estimators for τP

For efficient estimators for τP the asymptotic variance is equal to the efficiency bound

VP . There are a number of ways we can estimate this. The first is essentially by brute force.

All five components of the variance, σ2
0(x), σ

2
1(x), µ0(x), µ1(x), and e(x), are consistently

estimable using kernel methods or series, and hence the asymptotic variance can be estimated

consistently. However, if one estimates the average treatment effect using only the two

regression functions, it is an additional burden to estimate the conditional variances and

the propensity score in order to estimate VP . Similarly, if one efficiently estimates the

average treatment effect by weighting with the estimated propensity score, it is a considerable

additional burden to estimate the first two moments of the conditional outcome distributions

just to estimate the asymptotic variance.

A second method applies to the case where either the regression functions or the propen-

sity score is estimated using series or sieves. In that case one can interpret the estimators,

given the number of terms in the series, as parametric estimators, and calculate the vari-

ance this way. Under some conditions that will lead to valid standard errors and confidence

intervals.
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A third approach is to use bootstrapping (Efron and Tibshirani, 1993; Horowitz, 2002).

Although there is little formal evidence specific for these estimators, given that the estimators

are asymptotically linear, it is likely that bootstrapping will lead to valid standard errors and

confidence intervals at least for the regression and propensity score methods. Bootstrapping

is not valid for matching estimators, as shown by Abadie and Imbens (2007) Subsampling

(Politis and Romano, 1999) will still work in this setting.

4.2 Estimating The Conditional Variance

Here we focus on estimation of the variance of estimators for τS , which is the condi-

tional variance of the various estimators, conditional on the covariates X and the treatment

indicators W. All estimators used in practice are linear combinations of the outcomes,

τ̂ =

N
∑

i=1

λi(X,W) · Yi,

with the λ(X,W) known functions of the covariates and treatment indicators. Hence the

conditional variance is

V (τ̂ |X,W) =
N

∑

i=1

λi(X,W)2 · σ2
Wi

(Xi).

The only unknown component of this variance is σ2
w(x). Rather than estimating this through

nonparametric regression, AI suggest using matching to estimate σ2
w(x). To estimate σ2

Wi
(Xi)

one uses the closest match within the set of units with the same treatment indicator. Let

v(i) be the closest unit to i with the same treatment indicator (Wv(i) = Wi). The sample

variance of the outcome variable for these 2 units can then be used to estimate σ2
Wi

(Xi):

σ̂2
Wi

(Xi) =
(

Yi − Yv(i)

)2
/2.

Note that this estimator is not consistent estimators of the conditional variances. However

this is not important, as we are interested not in the variances at specific points in the
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covariates distribution, but in the variance of the average treatment effect. Following the

process introduce above, this is estimated as:

V̂ (τ̂ |X,W) =
N

∑

i=1

λi(X,W)2 · σ̂2
Wi

(Xi).

5. Assessing Unconfoundedness

The unconfoundedness assumption used throughout this discussion is not directly testable.

It states that the conditional distribution of the outcome under the control treatment, Yi(0),

given receipt of the active treatment and given covariates, is identical to the distribution of

the control outcome given receipt of the control treatment and given covariates. The same is

assumed for the distribution of the active treatment outcome, Yi(1). Yet since the data are

completely uninformative about the distribution of Yi(0) for those who received the active

treatment and of Yi(1) for those receiving the control, the data cannot directly reject the

unconfoundedness assumption. Nevertheless, there are often indirect ways of assessing the

this, a number of which are developed in Heckman and Hotz (1989) and Rosenbaum (1987).

These methods typically rely on estimating a causal effect that is known to equal zero. If

based on the test we reject the null hypothesis that this causal effect varies from zero, the

unconfoundedness assumption is considered less plausible. These tests can be divided into

two broad groups.

The first set of tests focuses on estimating the causal effect of a treatment that is known

not to have an effect, relying on the presence of multiple control groups (Rosenbaum, 1987).

Suppose one has two potential control groups, for example eligible nonparticipants and

ineligibles, as in Heckman, Ichimura and Todd (1997). One interpretation of the test is

to compare average treatment effects estimated using each of the control groups. This can

also be interpreted as estimating an “average treatment effect” using only the two control

groups, with the treatment indicator now a dummy for being a member of the first group.

In that case the treatment effect is known to be zero, and statistical evidence of a non-zero

effect implies that at least one of the control groups is invalid. Again, not rejecting the

test does not imply the unconfoundedness assumption is valid (as both control groups could
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suffer the same bias), but non-rejection in the case where the two control groups are likely

to have different biases makes it more plausible that the unconfoundness assumption holds.

The key for the power of this test is to have available control groups that are likely to have

different biases, if at all. Comparing ineligibles and eligible nonparticipants is a particularly

attractive comparison. Alternatively one may use different geographic controls, for example

from areas bordering on different sides of the treatment group.

One can formalize this test by postulating a three-valued indicator Ti ∈ {−0, 1, 1} for the

groups (e.g., ineligibles, eligible nonnonparticipants and participants), with the treatment

indicator equal to Wi = 1{Ti = 1}, so that

Yi =

{

Yi(0) if Ti ∈ {−1, 0}
Yi(1) if Ti = 1.

If one extends the unconfoundedness assumption to independence of the potential outcomes

and the three-valued group indicator given covariates,

Yi(0), Yi(1) ⊥⊥ Ti

∣

∣

∣

∣

Xi,

then a testable implication is

Yi(0) ⊥⊥ 1{Ti = 0}
∣

∣

∣

∣

Xi, Ti ∈ {−1, 0},

and thus

Yi ⊥⊥ 1{Ti = 0}
∣

∣

∣

∣

Xi, Ti ∈ {−1, 0}.

An implication of this independence condition is being tested by the tests discussed above.

Whether this test has much bearing on the unconfoundedness assumption depends on whether

the extension of the assumption is plausible given unconfoundedness itself.

The second set of tests of unconfoundedness focuses on estimating the causal effect of

the treatment on a variable known to be unaffected by it, typically because its value is



Imbens/Wooldridge, Lecture Notes 1, Summer ’07 30

determined prior to the treatment itself. Such a variable can be time-invariant, but the

most interesting case is in considering the treatment effect on a lagged outcome, commonly

observed in labor market programs. If the estimated effect differs from zero, this implies that

the treated observations are different from the controls in terms of this particular covariate

given the others. If the treatment effect is estimated to be close to zero, it is more plausible

that the unconfoundedness assumption holds. Of course this does not directly test this

assumption; in this setting, being able to reject the null of no effect does not directly reflect

on the hypothesis of interest, unconfoundedness. Nevertheless, if the variables used in this

proxy test are closely related to the outcome of interest, the test arguably has more power.

For these tests it is clearly helpful to have a number of lagged outcomes.

To formalize this, let us suppose the covariates consist of a number of lagged out-

comes Yi,−1, . . . , Yi,−T as well as time-invariant individual characteristics Zi, so that Xi =

(Yi,−1, . . . , Yi,−T , Zi). By construction only units in the treatment group after period −1

receive the treatment; all other observed outcomes are control outcomes. Also suppose that

the two potential outcomes Yi(0) and Yi(1) correspond to outcomes in period zero. Now

consider the following two assumptions. The first is unconfoundedness given only T − 1 lags

of the outcome:

Yi,0(1), Yi,0(0) ⊥⊥ Wi

∣

∣

∣
Yi,−1, . . . , Yi,−(T−1), Zi,

and the second assumes stationarity and exchangeability:

fYi,s(0)|Yi,s−1(0),...,Yi,s−(T−1)(0),Zi,Wi
(ys|ys−1, . . . , ys−(T−1), z, w), does not depend on i and s.

Then it follows that

Yi,−1 ⊥⊥ Wi

∣

∣

∣
Yi,−2, . . . , Yi,−T , Zi,

which is testable. This hypothesis is what the procedure described above tests. Whether

this test has much bearing on unconfoundedness depends on the link between the two as-

sumptions and the original unconfoundedness assumption. With a sufficient number of lags
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unconfoundedness given all lags but one appears plausible conditional on unconfoundedness

given all lags, so the relevance of the test depends largely on the plausibility of the second

assumption, stationarity and exchangeability.

6. Assessing Overlap

The second of the key assumptions in estimating average treatment effects requires that

the propensity score is strictly between zero and one. Although in principle this is testable,

as it restricts the joint distribution of observables, formal tests are not the main concern.

In practice, this assumption raises a number of issues. The first question is how to detect

a lack of overlap in the covariate distributions. A second is how to deal with it, given that

such a lack exists.

6.1 Propensity Score Distributions

The first method to detect lack of overlap is to plot distributions of covariates by treat-

ment groups. In the case with one or two covariates one can do this directly. In high

dimensional cases, however, this becomes more difficult. One can inspect pairs of marginal

distributions by treatment status, but these are not necessarily informative about lack of

overlap. It is possible that for each covariate the distribution for the treatment and control

groups are identical, even though there are areas where the propensity score is zero or one.

A more direct method is to inspect the distribution of the propensity score in both

treatment groups, which can reveal lack of overlap in the multivariate covariate distributions.

Its implementation requires nonparametric estimation of the propensity score, however, and

misspecification may lead to failure in detecting a lack of overlap, just as inspecting various

marginal distributions may be insufficient. In practice one may wish to undersmooth the

estimation of the propensity score, either by choosing a bandwidth smaller than optimal for

nonparametric estimation or by including higher order terms in a series expansion.

6.2 Selecting a Sample with Overlap

Once one determines that there is a lack of overlap one can either conclude that the
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average treatment effect of interest cannot be estimated with sufficient precision, and/or

decide to focus on an average treatment effect that is estimable with greater accuracy. To do

the latter it can be useful to discard some of the observations on the basis of their covariates.

For example one may decide to discard control (treated) observations with propensity scores

below (above) a cutoff level. To do this sytematically, we follow Crump, Hotz, Imbens

and Mitnik (2006), who focus on sample averate treatment effects. Their starting point is

the definition of average treatment effects for subsets of the covariate space. Let X be the

covariate space, and A ⊂ X be some subset. Then define

τ (A) =
N

∑

i=1

1{Xi ∈ A} · τ (Xi)
/

N
∑

i=1

1{Xi ∈ A}.

Crump et al calculate the efficiency bound for τ (A), assuming homoskedasticity, as

σ2

q(A)
· E

[

1

e(X)
+

1)

1 − e(X)

∣

∣

∣

∣

X ∈ A

]

,

where q(A) = Pr(X ∈ A). They derive the characterization for the set A that minimizes the

asymptotic variance and show that it has the form

A
∗ = {x ∈ X|α ≤ e(X) ≤ 1 − α},

dropping observations with extreme values for the propensity score, with the cutoff value α

determined by the equation

1

α · (1 − α)
= 2 · E

[

1

e(X) · (1 − e(X))

∣

∣

∣

∣

1

e(X) · (1 − e(X))
≤ 1

α · (1 − α)

]

.

Crump et al then suggest estimating τ (A∗). Note that this subsample is selected solely on the

basis of the joint distribution of the treatment indicators and the covariates, and therefore

does not introduce biases associated with selection based on the outcomes. Calculations for

Beta distributions for the propensity score suggest that α = 0.1 approximates the optimal

set well in practice.
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7. The Lalonde Data

Here we look at application of the ideas discussed in these notes. We take the NSW job

training data orinally collected by Lalonde (1986), and subsequently analyzed by Dehejia and

Wahba (1999). The starting point is an experimental evaluation of this training program.

Lalonde then constructed non-experimental comparison groups to investigate the ability of

various econometric techniques to replicate the experimental results. In the current analysis

we use three subsamples, the (experimental) trainees, the experimental controls, and a CPS

comparison group.

In the next two subsections we do the design part of the analysis. Without using the

outcome data we assess whether strong ignorability has some credibility.

7.1 Summary Statistics

First we give some summary statistics

Table 1: Summary Statistics for Experimental Sample

Controls Trainees CPS
(N=260) (N=185) (N=15,992)

mean (s.d.) mean (s.d.) diff / sd mean (s.d.) diff / sd

Age 25.05 7.06 25.82 7.16 0.11 33.23 11.05 -0.67
Black 0.83 0.38 0.84 0.36 0.04 0.07 0.26 2.80
Education 10.09 1.61 10.35 2.01 0.14 12.03 2.87 -0.59
Hispanic 0.11 0.31 0.06 0.24 -0.17 0.07 0.26 -0.05
Married 0.15 0.36 0.19 0.39 0.09 0.71 0.45 -1.15
Earnings ’74 2.11 5.69 2.10 4.89 -0.00 14.02 9.57 -1.24
Earnings ’75 1.27 3.10 1.53 3.22 0.08 0.12 0.32 1.77
Unempl ’74 0.75 0.43 0.71 0.46 -0.09 13.65 9.27 -1.30
Unempl. ’75 0.68 0.47 0.60 0.49 -0.18 0.11 0.31 1.54

In this table we report averages and standard deviations for the three subsamples. In addition

we report for the trainee/experimental-control and for the trainee/CPS-comparison-group
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pairs the difference in average covariate values by treatment status, normalized by the stan-

dard deviation of these covariates. So, in Table 1 we see that in the experimental data set

the difference in average age between treated and controls is 0.11 standard deviations. In

the nonexperimental comparison the difference in age is 0.67 standard deviations.

Note that we do not report the t-statistic for the difference. Essentially the t-statistic

is equal to the normalized difference multiplied by the square root of the sample size. As

such, the t-statistic partly reflects the sample size. Given a difference of 0.25 standard

deviations between the two groups in terms of average covariate values, a larger t-statistic

just indicates a larger sample size, and therefore in fact an easier problem in terms of finding

credible estimators for average treatment effects. As this example illustrates, a larger t-

statistic for the difference between average covariates by treatment group does not indicate

that the problem of finding credible estimates of the treatment effect is more difficult. A

larger normalized difference does unambiguously indicate a more severe overlap problem.

In general a difference in average means bigger than 0.25 standard deviations is substan-

tial. In that case one may want to be suspicious of simple methods like linear regression with

a dummy for the treatment variable. Recall that estimating the average effect essentially

amounts to using the controls to estimate the conditional mean µ0(x) = E[Yi|Wi = 1, Xi = x]

and using this estimated regression function to predict the (missing) control outcomes for the

treated units. With such a large difference between the two groups in covariate distributions,

linear regression is going to rely heavily on extrapolation, and thus will be sensitive to the

exact functional form.

Right away we can see that the experimental data set is well balanced. The difference in

averages between treatment and control group is never more than 0.18 standard deviations.

In contrast, with the CPS comparison group the differences between the averages are up

to 1.77 standard deviations from zero, suggesting there will be serious issues in obtaining

credible estimates of the average effect of the treatment.

In Figures 1 and 2 we present histogram estimates of the distribution of the propensity
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score for the treatment and control group in the experimental Lalonde data. These distri-

butions again suggest that there is considerable overlap in the covariate distributions. In

Figures 3 and 4 we present the histogram estimates for the propensity score distributions for

the CPS comparison group. Now there is a clear lack of overlap. For the CPS comparison

group almost all mass of the propensity score distribution is concentrated in a small interval

to the right of zero, and the distribution for the treatment group is much more spread out.

7.2 Assessing Unconfoundedness

First we use the experimental data. We analyze the data as if earnings in 1975 (Earn ’75)

is the outcome. This is in fact a covariate, and so it cannot be affected by the treatment.

Table 2 reports the results for eleven estimators .

Table 2: Estimates for Lalonde Data with Earnings ’75 as Outcome

Experimental Controls CPS Comparison Group
mean (s.e.) t-stat mean (s.e.) t-stat

Simple Dif 0.27 0.30 0.9 -12.12 0.68 -17.8
OLS (parallel) 0.15 0.22 0.7 -1.15 0.36 -3.2
OLS (separate) 0.12 0.22 0.6 -1.11 0.36 -3.1
Propensity Score Weighting 0.15 0.30 0.5 -1.17 0.26 -4.5
Propensity Score Blocking 0.10 0.17 0.6 -2.80 0.56 -5.0
Propensity Score Regression 0.16 0.30 0.5 -1.68 0.79 -2.1
Propensity Score Matching 0.23 0.37 0.6 -1.31 0.46 -2.9
Matching 0.14 0.28 0.5 -1.33 0.41 -3.2
Weighting and Regression 0.15 0.21 0.7 -1.23 0.24 -5.2
Blocking and Regression 0.09 0.15 0.6 -1.30 0.50 -2.6
Matching and Regression 0.06 0.28 0.2 -1.34 0.42 -3.2

For all eleven estimators the estimated effect is close to zero and statistically insignificant

at conventional levels. The results suggest that unconfoundedness is plausible. With the

CPS comparison group the results are very different. All estimators suggest substantial and

statistically significant differences in earnings in 1975 after adjusting for all other covariates,
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including earnings in 1974. This suggests that relying on the unconfoundedness assumption,

in combination with these estimators, is not very credible for this sample.

7.3 Selecting A Subsample

Next we consider the effects of trimming the sample. We use the simple 0.1 rule where

we drop observations with the propensity score outside of the interval [0.1, 0.9]. Table 3 we

report the subsample sizes by treatment status and propensity score block.

Table 3: Sample Sizes for CPS Sample

ê(Xi) < 0.1 0.1 ≤ ê(Xi) ≤ 0.9 0.9 < ê(Xi) All

Controls 15679 313 0 15992
Trainees 44 141 0 185
All 15723 454 0 16177

Dropping observations with a propensity score less than 0.1 leads to discarding most of the

controls, 15679 to be precise, leaving only 313 control observations. In addition 44 out of the

185 treated units are dropped. Nevertheless, the improved balance suggests that we obtain

more precise estimates for the remaining sample.

Now let us consider the selected CPS sample. First we assess the balance by looking at

the summary statistics.
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Table 4: Summary Statistics for Selected CPS Sample

Controls (N=313) Trainees (N=141)
mean (s.d.) mean (s.d.) diff / sd

Age 26.60 10.97 25.69 7.29 -0.09
Black 0.94 0.23 0.99 0.12 0.21
Education 10.66 2.81 10.26 2.11 -0.15
Hispanic 0.06 0.23 0.01 0.12 -0.21
Married 0.22 0.42 0.13 0.33 -0.24
Earnings ’74 1.96 4.08 1.34 3.72 -0.15
Earnings ’75 0.57 0.50 0.80 0.40 0.49
Unempl ’74 0.92 1.57 0.75 1.48 -0.11
Unempl. ’75 0.55 0.50 0.69 0.46 0.28

These suggest that the balance is much improved, with the largest differences now on the

order or 0.5 of a standard deviation, where before they difference was as high as 1.7.

Next we estimate the pseudo treatment effect on earnings in 1975.

Table 5: Estimates on Selected CPS Lalonde Data

Earn ’75 Outcome Earn ’78 Outcome
mean (s.e.) t-stat mean (s.e.) t-stat

Simple Dif -0.17 0.16 -1.1 1.73 0.68 2.6
OLS (parallel) -0.09 0.14 -0.7 2.10 0.71 3.0
OLS (separate) -0.19 0.14 -1.4 2.18 0.72 3.0
Propensity Score Weighting -0.16 0.15 -1.0 1.86 0.75 2.5
Propensity Score Blocking -0.25 0.25 -1.0 1.73 1.23 1.4
Propensity Score Regression -0.07 0.17 -0.4 2.09 0.73 2.9
Propensity Score Matching -0.01 0.21 -0.1 0.65 1.19 0.5
Matching -0.10 0.20 -0.5 2.10 1.16 1.8
Weighting and Regression -0.14 0.14 -1.1 1.96 0.77 2.5
Blocking and Regression -0.25 0.25 -1.0 1.73 1.22 1.4
Matching and Regression -0.11 0.19 -0.6 2.23 1.16 1.9

Here we find that all estimators find only small and insignificant effects of the treatment on
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earnings in 1975. This suggests that for this sample unconfoundedness may well be a rea-

sonable assumption, and that the estimators considered here can lead to credible estimates.

Finally we report the estimates for earnings in 1978. Only now do we use the outcome data.

Note that with the exclusion of the propensity score matching estimator the estimates are

all between 1.73 and 2.23, and thus relatively insensitive to the choice of estimator.
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What’s New in Econometrics? NBER, Summer 2007
Lecture 2, Monday, July 30th, 11.00-12.30 am

Linear Panel Data Models
These notes cover some recent topics in linear panel data models. They begin with a

“modern” treatment of the basic linear model, and then consider some embellishments, such as
random slopes and time-varying factor loads. In addition, fully robust tests for correlated
random effects, lack of strict exogeneity, and contemporaneous endogeneity are presented.
Section 4 considers estimation of models without strictly exogenous regressors, and Section 5
presents a unified framework for analyzing pseudo panels (constructed from repeated cross
sections).
1. Quick Overview of the Basic Model

Most of these notes are concerned with an unobserved effects model defined for a large
population. Therefore, we assume random sampling in the cross section dimension. Unless
stated otherwise, the asymptotic results are for a fixed number of time periods, T, with the
number of cross section observations, N, getting large.

For some of what we do, it is critical to distinguish the underlying population model of
interest and the sampling scheme that generates data that we can use to estimate the population
parameters. The standard model can be written, for a generic i in the population, as

yit   t  xit  ci  uit, t  1, . . . ,T,     (1.1)

where  t is a separate time period intercept (almost always a good idea), xit is a 1  K vector of
explanatory variables, ci is the time-constant unobserved effect, and the uit : t  1, . . . ,T are
idiosyncratic errors. Thanks to Mundlak (1978) and Chamberlain (1982), we view the ci as
random draws along with the observed variables. Then, one of the key issues is whether ci is
correlated with elements of xit.

It probably makes more sense to drop the i subscript in (1.1), which would emphasize that
the equation holds for an entire population. But (1.1) is useful to emphasizing which factors
change only across t, which change only change across i, and which change across i and t.It is
sometimes convenient to subsume the time dummies in x it.

Ruling out correlation (for now) between uit and xit, a sensible assumption is
contemporaneous exogeneity conditional on ci :

Euit|xit,ci  0, t  1, . . . ,T.     (1.2)

This equation really defines  in the sense that under (1.1) and (1.2),

1
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Eyit|xit,ci   t  xit  ci,     (1.3)

so the j are partial effects holding fixed the unobserved heterogeneity (and covariates other

than xtj).

As is now well known,  is not identified only under (1.2). Of course, if we added
Covxit,ci  0 for any t, then  is identified and can be consistently estimated by a cross
section regression using period t. But usually the whole point is to allow the unobserved effect
to be correlated with time-varying xit.

We can allow general correlation if we add the assumption of strict exogeneity conditional
on ci:

Euit|xi1,xi2, . . . ,xiT,ci  0, t  1, . . . ,T,     (1.4)

which can be expressed as

Eyit|xi1, . . . ,xiT,ci  Eyit|xit,ci   t  xit  ci.     (1.5)

If the elements of xit : t  1, . . . ,T have suitable time variation,  can be consistently
estimated by fixed effects (FE) or first differencing (FD), or generalized least squares (GLS) or
generalized method of moments (GMM) versions of them. If the simpler methods are used, and
even if GLS is used, standard inference can and should be made fully robust to
heteroksedasticity and serial dependence that could depend on the regressors (or not). These
are the now well-known “cluster” standard errors. With large N and small T, there is little
excuse not to compute them.

(Note: Some call (1.4) or (1.5) “strong” exogeneity. But in the Engle, Hendry, and Richard
(1983) work, strong exogeneity incorporates assumptions on parameters in different
conditional distributions being variation free, and that is not needed here.)

The strict exogeneity assumption is always violated if xit contains lagged dependent
variables, but it can be violated in other cases where xi,t1 is correlated with uit – a “feedback
effect.” An assumption more natural than strict exogeneity is sequential exogeneity condition
on ci:

Euit|xi1,xi2, . . . ,xit,ci  0, t  1, . . . ,T     (1.6)

or

Eyit|xi1, . . . ,xit,ci  Eyit|xit,ci   t  xit  ci.     (1.7)

This allows for lagged dependent variables (in which case it implies that the dynamics in the

2
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mean have been completely specified) and, generally, is more natural when we take the view
that xit might react to shocks that affect yit. Generally,  is identified under sequential
exogeneity. First differencing and using lags of xit as instruments, or forward filtering, can be
used in simple IV procedures or GMM procedures. (More later.)

If we are willing to assume ci and xi are uncorrelated, then many more possibilities arise
(including, of course, identifying coefficients on time-constant explanatory variables). The
most convenient way of stating the random effects (RE) assumption is

Eci|xi  Eci,     (1.8)

although using the linear projection in place of Eci|xi suffices for consistency (but usual
inference would not generally be valid). Under (1.8), we can used pooled OLS or any GLS
procedure, including the usual RE estimator. Fully robust inference is available and should
generally be used. (Note: The usual RE variance matrix, which depends only on c

2 and u
2,

need not be correctly specified! It still makes sense to use it in estimation but make inference
robust.)

It is useful to define two correlated random effects assumptions:

Lci|xi    xi,     (1.9)

which actually is not an assumption but a definition. For nonlinear models, we will have to
actually make assumptions about Dci|xi, the conditional distribution. Methods based on (1.9)
are often said to implement the Chamberlain device, after Chamberlain (1982).

Mundlak (1978) used a restricted version, and used a conditional expectation:

Eci|xi    x̄i,     (1.10)

where x̄i  T−1∑ t1
T xit. This formulation conserves on degrees of freedom, and extensions are

useful for nonlinear models.
If we write ci    xi  ai or ci    x̄i  ai and plug into the original equation, for

example

yit   t  xit  x̄i  ai  uit     (1.11)

(absorbing  into the time intercepts), then we are tempted to use pooled OLS, or RE
estimation because Eai  uit|xi  0. Either of these leads to the FE estimator of , and to a
simple test of H0 :   0. Later, when we discuss control function methods, it will be handy to
run regressions directly that include the time averages. (Somewhat surprisingly, obtain the
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same algebraic equivalence using Chamberlain’s devise. The pooled OLS estimator of  is still
the FE estimator, even though the t might change substantially across t.)

Some of us have been pushing for several years the notion that specification tests should be
made robust to assumptions that are not directly being tested. (Technically, they should be
robust to assumptions that they have no asymptotic power for detecting violations of.) Much
progress has been made, but one still sees Hausman statistics computed that maintain a full set
of assumptions under the null. Take comparing random effects to fixed effects. The key
assumption is (1.8). whether Varvi|xi has the random effects structure, where vit  ci  uit,
should not be a critical issue. It makes no sense to report a fully robust variance matrix for FE
and RE but then to compute a Hausman test that maintains the full set of RE assumptions. (In
addition to (1.4) and (1.8), these are Varui|xi,ci  u

2IT and Varci|xi  Varci. ) The
regression-based Hausman test from (1.11) is very handy for obtaining a fully robust test.
More specifically, suppose the model contains a full set of year intercepts as well as
time-constant and time-varying explanatory variables:

yit  gt  zi  wit  ci  uit.

Now, it is clear that, because we cannot estimate  by FE, it is not part of the Hausman test

comparing RE and FE. What is less clear, but also true, is that the coefficients on the time
dummies, , cannot be included, either. (RE and FE estimation only with aggregate time

effects are identical.) In fact, we can only compare the M  1 estimates of , say ̂FE and ̂RE. If
we include ̂FE and ̂RE we introduce a nonsingularity in the asymptotic variance matrix. The

regression based test, from the pooled regression

yit on gt, zi, wit, w̄i, t  1, . . . ,T; i  1, . . . ,N

makes this clear (and that the are M restrictions to test). (Mundlak (1978) suggested this test
and Arellano (1993) described the robust version.). Unfortunately, the usual form of the
Hausman test does not, and, for example, Stata gets it wrong and tries to include the year
dummies in the test (in addition to being nonrobust). The most important problem is that
unwarranted degrees of freedom are added to the chi-square distribution, often many extra df,
which can produce seriously misleading p-values.
2. New Insights Into Old Estimators

In the past several years, the properties of traditional estimators used for linear models,
particularly fixed effects and its instrumental variable counterparts, have been studied under
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weaker assumptions. We review some of those results here. In these notes, we focus on models
without lagged dependent variables or other non-strictly exogenous explanatory variables,
although the instrumental variables methods applied to linear models can, in some cases, be
applied to models with lagged dependent variables.

2.1. Fixed Effects Estimation in the Correlated Random Slopes Model

The fixed effects (FE) estimator is still the workhorse in empirical studies that employ
panel data methods to estimate the effects of time-varying explanatory variables. The
attractiveness of the FE estimator is that it allows arbitrary correlation between the additive,
unobserved heterogeneity and the explanatory variables. (Pooled methods that do not remove
time averages, as well as the random effects (RE) estimator, essentially assume that the
unobserved heterogeneity is uncorrelated with the covariates.) Nevertheless, the framework in
which the FE estimator is typically analyzed is somewhat restrictive: the heterogeneity is
assumed to be additive and is assumed to have a constant coefficients (factor loads) over time.
Recently, Wooldridge (2005a) has shown that the FE estimator, and extensions that sweep
away unit-specific trends, has robustness properties for estimating the population average
effect (PAE) or average partial effect (APE).

We begin with an extension of the usual model to allow for unit-specific slopes,

yit  ci  xitbi  uit

Euit|xi,ci,bi  0, t  1, . . . ,T,
    (2.1)
    (2.2)

where bi is K  1. Rather than acknowledge that bi is unit-specific, we ignore the
heterogeneity in the slopes and act as if bi is constant for all i. We think ci might be correlated
with at least some elements of xit, and therefore we apply the usual fixed effects estimator. The
question we address here is: when does the usual FE estimator consistently estimate the
population average effect,   Ebi.

In addition to assumption (2.2), we naturally need the usual FE rank condition,

rank ∑
t1

T

Eẍit
′ ẍit  K.     (2.3)

Write bi    di where the unit-specific deviation from the average, di, necessarily has a zero
mean. Then

yit  ci  xit  xitdi  uit ≡ ci  xit  vit     (2.4)

where vit ≡ xitdi  uit. A sufficient condition for consistency of the FE estimator along with
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(3) is

Eẍit
′ v̈it  0, t  1, . . . ,T.     (2.5)

Along with (2.2), it suffices that Eẍit
′ ẍitdi  0 for all t. A sufficient condition, and one that is

easier to interpret, is

Ebi|ẍit  Ebi  , t  1, . . . ,T.     (2.6)

Importantly, condition (2.6) allows the slopes, bi, to be correlated with the regressors xit

through permanent components. What it rules out is correlation between idiosyncratic
movements in xit. We can formalize this statement by writing xit  fi  r it, t  1, . . . ,T. Then

(2.6) holds if Ebi|r i1,r i2, . . . ,r iT  Ebi. So bi is allowed to be arbitrarily correlated with the
permanent component, fi. (Of course, xit  fi  r it is a special representation of the covariates,

but it helps to illustrate condition (2.6).) Condition (2.6) is similar in spirit to the Mundlak
(1978) assumption applied to the slopes (rather to the intercept):
Ebi|xi1,xi2, . . . ,xiT  Ebi|x̄i

One implication of these results is that it is a good idea to use a fully robust variance matrix
estimator with FE even if one thinks idiosyncratic errors are serially uncorrelated: the term
ẍitdi is left in the error term and causes heteroskedasticity and serial correlation, in general.

These results extend to a more general class of estimators that includes the usual fixed
effects and random trend estimator. Write

yit  wtai  xitbi  uit, t  1, . . . ,T     (2.7)

where wt is a set of deterministic functions of time. We maintain the standard assumption (2.2)
but with ai in place of ci. Now, the “fixed effects” estimator sweeps away ai by netting out wt

from xit. In particular, now let ẍit denote the residuals from the regression xit on
wt, t  1, . . . ,T.

In the random trend model, wt  1, t, and so the elements of xit have unit-specific linear
trends removed in addition to a level effect. Removing even more of the heterogeneity from
xit makes it even more likely that (2.6) holds. For example, if xit  fi  hit  r it, then bi can

be arbitrarily correlated with fi,hi. Of course, individually detrending the xit requires at least

three time periods, and it decreases the variation in ẍit compared to the usual FE estimator. Not
surprisingly, increasing the dimension of wt (subject to the restriction dimwt  T), generally
leads to less precision of the estimator. See Wooldridge (2005a) for further discussion.

Of course, the first differencing transformation can be used in place of, or in conjunction
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with, unit-specific detrending. For example, if we first difference followed by the within
transformation, it is easily seen that a condition sufficient for consistency of the resulting
estimator for  is

Ebi|Δẍit  Ebi, t  2, . . . ,T,     (2.8)

where Δẍit  Δxit − Δx are the demeaned first differences.
Now consider an important special case of the previous setup, where the regressors that

have unit-specific coefficients are time dummies. We can write the model as

yit  xit   tci  uit, t  1, . . . ,T,     (2.9)

where, with small T and large N, it makes sense to treat  t : t  1, . . . ,T as parameters, like
. Model (2.9) is attractive because it allows, say, the return to unbobserved “talent” to change
over time. Those who estimate, say, firm-level production functions like to allow the
importance of unobserved factors, such as managerial skill, to change over time. Estimation of
, along with the  t, is a nonlinear problem. What if we just estimate  by fixed effects? Let
c  Eci and write (2.9) as

yit   t  xit   tdi  uit, t  1, . . . ,T,     (2.10)

where  t   tc and di  ci − c has zero mean In addition, the composite error,
vit ≡  tdi  uit, is uncorrelated with xi1,x2, . . . ,xiT (as well as having a zero mean). It is easy
to see that consistency of the usual FE estimator, which allows for different time period
intercepts, is ensured if

Covẍit,ci  0, t  1, . . . ,T.     (2.11)

In other words, the unobserved effects is uncorrelated with the deviations ẍit  xit − x̄i.
If we use the extended FE estimators for random trend models, as above, then we can

replace ẍit with detrended covariates. Then, ci can be correlated with underlying levels and
trends in xit (provided we have a sufficient number of time periods).

Using usual FE (with full time period dummies) does not allow us to estimate the  t, or
even determine whether the  t change over time. Even if we are interested only in  when ci

and xit are allowed to be correlated, being able to detect time-varying factor loads is important
because (2.11) is not completely general. It is useful to have a simple test of
H0 : 2  3 . . . T with some power against the alternative of time-varying coefficients.
Then, we can determine whether a more sophisticated estimation method might be needed.

We can obtain a simple variable addition test that can be computed using linear estimation
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methods if we specify a particular relationship between ci and xi. We use the Mundlak (1978)
assumption

ci    x̄i  ai.     (2.12)

Then

yit   t  xit   tx̄i  tai  uit   t  xit  x̄i  tx̄i  ai  tai  uit,     (2.13)

where t   t − 1 for all t. Under the null hypothesis, t  0, t  2, . . . ,T. If we impose the
null hypothesis, the resulting model is linear, and we can estimate it by pooled OLS of yit on
1,d2t, . . . ,dTt,xit, x̄i across t and i, where the drt are time dummies. A variable addition test
that all t are zero can be obtained by applying FE to the equation

yit  1  2d2t . . .TdTt  xit  2d2tx̄î . . .TdTtx̄î  errorit,     (2.14)

and test the joint significance of the T − 1 terms d2tx̄î, . . . ,dTtx̄î. (The term x̄î would

drop out of an FE estimation, and so we just omit it.) Note that x̄î is a scalar and so the test as
T − 1 degrees of freedom. As always, it is prudent to use a fully robust test (even though, under
the null, tai disappears from the error term).

A few comments about this test are in order. First, although we used the Mundlak device to
obtain the test, it does not have to represent the actual linear projection because we are simply
adding terms to an FE estimation. Under the null, we do not need to restrict the relationshp
between ci and xi. Of course, the power of the test may be affected by this choice. Second, the
test only makes sense if  ≠ 0; in particular, it cannot be used in a pure random effects
environment. Third, a rejection of the null does not necessarily mean that the usual FE
estimator is inconsistent for : assumption (11) could still hold. In fact, the change in the
estimate of  when the interaction terms are added can be indicative of whether accounting for

time-varying t is likely to be important. But, because ̂ has been estimated under the null, the
estimated  from (1.14) is not generally consistent.

If we want to estimate the  t along with , we can impose the Mundlak assumption and
estimate all parameteres, including , by pooled nonlinear regression or some GMM version.
Or, we can use Chamberlain’s (1982) less restrictive assumption. But, typically, when we want
to allow arbitrary correlation between ci and xi, we work directly from (9) and eliminate the ci.
There are several ways to do this. If we maintain that all  t are different from zero then we can
use a quas-differencing method to eliminat ci. In particular, for t ≥ 2 we can multiply the t − 1
equation by  t/ t−1 and subtract the result from the time t equation:
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yit −  t/ t−1yi,t−1  xit− t/ t−1xi,t−1   tci −  t/ t−1 t−1ci  uit −  t/ t−1ui,t−1

 xit− t/ t−1xi,t−1  uit −  t/ t−1ui,t−1, t ≥ 2.

We define t   t/ t−1 and write

yit − tyi,t−1  xit − txi,t−1  eit, t  2, . . . ,T,     (2.15)

where eit ≡ uit − tui,t−1. Under the strict exogeneity assumption, eit is uncorrelated with every
element of xi, and so we can apply GMM to (2.15) to estimate  and 2, . . . ,T. Again, this
requires using nonlinear GMM methods, and the eit would typically be serially correlated. If
we do not impose restrictions on the second moment matrix of ui, then we would not use any
information on the second moments of ei; we would (eventually) use an unrestricted weighting
matrix after an initial estimation.

Using all of xi in each time period can result in too many overidentifying restrictions. At
time t we might use, say, zit  xit,xi,t−1, and then the instrument matrix Zi (with T − 1 rows)
would be diagzi2, . . . ,ziT. An initial consistent estimator can be gotten by choosing weighting

matrix N−1∑ i1
N Zi

′Zi−1. Then the optimal weighting matrix can be estimated. Ahn, Lee, and

Schmidt (2002) provide further discussion.
If xit contains sequentially but not strictly exogenous explanatory variables – such as a

lagged dependent variable – the instruments at time t can only be chosen from xi,t−1, . . . ,xi1.
Holtz-Eakin, Newey, and Rosen (1988) explicitly consider models with lagged dependent
variables; more on these models later.

Other transformations can be used. For example, at time t ≥ 2 we can use the equation

t−1yit −  tyi,t−1   t−1xit −  txi,t−1  eit, t  2, . . . ,T,

where now eit   t−1uit −  tui,t−1. This equation has the advantage of allowing  t  0 for some
t. The same choices of instruments are available depending on whether xit are strictly or
sequentially exogenous.

2.2. Fixed Effects IV Estimation with Random Slopes

The results for the fixed effects estimator (in the generalized sense of removing
unit-specific means and possibly trends), extend to fixed effects IV methods, provided we add
a constant conditional covariance assumption. Murtazashvili and Wooldridge (2007) derive a
simple set of sufficient conditions. In the model with general trends, we assume the natural
extension of Assumption FEIV.1, that is, Euit|zi,ai,bi  0 for all t, along with Assumption
FEIV.2. We modify assumption (2.6) in the obvious way: replace ẍit with z̈it, the
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invididual-specific detrended instruments:

Ebi|z̈it  Ebi  , t  1, . . . ,T     (2.16)

But something more is needed. Murtazashvili and Wooldridge (2007) show that, along with the
previous assumptions, a sufficient condition is

Covẍit,bi|z̈it  Covẍit,bi, t  1, . . . ,T.     (2.17)

Note that the covariance Covẍit,bi, a K  K matrix, need not be zero, or even constant across
time. In other words, we can allow the detrended covariates to be arbitrarily correlated with the
heterogeneous slopes, and that correlation can change in any way across time. But the
conditional covariance cannot depend on the time-demeaned instruments. (This is an example
of how it is important to distinguish between a conditional expectation and an unconditional
one: the implicit error in the equation generally has an unconditional mean that changes with t,
but its conditional mean does not depend on z̈it, and so using z̈it as IVs is valid provided we
allow for a full set of dummies.) Condition (2.17) extends to the panel data case the
assumption used by Wooldridge (2003a) in the cross section case.

We can easily show why (2.17) suffices with the previous assumptions. First, if
Edi|z̈it  0 – which follows from Ebi|z̈it  Ebi – then Covẍit,di|z̈it  Eẍitdi

′|z̈it, and
so Eẍitdi|z̈it  Eẍitdi ≡ t under the previous assumptions. Write ẍitdi   t  rit where
Eriti|z̈it  0, t  1, . . . ,T. Then we can write the transformed equation as

ÿit  ẍit  ẍitdi  üit  ÿit  ẍit  t  rit  üit.     (2.18)

Now, if xit contains a full set of time period dummies, then we can absorb t into ẍit, and we
assume that here. Then the sufficient condition for consistency of IV estimators applied to the
transformed equations is Ez̈it

′ rit  üit  0,.and this condition is met under the maintained
assumptions. In other words, under (2.16) and (2.17), the fixed effects 2SLS estimator is
consistent for the average population effect, . (Remember, we use “fixed effects” here in the
general sense of eliminating the unit-specific trends, ai.) We must remember to include a full
set of time period dummies if we want to apply this robustness result, something that should be
done in any case. Naturally, we can also use GMM to obtain a more efficient estimator. If bi

truly depends on i, then the composite error rit  üit is likely serially correlated and
heteroskedastic. See Murtazashvili and Wooldridge (2007) for further discussion and
similation results on the peformance of the FE2SLS estimator. They also provide examples
where the key assumptions cannot be expected to hold, such as when endogenous elements of
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xit are discrete.
3. Behavior of Estimators without Strict Exogeneity

As is well known, both the FE and FD estimators are inconsistent (with fixed T, N → )
without the conditional strict exogeneity assumption. But it is also pretty well known that, at
least under certain assumptions, the FE estimator can be expected to have less “bias” (actually,
inconsistency) for larger T. One assumption is contemporaneous exogeneity, (1.2). If we
maintain this assumption, assume that the data series xit,uit : t  1, . . . ,T is “weakly
dependent” – in time series parlance, integrated of order zero, or I(0) – then we can show that

plim ̂FE    OT−1

plim ̂FD    O1.

    (3.1)

    (3.2)

In some special cases – the AR(1) model without extra covariates – the “bias” terms can be
calculated. But not generally. The FE (within) estimator averages across T, and this tends to
reduce the bias.

Interestingly, the same results can be shown if xit : t  1, . . . ,T has unit roots as long as
uit is I(0) and contemporaneous exogeneity holds. But there is a catch: if uit is I(1) – so
that the time series version of the “model” would be a spurious regression (yit and xit are not
cointegrated), then (3.1) is no longer true. And, of course, the first differencing means any unit
roots are eliminated. So, once we start appealing to “large T” to prefer FE over FD, we must
start being aware of the time series properties of the series.

The same comments hold for IV versions of the estimators. Provided the instruments are
contemporaneously exogenous, the FEIV estimator has bias of order T−1, while the bias in the
FDIV estimator does not shrink with T. The same caveats about applications to unit root
processes also apply.

Because failure of strict exogeneity causes inconsistency in both FE and FD estimation, it
is useful to have simple tests. One possibility is to obtain a Hausman test directly comparing
the FE and FD estimators. This is a bit cumbersome because, when aggregate time effects are
included, the difference in the estimators has a singular asymptotic variance. Plus, it is
somewhat difficult to make the test fully robust.

Instead, simple regression-based strategies are available. Let wit be the 1  Q vector, a
subset of xit suspected of failing strict exogeneity. A simple test of strict exogeneity,
specifically looking for feedback problems, is based on
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yit   t  xit  wi,t1  ci  eit, t  1, . . . ,T − 1.     (3.3)

Estimate the equation by fixed effects and test H0 :   0 (using a fully robust test). Of course,
the test may have little power for detecting contemporaneous endogeneity.

In the context of FEIV we can test whether a subset of instruments fails strict exogeneity
by writing

yit   t  xit  hi,t1  ci  eit, t  1, . . . ,T − 1,     (3.4)

where hit is a subset of the instruments, zit. Now, estimate the equation by FEIV using
instruments zit,hi,t1 and test coefficients on the latter.

It is also easy to test for contemporaneous endogeneity of certain regressors, even if we
allow some regressors to be endogenous under the null. Write the model now as

yit1  zit11  yit21  yit31  ci1  uit1,     (3.5)

where, in an FE environment, we want to test H0 : Eyit3
′ uit1  0 . Actually, because we are

using the within transformation, we are really testing strict exogeneity of yit3, but we allow all

variables to be correlated with ci1. The variables yit2 are allowed to be endogenous under the

null – provided, of course, that we have sufficient instruments excluded from the structural
equation that are uncorrelated with uit1 in every time period. We can write a set of reduced
forms for elements of yit3 as

yit3  zit3  c i3  vit3,     (3.6)

and obtain the FE residuals,

v̈ it3  ÿit3 − z̈it̂3, where the columns of ̂3 are the FE estimates

of the reduced forms, and the double dots denotes time-demeaning, as usual. Then, estimate
the equation

ÿit1  z̈it11  ÿit21  ÿit31 

v̈ it31  errorit1     (3.7)

by pooled IV, using instruments z̈it,ÿit3,

v̈ it3. The test of the null that yit3 is exogenous is just

the (robust) test that 1  0, and the usual robust test is valid with adjusting for the first-step

estimation.

An equivalent approach is to define v̂it3  yit3 − zit̂3, where ̂3 is still the matrix of FE

coefficients, add these to equation (3.5), and apply FE-IV, using a fully robust test. Using a
built-in command can lead to problems because the test is rarely made robust and the degrees
of freedom are often incorrectly counted.
4. Instrumental Variables Estimation under Sequential Exogeneity
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We now consider IV estimation of the model

yit  xit  ci  uit, t  1, . . . ,T,     (4.1)

under sequential exogeneity assumptions. Some authors simply use

Exis
′ uit  0, s  1, . . . ,T, t  1, . . . ,T.     (4.2)

As always, xit probably includes a full set of time period dummies. This leads to simple
moment conditions after first differencing:

Exis
′ Δuit  0, s  1, . . . , t − 1; t  2, . . . ,T.     (4.3)

Therefore, at time t, the available instruments in the FD equation are in the vector xi,t−1
o , where

xit
o ≡ xi1,xi2, . . . ,xit.     (4.4)

Therefore, the matrix of instruments is simply

Wi  diagxi1
o ,xi2

o , . . . ,xi,T−1
o ,     (4.5)

which has T − 1 rows. Because of sequential exogeneity, the number of valid instruments
increases with t.

Given Wi, it is routine to apply GMM estimation. But some simpler strategies are available
that can be used for comparison or as the first-stage estimator in computing the optimal
weighting matrix. One useful one is to estimate a reduced form for Δxit separately for each t.

So, at time t, run the regression Δxit on xi,t−1
o , i  1, . . . ,N, and obtain the fitted values, Δxit. Of

course, the fitted values are all 1  K vectors for each t, even though the number of available
instruments grows with t. Then, estimate the FD equation

Δyit  Δxit  Δuit, t  2, . . . ,T     (4.6)

by pooled IV using instruments (not regressors) Δxit. It is simple to obtain robust standard
errors and test statistics from such a procedure because the first stage estimation to obtain the
instruments can be ignored (asymptotically, of course).

One potential problem with estimating the FD equation by IVs that are simply lags of xit is
that changes in variables over time are often difficult to predict. In other words, Δxit might
have little correlation with xi,t−1

o , in which case we face a problem of weak instruments. In one

case, we even lose identification: if xit  t  xi,t−1  e it where Ee it|xi,t−1, . . . ,xi1  0 – that is,
the elements of xit are random walks with drift – then EΔxit|xi,t−1, . . . ,xi1  0, and the rank
condition for IV estimation fails.
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If we impose what is generally a stronger assumption, dynamic completeness in the
conditional mean,

Euit|xit,yi,t−1xi,t−1, . . . ,yi1,xi1,ci  0, t  1, . . . ,T,     (4.7)

then more moment conditions are available. While (4.7) implies that virtually any nonlinear
function of the xit can be used as instruments, the focus has been only on zero covariance
assumptions (or (4.7) is stated as a linear projection). The key is that (4.7) implies that
uit : t  1, . . . ,T is a serially uncorrelated sequence and uit is uncorrelated with ci for all t. If
we use these facts, we obtain moment conditions first proposed by Ahn and Schmidt (1995) in
the context of the AR(1) unosberved effects model; see also Arellano and Honoré (2001). They
can be written generally as

EΔyi,t−1 − Δxi,t−1 ′yit − xit  0, t  3, . . . ,T.     (4.8)

Why do these hold? Because all uit are uncorrelated with ci, and ui,t−1, . . . ,ui1 are
uncorrelated with ci  uit. So ui,t−1 − ui,t−2 is uncorrelated with ci  uit, and the resulting
moment conditions can be written in terms of the parameters as (4.8). Therefore, under (4.7),
we can add the conditions (4.8) to (4.3) to improve efficiency – in some cases quite
substantially with persistent data.

Of course, we do not always intend for models to be dynamically complete in the sense of
(4.7). Often, we estimate static models or finite distributed lag models – that is, models without
lagged dependent variables – that have serially correlated idiosyncratic errors, and the
explanatory variables are not strictly exogenous and so GLS procedures are inconsistent. Plus,
the conditions in (4.8) are nonlinear in parameters.

Arellano and Bover (1995) suggested instead the restrictions

CovΔxit
′ ,ci  0, t  2, . . . ,T.     (4.9)

Interestingly, this is zero correlation, FD version of the conditions from Section 2 that imply
we can ignore heterogeneous coefficients in estimation under strict exogeneity. Under (4.9),
we have the moment conditions from the levels equation:

EΔxit
′ yit −  − xit  0, t  2, . . . ,T,     (4.10)

because yit − xit  ci  uit and uit is uncorrelated with xit and xi,t−1. We add an intercept, ,
explicitly to the equation to allow a nonzero mean for ci. Blundell and Bond (1999) apply
these moment conditions, along with the usual conditions in (4.3), to estimate firm-level
production functions. Because of persistence in the data, they find the moments in (4.3) are not
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especially informative for estimating the parameters. Of course, (4.9) is an extra set of
assumptions.

The previous discussion can be applied to the AR(1) model, which has received much
attention. In its simplest form we have

yit  yi,t−1  ci  uit, t  1, . . . ,T,     (4.11)

so that, by convention, our first observation on y is at t  0. Typically the minimal assumptions
imposed are

Eyisuit  0, s  0, . . . , t − 1, t  1, . . . ,T,     (4.12)

in which case the available instruments at time t are wit  yi0, . . . ,yi,t−2 in the FD equation

Δyit  Δyi,t−1  Δuit, t  2, . . . ,T.     (4.13)

In oher words, we can use

EyisΔyit − Δyi,t−1  0, s  0, . . . , t − 2, t  2, . . . ,T.     (4.14)

Anderson and Hsiao (1982) proposed pooled IV estimation of the FD equation with the single
instrument yi,t−2 (in which case all T − 1 periods can be used) or Δyi,t−2 (in which case only
T − 2 periods can be used). We can use pooled IV where T − 1 separate reduced forms are

estimated for Δyi,t−1 as a linear function of yi0, . . . ,yi,t−2. The fitted values Δyi,t−1, can be used

as the instruments in (4.13) in a pooled IV estimation. Of course, standard errors and inference
should be made robust to the MA(1) serial correlation in Δuit. Arellano and Bond (1991)
suggested full GMM estimation using all of the available instruments yi0, . . . ,yi,t−2, and this
estimator uses the conditions in (4.12) efficiently.

Under the dynamic completeness assumption

Euit|yi,t−1,yi,t−2, . . . ,yi0,ci  0,     (4.15)

the Ahn-Schmidt extra moment conditions in (4.8) become

EΔyi,t−1 − Δyi,t−2yit − yi,t−1  0, t  3, . . . ,T.     (4.16)

Blundell and Bond (1998) noted that if the condition

CovΔyi1,ci  Covyi1 − yi0,ci  0     (4.17)

is added to (4.15) then the combinded set of moment conditions becomes

EΔyi,t−1yit −  − yi,t−1  0, t  2, . . . ,T,     (4.18)

which can be added to the usual moment conditions (4.14). Therefore, we have two sets of
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moments linear in the parameters. The first, (4.14), use the differenced equation while the
second, (4.18), use the levels. Arellano and Bover (1995) analyzed GMM estimators from
these equations generally.

As discussed by Blundell and Bond (1998), condition (4.17) can be intepreted as a
restriction on the initial condition, yi0. To see why, write
yi1 − yi0  yi0  ci  ui1 − yi0  1 − yi0  ci  ui1. Because ui1 is uncorrelated with ci,
(4.17) becomes

Cov1 − yi0  ci,ci  0.     (4.19)

Write yi0 as a deviation from its steady state, ci/1 −  (obtained for || 1 be recursive
subsitution and then taking the limit), as

yi0  ci/1 −   ri0.     (4.20)

Then 1 − yi0  ci  1 − ri0, and so (4.17) reduces to

Covri0,ci  0.     (4.21)

In other words, the deviation of yi0 from its steady state is uncorrelated with the steady state.
Blundell and Bond (1998) contains discussion of when this condition is reasonable. Of course,
it is not for   1, and it may not be for  “close” to one. On the other hand, as shown by
Blundell and Bond (1998), this restriction, along with the Ahn-Schmidt conditions, is very
informative for  close to one. Hahn (1999) shows theoretically that such restrictions can
greatly increase the information about .

The Ahn-Schmidt conditions (4.16) are attractive in that they are implied by the most
natural statement of the model, but they are nonlinear and therefore more difficult to use. By
adding the restriction on the initial condition, the extra moment condition also means that the
full set of moment conditions is linear. Plus, this approach extends to general models with only
sequentially exogenous variabes as in (4.10). Extra moment assumptions based on
homoskedasticity assumptions – either conditional or unconditional – have not been used
nearly as much, probably because they impose conditions that have little if anything to do with
the economic hypotheses being tested.

Other approaches to dynamic models are based on maximum likelihood estimation or
generalized least squares estimation of a particular set of conditional means. Approaches that
condition on the initial condition yi0, an approach suggested by Chamberlain (1980), Blundell
and Smith (1991), and Blundell and Bond (1998), seem especially attractive. For example,
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suppose we assume that

Dyit|yi,t−1,yi,t−2, . . . ,yi1,yi0,ci  Normalyi,t−1  ci,u
2, t  1,2, . . . ,T.

Then the distribution of yi1, . . . ,yiT given yi0  y0,ci  c is just the product of the normal
distributions:


t1

T

u
−Tyt − yt−1 − c/u.

We can obtain a usable density for (conditional) MLE by assuming

ci|yi0 ~Normal0  0yi0,a
2.

The log likelihood function is obtained by taking the log of


−



t1

T

1/uTyit − yi,t−1 − c/u. 1/ac − 0 − 0yi0/adc.

Of course, if this is this represents the correct density of yi1, . . . ,yiT given yi0 then the MLE is
consistent and N -asymptotically normal (and efficient among estimators that condition on
yi0.

A more robust approach is to use a generalized least squares approach where Eyi|yi0 and

Varyi|yi0 are obtained, and where the latter could even be misspecified. Like with the MLE

approach, this results in estimation that is highly nonlinear in the parameters and is used less
often than the GMM procedures with linear moment conditions.

The same kinds of moment conditions can be used in extensions of the AR(1) model, such
as

yit  yi,t−1  zit  ci  uit, t  1, . . . ,T.

If we difference to remove ci, we can then use exogeneity assumptions to choose instruments.
The FD equation is

Δyit  Δyi,t−1  Δzit  Δuit, t  1, . . . ,T,

and if the zit are strictly exogenous with respect to ui1, . . . ,uiT then the available instruments
(in addition to time period dummies) are zi,yi,t−2, . . . ,yi0. We might not want to use all of zi

for every time period. Certainly we would use Δzit, and perhaps a lag, Δzi,t−1. If we add
sequentially exogenous variables, say hit, to (11.62) then hi,t−1, . . . ,hi1 would be added to the
list of instruments (and Δhit would appear in the equation). We might also add the Arellano
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and Bover conditions (4.10), or at least the Ahn and Schmidt conditions (4.8).
As a simple example of methods for dynamic models, consider a dynamic air fare equation

for routes in the United States:

lfareit  t   lfarei,t−1   concenit  ci  uit,

where we include a full set of year dummies. We assume the concentration ratio, concenit, is
strictly exogenous and that at most one lag of lfare is needed to capture the dynamics. The data
are for 1997 through 2000, so the equation is specified for three years. After differencing, we
have only two years of data:

Δlfareit   t  Δlfarei,t−1  Δconcenit  Δuit, t  1999,2000.

If we estimate this equation by pooled OLS, the estimators are inconsistent because Δlfarei,t−1

is correlated with Δuit; we include the OLS estimates for comparison. We apply the simple
pooled IV procedure, where separate reduced forms are estimated for Δlfarei,t−1: one for 1999,
with lfarei,t−2 and Δconcenit in the reduced form, and one for 2000, with lfarei,t−2, lfareimt−3 and
Δconcenit in the reduced form. The fitted values are used in the pooled IV estimation, with
robust standard errors. (We only use Δconcenit in the IV list at time t.) Finally, we apply the
Arellano and Bond (1991) GMM procedure.

Dependent Variable: lfare

(1) (2) (3)

Explanatory Variable Pooled OLS Pooled IV Arellano-Bond

lfare−1 −. 126 . 219 . 333

. 027 . 062 . 055

concen . 076 . 126 . 152

. 053 . 056 . 040

N 1, 149 1, 149 1, 149

As is seen from column (1), the pooled OLS estimate of  is actually negative and
statistically different from zero. By contrast, the two IV methods give positive and statistically
significant estimates. The GMM estimate of  is larger, and it also has a smaller standard error
(as we would hope for GMM).

The previous example has small T, but some panel data applications have reasonable large
T. Arellano and Alvarez (1998) show that the GMM estimator that accounts for the MA(1)
serial correlation in the FD errors has desirable properties when T and N are both large, while
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the pooled IV estimator is actually inconsistent under asymptotics where T/N → a  0. See
Arellano (2003, Chapter 6) for discussion.
5. Pseudo Panels from Pooled Cross Sections

In cases where panel data sets are not available, we can still estimate parameters in an
underlying panel population model if we can obtain random samples in different periods.
Many surveys are done annually by obtaining a different random (or stratified) sample for each
year. Deaton (1985) showed how to identify and estimate parameters in panel data models
from pooled cross sections. As we will see, however, identification of the parameterse can be
tenuous.

Deaton (1985) was careful about distinguishing between the population model on the one
hand and the sampling scheme on the other. This distinction is critical for understanding the
nature of the identification problem, and in deciding the appropriate asymptotic analysis. The
recent literature has tended to write “models” at the cohort or group level, which is not in the
spirit of Deaton’s original work. (Angrist (1991) actually has panel data, but uses averages in
each t to estimate parameters of a labor supply function.)

In what follows, we are interested in estimating the parameters of the population model

yt   t  xt  f  ut, t  1, . . . ,T,     (5.1)

which is best viewed as representing a population defined over T time periods. For this setup to
make sense, it must be the case that we can think of a stationary population, so that the same
units are represented in each time period. Because we allow a full set of period intercepts, Ef
is never separately identified, and so we might as well set it to zero.

The random quantities in (5.1) are the response variable, yt, the covariates, xt (a 1  K
vector), the unobserved effect, f, and the unobserved idiosyncratic errors, ut : t  1, . . . ,T.
Like our previous analysis, we are thinking of applications with a small number of time
periods, and so we view the intercepts,  t, as parameters to estimate, along with the K  1
vector parameter – which is ultimately of interest. We consider the case where all elements of
xt have some time variation.

As it turns out, to use the standard analysis, we do not even have to assume
contemporaneous exogeneity conditional on f, that is,

Eut|xt, f  0, t  1, . . . ,T,     (5.2)

although this is a good starting point to determine reasonable population assumptions.
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Naturally, iterated expectations implies

Eut|f  0, t  1, . . . ,T,     (5.3)

and (5.3) is sensible in the context of (5.1). Unless stated otherwise, we take it to be true.
Because f aggregates all time-constant unobservables, we should think of (5.3) as implying that
Eut|g  0 for any time-constant variable g, whether unobserved or observed. In other words,
in the leading case we should think of (5.1) as representing Eyt|xt, f where any time constant
factors are lumped into f.

With a (balanced) panel data set, we would have a random sample in the cross section.
Therefore, for a random draw i , x it,yit, t  1, . . . ,T, we would then write the model as

yit   t  xit  fi  uit, t  1, . . . ,T.     (5.4)

While this notation can cause confusion later when we sample from each cross section, it has
the benefit of explictly labelling quantities as changing only across t, changing only across i, or
changing across both.

The idea of using independent cross sections to estimate parameters from panel data
models is based on a simple insight of Deaton’s. Assume that the population for which (5.1)
holds is divided into G groups (or cohorts). This designation cannot depend on time. For
example, it is common to birth year to define the groups, or even ranges of birth year. For a
random draw i satisfying (5.4), let gi be the group indicator, taking on a value in 1,2, . . . ,G.
Then, by our earlier discussion,

Euit|gi  0, t  1, . . . ,T,     (5.5)

essentially by definition. In other words, the  t account for any change in the average
unobservables over time and fi accounts for any time-constant factors.

Taking the expected value of (5.4) conditional on group membership and using only (5.5),
we have

Eyit|gi  g   t  Exit|gi  g  Efi|gi  g, t  1, . . . ,T.     (5.6)

Again, this expession represents an underlying population, but where we have partitioned the
population into G groups.

Several authors after Deaton, including Collado (1997) and Verbeek and Vella (2005),
have left Euit|gi  g as part of the “error term,” with the notation ugt

∗  Euit|gi  g. In fact,

these authors have criticized previous work by Moffitt (1993) for making the “asssumption”
that ugt

∗  0. But, as Deaton showed, if we start with the underlying population model (5.1),
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then Euit|gi  g  0 for all g follows directly. Nevertheless, as we will discuss later, the key
assumption is that the structural model (5.1) does not require a full set of group/time effects. If
such effects are required, then one way to think about the resulting misspecification is that
Euit|gi  g is not zero.

If we define the population means

g  Efi|gi  g
gt

y  Eyit|gi  g
gt

x  Exit|gi  g
    (5.7)

for g  1, . . . ,G and t  1, . . . ,T we have

gt
y   t  gt

x   g, g  1, . . . ,G, t  1, . . . ,T.     (5.8)

(Many authors use the notation ygt
∗ in place of gt

y , and similarly for gt
x , but, at this point, such

a notation gives the wrong impression that the means defined in (5.7) are random variables.
They are not. They are group/time means defined on the underlying population.)

Equation (5.8) is remarkable in that it holds without any assumptions restricting the
dependence between xit and uir across t and r. In fact, xit can contain lagged dependent
variables, most commonly yi,t−1, or explanatory variables that are contemporaneously
endogenous (as occurs under measurement error in the original population model, an issue that
was important to Angrist (1991)). This probably should make us a little suspicious, as the
problems of lagged dependent variable, measurement error, and other violations of strict
exogeneity are tricky to handle with true panel data.

(In estimation, we will deal with the fact that there are not really T  G parameters in t

and g to estimate; there are only T  G − 1. The lost degree of freedom comes from Ef  0,

which puts a restriction on the g. With the groups of the same size in the population, the

restriction is that the g sum to zero.)

If we take (5.8) as the starting point for estimating  (along with  t and g, then the issues

become fairly clear. If we have sufficient observations in the group/time cells, then the means
gt

y and gt
x can be estimated fairly precisly, and these can be used in a minimum distance

estimation framework to estimate , where  consists of , , and  (where, say, we set 1  0
as the normalization).

Before discussing estimation details, it is useful to study (5.8) in more detail to determine
some simple, and common, strategies. Because (5.8) looks itself like a panel data regression
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equation, methods such as “OLS,” “fixed effects,” and “first differencing” have been applied
to sample averages. It is informative to apply these to the population. First suppose that we set
each g to zero and set all of the time intercepts,  t, to zero. For notational simplicity, we also

drop an overall “intercept,” but that would be included at a minimum. Then gt
y  gt

x  and if

we premultiply by gt
x′, average across g and t, and then assume we can invert

∑g1
G ∑ t1

T gt
x′gt

x , we have

  ∑
g1

G

∑
t1

T

gt
x′gt

x

−1

∑
g1

G

∑
t1

T

gt
x′gt

y .     (5.9)

This means that the population parameter, , can be written as a pooled OLS regression of the
population group/time means gt

y on the group/time means gt
x . Naturally, if we have “good”

estimates of these means, then it will make sense to estimate  by using the same regression on
the sample means. But, so far, this is all in the population. We can think of (5.9) as the basis
for a method of moments procedure. It is important that we treat gt

x and gt
y symetrically, that

is, as population means to be estimated, whether the xit are strictly, sequentially, or
contemporaneous exogenous – or none of these – in the original model.

When we allow different group means for fi, as seems critical, and different time period
intercepts, which also is necessary for a convincing analysis, we can easily write  as an
“OLS” estimator by subtracting of time and group averages. While we cannot claim that these
expressions will result in efficient estimators, they can shed light on whether we can expect
(5.8) to lead to precise estimation of . First, without separate time intercepts we have

gt
y − ̄g

y  gt
x − ̄g

x, g  1, . . . ,G, ; t  1, . . . ,T,     (5.10)

where the notation should be clear, and then one expression for  is (5.9) but with gt
x − ̄g

x in

place of gt
x . Of course, this makes it clear that identification of  more difficult when the g

are allowed to differ. Further, if we add in the year intercepts, we have

  ∑
g1

G

∑
t1

T

̈gt
x′̈gt

x

−1

∑
g1

G

∑
t1

T

̈gt
x′gt

y     (5.11)

where ̈gt
x is the vector of residuals from the pooled regression

gt
x on 1, d2, . . . ,dT, c2, ..., cG,     (5.12)
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where dt denotes a dummy for period t and cg is a dummy variable for group g.
There are other expressions for , too. (Because  is generally overidentified, there are

many ways to write it in terms of the population moments. For example, if we difference and
then take away group averages, we have

  ∑
g1

G

∑
t2

T

Δ̈gt
x′Δ̈gt

x

−1

∑
g1

G

∑
t2

T

Δ̈gt
x′Δgt

y     (5.13)

where Δgt
x  gt

x − g,t−1
x and Δ̈gt

x  Δgt
x − G−1∑h1

G Δht
x .

Equations (5.11) and (5.13) make it clear that the underlying model in the population
cannot contain a full set of group/time interactions. So, for example, if the groups (cohorts) are
defined by birth year, there cannot be a full set of birth year/time period interactions. We could
allow this feature with invidual-level data because we would typically have variation in the
covariates within each group/period cell. Thus, the absense of full cohort/time effects in the
population model is the key an identifying restriction.

Even if we exclude full group/time effects,  may not be precisely estimable. Clearly  is
not identified if we can write gt

x  t  g for vectors t and g, t  1, . . . ,T, g  1, . . . ,G. In

other words, while we must exclude a full set of group/time effects in the structural model, we
need some interaction between them in the distribution of the covariates. One might be worried
about this way of identifying . But even if we accept this identification strategy, the variation
in ̈gt

x : t  1, . . ,T, g  1, . . . ,G or Δ̈gt
x : t  2, . . ,T, g  1, . . . ,G might not be sufficient

to learn much about  – even if we have pretty good estimates of the population means.
We are now ready to formally discuss estimation of . We have two formulas (and there

are many more) that can be used directly, once we estimate the group/time means for yt and xt.
We can use either true panel data or repeated cross sections. Angrist (1991) used panel data
and grouped the data by time period (after differencing). Our focus here is on the case where
we do not have panel data, but the general discussion applies to either case. One difference is
that, with independent cross sections, we need not account for dependence in the sample
averages across g and t (except in the case of dynamic models).

Assume we have a random sample on xt,yt of size Nt, and we have specified the G
groups or cohorts. Write xit,yit : i  1, . . . ,Nt. Some authors, wanting to avoid confusion
with a true panel data set, prefer to replace i with it to emphasize that the cross section units
are different in each time period. (Plus, several authors actually write the underlying model in
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terms of the pooled cross sections rather than using the underlying population model – a
mistake, in my view.) As long as we understand that we have a random sample in each time
period, and that random sample is used to estimate the group/time means, there should be no
confusion.

For each random draw i, it is useful to let r i  rit1, rit2, . . . , ritG be a vector of group
indicators, so ritg  1 if observation i is in group g. Then the sample average on the response

variable in group/time cell g, t can be written as

gt
y  Ngt

−1∑
i1

Nt

ritgyit  Ngt/Nt−1Nt
−1∑

i1

Nt

ritgyit,     (5.14)

where Ngt  ∑ i1
Nt ritg is properly treated as a random outcome. (This differs from standard

stratified sampling, where the groups are first chosen and then random samples are obtained
within each group (stratum). Here, we fix the groups and then randomly sample from the
population, keeping track of the group for each draw.) Of course, gt

y is generally consistent for

gt
y . First, ̂gt  Ngt/Nt converges in probability to g  Pritg  1 – the fraction of the

population in group or cohort g (which is supposed to be constant across t). So

̂gt
−1Nt

−1∑
i1

Nt

ritgyit
p
→ g

−1Eritgyit

 g
−1Pritg  1  0  Pritg  1Eyit|ritg  1

 Eyit|ritg  1  gt
y .

Naturally, the argument for other means is the same. Let wit denote the K  1  1 vector
yit,xit ′. Then the asymptotic distribution of the full set of means is easy to obtain:

Nt ̂gt
w − gt

w → Normal0,g
−1gt

w,

where ̂gt
w is the sample average for group/time cell g, t and

gt
w  Varwt|g

is the K  1  K  1 variance matrix for group/time cell g, t. When we stack the means
across groups and time periods, it is helpful to have the result

N ̂gt
w − gt

w → Normal0, gt−1gt
w,     (5.15)

where N  ∑ t1
T Nt and t 

N→
lim Nt/N is, essentially, the fraction of all observations

accounted for by cross section t. Of course, gt is consistently estimated by Ngt/N, and so, the
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implication of (5.15) is that the sample average for cell g, t gets weighted by Ngt/N, the

fraction of all observations accounted for by cell g, t.
In implementing minimum distance estimation, we need a consistent estimator of gt

w , and

the group/time sample variance serves that purpose:

̂gt
w
 Ngt

−1∑
i1

ritgwit − ̂gt
wwit − ̂gt

w ′
p
→ gt

w .     (5.16)

Now let  be the vector of all cell means. For each g, t, there are K  1 means, and so  is
a GTK  1  1 vector. It makes sense to stack  starting with the K  1 means for g  1,
t  1, g  1, t  2, ..., g  1, t  T, ..., g  G, t  1, ..., g  G, t  T. Now, the ̂gt

w are always

independent across g because we assume random sampling for each t. When xt does not
contain lags or leads, the ̂gt

w are independent across t, too. (When we allow for lags of the

response variable or explanatory variables, we will adjust the definition of  and the moment
conditions. Thus, we will always assume that the ̂gt

w are independent across g and t.) Then,

N ̂ −  →Normal0,,     (5.17)

where  is the GTK  1  GTK  1 block diagonal matrix with g, t block gt
w /gt.

Note that  incorporates both different cell variance matrices as well as the different
frequencies of observations.

The set of equations in (5.8) constitute the restrictions on , , and . Let  be the
K  T  G − 1 vector of these parameters, written as

   ′, ′, ′ ′.

There are GTK  1 restrictions in equations (5.8), so, in general, there are many
overidentifying restrictions. We can write the set of equations in (5.8) as

h,  0,     (5.18)

where h,  is a GTK  1  1 vector. Because we have N -asymptotically normal estimator
̂, a minimum distance approach suggests itself. It is different from the usual MD problem
because the parameters do not appear in a separable way, but MD estimation is still possible.
In fact, for the current application, h, is linear in each argument, which means MD
estimators of  are in closed form.

Before obtaining the efficient MD estimator, we need, because of the nonseparability, an
initial consistent estimator of . Probably the most straightforward is the “fixed effects”
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estimator described above, but where we estimate all components of . The estimator uses the
just identified set of equations.

For notational simplicity, let gt denote the K  1  1 vector of group/time means for

each g, t cell. Then let gt be the K  T  G − 1  1 vector gt
x ,dt,cg ′, where dt is a

1  T − 1 vector of time dummies and cg is a 1  G vector of group dummies. Then the

moment conditions are

∑
g1

G

∑
t1

T

gtgt
′  − ∑

g1

G

∑
t1

T

gtgt
y  0.     (5.19)

When we plug in ̂ – that is, the sample averages for all g, t, then  is obtained as the
so-called “fixed effects” estimator with time and group effects. The equations can be written as

q̂,  0,     (5.20)

and this representation can be used to find the asymptotic variance of N  − ; naturally, it
depends on  and is straightforward to estimate.

But there is a practically important point: there is nothing nonstandard about the MD
problem, and bootstrapping is justified for obtaining asymptotic standard errors and test
statistics. (Inoue (forthcoming) asserts that the “unconditional” limiting distribution of

N  −  is not standard, but that is because he treats the sample means of the covariates and
of the response variable differently; in effect, he conditions on the former.) The boostrapping
is simple: resample each cross section separately, find the new groups for the bootstrap sample,
and obtain the “fixed effects” estimates. It makes no sense here to resampling the groups.

Because of the nonlinear way that the covariate means appear in the estimation, the
bootstrap may be preferred. The usual asymptotic normal approximation obtained from

first-order asymptotics may not be especially good in this case, especially if∑g1
G ∑ t1

T ̈gt
x′̈gt

x

is close to being singular, in which case  is poorly identified. (Inoue (2007) provides evidence
that the distribution of the “FE” estimator, and what he calls a GMM estimator that accounts
for different cell sample sizes, do not appear to be normal even with fairly large cell sizes. But
his setup for generating the data is different – in particular, he specifies equations directly for
the repeated cross sections, and that is how he generates data. As mentioned above, his
asymptotic analysis differ from the MD framework, and implies nonnormal limiting
distributions. If the data are drawn for each cross section to satisfy the population panel data
model, the cell sizes are reasonably large, and there is sufficient variation in ̈gt

x , the minimum
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distance estimators should have reasonable finite-sample properties. But because the limiting

distribution depends on the

̈gt

x
, which appear in a highly nonlinear way, asymptotic normal

approximation might still be poor.)
With the restrictions written as in (5.18), Chamberlain (lecture notes) shows that the

optimal weighting matrix is the inverse of

∇h,∇h, ′,     (5.21)

where ∇h, is the GT  GTK  1 Jacobian of h, with respect to . (In the standard
case, ∇h, is the identity matrix.) We already have the consistent estimator of  – the cell
averages – we showed how to consistently estimate  in equations (5.16), and we can use  as
the initial consistent estimator of .
∇h, ∇h  IGT ⊗ −1, ′. Therefore, ∇h,∇h, is a block diagonal

matrix with blocks

−1, ′gt−1gt
w −1, ′ ′.     (5.22)

But

gt
2 ≡ −1, ′gt

w −1, ′ ′  Varyt − xt|g,     (5.23)

and a consistent estimator is simply

Ngt
−1∑

i1

Nt

ritgyit − xit −  t −  g2

is the residual variance estimated within cell g, t.
Now, ∇h,  W, the GT  K  T  G − 1 matrix of “regressors” in the FE

estimation, that is, the rows of W are gt  gt
x′,dt,cg. Now, the FOC for the optimal MD

estimator is

Ŵ′Ĉ−1
Ŵ̂ − ̂gt

y   0,

and so

̂  Ŵ ′Ĉ−1Ŵ
−1Ŵ′Ĉ−1

̂gt
y .     (5.24)

So, as in the standard cases, the efficient MD estimator looks like a “weighted least squares”
estimator. The estimated asymptotic variance of ̂, following Chamberlain, is just

Ŵ ′Ĉ−1Ŵ
−1/N. Because Ĉ−1 is the diagonal matrix with entries Ngt/N/̂gt

2 , it is easy to

weight each cell g, t and then compute both ̂ and its asymptotic standard errors via a
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weighted regression; fully efficient inference is straightforward. But one must compute the ̂gt
2

using the individual-level data in each group/time cell.
It is easily seen that the so-called “fixed effects” estimator, , is

  Ŵ′Ŵ
−1Ŵ′

̂gt
y ,     (5.25)

that is, it uses the identity matrix as the weighting matrix. From Chamberlain (lecture notes),

the asymptotic variance of  is estimated as Ŵ′Ŵ
−1Ŵ′ČŴŴ′Ŵ

−1, where Č is the matrix

described above but with  used to estimate the cell variances. (Note: This matrix cannot be
computed by just using the “heteroskedasticity-robust” standard errors in the regress ̂gt

y on ̂gt
x ,

dt, cg.) Because inference using  requires calculating the group/time specific variances, we

might as well use the efficient MD estimator in (5.24).
Of course, after the efficient MD estimation, we can readily compute the overidentifying

restrictions, which would be rejected if the underlying model needs to include cohort/time
effects in a richer fashion.

A few remaining comments are in order. First, several papers, including Deaton (1985),
Verbeek and Nijman (1993), and Collado (1997), use a different asymptotic analysis. In the
current notation, GT →  (Deaton) or G → , with the cell sizes fixed. These approaches
seems unnatural for the way pseudo panels are constructed, and the thought experiment about
how one might sample more and more groups is convoluted. While T →  conceptually makes
sense, it is still the case that the available number of time periods is much smaller than the
cross section sample sizes for each T. McKenzie (2004) has shown that estimators derived
under large G asymptotics can have good properties under the MD asymptotics used here. One
way to see this is that the IV estimators proposed by Collado (1997), Verbeek and Vella
(2005), and others are just different ways of using the population moment conditions in (5.8).

(Some authors appear to want it both ways. For example, Verbeek and Nijman (1993) use
large G asymptotics, but treat the within-cell variances and covariances as known. This stance
assumes that one can get precise estimates of the second moments within each cell, which
means that Ngt should be large.)

Basing estimation on (5.8) and using minimum ditance, assuming large cell sizes, makes
application to models with lags relatively straightforward. The only difference now is that the
vectors of means, gt

w : g  1, . . . ,G; t  1, . . . ,T now contain redundancies. (In other

approaches to the problem, for example Collado (1997), McKenzie (2004), the problem with
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adding yt−1 to the population model is that it generates correlation in the estimating equation
based on the pooled cross sections. Here, there is no conceptual distinction between having
exogenous or endogenous elements in xt; all that matters is how adding one modifies the MD
moment conditions. As an example, suppose we write

yt   t  yt−1  zt  f  ut

Eut|g  0, g  1, . . . ,G
    (5.26)

where g is the group number. Then (5.8) is still valid. But, now we would define the vector of
means as gt

y ,gt
z , and appropriately pick off gt

y in defining the moment conditions. The

alternative is to define gt
x to include g,t−1

y , but this results in a singularity in the asymptotic

distribution of ̂. It is much more straightforward to keep only nonredundant elements in  and
readjust how the moment conditions.are defined in terms of . When we take that approach, it
becomes clear that we now have fewer moments to estimate the parameters. If zt is 1  J, we
have now have J  T  G parameters to estimate from GTJ  1 population moments. Still, we
have added just one more parameter.

To the best of my knowledge, the treatment here is the first to follow the MD approach,
applied to (5.8), to its logical conclusion. Its strength is that the estimation method is widely
known and used, and it separates the underlyng population model from sampling assumptions.
It also shows why we need not make any exogeneity assumptions on xt. Perhaps most
importantly, it reveals the key identification condition: that separate group/time effects are not
needed in the underlying model, but enough group/time variation in the means Ext|g is
needed to identify the structural parameters. This sort of condition falls out of other approaches
to the problem, such as the instrumental variables approach of but it is harder to see. For
example, Verbeek and Vella (2005) propose instrumental variables methods on the equation in
time averages using interactions between group (cohort) and time dummies. With a full set of
separate time and group effects in the main equation – derivable here from the population
panel model – the key identification assumption is that a full set of group/time effects can be
excluded from the structural equation, but the means of the covariates have to vary sufficiently
across group/time. That is exactly the conclusion we reach with a minimum distance approach.

Interestingly, the MD approach applies easily to extensions of the basic model. For
example, we can allow for unit-specific time trends (as in the random growth model of
Heckman and Hotz (1989)):
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yt   t  xt  f1  f2t  ut,     (5.27)

where, for a random draw i, the unobserved heterogeneity is of the form fi1  fi2t. Then, using
the same arguments as before,

gt
y   t  gt

x   g  gt,     (5.28)

and this set of moment conditions is easily handled by extending the previous analysis. We can
even estimate models with time-varying factor loads on the heterogeneity:

yt   t  xt  tf  ut,

where 1  1 (say) as a normalization. Now the population moments satisfy

gt
y   t  gt

x   tg.

There are now K  G  2T − 1 free parameters to estimate from GTK  1 moments. This
extension means that the estimating equations allow the group/time effects to enter more
flexibly (although, of course, we cannot replace  t  tg with unrestricted group/time

effects.) The MD estimation problem is now nonlinear because of the interaction term, tg.

With more parameters and perhaps not much variation in the gt
x , practical implementation may

be a problem, but the theory is standard.
This literature would benefit from a careful simulation study, where data for each cross

section are generated from the underlying population model, and where gi – the group
identifier – is randomly drawn, too. To be realistic, the underlying model should have full time
effects. Verbeek and Vella (2005) come close, but they omit aggregate time effects in the main
model while generating the explanatory variables to have means that differ by group/time cell.
Probably this paints too optimistic a picture for how well the estimators can work in practice.
Remember, even if we can get precise estimates of the cell means, the variation in gt

x across g

and t might not be enough to tie down  precisely.
Finally, we can come back to the comment about how the moment conditions in (5.8) only

use the assumption Eut|g  0 for all t and g. It seems likely that we should be able to exploit
contemporaneous exogeneity assumptions. Let zt be a set of observed variables such that
Eut|zt, f  0, t  1, . . . ,T. (In a true panel, these vary across i and t. We might have zt  xt,
but perhaps zt is just a subset of xt, or we have extra instruments.) Then we can add to (5.8) the
moment conditions
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Ezt
′yt|g   tEzt|g  Ezt

′xt|g  Ezt
′f|g  Ezt

′ut|g
  tEzt|g  Ezt

′xt|g  Ezt
′f|g,     (5.29)

where Ezt
′ut|g  0 when we view group designation as contained in f. The moments

Ezt
′yt|g, Ezt|g, and Ezt

′xt|g can all be estimated by random samples from each cross
section, where we average within group/time period. (This would not work if xt or zt contains
lags.) This would appear to add many more moment restrictions that should be useful for
identifying , but that depends on what we assume about the unobserved moments Ezt

′f|g.

References
(To be added.)

31



Imbens/Wooldridge, Lecture Notes 3, NBER, Summer ’07 1

What’s New in Econometrics NBER, Summer 2007

Lecture 3, Monday, July 30th, 2.00-3.00pm

Regression Discontintuity Designs1

1. Introduction

Since the late 1990s there has been a large number of studies in economics applying and

extending Regression Discontinuity (RD) methods from its origins in the statistics literature

in the early 60’s (Thisthlewaite and Cook, 1960). Here, we review some of the practical

issues in implementation of RD methods. The focus is on five specific issues. The first

is the importance of graphical analyses as powerful methods for illustrating the design.

Second, we suggest using local linear regression methods using only the observations close

to the discontinuity point. Third, we discuss choosing the bandwidth using cross validation

specifically tailored to the focus on estimation of regression functions on the boundary of the

support, following Ludwig and Miller (2005). Fourth, we provide two simple estimators for

the asymptotic variance, one of them exploiting the link with instrumental variables methods

derived by Hahn, Todd, and VanderKlaauw (2001, HTV). Finally, we discuss a number of

specification tests and sensivitity analyses based on tests for (a) discontinuities in the average

values for covariates, (b) discontinuities in the conditional density of the forcing variable, as

suggested by McCrary (2007), (c) discontinuities in the average outcome at other values of

the forcing variable.

2. Sharp and Fuzzy Regression Discontinuity Designs

2.1 Basics

Our discussion will frame the RD design in the context of the modern literature on causal

effects and treatment effects, using the potential outcomes framework (Rubin, 1974), rather

than the regression framework that was originally used in this literature. For unit i there

are two potential outcomes, Yi(0) and Yi(1), with the causal effect defined as the difference

1These notes draw heavily on Imbens and Lemieux (2007).
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Yi(1) − Yi(0), and the observed outcome equal to

Yi = (1 − Wi) · Yi(0) + Wi · Yi(1) =

{

Yi(0) if Wi = 0,
Yi(1) if Wi = 1,

where Wi ∈ {0, 1} is the binary indicator for the treatment.

The basic idea behind the RD design is that assignment to the treatment is determined,

either completely or partly, by the value of a predictor (the forcing variable Xi) being on

either side of a common threshold. This predictor Xi may itself be associated with the

potential outcomes, but this association is assumed to be smooth, and so any discontinuity

in the conditional distribution of the outcome, indexed by the value of this covariate at

the cutoff value, is interpreted as evidence of a causal effect of the treatment. The design

often arises from administrative decisions, where the incentives for units to participate in a

program are partly limited for reasons of resource constraints, and clear transparent rules

rather than discretion by administrators are used for the allocation of these incentives.

2.2 The Sharp Regression Discontinuity Design

It is useful to distinguish between two designs, the Sharp and the Fuzzy Regression

Discontinuity (SRD and FRD from hereon) designs (e.g., Trochim, 1984, 2001; HTV). In

the SRD design the assignment Wi is a deterministic function of one of the covariates, the

forcing (or treatment-determining) variable X:

Wi = 1{Xi ≥ c}.

All units with a covariate value of at least c are in the treatment group (and participation

is mandatory for these individuals), and all units with a covariate value less than c are in

the control group (members of this group are not eligible for the treatment). In the SRD

design we look at the discontinuity in the conditional expectation of the outcome given the

covariate to uncover an average causal effect of the treatment:

lim
x↓c

E[Yi|Xi = x] − lim
x↑c

E[Yi|Xi = x] = lim
x↓c

E[Yi(1)|Xi = x] − lim
x↑c

E[Yi(0)|Xi = x], (1)

is interpreted as the average causal effect of the treatment at the discontinuity point.

τSRD = E[Yi(1) − Yi(0)|Xi = c]. (2)
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In order to justify this interpretation we make a smoothness assumption. Typically this

assumption is formulated in terms of conditional expectations2:

Assumption 1 (Continuity of Conditional Regression Functions)

E[Y (0)|X = x] and E[Y (1)|X = x],

are continuous in x.

Under this assumption,

τSRD = lim
x↓c

E[Yi|Xi = x] − lim
x↑c

E[Yi|Xi = x].

The estimand is the difference of two regression functions at a point.

There is a unavoidable need for extrapolation, because by design there are no units with

Xi = c for whom we observe Yi(0). We therefore will exploit the fact that we observe units

with covariate values arbitrarily close to c.3

As an example of a SRD design, consider the study of the effect of party affiliation

of a congressman on congressional voting outcomes by Lee (2007). See also Lee, Moretti

and Butler (2004). The key idea is that electoral districts where the share of the vote for a

Democrat in a particular election was just under 50% are on average similar in many relevant

respects to districts where the share of the Democratic vote was just over 50%, but the small

difference in votes leads to an immediate and big difference in the party affiliation of the

elected representative. In this case, the party affiliation always jumps at 50%, making this

is a SRD design. Lee looks at the incumbency effect. He is interested in the probability

2More generally, one might want to assume that the conditional distribution function is smooth in the
covariate. Let FY (w)|X(y|x) = Pr(Yi(w) ≤ y|Xi = x) denote the conditional distribution function of Yi(w)
given Xi. Then the general version of the assumption assume that FY (0)|X(y|x) and FY (1)|X(y|x) are
continuous in x for all y. Both assumptions are stronger than required, as we will only use continuity at
x = c, but it is rare that it is reasonable to assume continuity for one value of the covariate, but not at other
values of the covariate.

3Although in principle the first component in the difference in (1) would be straightforward to estimate if
we actually observe individuals with Xi = x, with continuous covariates we also need to estimate this term
by averaging over units with covariate values close to c.
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of Democrats winning the subsequent election, comparing districts where the Democrats

won the previous election with just over 50% of the popular vote with districts where the

Democrats lost the previous election with just under 50% of the vote.

2.3 The Fuzzy Regression Discontinuity Design

In the Fuzzy Regression Discontinuity (FRD) design the probability of receiving the

treatment need not change from zero to one at the threshold. Instead the design allows for

a smaller jump in the probability of assignment to the treatment at the threshold:

lim
x↓c

Pr(Wi = 1|Xi = x) 6= lim
x↑c

Pr(Wi = 1|Xi = x),

without requiring the jump to equal 1. Such a situation can arise if incentives to participate

in a program change discontinuously at a threshold, without these incentives being powerful

enough to move all units from nonparticipation to participation. In this design we interpret

the ratio of the jump in the regression of the outcome on the covariate to the jump in the

regression of the treatment indicator on the covariate as an average causal effect of the

treatment. Formally, the estimand is

τFRD =
limx↓c E[Yi|Xi = x] − limx↑c E[Yi|Xi = x]

limx↓c E[Wi|Xi = x] − limx↑c E[Wi|Xi = x]
.

As an example of a FRD design, consider the study of the effect of financial aid on

college attendance by VanderKlaauw (2002). VanderKlaauw looks at the effect of financial

aid on acceptance on college admissions. Here Xi is a numerical score assigned to college

applicants based on the objective part of the application information (SAT scores, grades)

used to streamline the process of assigning financial aid offers. During the initial stages of

the admission process, the applicants are divided into L groups based on discretized values

of these scores. Let

Gi =



















1 if 0 ≤ Xi < c1

2 if c1 ≤ Xi < c2

...
L if cL−1 ≤ Xi

denote the financial aid group. For simplicity, let us focus on the case with L = 2, and a

single cutoff point c. Having a score just over c will put an applicant in a higher category and
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increase the chances of financial aid discontinuously compared to having a score just below c.

The outcome of interest in the VanderKlaauw study is college attendance. In this case, the

statistical association between attendance and the financial aid offer is ambiguous. On the

one hand, an aid offer by a college makes that college more attractive to the potential student.

This is the causal effect of interest. On the other hand, a student who gets a generous

financial aid offer from one college is likely to have better outside opportunities in the form

of financial aid offers from other colleges. In the VanderKlaauw application College aid is

emphatically not a deterministic function of the financial aid categories, making this a fuzzy

RD design. Other components of the college application package that are not incorporated

in the numerical score such as the essay and recommendation letters undoubtedly play an

important role. Nevertheless, there is a clear discontinuity in the probability of receiving an

offer of a larger financial aid package.

Let us first consider the interpretation of τFRD. HTV exploit the instrumental variables

connection to interpret the fuzzy regression discontinuity design when the effect of the treat-

ment varies by unit. Let Wi(x) be potential treatment status given cutoff point x, for x in

some small neigborhood around c. Wi(x) is equal to one if unit i would take or receive the

treatment if the cutoff point was equal to x. This requires that the cutoff point is at least in

principle manipulable.4 For example, if X is age, one could imagine changing the age that

makes an individual eligible for the treatment from c to c + ε. Then it is useful to assume

monotonicity (see HTV):

Assumption 2 Wi(x) is non-increasing in x at x = c.

Next, define compliance status. This concept is similar to that in instrumental variables,

e.g., Imbens and Angrist (1994), Angrist, Imbens and Rubin (1996). A complier is a unit

such that

lim
x↓Xi

Wi(x) = 0, and lim
x↑Xi

Wi(x) = 1.

4Alternatively, one could think of the individual characteristic Xi as being manipulable, but in many
cases this is an immutable characteristic such as age.
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Compliers are units who would get the treatment if the cutoff were at Xi or below, but they

would not get the treatment if the cutoff were higher than Xi. To be specific, consider an

example where individuals with a test score less than c are encouraged for a remedial teaching

program (Matsudaira, 2007). Interest is in the effect of the remedial teaching program on

subsequent test scores. Compliers are individuals who would participate if encouraged (if the

cutoff for encouragement is below or equal to their actual score), but not if not encouraged

(if the cutoff for encouragement is higher than their actual score). Then

limx↓c E[Yi|Xi = x] − limx↑c E[Yi|Xi = x]

limx↓c E[Wi|Xi = x] − limx↑c E[Wi|Xi = x]

= E[Yi(1) − Yi(0)|unit i is a complier and Xi = c].

The estimand is an average effect of the treatment, but only averaged for units with Xi = c

(by regression discontinuity), and only for compliers (people who are affected by the thresh-

old).

3. The FRD Design, Unconfoundedness and External Validity

3.1 The FRD Design and Unconfoundedness

In the FRD setting it is useful to contrast the RD approach with estimation of average

causal effects under unconfoundedness. The unconfoundedness assumption, e.g., Rosenbaum

and Rubin (1983), Imbens (2004), requires that

Yi(0), Yi(1) ⊥⊥ Wi

∣

∣

∣

∣

Xi.

If this assumption holds, then we can estimate the average effect of the treatment at Xi = c

as

E[Yi(1) − Yi(0)|Xi = x] = E[Yi|Wi = 1, Xi = c] − E[Yi|Wi = 0, Xi = c].

This approach does not exploit the jump in the probability of assignment at the discontinuity

point. Instead it assumes that differences between treated and control units with Xi = c are

interpretable as average causal effects.
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In contrast, the assumptions underlying an FRD analysis implies that comparing treated

and control units with Xi = c is likely to be the wrong approach. Treated units with Xi = c

include compliers and alwaystakers, and control units at Xi = c consist only of nevertak-

ers. Comparing these different types of units has no causal interpretation under the FRD

assumptions. Although, in principle, one cannot test the unconfoundedness assumption, one

aspect of the problem makes this assumption fairly implausible. Unconfoundedness is fun-

damentally based on units being comparable if their covariates are similar. This is not an

attractive assumption in the current setting where the probability of receiving the treatment

is discontinuous in the covariate. Thus units with similar values of the forcing variable (but

on different sides of the threshold) must be different in some important way related to the

receipt of treatment. Unless there is a substantive argument that this difference is immate-

rial for the comparison of the outcomes of interest, an analysis based on unconfoundedness

is not attractive in this setting.

3.2 The FRD Design and External Validity

One important aspect of both the SRD and FRD designs is that they at best provide

estimates of the average effect for a subpopulation, namely the subpopulation with covariate

value equal to Xi = c. The FRD design restricts the relevant subpopulation even further

to that of compliers at this value of the covariate. Without strong assumptions justifying

extrapolation to other subpopulations (e.g., homogeneity of the treatment effect) the designs

never allow the researcher to estimate the overall (population) average effect of the treatment.

In that sense the design has fundamentally only a limited degree of external validity, although

the specific average effect that is identified may well be of special interest, for example in cases

where the policy question concerns changing the location of the threshold. The advantage

of RD designs compared to other non-experimental analyses that may have more external

validity such as those based on unconfoundedness, is that RD designs generally have a

relatively high degree of internal validity in settings where they are applicable.

4. Graphical Analyses
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4.1 Introduction

Graphical analyses should be an integral part of any RD analysis. The nature of RD

designs suggests that the effect of the treatment of interest can be measured by the value of

the discontinuity in the expected value of the outcome at a particular point. Inspecting the

estimated version of this conditional expectation is a simple yet powerful way to visualize

the identification strategy. Moreover, to assess the credibility of the RD strategy, it is useful

to inspect two additional graphs. The estimators we discuss later use more sophisticated

methods for smoothing but these basic plots will convey much of the intuition. For strikingly

clear examples of such plots, see Lee, Moretti, and Butler (2004), Lalive (2007), and Lee

(2007). Two figures from Lee (2007) are attached.

4.2 Outcomes by Forcing Variable

The first plot is a histogram-type estimate of the average value of the outcome by the

forcing variable. For some binwidth h, and for some number of bins K0 and K1 to the left and

right of the cutoff value, respectively, construct bins (bk, bk+1], for k = 1, . . . , K = K0 + K1,

where

bk = c − (K0 − k + 1) · h.

Then calculate the number of observations in each bin,

Nk =

N
∑

i=1

1{bk < Xi ≤ bk+1},

and the average outcome in the bin:

Y k =
1

Nk
·

N
∑

i=1

Yi · 1{bk < Xi ≤ bk+1}.

The first plot of interest is that of the Y k, for k = 1, K against the mid point of the bins,

b̃k = (bk + bk+1)/2. The question is whether around the threshold c there is any evidence of

a jump in the conditional mean of the outcome. The formal statistical analyses discussed

below are essentially just sophisticated versions of this, and if the basic plot does not show
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any evidence of a discontinuity, there is relatively little chance that the more sophisticated

analyses will lead to robust and credible estimates with statistically and substantially sig-

nificant magnitudes. In addition to inspecting whether there is a jump at this value of the

covariate, one should inspect the graph to see whether there are any other jumps in the con-

ditional expectation of Yi given Xi that are comparable to, or larger than, the discontinuity

at the cutoff value. If so, and if one cannot explain such jumps on substantive grounds, it

would call into question the interpretation of the jump at the threshold as the causal effect

of the treatment. In order to optimize the visual clarity it is important to calculate averages

that are not smoothed over the cutoff point. The attached figure is taken from the paper by

Lee (2007).

4.2 Covariates by Forcing Variable

The second set of plots compares average values of other covariates in the K bins. Specifi-

cally, let Zi be the M-vector of additional covariates, with m-th element Zim. Then calculate

Zkm =
1

Nk
·

N
∑

i=1

Zim · 1{bk < Xi ≤ bk+1}.

The second plot of interest is that of the Zkm, for k = 1, K against the mid point of the

bins, b̃k, for all m = 1, . . . , M . Lee (2007) presents such a figure for a lagged value of the

outcome, namely the election results from a prior election, against the vote share in the last

election. In the case of FRD designs, it is also particularly useful to plot the mean values of

the treatment variable Wi to make sure there is indeed a jump in the probability of treatment

at the cutoff point. Plotting other covariates is also useful for detecting possible specification

problems (see Section 8) in the case of either SRD or FRD designs.

4.3 The Density of the Forcing Variable

In the third graph one should plot the number of observations in each bin, Nk, against

the mid points b̃k. This plot can be used to inspect whether there is a discontinuity in the

distribution of the forcing variable X at the threshold. McCrary (2007) suggests that such

discontinuity would raise the question whether the value of this covariate was manipulated
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by the individual agents, invalidating the design. For example, suppose that the forcing

variable is a test score. If individuals know the threshold and have the option of re-taking

the test, individuals with test scores just below the threshold may do so, and invalidate the

design. Such a situation would lead to a discontinuity of the conditional density of the test

score at the threshold, and thus be detectable in plots such as described here. See Section 8

for more discussion of the specification tests based on this idea.

5. Estimation: Local Linear Regression

5.1 Nonparametric Regression at the Boundary

The practical estimation of the treatment effect τ in both the SRD and FRD designs

is largely standard nonparametric regression (e.g., Pagan and Ullah, 1999; Härdle, 1990;

Li and Racine, 2007). However, there are two unusual features to estimation in the RD

setting. First, we are interested in the regression function at a single point, and second, that

single point is a boundary point. As a result, standard nonparametric kernel regression does

not work very well. At boundary points, such estimators have a slower rate of convergence

than they do at interior points. Standard methods for choosing the bandwidth are also not

designed to provide good choices in this setting.

5.2 Local Linear Regression

Here we discuss local linear regression (Fan and Gijbels, 1996). Instead of locally fitting a

constant function, we can fit linear regression functions to the observations within a distance

h on either side of the discontinuity point:

min
αl,βl

N
∑

i|c−h<Xi<c

(Yi − αl − βl · (Xi − c))2 ,

and

min
αr,βr

N
∑

i|c≤Xi<c+h

(Yi − αr − βr · (Xi − c))2 .

The value of µl(c) and µr(c) are then estimated as

µ̂l(c) = α̂l + β̂l · (c − c) = α̂l, and µ̂r(c) = α̂r + β̂r · (c − c) = α̂r,
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Given these estimates, the average treatment effect is estimated as

τ̂SRD = α̂r − α̂l.

Alternatively one can estimate the average effect directly in a single regression, by solving

min
α,β,τ,γ

N
∑

i=1

1{c − h ≤ Xi ≤ c + h} · (Yi − α − β · (Xi − c) − τ · Wi − γ · (Xi − c) ·Wi)
2 ,

which will numerically yield the same estimate of τSRD.

We can make the nonparametric regression more sophisticated by using weights that

decrease smoothly as the distance to the cutoff point increases, instead of the zero/one

weights based on the rectangular kernel. However, even in this simple case the asymptotic

bias can be shown to be of order h2, and the more sophisticated kernels rarely make much

difference. Furthermore, if using different weights from a more sophisticated kernel does

make a difference, it likely suggests that the results are highly sensitive to the choice of

bandwidth. So the only case where more sophisticated kernels may make a difference is

when the estimates are not very credible anyway because of too much sensitivity to the

choice of bandwidth. From a practical point of view one may just focus on the simple

rectangular kernel, but verify the robustness of the results to different choices of bandwidth.

For inference we can use standard least squares methods. Under appropriate conditions

on the rate at which the bandwidth goes to zero as the sample size increases, the resulting

estimates will be asymptotically normally distributed, and the (robust) standard errors from

least squares theory will be justified. Using the results from HTV, the optimal bandwidth is

h ∝ N−1/5. Under this sequence of bandwidths the asymptotic distribution of the estimator

τ̂ will have a non-zero bias. If one does some undersmoothing, by requiring that h ∝ N−δ

with 1/5 < δ < 2/5, then the asymptotic bias disappears and standard least squares variance

estimators will lead to valid confidence intervals.

5.3 Covariates

Often there are additional covariates available in addition to the forcing covariate that

is the basis of the assignment mechanism. These covariates can be used to eliminate small
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sample biases present in the basic specification, and improve the precision. In addition,

they can be useful for evaluating the plausibility of the identification strategy, as discussed

in Section 8.1. Let the additional vector of covariates be denoted by Zi. We make three

observations on the role of these additional covariates.

The first and most important point is that the presence of these covariates rarely changes

the identification strategy. Typically, the conditional distribution of the covariates Z given X

is continuous at x = c. If such discontinuities in other covariates are found, the justification

of the identification strategy may be questionable. If the conditional distribution of Z given

X is continuous at x = c, then including Z in the regression

min
α,β,τ,δ

N
∑

i=1

1{c−h ≤ Xi ≤ c+h}·(Yi − α − β · (Xi − c) − τ ·Wi − γ · (Xi − c) · Wi − δ′Zi)
2
,

will have little effect on the expected value of the estimator for τ , since conditional on X

being close to c, the additional covariates Z are independent of W .

The second point is that even though with X very close to c, the presence of Z in the

regression does not affect any bias, in practice we often include observations with values of

X not too close to c. In that case, including additional covariates may eliminate some bias

that is the result of the inclusion of these additional observations.

Third, the presence of the covariates can improve precision if Z is correlated with the

potential outcomes. This is the standard argument, which also supports the inclusion of

covariates even in analyses of randomized experiments. In practice the variance reduction

will be relatively small unless the contribution to the R2 from the additional regressors is

substantial.

5.4 Estimation for the Fuzzy Regression Discontinuity Design

In the FRD design, we need to estimate the ratio of two differences. The estimation issues

we discussed earlier in the case of the SRD arise now for both differences. In particular,

there are substantial biases if we do simple kernel regressions. Instead, it is again likely to

be better to use local linear regression. We use a uniform (rectangular) kernel, with the same
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bandwidth for estimation of the discontinuity in the outcome and treatment regressions.

First, consider local linear regression for the outcome, on both sides of the discontinuity

point. Let

(

α̂yl, β̂yl

)

= arg min
αyl,βyl

∑

i:c−h≤Xi<c

(Yi − αyl − βyl · (Xi − c))2 , (3)

(

α̂yr, β̂yr

)

= arg min
αyr,βyr

∑

i:c≤Xi≤c+h

(Yi − αyr − βyr · (Xi − c))
2
. (4)

The magnitude of the discontinuity in the outcome regression is then estimated as τ̂y =

α̂yr − α̂yl. Second, consider the two local linear regression for the treatment indicator:

(

α̂wl, β̂wl

)

= arg min
αwl,βwl

∑

i:c−h≤Xi<c

(Wi − αwl − βwl · (Xi − c))2 , (5)

(

α̂wr, β̂wr

)

= arg min
αwr,βwr

∑

i:c≤Xi≤c+h

(Yi − αwr − βwr · (Xi − c))2 . (6)

The magnitude of the discontinuity in the treatment regression is then estimated as τ̂w =

α̂wr − α̂wl. Finally, we estimate the effect of interest as the ratio of the two discontinuities:

τ̂FRD =
τ̂y

τ̂w
=

α̂yr − α̂yl

α̂wr − α̂wl
. (7)

Because of the specific implementation we use here, with a uniform kernel, and the same

bandwidth for estimation of the denominator and the numerator, we can characterize the

estimator for τ as a Two-Stage-Least-Squares (TSLS) estimator (See HTV). This equality

still holds when we use local linear regression and include additional regressors. Define

Vi =





1
1{Xi < c} · (Xi − c)
1{Xi ≥ c} · (Xi − c)



 , and δ =





αyl

βyl

βyr



 . (8)

Then we can write

Yi = δ′Vi + τ · Wi + εi. (9)

Estimating τ based on the regression function (9) by TSLS methods, with the indicator

1{Xi ≥ c} as the excluded instrument and Vi as the set of exogenous variables is numerically

identical to τ̂FRD as given in (7).
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6. Bandwidth Selection

An important issue in practice is the selection of the smoothing parameter, the binwidth

h. Here we focus on cross-validation procedures rather than plug in methods which would

require estimating derivatives nonparametrically. The specific methods discussed here are

based on those developed by Ludwig and Miller (2005, 2007). Initially we focus on the SRD

case, and in Section 6.2 we extend the recommendations to the FRD setting.

To set up the bandwidth choice problem we generalize the notation slightly. In the SRD

setting we are interested in the

τSRD = lim
x↓c

µ(x) − lim
x↑c

µ(x),

where µ(x) = E[Yi|Xi = x]. We estimate the two terms as

̂lim
x↓c

µ(x) = α̂r(c), and ̂lim
x↑c

µ(x) = α̂l(c),

where α̂l(x) and β̂l(x) solve

(

α̂l(x), β̂l(x)
)

= arg min
α,β

∑

j|x−h<Xj<x

(Yj − α − β · (Xj − x))2 . (10)

and α̂r(x) and β̂r(x) solve

(

α̂r(x), β̂r(x)
)

= arg min
α,β

∑

j|x<Xj<x+h

(Yj − α − β · (Xj − x))2 . (11)

Let us focus first on estimating limx↓c µ(x). For estimation of this limit we are interested in

the bandwidth h that minimizes

Qr(x, h) = E

[

(

lim
z↓x

µ(z) − α̂r(x)

)2
]

,

at x = c. However, we focus on a single bandwidth for both sides of the threshold, and

therefore focus on minimizing

Q(c, h) =
1

2
·(Ql(c, h) + Qr(c, h)) =

1

2
·
(

E

[

(

lim
x↑c

µ(x) − α̂l(c)

)2
]

+ E

[

(

lim
x↓c

µ(x) − α̂r(c)

)2
])

.
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We now discuss two methods for choosing the bandwidth.

6.1 Bandwidth Selection for the SRD Design

For a given binwidth h, let the estimated regression function at x be

µ̂(x) =

{

α̂l(x) if x < c,
α̂r(x) if x ≥ c,

where α̂l(x), β̂l(x), α̂r(x) and β̂r(x) solve (10) and (11). Note that in order to mimic the

fact that we are interested in estimation at the boundary we only use the observations on

one side of x in order to estimate the regression function at x, rather than the observations

on both sides of x, that is, observations with x − h < Xj < x + h. In addition, the strict

inequality in the definition implies that µ̂(x) evaluated at x = Xi does not depend on Yi.

Now define the cross-validation criterion as

CVY (h) =
1

N

N
∑

i=1

(Yi − µ̂(Xi))
2 , (12)

with the corresponding cross-validation choice for the binwidth

hopt
CV = arg min

h
CVY (h).

The expected value of this cross-validation function is under some conditions equal to

E[CVY (h)] = C + E[Q(X, h)] = C +
∫

Q(x, h)fX(dx), for some constant that does not

depend on h. Although the modification to estimate the regression using one-sided kernels

mimics more closely the estimand of interest, this is still not quite what we are interested

in. Ultimately we are solely interested in estimating the regression function in the neigh-

borhood of a single point, the threshold c, and thus in minimizing Q(c, h), rather than
∫

x
Q(x, h)fX(x)dx. If there are few observations in the tails of the distributions, minimizing

the criterion in (12) may lead to larger bins than is optimal for estimating the regression

function around x = c if c is in the center of the distribution. We may therefore wish to

minimize the cross-validation criterion after first discarding observations from the tails. Let

qX,δ,l be δ quantile of the empirical distribution of X for the subsample with Xi < c, and let
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qX,δ,r be δ quantile of the empirical distribution of X for the subsample with Xi ≥ c. Then

we may wish to use the criterion

CVδ
Y (h) =

1

N

∑

i:qX,δ,l≤Xi≤qX,1−δ,r

(Yi − µ̂(Xi))
2 . (13)

The modified cross-validation choice for the bandwidth is

hδ,opt
CV = arg min

h
CVδ

Y (h). (14)

The modified cross-validation function has expectation, again ignoring terms that do not

involve h, proportional to E[Q(X, h)|qX,δ,l < X < qX,δ,r]. Choosing a smaller value of δ

makes the expected value of the criterion closer to what we are ultimately interested, that is,

Q(c, h), but has the disadvantage of leading to a noisier estimate of E[CVδ
Y (h)]. In practice

one may wish to choose δ = 1/2, and discard 50% of the observations on either side of the

threshold, and afterwards assess the sensitivity of the bandwidth choice to the choice of δ.

Ludwig and Miller (2005) implement this by using only data within 5 percentage points of

the threshold on either side.

6.2 Bandwidth Selection for the FRD Design

In the FRD design, there are four regression functions that need to be estimated: the

expected outcome given the forcing variable, both on the left and right of the cutoff point,

and the expected value of the treatment, again on the left and right of the cutoff point. In

principle, we can use different binwidths for each of the four nonparametric regressions.

In the section on the SRD design, we argued in favor of using identical bandwidths for

the regressions on both sides of the cutoff point. The argument is not so clear for the pairs of

regressions functions by outcome we have here, and so in principle we have two optimal band-

widths, one based on minimizing CVδ
Y (h), and one based on minimizing CVδ

W (h), defined

correspondingly. It is likely that the conditional expectation of the treatment is relatively

flat compared to the conditional expectation of the outcome variable, suggesting one should

use a larger binwidth for estimating the former.5 Nevertheless, in practice it is appealing

5In the extreme case of the SRD design the conditional expectation of W given X is flat on both sides
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to use the same binwidth for numerator and denominator. Since typically the size of the

discontinuity is much more marked in the expected value of the treatment, one option is to

use the optimal bandwidth based on the outcome discontinuity. Alternatively, to minimize

bias, one may wish to use the smallest bandwidths selected by the cross validation criterion

applied separately to the outcome and treatment regression:

hopt
CV = min

(

arg min
h

CVδ
Y (h), arg min

h
CVδ

W (h)
)

,

where CVδ
Y (h) is as defined in (12), and CVδ

W (h) is defined similarly. Again a value of

δ = 1/2 is likely to lead to reasonable estimates in many settings.

7. Inference

We now discuss some asymptotic properties for the estimator for the FRD case given

in (7) or its alternative representation in (9).6 More general results are given in HTV. We

continue to make some simplifying assumptions. First, as in the previous sections, we use a

uniform kernel. Second, we use the same bandwidth for the estimator for the jump in the

conditional expectations of the outcome and treatment. Third, we undersmooth, so that

the square of the bias vanishes faster than the variance, and we can ignore the bias in the

construction of confidence intervals. Fourth, we continue to use the local linear estimator.

Under these assumptions we give an explicit expression for the asymptotic variance, and

present two estimators for the asymptotic variance. The first estimator follows explicitly the

analytic form for the asymptotic variance, and substitutes estimates for the unknown quanti-

ties. The second estimator is the standard robust variance for the Two-Stage-Least-Squares

(TSLS) estimator, based on the sample obtained by discarding observations when the forcing

covariate is more than h away from the cutoff point. Both are robust to heteroskedasticity.

7.1 The Asymptotic Variance

To characterize the asymptotic variance we need a couple of additional pieces of notation.

of the threshold, and so the optimal bandwidth would be infinity. Therefore, in practice it is likely that the
optimal bandwidth would be larger for estimating the jump in the conditional expectation of the treatment
than in estimating the jump in the conditional expectation of the outcome.

6The results for the SRD design are a special case of these for the FRD design.
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Define the four variances

σ2
Y l = lim

x↑c
Var(Yi|Xi = x), σ2

Y r = lim
x↓c

Var(Yi|Xi = x),

σ2
Wl = lim

x↑c
Var(Wi|Xi = x), σ2

Wr = lim
x↓c

Var(Wi|Xi = x),

and the two covariances

CY Wl = lim
x↑c

Cov(Yi, Wi|Xi = x), CY Wr = lim
x↓c

Cov(Yi, Wi|Xi = x).

Note that because of the binary nature of W , it follows that σ2
Wl = µWl · (1 − µWl), where

µWl = limx↑c Pr(Wi = 1|Xi = x), and similarly for σ2
Wr. To discuss the asymptotic variance

of τ̂ it is useful to break it up in three pieces. The asymptotic variance of
√

Nh(τ̂y − τy) is

Vτy =
4

fX(c)
·
(

σ2
Y r + σ2

Y l

)

. (15)

The asymptotic variance of
√

Nh(τ̂w − τw) is

Vτw =
4

fX(c)
·
(

σ2
Wr + σ2

Wl

)

(16)

The asymptotic covariance of
√

Nh(τ̂y − τy) and
√

Nh(τ̂w − τw) is

Cτy,τw =
4

fX(c)
· (CY Wr + CY Wl) . (17)

Finally, the asymptotic distribution has the form

√
Nh · (τ̂ − τ )

d−→ N
(

0,
1

τ 2
w

· Vτy +
τ 2
y

τ 4
w

· Vτw − 2 · τy

τ 3
w

· Cτy,τw

)

. (18)

This asymptotic distribution is a special case of that in HTV (page 208), using the rectangular

kernel, and with h = N−δ, for 1/5 < δ < 2/5 (so that the asymptotic bias can be ignored).

7.2 A Plug-in Estimator for the Asymptotic Variance

We now discuss two estimators for the asymptotic variance of τ̂ . First, we can estimate

the asymptotic variance of τ̂ by estimating each of the components, τw, τy, Vτw , Vτy , and

Cτy,τw and substituting them into the expression for the variance in (18). In order to do this

we first estimate the residuals

ε̂i = Yi − µ̂y(Xi) = Yi − 1{Xi < c} · α̂yl − 1{Xi ≥ c} · α̂yr ,
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η̂i = Wi − µ̂w(Xi) = Wi − 1{Xi < c} · α̂wl − 1{Xi ≥ c} · α̂wr.

Then we estimate the variances and covariances consistently as

σ̂2
Y l =

1

Nhl

∑

i|c−h≤Xi<c

ε̂2
i , σ̂2

Y r =
1

Nhr

∑

i|c≤Xi≤c+h

ε̂2
i ,

σ̂2
Wl =

1

Nhl

∑

i|c−h≤Xi<c

η̂2
i , σ̂2

Wr =
1

Nhr

∑

i|c≤Xi≤c+h

η̂2
i ,

ĈY Wl =
1

Nhl

∑

i|c−h≤Xi<c

ε̂i · η̂i, ĈY Wr =
1

Nhr

∑

i|c≤Xi≤c+h

ε̂i · η̂i.

Finally, we estimate the density consistently as

f̂X(x) =
Nhl + Nhr

2 · N · h .

Then we can plug in the estimated components of Vτy , VτW
, and CτY ,τW

from (15)-(17), and

finally substitute these into the variance expression in (18).

7.3 The TSLS Variance Estimator

The second estimator for the asymptotic variance of τ̂ exploits the interpretation of the τ̂

as a TSLS estimator, given in (9). The variance estimator is equal to the robust variance for

TSLS based on the subsample of observations with c − h ≤ Xi ≤ c + h, using the indicator

1{Xi ≥ c} as the excluded instrument, the treatment Wi as the endogenous regressor and

the Vi defined in (8) as the exogenous covariates.

8. Specification Testing

There are generally two main conceptual concerns in the application of RD designs,

sharp or fuzzy. A first concern about RD designs is the possibility of other changes at the

same cutoff value of the covariate. Such changes may affect the outcome, and these effects

may be attributed erroneously to the treatment of interest. The second concern is that of

manipulation of the covariate value.

8.1 Tests Involving Covariates
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One category of tests involves testing the null hypothesis of a zero average effect on pseudo

outcomes known not to be affected by the treatment. Such variables includes covariates that

are by definition not affected by the treatment. Such tests are familiar from settings with

identification based on unconfoundedness assumptions. In most cases, the reason for the

discontinuity in the probability of the treatment does not suggest a discontinuity in the

average value of covariates. If we find such a discontinuity, it typically casts doubt on the

assumptions underlying the RD design. See the second part of the Lee (2007) figure for an

example.

8.2 Tests of Continuity of the Density

The second test is conceptually somewhat different, and unique to the RD setting. Mc-

Crary (2007) suggests testing the null hypothesis of continuity of the density of the covariate

that underlies the assignment at the discontinuity point, against the alternative of a jump

in the density function at that point. Again, in principle, one does not need continuity of

the density of X at c, but a discontinuity is suggestive of violations of the no-manipulation

assumption. If in fact individuals partly manage to manipulate the value of X in order to be

on one side of the boundary rather than the other, one might expect to see a discontinuity

in this density at the discontinuity point.

8.3 Testing for Jumps at Non-discontinuity Points

Taking the subsample with Xi < c we can test for a jump in the conditional mean of the

outcome at the median of the forcing variable. To implement the test, use the same method

for selecting the binwidth as before. Also estimate the standard errors of the jump and use

this to test the hypothesis of a zero jump. Repeat this using the subsample to the right

of the cutoff point with Xi ≥ c. Now estimate the jump in the regression function and at

qX,1/2,r, and test whether it is equal to zero.

8.4 RD Designs with Misspecification

Lee and Card (2007) study the case where the forcing variable variable X is discrete. In

practice this is of course always true. This implies that ultimately one relies for identification
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on functional form assumptions for the regression function µ(x). Lee and Card consider a

parametric specification for the regression function that does not fully saturate the model,

that is, it has fewer free parameters than there are support points. They then interpret the

deviation between the true conditional expectation E[Y |X = x] and the estimated regression

function as random specification error that introduces a group structure on the standard er-

rors. Lee and Card then show how to incorporate this group structure into the standard

errors for the estimated treatment effect. Within the local linear regression framework dis-

cussed in the current paper one can calculate the Lee-Card standard errors (possibly based

on slightly coarsened covariate data if X is close to continuous) and compare them to the

conventional ones.

8.5 Sensitivity to the Choice of Bandwidth

One should investigate the sensitivity of the inferences to this choice, for example, by

including results for bandwidths twice (or four times) and half (or a quarter of) the size of

the originally chosen bandwidth. Obviously, such bandwidth choices affect both estimates

and standard errors, but if the results are critically dependent on a particular bandwidth

choice, they are clearly less credible than if they are robust to such variation in bandwidths.

8.6 Comparisons to Estimates Based on Unconfoundedness in the FRD Design

If we have an FRD design, we can also consider estimates based on unconfoundedness.

Inspecting such estimates and especially their variation over the range of the covariate can

be useful. If we find that for a range of values of X, our estimate of the average effect of the

treatment is relatively constant and similar to that based on the FRD approach, one would

be more confident in both sets of estimates.
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What’s New in Econometrics? NBER, Summer 2007
Lecture 4, Monday, July 30th, 3.15-4.15 pm

Nonlinear Panel Data Models
These notes summarize some recent, and perhaps not-so-recent, advances in the estimation

of nonlinear panel data models. Research in the last 10 to 15 years has branched off in two
directions. In one, the focus has been on parameter estimation, possibly only up to a common
scale factor, in semiparametric models with unobserved effects (that can be arbitrarily
correlated with covariates.) Another branch has focused on estimating partial effects when
restrictions are made on the distribution of heterogeneity conditional on the history of the
covariates. These notes attempt to lay out the pros and cons of each approach, paying
particular attention to the tradeoff in assumptions and the quantities that can be estimated.
1. Basic Issues and Quantities of Interest

Most microeconomic panel data sets are best characterized as having few time periods and
(relatively) many cross section observations. Therefore, most of the discussion in these notes
assumes T is fixed in the asymptotic analysis while N is increasing. We assume random sample
in the cross section, xit,yit : t  1, . . . ,T. Take yit to be a scalar for simplicity. If we are not
concerned about traditional (contemporaneous) endogeneity, then we are typically interested in

Dyit|xit,c i     (1.1)

or some feature of this distribution, such as Eyit|xit,c i, or a conditional median. In the case of
a mean, how do we summarize the partial effects? Let mtxt,c be the mean function. If xtj is

continuous, then

jxt,c ≡
∂mtxt,c
∂xtj

,     (1.2)

or look at discrete changes. How do we account for unobserved ci? If we want to estimate
magnitudes of effects, we need to know enough about the distribution of c i so that we can
insert meaningful values for c. For example, if c  Ec i, then we can compute the partial

effect at the average (PEA),

 jxt,c.     (1.3)

Of course, we need to estimate the function mt and the mean of ci. If we know more about the
distribution of c i, we can insert different quantiles, for example, or a certain number of
standard deviations from the mean.

Alternatively, we can average the partial effects across the distribution of ci:
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APExt  Eci jxt,c i.     (1.4)

The difference between (1.3) and (1.4) can be nontrivial for nonlinear mean functions. The
definition in (1.4) dates back at least to Chamberlain (1982), and is closely related to the notion
of the average structural function (ASF) (Blundell and Powell (2003)). The ASF is defined as

ASFxt  Ecimtxt,c i.     (1.5)

Assuming the derivative passes through the expectation results in (1.5), the average partial
effect. Of course, computing discrete changes gives the same result always. APEs are directly
across models, and APEs in general nonlinear models are comparable to the estimated
coefficients in a standard linear model.

Semiparametric methods, which, by construction, are silent about the distribution of c i,
unconditionally or conditional on xi1, . . . ,xiT, cannot generally deliver estimates of average
partial (marginal) effects. Instead, an index structure is usually imposed so that parameters can
be consistently estimated. So, for example, with scalar heterogeneity we might have an index
model with additive heterogeneity:

mtxt,c  Gxt  c,     (1.6)

where, say, G is strictly increasing and continuously differentiable (and, in some cases, is
known, and in others, is not). Then

jxt,c  jgxt  c,     (1.7)

where g is the derivative of G. Then estimating j means we can estimate the sign of the

partial effect, and even the relative effects of any two continuous variables. But, even if G is
specified (the more common case), the magnitude of the effect evidently cannot be estimated
without making assumptions about the distribution of ci: the size of the scale factor for a
random draw i, gxt  ci, depends on ci. Without knowing something about the distribution
of ci we cannot generally locate gxt  ci.

Returning to the general case, Altonji and Matzkin (2005) focus on what they call the local
average response (LAR) as opposed to the APE or PAE. The LAR at xt for a continuous
variable xtj is

 ∂mtxt,c
∂xtj

dHtc|xt,     (1.8)

where Htc|xt denotes the cdf of Dc i|xit  xt. This is a “local” partial effect because it
averages out the heterogeneity for the slice of the population given by the vector xt. The APE,
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which by comparison could be called a “global average response,” averages out over the entire
distribution of c i. See also Florens, Heckman, Meghir, and Vytlacil (2004).

It is important to see that the definitions of partial effects does not depend on the nature of
the variables in xt (except for whether it makes sense to use the calculus approximation or use
changes). In particular, xt can include lagged dependent variables and lags of other variables,
which may or may not be strictly exogenous. Unfortunately, we cannot identify the APEs, or
even relative effects in index models, without some assumptions.
2. Exogeneity Assumptions on the Covariates

Ideally, we would only have to specify a model for Dyit|xit,c i or some feature.
Unfortunately, it is well known that specifying a full parametric model is not sufficient for
identifying either the parameters of the model or the partial effects defined in Section 1. In this
section, we consider two useful exogeneity assumptions on the covariates.

It is easiest to deal with estimation under a strict exogeneity assumption. The most useful
definition of strict exogeneity for nonlinear panel data models is

Dyit|xi1, . . . ,xiT,c i  Dyit|xit,c i,     (2.1)

which means that xir, r ≠ t, does not appear in the conditional distribution of yit once xit and c i

have been counted for. Chamberlain (1984) labeled (2.1) strict exogeneity conditional on the
unobserved (or latent) effects c i. Sometimes, a conditional mean version is sufficient:

Eyit|xi1, . . . ,xiT,c i  Eyit|xit,ci,     (2.2)

which we already saw for linear models. (In other cases a condition stated in terms of
conditional medians is more convenient.) Of course, either version of the assumption rules out
lagged dependent variables, but also other situations where there may be feedback from
idiosyncratic changes in yit to future movements in xir, r  t. But it is the assumption
underlying the most common estimation methods for nonlinear models.

More natural is a sequential exogeneity assumption (conditional on the unobserved effects)
assumption, which we can state generally as

Dyit|xi1, . . . ,xit,c i  Dyit|xit,ci     (2.3)

or, sometimes, in terms of specific features of the distribution. Assumption (2.3) allows for
lagged dependent variables and does not restrict feedback. Unfortunately, it is much more
difficult to allow, especially in nonlinear models.

Neither (2.2) nor (2.3) allows for contemporaneous endogeneity of one or more elements of
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xit, where, say, xitj is correlated with unobserved, time-varying unobservables that affect yit, or

where xitj is simultaneously determined along with yit. This will be covered in later notes on

control function methods.
3. Conditional Independence Assumption

In some cases – certainly traditionally – a conditional independence assumption is
imposed. We can write the condition generally as

Dyi1, . . . ,yiT|xi,c i 
t1

T

Dyit|xi,c i.     (3.1)

This assumption is only useful in the context of the strict exogeneity assumption (2.1), in
which case we can write

Dyi1, . . . ,yiT|xi,c i 
t1

T

Dyit|xit,c i.     (3.2)

In a parametric context, the conditional independence assumption therefore reduces our task to
specifying a model for Dyit|xit,c i, and then determining how to treat the unobserved
heterogeneity, c i. In random effects and CRE frameworks, conditional independence plays a
critical role in being able to estimate the parameters in distribution the of c i. We could get by
with less restrictive assumptions by parameterizing the dependence, but that increases
computational burden. As it turns out, conditional independence plays no role in estimating
APEs for a broad class of models. (That is, we do not need to place restrictions on
Dyi1, . . . ,yiT|xi,c i.  Before we can study estimation, we must discuss the critical issue of the
dependence between c i and xi.
4. Assumptions about the Unobserved Heterogeneity

The modern approach to panel data analysis with micro data treats the unobserved
heterogeneity as random draws along with the observed data, and that is the view taken here.
Nevertheless, there are still reasons one might treat them as parameters to estimate, and we
allow for that in our discussion.

Random Effects
For general nonlinear models, what we call the “random effects” assumption is

independence between c i and xi  xi1, . . . ,xiT:

Dc i|xi1, . . . ,xiT  Dc i.     (4.1)
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If we combine this assumption with a model for mtxt,c, then the APEs are actually
nonparametrically identified. (And, in fact, we do not need to assume strict or sequential
exogeneity to use a pooled estimation method, or to use just a single time period.) In fact, if
Eyit|xit,c i  mtxit,c i and Dc i|xit  Dc i, then the APEs are obtained from

rtxt ≡ Eyit|xit  xt.     (4.2)

(The argument is a simple application of the law of interated expectations; it is discussed in
detail in Wooldridge (2005a).) In principle, Eyit|xit can be estimated nonparametrically, and
we only need a single time period to identify the partial effects for that time period.

In some leading cases (for example random effects probit and Tobit with heterogeneity
normally distributed), if we want to obtain partial effects for different values of c, we must
assume more: the strict exogeneity assumption (2.1), the conditional independence assumption
(3.1), and the random effects assumption (4.1) with a parametric distribution for Dc i are
typically sufficient. We postpone this discussion because it takes us into the realm of
specifying parametric models.

Correlated Random Effects
A “correlated random effects” framework allows dependence between c i and xi, but the

dependence in restricted in some way. In a parametric setting, we specify a distribution for
Dc i|xi1, . . . ,xiT, as in Mundlak (1978), Chamberlain (1982), and many subsequent authors.
For many models, including probit and Tobit, one can allow Dc i|xi1, . . . ,xiT to depend in a
“nonexchangeable” manner on the time series of the covariates; Chamberlain’s random effects
probit model does this. But the distributional assumptions that lead to simple estimation –
namely, homoskedastic normal with a linear conditional mean — are restrictive. But it is aslo
possible to assume

Dci|xi  Dci|x̄i     (4.3)

without specifying Dci|x̄i or restricting any feature of this distribution. We will see in the
next section that (4.3) is very powerful.

We can go further. For example, suppose that we think the heterogeneity c i is correlated
with features of the covariates other than just the time average. Altonji and Matzkin (2005)
allow for x̄i in equation (4.3) to be replaced by other functions of xit : t  1, . . . ,T, such as
sample variances and covariance. These are examples of “exchangeable” functions of
xit : t  1, . . . ,T – that is, statistics whose value is the same regardless of the ordering of the
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xit. Non-exchangeable functions can be used, too. For example, we might think that ci is
correlated with individual-specific trends, and so we obtain wi as the intercept and slope from
the unit-specific regressions xit on 1, t, t  1, . . . ,T (for T ≥ 3); we can also add the error
variance from this individual specific regression if we have sufficient time periods. Then, the
condition becomes

Dci|xi  Dci|wi.     (4.4)

Practically, we need to specify wi and then establish that there is enough variation in
xit : t  1, . . . ,T separate from wi; this will be clear in the next section.

Fixed Effects
Unfortunately, the label “fixed effects” is used in different ways by different researchers

(and, sometimes, by the same researcher). The traditional view was that a fixed effects
framework meant c i, i  1, . . . ,N were treated as parameters to estimate. This view is still
around, and, when researchers say they estimated a nonlinear panel data model by “fixed
effects,” they sometimes mean the c i were treated as parameters to estimate along with other
parameters (whose dimension does not change with N). As is well known, except in special
cases, estimation of the c i generally introduces an “incidental parameters” problem. (More on
this later when we discuss estimation methods, and partial effects.) Subject to computational
feasilibity, the approach that treats the ci as parameters is widely applicable.

The “fixed effects” label can mean that Dci|xi is unrestricted. Even in that case, there are
different approaches to estimation of parameters. One is to specify a joint distribution
Dyi1, . . . ,yit|xi,c i such that a sufficient statistic, say si, can be found such that

Dyi1, . . . ,yit|xi,c i, si  Dyi1, . . . ,yit|xi, si,     (4.5)

and where the latter distribution still depends on the parameters of interest in a way that
identifies them. In most cases, the conditional independence assumption (3.1) is maintained,
although one CMLE is known to have robustness properties: the so-called “fixed effects”
Poisson estimator. We cover that later on.
5. Nonparametric Identification of Average Partial and Local
Average Effects

Before considering identification and estimation of parameters in parametric models, it is
useful to ask which quantities, if any, are identified without imposing parametric assumptions.
Not surprisingly, there are no known results on nonparametric identificiation of partial effects
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evaluated at specific values of c, such as c – except, of course, when the partial effects do not

depend on c. Interestingly, identification can fail even under a full set of strong parametric
assumptions. For example, in the probit model

Py  1|x,c  x  c,     (5.1)

where x is 1  K an includes unity, the partial effect for a continuous variable xj is simply

jx  c. The partial effect at the mean of c is simply jx. Suppose we assume that c|x

~Normal0,c
2. Then it is easy to show that

Py  1|x  x/1  c
21/2,     (5.2)

which means that only the scaled parameter vector c ≡ /1  c
21/2 is identified. Therefore,

jx, is evidently unidentified. (The fact that probit of y on x estimates c has been called

the “attenuation bias” that results from omitted variables in the context of probit, even when
the omitted variable is independent of the covariates and normally distributed. As mentioned
earlier more generally, the average partial effects are obtained directly from Py  1|x, and, in
fact, are given by cjxc. As discussed in Wooldridge (2002, Chapter 15), cjxc can be

larger or smaller in magnitude than the PEA jx: |cj|≤ |j| but xc ≥ x. 

A related example is due to Hahn (2001), and is related to the nonidentification restuls of
Chamberlain (1993). Suppose that xit is a binary indicator (for example, a policy variable).
Consider the unobserved effects probit model

Pyit  1|xi,ci  xit  ci,     (5.3)

As discussed by Hahn,  is not known to be identified in this model, even under conditional
serial independence assumption and the random effects assumption Dci|xi  Dci. But the
average partial effect, which in this case is an average treatment effect, is simply
 ≡ E  ci − Eci. By the general result cited earlier,  is consistently estimated (in
fact, unbiasedly estimated) by using a difference of means for the treated and untreated groups,
for either time period. In fact, as discussed in Wooldridge (2005a), identification of the APE
holds if we replace  with an unknown function G and allow Dci|xi  Dci|x̄i. But the
parameters are still not identified.

To summarize: the APE is identified for any function G whether or not the conditional
serial independence holds, even if we add separate year intercepts. But  is not identified under
the strongest set of assumptions. This simple example suggests that perhaps our focus on
parameters is wrong-headed.
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We can establish identification of average partial effects much more generally. Assume
only that the strict exogeneity assumption (2.1) holds along with Dci|xi  Dci|x̄i. These
two assumptions are sufficient to identify the APEs. To see why, note that the average
structural function at time t can be written as

ASFtxt  Ecimtxt,c i  E x̄iEmtxt,c i|x̄i ≡ E x̄irtxt, x̄i,     (5.4)

where rtxt, x̄i ≡ Ertxt,c i|x̄i. It follows that, given an estimator r̂t,  of the function
rt, , the ASF can be estimated as

ASFtxt ≡ N−1∑
i1

N

r̂txt, x̄i,     (5.5)

and then we can take derivatives or changes with respect to the entries in xt. Notice that (5.4)
holds without the strict exogeneity assumption (2.1) or the assumption Dci|xi  Dci|x̄i.
However, these assumptions come into play in our ability to estimate rt, . If we combine
(21) and (4.3) we have

Eyit|xi  EEyit|xi,c i|xi  Emtxit,c i|xi  mtxit,cdFc|xi

 mtxit,cdFc|x̄i  rtxit, x̄i,     (5.6)

where Fc|xi denotes the cdf of Dc i|xi (which can be a discrete, continuous, or mixed
distribution), the second equality follows from (2.1), the fourth equality follows from
assumption (4.3), and the last equality folllows from the definition of rt,  Of course,
because Eyit|xi depends only on xit, x̄i, we must have

Eyit|xit, x̄i  rtxit, x̄i.     (5.7)

Further, xit : t  1, . . . ,T is assumed to have time variation, and so xit and x̄i can be used as
separate regressors even in a fully nonparametric setting.

Altonji and Matskin (2005).use this idea more generally, and focus on estimating the local
average response. Wooldridge (2005a) used Dc i|xi  Dc i|x̄i generally in the case xit is
discrete, in which case a full nonparametric analysis is easy. When

Dci|xi  Dc i|wi     (5.8)

for wi a function of xi, Altonji and Matzkin (2005) show that the LAR can be obtained as

 ∂rtxt,w
∂xtj

dKtw|xt,     (5.9)
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where rxt,w  Eyit|xit  xt,wi  w and Ktw|xt is the cdf of Dwi|xit  xt. Altonji and
Matskin demonstrate how to estimate the LAR based on nonparametric estimation of
Eyit|xit,wi followed by “local” averaging, that is, averaging ∂ryit|xt,wi/∂xtj over

observations i with xit “close” to xt.
This analysis demonstrates that APEs are nonparametrically identified under the

conditional mean version of strict exogeneity, (2.1), and (5.8), at least for time-varying
covariates if wi is restricted in some way. In fact, we can identify the APEs for a single time
period with just one year of data on y. We only need to obtain x̄i and, in effect, include it as a
control. Of course, efficiency would be gained by assuming some stationarity across t and
using a pooled method.
6. Dynamic Models

General models with only sequentially exogenous variables are difficult to deal with.
Arellano and Carrasco (2003) consider probit models. Wooldridge (2000) suggests a strategy
the requires modeling the dynamic distribution of the variables that are not strictly exogenous.
Much more is known about models with lagged dependent variables and otherwise strictly
exogenous variables. So, we start with a model for

Dyit|zit,yi,t−1, . . . ,zi1,yi0,c i, t  1, . . . ,T,     (6.1)

which we assume also is Dyit|zi,yi,t−1, . . . ,yi1,yi0,c i where zi is the entire history

zit : t  1, . . . ,T. This is the sense in which the zit are strictly exogenous.
Suppose this model depends only on zit,yi,t−1,ci, so ftyt|zt,yt−1,c;. The joint density of

yi1, . . . ,yiT given yi0,zi,c i is


t1

T

ftyt|zt,yt−1,c;.     (6.2)

The problem with using this for estimation is the presence of c i along with the initial condition,
yi0. Approaches: (i) Treat the c i as parameters to estimate (incidental parameters problem,

although recent research has attempted to reduce the asymptotic bias in the partial effects). (ii)
Try to estimate the parameters without specifying conditional or unconditional distributions for
ci. (Available in some special cases covered below, but other restrictions are needed. And,
generally, cannot estimate partial effects.). (iii) Find or, more practically, approximate
Dyi0|c i, zi and then model Dc i|zi. After integrating out ci we obtain the density for

Dyi0,yi1, . . . ,yiT|zi and we can use MLE (conditional on zi), (iv) Model Dc i|yi0,zi. After
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integrating out ci we obtain the density for Dyi1, . . . ,yiT|yi0,zi, and we can use MLE

(conditional on yi0,zi). As shown by Wooldridge (2005b), in some leading cases – probit,

ordered probit, Tobit, Poisson regression – there is a density hc|y0,z that mixes with the

density fy1, . . . ,yT|y0,z,c to produce a log-likelihood that is in a common family and carried

out by standard software.
If mtxt,c, is the mean function Eyt|xt,c for a scalar yt, then average partial effects are

easy to obtain. The average structural function is

ASFxt  Ecimtxt,c i,  E mtxt,c,hc|yi0,zi,dc |yi0,zi .     (6.3)

The term inside the brackets, say rtxt,yi0, zi,, is available, at least in principle, because
mt and h have been specified. Often, they have simple forms, in fact. Generally, it can be
simulated. In any case, ASFxt, is consistently estimated by

ASFxt  N−1∑
t1

T

rtxt,yi0,zi, ̂, ̂.

Partial derivatives and differences with respect to elements of xt (which, remember, can
include yt−1) can be computed. With large N and small T, the panel data bootstrap can be used
for standard errors and inference.
7. Applications to Specific Models

We now turn to some common parametric models and highlight the difference between
estimation partial effects at different values of the heterogeneity and estimating average partial
effects. An analysis of Tobit models follows in a very similar way to those in the following
two sections. See Wooldridge (2002, Chapter 16) and Honoré and Hu (2004).

7.1 Binary and “Fractional” Response Models

We start with the standard specification for the unobserved effects (UE) probit model,
which is

Pyit  1|xit,ci  xit  ci, t  1, . . . ,T,     (7.1)

where xit does not contain an overall intercept but would usually include time dummies. We
cannot identify  or the APEs without further assumptions. The traditional RE probit models
imposes a strong set of assumptions: strict exogeneity, conditional serial independence, and
independence between ci and xi with ci ~Normalc,c

2. Under these assumptions,  and the
parameters in the distribution of ci are identified and are consistently estimated by full MLE
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(conditional on xi.
We can relax independence between ci and xi using the Chamberlain-Mundlak device

under conditional normality:

ci    x̄i  ai,ai|xi ~Normal0,a
2,     (7.2)

where the time average is often used to save on degrees of freedom. We can relax (7.2) and
allow Chamberlain’s (1980) more flexible device:

ci    xi  ai    xi11 . . .xiTT  ai     (7.3)

Even when the r seem to be very different, the Mundlak restriction can deliver similar

estimates of the other parameters and the APEs. (In the linear case, they both produce the usual
FE estimator of . 

If we still assume conditional serial independence then all parameters are identified. We

can estimate the mean of ci as ̂c  ̂  N−1∑ i1
N x̄i ̂ and the variance as

̂c
2 ≡ ̂

′ N−1∑ i1
N x̄i

′x̄i ̂  ̂a
2. Of course, ci is not generally normally distributed unless x̄i is.

The approximation might get better as T gets large. In any case, we can plug in values of c that
are a certain number of estimated standard deviations from ̂c, say ̂c  ̂c.

The APEs are identified from the ASF, which is consistently estimated as

ASFxt  N−1∑
i1

N

xt̂a  ̂a  x̄îa     (7.4)

where, for example, ̂a  ̂/1  ̂a
21/2. The derivatives or changes of ASFxt with respect to

elements of xt can be compared with fixed effects estimates from a linear model. Often, if we
also average out across xit, the linear FE estimates are similar to the averaged effects.

As we discussed generally in Section 5, the APEs are defined without the conditional serial

independence assumption. Without Dyi1, . . . ,yiT|xi,ci 
t1

T

Dyit|xit,ci, we can still estimate

the scaled parameters because

Pyit  1|xi  xita  a  x̄ia,     (7.5)

and so pooled probit consistently estimates the scaled parametes. (Time dummies have been
supressed for simplicity.) Now we have direct estimates of a, a, and a, and we insert those

directly into (7.4).
Using pooled probit can be inefficient for estimating the scaled parameters, whereas the
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full MLE is efficient but not (evidently) robust to violation of the conditional serial
independence assumption. It is possible to estimate the parameters more efficiently than pooled
probit that is still consistent under the same set of assumptions. One possibility is minimum
distance estimation. That is, estimate a separate models for each t, and then impose the
restrictions using minimum distance methods. (This can be done with or without the Mundlak
device.)

A different approach is to apply the so called “generalized estimating equations” (GEE)
approach. Briefly, GEE applied to panel data is essentially weighted multivariate nonlinear
least squares (WMNLS) with explicit recognition that the weighting matrix might not be the
inverse of the conditional variance matrix. In most nonlinear panel data models, obtaining the
actual matrix Varyi|xi is difficult, if not impossible, because integrating out the heterogeneity

does not deliver a closed form. The GEE approach uses Varyit|xi implied by the specific
distribution – in the probit case, we have the correct conditional variances,

Varyit|xi  xita  a  x̄ia1 − xita  a  x̄ia ≡ vit.     (7.6)

The “working” correlation matrix oftenusually specified as “exchangeable,”

Correit,eis|xi “  ”,     (7.7)

where eit  yit − xita  a  x̄iavit
1/2 is the standardized error. Or, each pair t, s is

allowed to have its own correlation but which is assumed to be independent of x i

(“unstructured”). The conditional correlation Correit,eis|xi is not constant, but that is the
working assumption. The hope is to improve efficiency over the pooled probit estimator while
maintaining the robustness of the pooled estimator. (The full RE probit estimator is not robust
to serial dependence.) A robust sandwich matrix is easily computed provided the conditional
mean function (in this case, response probability) is correctly specified.

Because the Bernoulli log-likelihood is in the linear exponential family (LEF), exactly the
same methods can be applied if 0 ≤ yit ≤ 1 – that is, yit is a “fractional” response – but where
the model is for the conditional mean: Eyit|xit,ci  xit  ci. Pooled “probit” or minimum
distance estimation or GEE can be used. Now, however, we must make inference robust to
Varyit|xit, x̄i not having the probit form. (There are cases where Varyit|xit, x̄i is proportional
to (7.6), and so it still makes sense to use the probit quasi-log-likelihood. Pooled nonlinear
regression is another possibility or weighted multivariate nonlinear regression are also possible
and a special case of GEE.)

12
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A more radical suggestion, but in the spirit of Altonji and Matzkin (2005) and Wooldridge
(2005a), is to just use a flexible model for Eyit|xit, x̄idirectly. For example, if yit is binary, or
a fractional response, 0 ≤ yit ≤ 1, we might just specify a flexible parametric model, such as

Eyit|xit, x̄i   t  xit  x̄i  x̄i ⊗ x̄i  xit ⊗ x̄i,     (7.8)

or the “heteroskedastic probit” model

Eyit|xit, x̄i  t  xit  x̄iexp−x̄i.     (7.9)

If we write either of these functions as rtxt, x̄ then the average structural function is estimated

as ASFtxt ≡ N−1∑ i1
N r̂txt, x̄i, where the “^” indicates that we have substituted in the

parameter estimates. We can let all parameters depend on t, or we can estimate the parameters
separately for each t and then use minimum distance estimation to impose the parameter
restrictions. The justification for using, say, (7.8) is that we are interested in the average partial
effects, and how parameters appear is really not the issue. Even though (7.8) cannot be derived
from Eyit|xit,ci  xit  ci or any other standard model, there is nothing sacred about this
formulation. In fact, it is fairly simplistic. We can view (7.8) as the approximation to the true
Eyit|xit, x̄i obtained after integrating ci out of the unknown function mxt,ci. (We could
formalize this process by using series estimation, as in Newey (1988), where the number of
terms is allowed to grow with N.) This is the same argument used by, say, Angrist (2001) in
justifying linear models for limited dependent variables when the focus on primarily on
average effects.

The argument is essentially unchanged if we replace x̄i with other statistics wi. For
example, we might run, for each i, the regression xit on 1, t, t  1, . . . ,T and use the intercept
and slope (on the time trend) as the elements of wi. Or, we can use sample variances and
covariances for each i, along with the sample mean. Or, we can use initial values and average
growth rates. The key condition is Dc i|xi  Dc i|wi, and then we need sufficient variation
in xit : t  1, . . . ,T not explained by wi for identification. (Naturally, as we expand wi, the
number of time periods required generally increases.)

Of course, once we just view (7.8) as an approximation, we can are justified in using the
logistic function, say

Eyit|xit, x̄i  t  xit  x̄i  x̄i ⊗ x̄i  xit ⊗ x̄i,     (7.10)

where z  expz/1  expz, which, again, can be applied to binary or fractional
responses. The focus on partial effects that average out the heterogeneity can be liberating in
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that it means the step of specifying Eyit|xit,c i is largely superfluous, and, in fact, can get in
the way of pursuing a suitably flexible analysis. On the other hand, if we start with, say, a
“structural” model such as Pyi1  1|xi,c i  ai  xitbi, which is a heterogeneous index
model, then we cannot derive equations such as (7.8) or (7.9), even under the strong
assumption that c i is independent of xi and multivariate normal. If we imposed the
Chamberlain device for the elements of c i we can get expressions “close” to a combination of
(7.8) and (7.9). Whether one is willing to simply estimate relative simple models such as (7.8)
in order to estimate APEs depends on one’s taste for bypassing more traditional formulations.

If we start with the logit formulation

Pyit  1|xit,ci  xit  ci,     (7.11)

then we can estimate the parameters,  without restricting Dci|xi in any way, but we must
add the conditional independence assumption. (No one has been able to show that, unlike in
the linear model, or the Poisson model covered below, that the MLE that conditions on the

number of successes ni  ∑ t1
T yit is robust to serial dependence. It appears not to be. Plus, the

binary nature of yit appears to be critical, so the conditional MLE cannot be applied to
fractional responses even under serial independence.) Because we have not restricted Dci|xi

in any way, it appears that we cannot estimate average partial effects. As commonly happens in
nonlinear models, if we relax assumptions about the distribution of heterogeneity, we lose the
ability to estimate partial effects. We can estimate the effects of the covariates on the log-odds
ratio, and relative partial effects of continuous variables. But for partial effects themselves, we
do not have sensible values to plug in for c, and we cannot average across its distribution.

The following table summarizes the features of various approaches to estimating binary
response unobserved effects models.
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Model, Estimation Method Pyit 1|xit,ci Restricts Dci |xi? Idiosyncratic Serial PEs APEs?

Bounded in (0,1)? Dependence? at Eci?

RE Probit, MLE Yes Yes (indep, normal) No Yes Yes

RE Probit, Pooled MLE Yes Yes (indep, normal) Yes No Yes

RE Probit, GEE Yes Yes (indep, normal) Yes No Yes

CRE Probit, MLE Yes Yes (lin. mean, normal) No Yes Yes

CRE Probit, Pooled MLE Yes Yes (lin. mean, normal) Yes No Yes

CRE Probit, GEE Yes Yes (lin. mean, normal) Yes No Yes

LPM, Within No No Yes Yes Yes

FE Logit, MLE Yes No No No No

As an example, we apply several of the methods to women’s labor force participation data,
used by Chay and Hyslop (2001), where the data are for five time periods spaced four months
apart. The results are summarized in the following table. The standard errors for the APEs
were obtained with 500 bootstrap replications. The time-varying explanatory variables are log
of husband’s income and number of children, along with a full set of time period dummies.
(The time-constant variables race, education, and age are also included in columns (2), (3), and
(4).)
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(1) (2) (3) (4) (5)

Model Linear Probit CRE Probit CRE Probit FE Logit

Estimation Method Fixed Effects Pooled MLE Pooled MLE MLE MLE

Coefficient Coefficient APE Coefficient APE Coefficient APE Coefficient

kids −. 0389 −. 199 −. 0660 −. 117 −. 0389 −. 317 −. 0403 −. 644

. 0092 . 015 . 0048 . 027 . 0085 . 062 . 0104 . 125

lhinc −. 0089 −. 211 −. 0701 −. 029 −. 0095 −. 078 −. 0099 −. 184

. 0046 . 024 . 0079 (. 014 . 0048 . 041 . 0055 . 083

kids — — — −. 086 — −. 210 — —

— — — . 031 — . 071 — —

lhinc — — — −. 250 — −. 646 — —

— — — . 035 — . 079 — —

1  ̂a
2−1/2 — — — . 387 —

Log Likelihood — −16, 556. 67 −16, 516. 44 −8, 990. 09 −2, 003. 42

Number of Women 5,663 5,663 5,663 5,663 1,055

Generally, CMLE approaches are fragile to changes in the specification. For example, a
natural extension is

Pyit  1|xit,c i  ai  xitbi,     (7.12)

where bi is a vector of heterogeneous slopes with  ≡ Ebi; let  ≡ Eai. This extension of
the standard unobserved effects logit model raises several issues. First, what do we want to
estimate? Perhaps the partial effects at the mean values of the heterogeneity. But the APEs, or
local average effects, are probably of more interest.

Nothing seems to be known about what the logit CMLE would estimate if applied to
(7.12), where we assume   bi. On the other hand, if, say, Dc i|xi  Dc i|x̄i, a flexible

binary response model with covariates xit, x̄i (and allowing sufficiently for changes over
time) identifies the APEs – without the conditional serial independence assumption. The same
is true of the extension to time-varying factor loads, Pyit  1|xit,c i  t  xit   tci.

There are methods that allow estimation, up to scale, of the coefficients without even
specifying the distribution of uit in

yit  1xit  ci  uit ≥ 0.     (7.13)

under strict exogeneity.conditional on ci. Arellano and Honoré (2001) survey methods,
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including variations on Manski’s maximum score estimator.
Estimation of parameters and APEs is much more difficult even in simple dynamic models.

Consider

Pyit  1|zi,yi,t−1, . . . ,yi0,ci  Pyit  1|zit,yi,t−1,ci, t  1, . . . ,T,

which combines correct dynamic specification with strict exogeneity of zit. For a dynamic
probit model

Pyit  1|zit,yi,t−1,ci  zit  yi,t−1  ci.     (7.14)

Treating the ci as parameters to estimate causes inconsistency in  and  (although there is
recent work by Woutersen and Fernández-Val that shows how to make the asymptotic bias of
order 1/T2; see the next section). A simple analysis is available if we specify

ci|zi,yi0  Normal  0yi0  zi,a
2     (7.15)

Then

Pyit  1|zi,yi,t−1, . . . ,yi0,ai  zit  yi,t−1    0yi0  zi  ai,     (7.16)

where ai ≡ ci −  − 0yi0 − zi. Because ai is independent of yi0,zi, it turns out we can use
standard random effects probit software, with explanatory variables 1,zit,yi,t−1,yi0,zi in time
period t. Easily get the average partial effects, too:

ASFzt,yt−1  N−1∑
i1

N

zt̂a  ̂ayt−1  ̂a  ̂a0yi0  zîa,     (7.17)

and take differences or derivatives with respect to elements of zt,yt−1. As before, the
coefficients are multiplied by 1  ̂a

2−1/2. Of course, both the structural model and model for
Dci|yi0,zi can be made more flexible (such as including interactions, or letting Varci|zi,yi0

be heteroskedastic).
We apply this method to the Chay and Hyslop data and estimate a model for

Plfpit  1|kidsit, lhincit, lfpi,t−1,ci, where one lag of labor force participation is assumed to
suffice for the dynamics and kidsit, lhincit : t  1, . . . ,T is assumed to be strictly
exogenous conditional on ci. Also, we include the time-constant variables educ, black, age,
and age2 and a full set of time-period dummies. (We start with five periods and lose one with
the lag. Therefore, we estimate the model using four years of data.) We include among the
regressors the initial value, lfpi0, kidsi1 through kidsi4, and lhinci1 through lhinci4. Estimating
the model by RE probit gives ̂  1.541 se  . 067, and so, even after controlling for
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unobserved heterogeneity, there is strong evidence of state dependence. But to obtain the size
of the effect, we compute the APE for lfpt−1. The calculation involves averaging

zit̂a  ̂a  ̂a0yi0  zîa − zit̂a  ̂a0yi0  zîa across all t and i; we must be sure to

scale the original coefficients by 1  ̂a
2−1/2, where, in this application, ̂a

2  1.103. The APE
estimated from this method is about .259. In other words, averaged across all women and all
time periods, the probability of being in the labor force at time t is about .26 higher if the
women was in the labor force at time t − 1 than if she was not. This estimate controls for
unobserved heterogeneity, number of young children, husband’s income, and the woman’s
education, race, and age.

It is instructive to compare the APE with the estimate of a dynamic probit model that
ignores ci. In this case, we just use pooled probit of lfpit on
1,kidsit, lhincit, lfpi,t−1educi,blacki,agei, and agei

2 and include a full set of period dummies.
The coefficient on lfpi,t−1 is 2.876 (se  . 027, which is much higher than in the dynamic RE
probit model. More importantly, the APE for state dependence is about .837, which is much
higher than when heterogeneity is controlled for. Therefore, in this example, much of the
persistence in labor force participation of married women is accounted for by the unobserved
heterogeneity. There is still some state dependence, but its value is much smaller than a simple
dynamic probit indicates.

Arellano and Carrasco (2003) use a different approach to estimate the parameters and
APEs in dynamic binary response models with only sequentially exogenous variables. Thus,
their method applies to models with lagged dependent variables, but also other models where
there made be feedback from past shocks to future covariates. (Their assumptions essentially
impose serial conditional serial independence.) Rather than impose an assumption such as
(7.15), they use a different approximation. Let vit  ci  uit be the composed error in
yit  1xit  ci  uit ≥ 0. Then, in the context of a probit model, they assume

vit|wit ~NormalEci|wit, t
2     (7.18)

where wit  xit,yi,t−1,xi,t−1, . . . ,yi1xi1. The mean Eci|wit is unrestricted (although, of course,
they are linked across time by interacted expectations because wit ⊂ wi,t1, but the shape of
the distribution is assumed to be the same across t. Arellano and Carrasco discuss identification
and estimation, and extensions to models with time-varying factor loads.

Honoré and Kyriazidou (2000) extend an idea of Chamberlain’s and show how to estimate
 and  in a logit model without distributional assumptions for ci. They find conditional
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probabilities that do not depend on ci but still depend on  and . However, in the case with
four time periods, t  0,1,2, and 3, the conditioning that removes ci requires zi2  zi3. HK
show how to use a local version of this condition to consistenty estimate the parameters. The
estimator is also asymptotically normal, but converges more slowly than the usual N -rate.

The condition that zi2 − zi3 have a distribution with support around zero rules out aggregate
year dummies or even linear time trends. Plus, using only observations with zi2 − zi3 in a
neighborhood of zero results in much lost data. Finally, estimates of partial effects or average
partial effects are not available.

While semiparametric approaches can be valuable to comparing parameter estimates with
more parametric approaches, such comparisons have limitations. For example, the coefficients
on yt−1 in the dynamic logit model and the dynamic probit model are comparable only in sign;
we cannot take the derivative with respect to yt−1 because it is discrete. Because we do not
know where the evaluate the partial effects – that is, the values of c to plug in, or average out
across the distribution of ci, we cannot compare the magnitudes with CRC approaches. We can
compare the relative effects on the continuous elements in zt based on partial derivatives. But
even here, if we find a difference between semiparametric and parametric methods, is it
because aggregate time effects were excluded in the semiparametric estimation or because the
model of Dci|yi0,zi was misspecified? Currently, we have no good ways of deciding.
(Recently, Li and Zheng (2006) use Bayesian methods to estimate a dynamic Tobit model with
unobserved heterogeneity, where they distribution of unosberved heterogeneity is an infinite
mixture of normals. They find that all of the average partial effects are very similar to those
obtained from the much simpler specification in (7.15).)

Honoré and Lewbel (2002) show how to estimate  in the model

yit  1vit  xit  ci  uit ≥ 0     (7.19)

without distributional assumptions on ci  uit. The special continuous explanatory variable vit,
which need not be time varying, is assumed to appear in the equation (and its coefficient is
normalized to one). More importantly, vit is assumed to satisfy
Dci  uit|vit,xit, zi  Dci  uit|xit, zi, which is a conditional independence assumption. The
vector zi is assumed to be independent of uit in all time periods. (So, if two time periods are
used, zi could be functions of variables determined prior to the earliest time period.) The most
likely scenario is when vit is randomized and therefore independent of xit, zi,eit, where
eit  ci  uit. It seems unlikely to hold if vit is related to past outcomes on yit. The estimator
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derived by Honoré and Lewbel is N -asymptotically normal, and fairly easy to compute; it
requires estimation of the density of vit given xit, ziand then a simple IV estimation.

Honoré and Tamer (2006) have recently shown how to obtain bounds on parameters and
APEs in dynamic models, including the dynamic probit model; these are covered in the notes
on partial identification.

7.2 Count and Other Multiplicative Models

Several options are available for models with conditional means multiplicative in the
heterogeneity. The most common is

Eyit|xit,ci  ci expxit     (7.20)

where ci ≥ 0 is the unobserved effect and xit would incude a full set of year dummies in most
cases. First consider estimation under strict exogeneity (conditional on ci):

Eyit|xi1, . . . ,xiT,ci  Eyit|xit,ci.     (7.21)

If we add independence between ci and xi – a random effects approach – then, using Eci  1
as a normalization,

Eyit|xi  expxit,     (7.22)

and various estimation methods can be used to account for the serial dependence in yit if
only xi is conditioned on. (Serial correlation is certainly present because of ci, but it could be
present due to idiosyncratic shocks, too.) Regardless of the actual distribution of yit, or even its
nature – other than yit ≥ 0 – the pooled Poisson quasi-MLE is consistent for  under (7.22) but
likely very inefficient; robust inference is straightforward with small T and large N.

Random effects Poisson requires that Dyit|xi,ci has a Poisson distribution with mean
(7.20), and maintains the conditional independence assumption,

Dyi1, . . . ,yiT|xi,ci 
t1

T

Dyit|xit,ci,

along with a specific distribution for ci – usually a Gamma distribution with unit mean.
Unfortunately, like RE probit, the full MLE has no known robustness properties. The Poisson
distribution needs to hold along with the other assumptions. A generalized estimating approach
is available, too. If the Poisson quasi-likelihood is used, the GEE estimator is fully robust
provided the mean is correctly specified. One can use an exchangeable, or at least constant,
working correlation matrix. See Wooldridge (2002, Chapter 19).

A CRE model can be allowed by writing ci  exp  x̄iai where ai is independent of xi
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with unit mean. Then

Eyit|xi  exp  xit  x̄i     (7.23)

and now the same methods described above can be applied but with x̄i added as regressors.
This approach identifies average partial effects. In fact, we could use Altonji and Matzkin
(2005) and specify Eci|xi  hx̄i (say), and then estimate the semiparametric model
Eyit|xi  hx̄iexpxit. Other features of the series xit : t  1, . . . ,T, such as
individual-specific trends or sample variances, can be added to h.

An important estimator that can be used under just

Eyit|xi,ci  ci expxit     (7.24)

is the conditional MLE derived under a Poisson distributional assumption and the conditional

independence assumption. It is often called the fixed effects Poisson estimator, and, in fact, ̂
turns out to be identical to using pooled Poisson QMLE and treating the ci as parameters to
estimate. (A rare case, like the linear model, where this does not result in an incidental
parameters problem.). It is easy to obtain fully robust inference, too (although it is not
currently part of standard software, such as Stata). The fact that the quasi-likelihood is derived
for a particular, discrete distribution appears to make people queasy about using it, but it is
analogous to using the normal log-likelihood in the linear model: the resulting estimator, the
usual FE estimator, is fully robust to nonnormality, heteroskedasticity, and serial correlation.

Estimation of models under sequential exogeneity has been studied by Chamberlain (1992)
and Wooldridge (1997). In particular, they obtain moment conditions for models such as

Eyit|xit, . . . ,xi1,ci  ci expxit.     (7.25)

Under this assumption, it can be shown that

Eyit − yi,t1 expxit − xi,t1|xit, . . . ,xi1  0,     (7.26)

and, because these moment conditions depend only on observed data and the parameter vector
, GMM can be used to estimate , and fully robust inference is straightforward.

The moment conditions in (7.26) involve the differences xit − xi,t1, and we saw for the
linear model that, if elements of xit − xi,t1 are persistent, IV and GMM estimators can be badly
biased and imprecise. If we make more assumptions, models with lagged dependent variables
and other regressors that are strictly exogenous can be handled using the conditional MLE
approach in Section 6. Wooldridge (2005b) shows how a dynamic Poisson model with
conditional Gamma heterogeneity can be easily estimated.
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8. Estimating the Fixed Effects
It is well known that, except in special cases (linear and Poisson), treating the ci as

parameters to estimate leads to inconsistent estimates of the common parameters . But two
questions arise. First, are there ways to adjust the “fixed effects” estimate of  to at least
partially remove the bias? Second, could it be that estimates of the average partial effects,
based generally on

N−1∑
i1

N
∂mtxt, ̂,ĉ i

∂xtj
,     (8.1)

where mtxt,,c  Eyt|xt,c, are better behaved than the parameter estimates, and can their
bias be removed? In the unobserved effects probit model, (8.1) becomes

N−1∑
i1

N

̂jxt̂  ĉ i,     (8.2)

which is easy to compute once ̂ and the ĉ i (N of them) have been obtained.
Hahn and Newey (2004) propose both jackknife and analytical bias corrections and show

that they work well for the probit case. Generally, the jackknife procedure to remove the bias
in ̂ is simple but can be computationally intensive. The idea is this. The estimator based on T
time periods has probability limit that can be written as

T    b1/T  b2/T2  OT−3     (8.3)

for vectors b1 and b2. Now, let ̂t denote the estimator that drops time period t. Then,

assuming stability across t, the plim of ̂t is

t    b1/T − 1  b2/T − 12  OT−3.     (8.4)

It follows that

N→
plim T̂ − T − 1̂t  T  b1  b2/T − T − 1  b1  b2/T − 1  OT−3

  − b2/TT − 1  OT−3    OT−2.     (8.5)

If, for given heterogeneity ci, the data are independent and identically distributed, then (8.5)
holds for all leave-one-time-period-out estimators, so we use the average of all such estimators
in computing the panel jackknife estimator:

̃  T̂ − T − 1T−1∑
t1

T

̂t.     (8.6)
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From the argument above, theasymptotic bias of ̃ is on the order of T−2.
Unfortunately, there are some practical limitations to the jackknife procedure, as well as to

the analytical corrections derived by Hahn and Newey. First, aggregate time effects are not
allowed, and they would be very difficult to include because the analysis is with T → . (In
other words, they would introduce an incidental parameters problem in the time dimension as
well as cross section dimension.) Generally, heterogeneity in the distributions across t changes
the bias terms b1 and b2 when a time period is dropped, and so the simple transformation in
(8.5) does not remove the bias terms. Second, Hahn and Newey assume independence across t
conditional on ci. It is a traditional assumption, but in static models it is often violated, and it
must be violated in dynamic models. Plus, as noted by Hahn and Keursteiner, applying the
“leave-one-out” method to dynamic models is problematical because the b1 and b2 in (8.4)
would depend on t so, again, the transformation in (8.5) will not eliminate the b1 term.

Recently, Dhaene, Jochmans, and Thuysbaert (2006) propose a modification of the
Hahn-Newey procedure that appears promising for dynamic models. In the simplest case, in
addition to the “fixed effects” estimator using all time periods, they obtain estimators for two
subperiods: one uses the earlier time periods, one uses later time periods, and they have some
overlap (which is small as T gets large). Unfortunately, the procedure still requires stationarity
and rules out aggregate time effects.

For the probit model, Fernández-Val (2007) studies the properties of estimators and
average partial effects and allows time series dependence in the strictly exogenous regressors.
Interestingly, in the probit model with exogenous regressors under the conditional
independence assumption, the estimates of the APEs based on the “fixed” effects estimator has
bias of order T−2 in the case that there is no heterogeneity. Unfortunately, these findings do not
carry over to models with lagged dependent variables, and the bias corrections in that case are
difficult to implement (and still do not allow for time heterogeneity).

The correlated random effects estimators restrict Dci|xi in some way, although the recent
work by Altonji and Matzkin (2005) shows how those restrictions can be made reasonable. The
approach generally identifies the APEs, and even the local average effects, and does not rule
out aggregate time effects or arbitrary conditional serial dependence.
References

(To be added.)
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What’s New in Econometrics NBER, Summer 2007

Lecture 5, Monday, July 30th, 4.30-5.30pm

Instrumental Variables with Treatment Effect Heterogeneity:

Local Average Treatment Effects

1. Introduction

Here we investigate the interpretation of instrumental variables estimators allowing for

general heterogeneity in the effect of the endogenous regressor. We shall see that instrumental

variables estimators generally estimate average treatment effects, with the specific average

depending on the choice of instruments. Initially we focus on the case where the endogenous

regressor is binary. The example we will use is based on work by Joshua Angrist on estimating

the effect of veteran status on earnings (Angrist, 1990). We also discuss the case where the

endogenous variable takes on multiple values.

The general theme of this lecture is that with heterogenous treatment effects, endogeneity

creates severe problems for identification of population averages. Population average causal

effects are only estimable under very strong assumptions on the effect of the instrument

on the endogenous regressor (“identification at infinity”, or under the constant treatment

effect assumptions). Without such assumptions we can only identify average effects for

subpopulations that are induced by the instrument to change the value of the endogenous

regressors. We refer to such subpopulations as compliers, and to the average treatment effect

that is point identifed as the local average treatment effect. This terminology stems from

the canonical example of a randomized experiment with noncompliance. In this example

a random subpopulation is assigned to the treatment, but some of the individuals do not

comply with their assigned treatment.

These complier subpopulations are not necessarily the subpopulations that are ex ante

the most interesting subpopulations, but the data is in general not informative about av-

erage effects for other subpopulations without extrapolation, similar to the way in which

a randomized experiment conducted on men is not informative about average effects for
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women without extrapolation. The set up here allows the researcher to sharply separate the

extrapolation to the (sub-)population of interest from exploration of the information in the

data. The latter relies primarily on relatively interpretable, and substantively meaningful

assumptions and avoids functional form or distributional assumptions. Given estimates for

the compliers, one can then use the data to assess the plausibility of extrapolating the local

average treatment effect to other subpopulations, using the information on outcomes given

one of the two treatment levels and covariates.

With multiple instruments and or with covariates one can assess the evidence for hetero-

geneity, and the plausibility of extrapolation to the full population more extensively.

2. Linear Instrumental Variables with Constant Coefficients

First let us briefly review standard linear instrumental variables methods. In the example

we are interested in the causal effect of military service on earnings. Let Yi be the outcome

of interest for unit i, Wi the endogenous regressor, and Zi the instrument. The standard set

up is as follows. A linear model is postulated for the relation between the outcome and the

endogenous regressor:

Yi = β0 + β1 ·Wi + εi.

This is a structural/behavioral/causal relationshiup. There is concern that the regressor Wi

is endogenous, that is, that Wi is correlated with εi. Suppose that we are confident that a

second variable, the instrument Zi is both uncorrelated with the unobserved component εi

and correlated with the endogenous regressor Wi. The solution is to use Zi as an instrument

for Wi. There are a couple of ways to implement this.

In Two-Stage-Least-Squares we first estimate a linear regression of the endogenous re-

gressor on the instrument by least squares. Let the estimated regression function be

Ŵi = π̂0 + π̂1 · Zi.

Then we regress the outcome on the predicted value of the endogenousr regressor, using least
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squares:

Yi = β̂0 + β̂1 · Ŵi.

Alternatively, with a single instrument we can estimate the two reduced form regressions

Yi = γ0 + γ1 · Zi + ηi, and Wi = π0 + π1 · Zi + νi,

by least squares and estimate β1 through Indirect Least Squares (ILS) as the ratio

β̂IV
1 = γ̂1/π̂1.

If there is a single instrument and single endogenous regressor, we end up in both cases

with the ratio of the sample covariance of Y and Z to the sample covariance of W and Z.

β̂IV
1 =

1
N

∑N

i=1(Yi − Ȳ ) · (Zi − Z̄)
1
N

∑N

i=1(Wi − W̄ ) · (Zi − Z̄)
.

Using a central limit theorem for all the moments and the delta method we can infer the

large sample distribution without additional assumptions.

3. Potential Outcomes

First we set up the problem in a slightly different way, using potential outcomes. Let

Yi(0) and Yi(1) be two potential outcomes for unit i, one for each value of the endogenous

regressor or treatment. The first potential outcome Yi(0) gives the outcome if person i were

not to serve in the military, irrespective of whether this person served or not. The second

gives the potential outcome given military service, again irrespective of whether the person

served or not. We are interested in the causal effect of military service, Yi(1) − Yi(0). We

cannot directly observe this since we can only observe either Yi(0) or Yi(1), but not both.

Let Wi be the realized value of the endogenous regressor, equal to zero or one. We observe

Wi and

Yi = Yi(Wi) =

{

Yi(1) if Wi = 1
Yi(0) if Wi = 0.



Imbens/Wooldridge, Lecture Notes 5, Summer ’07 4

Now we introduce the instrumental variable set up by defining similar potential outcomes for

the treatment. We focus on the case with a binary instrument Zi. In the Angrist example, Zi

is a binary indicator for having a low draft number, and thus for being draft eligible. Define

two potential outcomes Wi(0) and Wi(1), representing the value of the endogenous regressor

given the two values for the instrument. The actual or realized value of the endogenous

variable is

Wi = Yi(Zi) =

{

Wi(1) if Zi = 1
Wi(0) if Zi = 0.

So we observe the triple Zi, Wi = Wi(Zi) and Yi = Yi(Wi(Zi)).

4. Local Average Treatment Effects

4.1. Assumptions

The key instrumental variables assumption is

Assumption 1 (Independence)

Zi ⊥⊥ (Yi(0), Yi(1), Wi(0), Wi(1)).

It requires that the instrument is as good as randomly assigned, and that it does not di-

rectly affect the outcome. The assumption is formulated in a nonparametric way, without

definitions of residuals that are tied to functional forms.

It is important to note that this assumption is not implied by random assignment of Zi.

To see this, an alternative formulation of the assumption, generalizing the notation slightly,

is useful. First we postulate the existence of four potential outcomes, Yi(z, w), corresponding

to the outcome that would be observed if the instrument was Zi = z and the treatment was

Wi = w. Then the independence assumption is the combination of two assumptions,

Assumption 2 (Random Assignment)

Zi ⊥⊥ (Yi(0, 0), Yi(0, 1), Yi(1, 0), Yi(1, 1), Wi(0), Wi(1)).
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and

Assumption 3 (Exclusion Restriction)

Yi(z, w) = Yi(z
′, w), for all z, z′, w.

The first of these two assumptions is implied by random assignment of Zi, but the second is

substantive, and randomization has no bearing on it.

It is useful for our approach to think about the compliance behavior of the different units,

that is how they respond to different values of the instrument in terms of the treatment

received. Table 1 gives the four possible pairs of values (Wi(0), Wi(1)), given the binary

nature of the treatment and instrument: We cannot directly establish the type of a unit based

Table 1: Compliance Types

Wi(0)
0 1

0 never-taker defier
Wi(1)

1 complier always-taker

on what we observe for them since we only see the pair (Zi, Wi), not the pair (Wi(0), Wi(1)).

Nevertheless, we can rule out some possibilities. Table 2 summarizes the information about

compliance behavior from observed treatment status and instrument.

To make additional progress we we consider a monotonicity assumption, also known as

the no-defiers assumption:

Assumption 4 (Monotonicity/No-Defiers)

Wi(1) ≥ Wi(0).
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Table 2: Compliance Type by Treatment and Instrument

Zi

0 1

0 complier/never-taker never-taker/defier
Wi

1 always-taker/defier complier/always-taker

This assumption makes sense in a lot of applications. It is implied directly by many (constant

coefficient) latent index models of the type:

Wi(z) = 1{π0 + π1 · z + εi > 0},

but it is much weaker than that. For example, one can allow for π1 to vary across the

population, as long as it is the same sign for all units. In the canonical non-compliance

example this assumption is very plausible: if Zi is assignment to a treatment, and Wi is an

indicator for receipt of treatment, it makes sense that there are few, if any, individuals who

always to the exact opposite of what their assignment is.

4.2. The Local Average Treatment Effect

Given this monotonicity assumption the information we can extract from observed com-

pliance behavior increases.

Table 3: Compliance Type by Treatment and Instrument given Monotonicity

Zi

0 1

0 complier/never-taker never-taker
Wi

1 always-taker complier/always-taker
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Let πc, πn, and πa be the population proportions of compliers, never-takers and always-

takers respectively. We can estimate those from the population distribution of treatment

and instrument status:

E[Wi|Zi = 0] = πa, E[Wi|Zi = 1] = πa + πc,

which we can invert to infer the population shares of the different types:

πa = E[Wi|Zi = 0], πc = E[Wi|Zi = 1] − E[Wi|Zi = 0],

and

πn = 1 − E[Wi|Zi = 1].

Now consider average outcomes by instrument and treatment status:

E[Yi|Wi = 0, Zi = 0] =
πc

πc + πn

· E[Yi(0)|complier] +
πn

πc + πn

· E[Yi(0)|never− taker],

E[Yi|Wi = 0, Zi = 1] = E[Yi(0)|never− taker],

E[Yi|Wi = 1, Zi = 0] = E[Yi(1)|always − taker],

and

E[Yi|Wi = 1, Zi = 1] =
πc

πc + πa

· E[Yi(1)|complier] +
πa

πc + πa

· E[Yi(1)|always − taker].

From these relationships we can infer the average outcome by treatment status for compliers,

E[Yi(0)|complier], and E[Yi(1)|complier],

and thus the average effect for compliers:

E[Y (1) − Yi(0)|complier] = E[Yi(1)|complier] − E[Yi(0)|complier].
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We can also get there another way. Consider the least squares regression of Y on a constant

and Z. The slope coefficient in that regression estimates

E[Yi|Zi = 1] − E[Yi|Zi = 0].

Consider the first term:

E[Yi|Zi = 1] = E[Yi|Zi = 1, complier] · Pr(complier|Zi = 1)

+E[Yi|Zi = 1, never− taker] · Pr(never− taker|Zi = 1)

+E[Yi|Zi = 1, always − taker] · Pr(always − taker|Zi = 1)

= E[Yi(1)|complier] · πc

+E[Yi(0)|never− taker] · π0 + E[Yi(1)|always − taker] · πa.

Similarly

E[Yi|Zi = 0] = E[Yi|Zi = 0, complier] · Pr(complier|Zi = 0)

+E[Yi|Zi = 0, never− taker] · Pr(never− taker|Zi = 0)

+E[Yi|Zi = 0, always − taker] · Pr(always − taker|Zi = 0)

= E[Yi(0)|complier] · πc

+E[Yi(0)|never− taker] · π0 + E[Yi(1)|always − taker] · πa.

Hence the difference is

E[Yi|Zi = 1] − E[Yi|Zi = 0] = E[Yi(1) − Yi(0)|complier] · πc.
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The same argument can be used to show that the slope coefficient in the regression of W on

Z is

E[Wi|Zi = 1] − E[Wi|Zi = 0] = πc.

Hence the instrumental variables estimand, the ratio of these two reduced form estimands,

is equal to the local average treatment effect

βIV =
E[Yi|Zi = 1] − E[Yi|Zi = 0]

E[Wi|Zi = 1] − E[Wi|Zi = 0]
= E[Yi(1) − Yi(0)|complier].

The key insight is that the data are informative solely about the average effect for compli-

ers only. Put differently, the data are not informative about the average effect for nevertakers

because they are never seen receiving the treatment, and they are not informative about the

average effect for alwaystakers because they are never seen without the treatment. A similar

insight in a parametric setting is discussed in Björklund and Moffitt (1987).

A special case of considerable interest is that with one-side non-compliance. Suppose

that Wi(0) = 0, so that those assigned to the control group cannot receive the active treat-

ment (but those assigned to the active treatment can decline to take it). In that case only

two compliance types remain, compliers and always-takers. Monotonicity is automatically

satisfied. The average effect for compliers is now equal to the average effect for the treated,

since any one receiving the treatment is by definition a complier. This case was first studied

in Bloom (1984).

4.3 Extrapolating to the Full Population

Although we cannot consistently estimate the average effect of the treatment for always-

takers and never-takers, we do have some information about the outcomes for these subpop-

ulations given one of the two treatment arms. Specifically, we can estimate

E [Yi(0)|never− taker] , and E [Yi(1)|always − taker] .
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We can learn from these averages whether there is any evidence of heterogeneity in outcomes

by compliance status, by comparing the pair of average outcomes of Yi(0);

E [Yi(0)|never− taker] , and E [Yi(0)|complier] ,

and the pair of average outcomes of Yi(1):

E [Yi(1)|always − taker] , and E [Yi(1)|complier] .

If compliers, never-takers and always-takers are found to be substantially different in levels,

by evidence of substantial difference between E[Yi(0)|never− taker] and E[Yi(0)|complier],

and or/between E[Yi(1)|always − taker], and E[Yi(1)|complier], then it appears much less

plausible that the average effect for compliers is indicative of average effects for other com-

pliance types. On the other hand, if one finds that outcomes given the control treatment

for never-takers and compliers are similar, and outcomes given the treatment are similar

for compliers and always-takers, it is more plausible that average treatment effects for these

groups are also comparable.

4.4 Covariates

The local average treatment effect result implies in general that one cannot consistently

estimate average effects for subpopulations other than compliers. This still holds in cases

where we observe covariates. One can incorporate the covariates into the analysis in a number

of different ways. Traditionally the TSLS set up is used with the covariates entering in the

outcome equation linearly and additively, as

Yi = β0 + β1 ·Wi + β ′
2Xi + εi,

with the covariates added to the set of instruments. Given the potential outcome set up

with general heterogeneity in the effects of the treatment, one may also wish to allow for

more heterogeneity in the correlations with the covariates. Here we describe a general way

of doing so. Unlike TSLS type approaches, this involves modelling both the dependence of
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the outcome and the treatment on the covariates. Although there is often a reluctance to

model the relation between the treatment, there appears no particular reason that economic

theory is more informative about the relation between covariates and outcomes than about

the relation between covariates and the choices that lead to the treatment.

A full model can be decomposed into two parts, a model for the compliance type given

covariates, and a model for the potential outcomes given covariates for each compliance type.

A traditional parametric model with a dummy endogenous variables might have the form

(translated to the potential outcome set up used here):

Wi(z) = 1{π0 + π1 · z + π′
2Xi + ηi ≥ 0},

Yi(w) = β0 + β1 · w + β ′
2Xi + εi,

with (ηi, εi) jointly normally distributed (e.g., Heckman, 1978). Such a model can be viewed

as imposing various restrictions on the relation between compliance types, covariates and

outcomes. For example, in this model, if π1 > 0, compliance type depends on ηi:

unit i is a







never− taker if ηi < −π0 − π1 − π′
2Xi

complier if − π0 − π1 − π′
2Xi ≤ ηi < −π0 − π1 − π′

2Xi

always − taker if − π0 − π′
2Xi ≤ ηi,

which imposes strong restrictions on the relationship between type and outcomes.

An alternative approach is to model the potential outcome Yi(w) for units with compli-

ance type t given covariates Xi through a common functional form with type and treatment

specific parameters:

fY (w)|X,T (y(w)|x, t) = f(y|x; θwt),

for (w, t) = (0, n), (0, c), (1, c), (1, a). A natural model for the distribution of type is a

trinomial logit model:

Pr(Ti = complier|Xi) =
1

1 + exp(π′
nXi) + exp(π′

aXi)
,
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Pr(Ti = never− taker|Xi) =
exp(π′

nXi)

1 + exp(π′
nXi) + exp(π′

aXi)
,

and

Pr(Ti = always − taker|Xi) = 1 − Pr(Ti = complier|Xi) − Pr(Ti = never− taker|Xi).

The log likelihood function is then, factored in terms of the contribution by observed Wi, Zi)

values:

L(πn, πa, θ0n, θ0c, θ1c, θ1a) =

×
∏

i|Wi=0,Zi=1

exp(π′
nXi)

1 + exp(π′
nXi) + exp(π′

aXi)
· f(Yi|Xi; θ0n)

×
∏

i|Wi=0,Zi=0

(

exp(π′
nXi)

1 + exp(π′
nXi)

· f(Yi|Xi; θ0n) +
1

1 + exp(π′
nXi)

· f(Yi|Xi; θ0c)

)

×
∏

i|Wi=1,Zi=1

(

exp(π′
aXi)

1 + exp(π′
aXi)

· f(Yi|Xi; θ1a) +
1

1 + exp(π′
aXi)

· f(Yi|Xi; θ1c)

)

×
∏

i|Wi=1,Zi=0

exp(π′
aXi)

1 + exp(π′
nXi) + exp(π′

aXi)
· f(Yi|Xi; θ1a).

For example, the second factor consists of the contributions of individuals with Zi = 0, Wi =

0, who are known to be either compliers or never-takers. Maximizing this is straightforward

using the EM algorithm (Dempster, Laird, and Rubin, 1977). For an empirical example of

this approach see Hirano, Imbens, Rubin and Zhou (2000), and Imbens and Rubin (1997).

In small samples one may wish to incorporate restrictions on the effects of the covariates,

and for example assume that the effect of covariates on the outcome is the same irrespective

of compliance type. An advantage of this approach is that it can easily be generalized. The

type probabilities are nonparametricaly identified as functions of the covariates, and the

similarly the outcome distributions by type as a function of the covariates.
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5. Effects of Military Service on Earnings

Angrist (1989) was interested in estimating the effect of serving in the military on earn-

ings. Angrist was concerned about the possibility that those choosing to serve in the military

are different from those who do not in ways that affects their subsequent earnings irrespective

of serving in the military. To avoid biases in simple comparisons of veterans and non-veterans,

he exploited the Vietnam era draft lottery. Specifically he uses the binary indicator whether

or not your draft lottery number made you eligible to be drafted as an instrument. This was

tied to an individual’s day of birth, so more or less random. Even so, that does not make it

valid as an instrument. As the outcome of interest Angrist uses log earnings.

The simple ols regression leads to:

̂log(earnings)i = 5.4364 − 0.0205 · ̂veterani

(0079) (0.0167)

In Table 4 we present population sizes of the four treatmen/instrument samples. For

example, with a low lottery number 5,948 individuals do not, and 1,372 individuals do serve

in the military.

Table 4: Treatment Status by Assignment

Zi

0 1

0 5,948 1,915
Wi

1 1,372 865

Using these data we get the following proportions of the various compliance types, given

in Table 5, under the non-defiers assumption. For example, the proportion of nevertakers is
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estimated as the conditional probability of Wi = 0 given Zi = 1:

Pr(nevertaker) =
1915

1915 + 865
.

Table 5: Compliance Types: Estimated Proportions

Wi(0)
0 1

0 never-taker (0.6888) defier (0)
Wi(1)

1 complier (0.1237) always-taker (0.3112)

Table 6 gives the average outcomes for the four groups, by treatment and instrument

status.

Table 6: Estimated Average Outcomes by Treatment and Instrument

Zi

0 1

0 Ê[Y ] = 5.4472 Ê[Y ] = 5.4028
Wi

1 Ê[Y ] = 5.4076, Ê[Y ] = 5.4289

Table 7 gives the estimated averages for the four compliance types, under the exclusion

restriction. This restriction is the key assumption here. There are a number of reasons why

it may be violated, e.g., never-takers taking active actions to avoid military service if draft

eligible. The local average treatment effect is -0.2336, a 23% drop in earnings as a result of

serving in the military.

Simply doing IV or TSLS would give you the same numerical results:

̂log(earnings)i = 5.4836 − 0.2336 · ̂veterani
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Table 7: Compliance Types: Estimated Average Outcomes

Wi(0)
0 1

0 never-taker: Ê[Yi(0)] = 5.4028 defier (NA)
Wi(1)

1 complier: Ê[Yi(0)] = 5.6948, Ê[Yi(1)] = 5.4612 always-taker: Ê[Yi(1)] = 5.4076

(0.0289) (0.1266)

It is interesting in this application to inspect the average outcome for different compli-

ance groups. Average log earnings for never-takers are 5.40, lower by 29% than average

earnings for compliers who do not serve in the military. This suggests that never-takers

are substantially different than compliers, and that the average effect of 23% for compliers

need not be informative never-takers. In contrast, average log earnings for always-takers are

only 6% lower than those for compliers who serve, suggesting that the differences between

always-takers and compliers are considerably smaller.

6. Multivalued Instruments

For any two values of the instrument z0 and z1 satisfying the local average treatment

effect assumptions we can define the corresponding local average treatment effect:

τz1,z0 = E[Yi(1) − Yi(0)|Wi(z1) = 1, Wi(z0) = 0].

Note that these local average treatment effects need not be the same for different pairs of

instrument values. Comparisons of estimates based on different instruments underlies tests

of overidentifying restrictions in TSLS settings. An alternative interpretation of rejections

in such testing procedures is therefore that the effects of interest vary, rather than that some

of the instruments are invalid. Without assuming homogenous effects there are no tests in
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general for the validity of the instruments.

The presence of multi-valued, or similarly, multiple, instruments, does, however, provide

an opportunity to assess variation in treatment effects, as well as an opportunity to obtain

average effects for subpopulations closer to the one of ultimate interest. Suppose that we have

an instrument Zi with support z0, z1, . . . , zK . Suppose also that the monotonicity assumption

holds for all pairs z and z′, and suppose that the instruments are ordered in such a way that

p(zk−1) ≤ p(zk), where p(z) = E[Wi|Zi = z].

Also suppose that the instrument is relevant,

E[g(Zi) · Wi] 6= 0.

Then the instrumental variables estimator based on using g(Z) as an instrument for W

estimates a weighted average of local average treatment effects:

τg(·) =
Cov(Yi, g(Zi))

Cov(Wi, g(Zi))
=

K
∑

k=1

λk · τzk,zk−1
,

where

λk =
(p(zk) − p(zk−1)) ·

∑K

l=k πl(g(zl) − E[g(Zi)]
∑K

k=1 p(zk) − p(zk−1)) ·
∑K

l=k πl(g(zl) − E[g(Zi)]
,

πk = Pr(Zi = zk).

These weights are nonnegative and sum up to one.

By choosing g(z) one can choose a different weight function, although there is obviously

a limit to what one can do. One can only estimate a weighted average of the local average

treatment effects defined for all pairs of instrument values in the support of the instrument.
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If the instrument is continuous, and p(z) is continuous in z, we can define the limit of the

local average treatment effects

τz = lim
z′↓z0,z′′↑z0

τz′,z′′ .

In this case with the monotonicity assumption hold for all pairs z and z′, we can use the

implied structure on the compliance behavior by modelling Wi(z) as a threshold crossing

process,

Wi(z) = 1{h(z) + ηi ≥ 0},

with the scalar unobserved component ηi independent of the instrument Zi. This type of

latent index model is used extensively in work by Heckman (Heckman and Robb, 1985;

Heckman,1990; Heckman and Vytlacil, 2005), as well as in Vytlacil (2000). Vytlacil shows

that if the earlier three assumptions hold for all pairs z and z′, than there is a function

h(·) such that this latent index structure is consistent with the joint distribution of the

observables. The latent index structure implies that individuals can be ranked in terms of

an unobserved component ηi such that if for two individuals i and j we have ηi > ηj, than

Wi(z) ≥ Wj(z) for all z.

Given this assumption, we can define the marginal treatment effect τ (η) as

τ (η) = E [Yi(1) − Yi(0)| ηi = η] .

This marginal treatment effect relates directly to the limit of the local average treatment

effects

τ (η) = τz, with η = −h(z)).

Note that we can only define this for values of η for which there is a z such that τ = −h(z).

Normalizing the marginal distribution of η to be uniform on [0, 1] (Vytlacil, 2002), this
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restricts η to be in the interval [infz p(z), supz p(z)], where p(z) = Pr(Wi = 1|Zi = z).

Heckman and Vytlacil (2005) characterize various average treatment effects in terms of this

limit. For example, the average treatment effect is simply the average of the marginal

treatment effect over the marginal distribution of η:

τ =

∫

η

τ (η)dFη(η).

In practice the same limits remain on the identification of average effects. The population

average effect is only identified if the instrument moves the probability of participation from

zero to one. In fact identification of the population average treatment effect does not require

identification of τ (η) at every value of η. The latter is sufficient, but not necessary. For

example, in a randomized experiment (corresponding to a binary instrument with the treat-

ment indicator equal to the instrument) the average treatment effect is obviously identified,

but the marginal treatment effect is not for any value of η.

7. Multivalued Endogenous Variables

Now suppose that the endogenous variable W takes on values 0, 1, . . . , J . We still assume

that the instrument Z is binary. We study the interpretation of the instrumental variables

estimand

τ =
Cov(Yi, Zi)

Cov(Wi, Zi)
=

E[Yi|Zi = 1] − E[Yi|Zi = 0]

E[Wi|Zi = 1] − E[Wi|Zi = 0]
.

We make the exclusion assumption that

Yi(w) Wi(z) ⊥⊥ Zi,

and a version of the monotonicity assumption,

Wi(1) ≥ Wi(0),
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Then we can write the instrumental variables estimand as

τ =

J
∑

j=1

λj · E[Yi(j) − Yi(j − 1)|Wi(1) ≥ j > Wi(0)],

where

λj =
Pr(Wi(1) ≥ j > Wi(0)

∑J

i=1 Pr(Wi(1) ≥ i > Wi(0)
.

Note that we can estimate the weights λj because

Pr(Wi(1) ≥ j > Wi(0) = Pr(Wi(1) ≥ j) − Pr(Wi(0) ≥ j)

= Pr(Wi(1) ≥ j|Zi = 1) − Pr(Wi(0) ≥ j|Zi = 0)

= Pr(Wi ≥ j|Zi = 1) − Pr(Wi ≥ j|Zi = 0),

using the monotonicity assumption.

8. Instrumental Variables Estimates of the Returns to Education Using

Quarter of Birth as an Instrument

Here we use a subset of the data used by Angrist and Krueger in their 1991 study of

the returns to education. Angrist and Krueger were concerned with the endogeneity of

education, worrying that individuals with higher ability would have had higher earnings

given any level of education, as well as be more likely to have high levels of education. In

that case simple least squares estimates would over estimate the returns to education. Their

idea was that individuals born in different parts of the year are subject to slightly different

compulsory schooling laws. If you are born before a fixed cutoff date you enter school at

a younger age than if you are born after that cutoff date, and given that you are allowed

to leave school when you turn sixteen, those individuals born before the cutoff date are

required to completely more years of schooling. The instrument can therefore be thought of
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as the tightness of the compulsory schooling laws, with the tightness being measured by the

individual’s quarter of birth.

Angrist and Krueger implement this using census data with quarter of birth indicators

as the instrument. Table 1 gives average years of education and sample sizes by quarter of

birth.

Table 8: Average Level of Education by Quarter of Birth

quarter 1 2 3 4

average level of education 12.69 12.74 12.81 12.84

standard error 0.01 0.01 0.01 0.01

number of observations 81,671 80,138 86,856 80,844

In the illustrations below we just use a single instrument, an indicator for being born in

the first quarter. First let us look at the reduced form regressions of log earnings and years

of education on the first quarter of birth dummy:

êduci = 12.797 − 0.109 · qobi

(0.006) (0.013)

and

̂log(earnings)i = 5.903 − 0.011 · qobi

(0.001) (0.003)

The instrumental variables estimate is the ratio of the reduced form coefficients,

β̂IV =
−0.1019

−0.011
= 0.1020.
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Now let us interpret this in the context of heterogeneous returns to education. This

estimate is an average of returns to education, consisting of two types of averaging. The

first is over different levels of education. That is, it is a weighted average of the return to

moving from nine to ten years, to moving from ten to eleven years, to moving from eleven

to twelve years, etcetera. In addition, for any level, e.g., to moving from nine to ten years of

education, it is an average effect where the averaging is over those people whose schooling

would have been at least ten years of education if tigther compulsory schooling laws had

been in effect for them, and who would have had less than ten years of education had they

been subject to the looser compulsory schooling laws.

Furthermore, we can estimate how large a fraction of the population is in these categories.

First we estimate the

γj = Pr(Wi(1) ≥ j > Wi(0) = Pr(Wi ≥ j|Zi = 1) − Pr(Wi ≥ j|Zi = 0)

as

γ̂j =
1

N1

∑

i|Zi=1

1{Wi ≥ j} −
1

N0

∑

i|Zi=0

1{Wi ≥ j}.

This gives the unnormalized weight function. We then normalize the weights so they add up

to one, λ̂j = γ̂j/
∑

i γ̂i.

Figure 1-4 present some of the relevant evidence here. First, Figure 1 gives the distribu-

tion of years of education. Figure 2 gives the normalized and Figure 3 gives the unnormalized

weight functions. Figure 4 gives the distribution functions of years of education by the two

values of the instrument. The most striking feature of these figures (not entirely unantici-

pated) is that the proportion of individuals in the “complier” subpopulations is extremely

small, never more than 2% of the population. This implies that these instrumental variables

estimates are averaged only over a very small subpopulation, and that there is little reason to

believe that they generalize to the general population. (Nevertheless, this may well be a very

interesting subpopulation for some purposes.) The nature of the instrument also suggests
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that most of the weight would be just around the number of years that would be required

under the compulsory schooling laws. The weight function is actually much flatter, putting

weight even on fourteen to fifteen years of education.
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What’s New in Econometrics? NBER, Summer 2007
Lecture 6, Tuesday, July 31st, 9.00-10.30 am

Control Function and Related Methods
These notes review the control function approach to handling endogeneity in models linear

in parameters, and draws comparisons with standard methods such as 2SLS. Certain nonlinear
models with endogenous explanatory variables are most easily estimated using the CF method,
and the recent focus on average marginal effects suggests some simple, flexible strategies.
Recent advances in semiparametric and nonparametric control function method are covered,
and an example for how one can apply CF methods to nonlinear panel data models is provided.
1. Linear-in-Parameters Models: IV versus Control Functions

Most models that are linear in parameters are estimated using standard IV methods – either
two stage least squares (2SLS) or generalized method of moments (GMM). An alternative, the
control function (CF) approach, relies on the same kinds of identification conditions. In the
standard case where a endogenous explanatory variables appear linearly, the CF approach
leads to the usual 2SLS estimator. But there are differences for models nonlinear in
endogenous variables even if they are linear in parameters. And, for models nonlinear in
parameters, the CF approach offers some distinct advantages.

Let y1 denote the response variable, y2 the endogenous explanatory variable (a scalar for
simplicity), and z the 1  L vector of exogenous variables (which includes unity as its first
element). Consider the model

y1  z11  1y2  u1     (1.1)

where z1 is a 1  L1 strict subvector of z that also includes a constant. The sense in which z is
exogenous is given by the L orthogonality (zero covariance) conditions

Ez′u1  0.     (1.2)

Of course, this is the same exogeneity condition we use for consistency of the 2SLS estimator,
and we can consistently estimate 1 and 1 by 2SLS under (1.2) and the rank condition,
Assumption 2SLS.2.

Just as with 2SLS, the reduced form of y2 – that is, the linear projection of y2 onto the
exogenous variables – plays a critical role. Write the reduced form with an error term as

y2  z2  v2

Ez′v2  0
    (1.3)
    (1.4)

where 2 is L  1. Endogeneity of y2 arises if and only if u1 is correlated with v2. Write the

1
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linear projection of u1 on v2, in error form, as

u1  1v2  e1,     (1.5)

where 1  Ev2u1/Ev2
2 is the population regression coefficient. By definition, Ev2e1  0,

and Ez′e1  0 because u1 and v2 are both uncorrelated with z.
Plugging (1.5) into equation (1.1) gives

y1  z11  1y2  1v2  e1,     (1.6)

where we now view v2 as an explanatory variable in the equation. As just noted, e1, is
uncorrelated with v2 and z. Plus, y2 is a linear function of z and v2, and so e1 is also
uncorrelated with y2.

Because e1 is uncorrelated with z1, y2, and v2, (1.6) suggests a simple procedure for
consistently estimating 1 and 1 (as well as 1): run the OLS regression of y1 on z1,y2, and v2

using a random sample. (Remember, OLS consistently estimates the parameters in any
equation where the error term is uncorrelated with the right hand side variables.) The only
problem with this suggestion is that we do not observe v2; it is the error in the reduced form
equation for y2. Nevertheless, we can write v2  y2 − z2 and, because we collect data on y2

and z, we can consistently estimate 2 by OLS. Therefore, we can replace v2 with v̂2, the OLS
residuals from the first-stage regression of y2 on z. Simple substitution gives

y1  z11  1y2  1v̂2  error,     (1.7)

where, for each i, errori  ei1  1zî2 − 2, which depends on the sampling error in ̂2

unless 1  0. Standard results on two-step estimation imply the OLS estimators from (1.7)
will be consistent for 1,1, and 1.

The OLS estimates from (1.7) are control function estimates. The inclusion of the residuals
v̂2 “controls” for the endogeneity of y2 in the original equation (although it does so with
sampling error because ̂2 ≠ 2).

It is a simple exercise in the algebra of least squares to show that the OLS estimates of 1

and 1 from (1.7) are identical to the 2SLS estimates starting from (1.1) and using z as the
vector of instruments. (Standard errors from (1.7) must adjust for the generated regressor.)

It is trivial to use (1.7) to test H0 : 1  0, as the usual t statistic is asymptotically valid
under homoskedasticity Varu1|z,y2  1

2 under H0; or use the heteroskedasticity-robust
version (which does not account for the first-stage estimation of 2).

Now extend the model:

2
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y1  z11  1y2  1y2
2  u1

Eu1|z  0.
    (1.8)
    (1.9)

For simplicity, assume that we have a scalar, z2, that is not also in z1. Then, under (1.9) –
which is stronger than (1.2), and is essentially needed to identify nonlinear models – we can
use, say, z2

2 (if z2 is not binary) as an instrument for y2
2 because any function of z2 is

uncorrelated with u1. In other words, we can apply the standard IV estimator with explanatory
variables z1,y2,y2

2 and instruments z1, z2, z2
2; note that we have two endogenous

explanatory variables, y2 and y2
2.

What would the CF approach entail in this case? To implement the CF approach in (1.8),
we obtain the conditional expectation Ey1|z,y2 – a linear projection argument no longer
works because of the nonlinearity – and that requires an assumption about Eu1|z,y2. A
standard assumption is

Eu1|z,y2  Eu1|z,v2  Eu1|v2  1v2,     (1.10)

where the first equality follows because y2 and v2 are one-to-one functions of each other
(given z) and the second would hold if u1,v2 is independent of z – a nontrivial restriction on
the reduced form error in (1.3), not to mention the structural error u1.. The final assumption is
linearity of the conditional expectation Eu1|v2, which is more restrictive than simply defining
a linear projection. Under (1.10),

Ey1|z,y2  z11  1y2  1y2
2  1y2 − z2

 z11  1y2  1y2
2  1v2.

    (1.11)

Implementing the CF approach means running the OLS regression y1 on z1,y2,y2
2, v̂2,where v̂2

still represents the reduced form residuals. The CF estimates are not the same as the 2SLS
estimates using any choice of instruments for y2,y2

2.
The CF approach, while likely more efficient than a direct IV approach, is less robust. For

example, it is easily seen that (1.9) and (1.10) imply that Ey2|z  z2. A linear conditional

expectation for y2 is a substantive restriction on the conditional distribution of y2. Therefore,
the CF estimator will be inconsistent in cases where the 2SLS estimator will be consistent. On
the other hand, because the CF estimator solves the endogeneity of y2 and y2

2 by adding the
scalar v̂2 to the regression, it will generally be more precise – perhaps much more precise –
than the IV estimator. (I do not know of a systematic analysis comparing the two approaches in
models such as (1.8).)

3
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Standard CF approaches impose extra assumptions even in the simple model (1.1) if we
allow y2 to have discreteness in its distribution. For example, suppose y2 is a binary response.
Then the CF approach involves estimating

Ey1|z,y2  z11  1y2  Eu1|z,y2,

and so we must be able to estimate Eu1|z,y2. If y2  1z2  e2 ≥ 0, u1,e2 is independent
of z, Eu1|e2  1e2, and e2 ~Normal0,1, then

Eu1|z,y2  EEu1|z,e2|z,y2  1Ev2|z,y2

 1y2z2 − 1 − y2−z2,

where   / is the inverse Mills ratio (IMR). A simple two-step estimator is to

obtain the probit estimator ̂2 and then to add the “generalized residual,”

gri2 ≡ yi2zî2 − 1 − yi2−zî2 as a regressor:

yi1 on zi1, yi2, gri2, i  1, . . . ,N.

Consistency of the CF estimators hinges on the model for Dy2|z being correctly specified,
along with linearity in Eu1|v2 (and some sort of independence with z). Of course, if we just
apply 2SLS directly to (1.1), it makes no distinction among discrete, continuous, or some
mixture for y2. 2SLS is consistent if Ly2|z  z2 actually depends on z2 and (1.2) holds. So,
while estimating (1.1) using CF methods when y2 is binary is somewhat popular (Stata’s
“treatreg” even has the option of full MLE, where u1,e2 is bivariate normal), one should
remember that it is less robust than standard IV approaches.

How might one use the binary nature of y2 in IV estimation? Assume Eu1|z  0 and,

nominally, assume a probit model for Dy2|z. Obtain the fitted probabilities, zî2, from the
first stage probit, and then use these as IVs for yi2. This method is fully robust to
misspecification of the probit model; the standard errors need not be adjusted for the first-stage
probit (asymptotically); and it is the efficient IV estimator if Py2  1|z  z2 and
Varu1|z  1

2. But it is probably less efficient than the CF estimator if the additional

assumptions needed for CF consistency hold. (Note: Using zî2 as an IV for yi2 is not the

same as using zî2 as a regressor in place of yi2.)
To summarize: except in the case where y2 appears linearly and a linear reduced form is

estimated for y2, the CF approach imposes extra assumptions not imposed by IV approaches.
However, in more complicated models, it is hard to beat the CF approach.
2. Correlated Random Coefficient Models

4
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Control function methods can be used for random coefficient models – that is, models
where unobserved heterogeneity interacts with endogenous explanatory variables. However, in
some cases, standard IV methods are more robust. To illustrate, we modify equation (1.1) as

y1  1  z11  a1y2  u1,     (2.1)

where z1 is 1  L1, y2 is the endogenous explanatory variable, and a1, the “coefficient” on y2 –
an unobserved random variable. [It is now convenient to set apart the intercept.] We could
replace 1 with a random vector, say d1, and this would not affect our analysis of the IV
estimator (but would slightly alter the control function estimator). Following Heckman and
Vytlacil (1998), we refer to (2.1) as a correlated random coefficient (CRC) model.

It is convenient to write a1  1  v1 where 1  Ea1 is the object of interest. We can
rewrite the equation as

y1  1  z11  1y2  v1y2  u1 ≡ 1  z11  1y2  e1,     (2.2)

where e1  v1y2  u1. Equation (2.2) shows explicitly a constant coefficient on y2 (which we
hope to estimate) but also an interaction between the observed heterogeneity, v1, and y2.
Remember, (2.2) is a population model. For a random draw, we would write
yi1  1  zi11  1yi2  vi1yi2  ui1, which makes it clear that 1 and 1 are parameters to
estimate and vi1 is specific to observation i.

As discussed in Wooldridge (1997, 2003), the potential problem with applying instrumental
variables (2SLS) to (2.2) is that the error term v1y2  u1 is not necessarily uncorrelated with
the instruments z, even if we make the assumptions

Eu1|z Ev1|z  0,     (2.3)

which we maintain from here on. Generally, the term v1y2 can cause problems for IV
estimation, but it is important to be clear about the nature of the problem. If we are allowing y2

to be correlated with u1 then we also want to allow y2 and v1 to be correlated. In other words,
Ev1y2  Covv1,y2 ≡ 1 ≠ 0. But a nonzero unconditional covariance is not a problem
with applying IV to (2.2): it simply implies that the composite error term, e1, has
(unconditional) mean 1 rather than a zero. As we know, a nonzero mean for e1 means that the
orginal intercept, 1, would be inconsistenly estimated, but this is rarely a concern.

Therefore, we can allow Covv1,y2, the unconditional covariance, to be unrestricted. But
the usual IV estimator is generally inconsistent if Ev1y2|z depends on z. (There are still cases,
which we will cover in Part IV, where the IV estimator is consistent.). Note that, because

5
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Ev1|z  0, Ev1y2|z  Covv1,y2|z. Therefore, as shown in Wooldridge (2003), a
sufficient condition for the IV estimator applied to (2.2) to be consistent for 1 and 1 is

Covv1,y2|z  Covv1,y2.     (2.4)

The 2SLS intercept estimator is consistent for 1  1. Condition (2.4) means that the
conditional covariance between v1 and y2 is not a function of z, but the unconditional
covariance is unrestricted.

Because v1 is unobserved, we cannot generally verify (2.4). But it is easy to find situations
where it holds. For example, if we write

y2  m2z  v2     (2.5)

and assume v1,v2 is independent of z (with zero mean), then (2.4) is easily seen to hold
because Covv1,y2|z Covv1,v2|z, and the latter cannot be a function of z under
independence. Of course, assuming v2 in (2.5) is independent of z is a strong assumption even
if we do not need to specify the mean function, m2z. It is much stronger than just writing
down a linear projection of y2 on z (which is no real assumption at all). As we will see in
various models in Part IV, the representation (2.5) with v2 independent of z is not suitable for
discrete y2, and generally (2.4) is not a good assumption when y2 has discrete characteristics.
Further, as discussed in Card (2001), (2.4) can be violated even if y2 is (roughly) continuous.
Wooldridge (2005a) makes some headway in relaxing (2.44) by allowing for parametric
heteroskedasticity in u1 and v2.

A useful extension of (1.1) is to allow observed exogenous variables to interact with y2.
The most convenient formulation is

y1  1  z11  1y2  z1 − 1y21  v1y2  u1     (2.6)

where 1 ≡ Ez1 is the 1  L1 vector of population means of the exogenous variables and 1

is an L1  1 parameter vector. As we saw in Chapter 4, subtracting the mean from z1 before
forming the interaction with y2 ensures that 1 is the average partial effect.

Estimation of (2.6) is simple if we maintain (2.4) [along with (2.3) and the appropriate rank
condition]. Typically, we would replace the unknown 1 with the sample averages, z̄1, and

then estimate

yi1  1  zi11  1yi2  zi1 − z̄1yi21  errori     (2.7)

by instrumental variables, ignoring the estimation error in the population mean. The only issue

6
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is choice of instruments, which is complicated by the interaction term. One possibility is to use
interactions between zi1 and all elements of zi (including zi1). This results in many
overidentifying restrictions, even if we just have one instrument zi2 for yi2. Alternatively, we
could obtain fitted values from a first stage linear regression yi2 on zi, ŷ i2  zî2, and then use
IVs 1,zi, zi1 − z̄1ŷ i2, which results in as many overidentifying restrictions as for the model
without the interaction. Importantly, the use of zi1 − z̄1ŷ i2 as IVs for zi1 − z̄1yi2 is
asymptotically the same as using instruments zi1 − 1  zi2, where Ly2|z  z2 is the

linear projection. In other words, consistency of this IV procedure does not in any way restrict
the nature of the distribution of y2 given z. Plus, although we have generated instruments, the
assumptions sufficient for ignoring estimation of the instruments hold, and so inference is
standard (perhaps made robust to heteroskedasticity, as usual).

We can just identify the parameters in (2.6) by using a further restricted set of instruments,
1,zi1,ŷ i2, zi1 − z̄1ŷ i2. If so, it is important to use these as instruments and not as regressors.
If we add the assumption. The latter procedure essentially requires a new assumption:

Ey2|z  z2     (2.8)

(where z includes a constant). Under (2.3), (2.4), and (2.8), it is easy to show

Ey1|z  1  1  z11  1z2  z1 − 1  z21,     (2.9)

which is the basis for the Heckman and Vytlacil (1998) plug-in estimator. The usual IV
approach simply relaxes (2.8) and does not require adjustments to the standard errors (because
it uses generated instruments, not generated regressors).

We can also use a control function approach if we assume

Eu1|z,v2  1v2,Ev1|z,v2  1v2.     (2.10)

Then

Ey1|z,y2  1  z11  1y2  1v2y2  1v2,     (2.11)

and this equation is estimable once we estimate 2. Garen’s (1984) control function procedure
is to first regress y2 on z and obtain the reduced form residuals, v̂2, and then to run the OLS
regression y1 on 1,z1,y2, v̂2y2, v̂2. Under the maintained assumptions, Garen’s method
consistently estimates 1 and 1. Because the second step uses generated regressors, the
standard errors should be adjusted for the estimation of 2 in the first stage. Nevertheless, a
test that y2 is exogenous is easily obtained from the usual F test of H0 : 1  0,1  0 (or a
heteroskedasticity-robust version). Under the null, no adjustment is needed for the generated

7
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standard errors.
Garen’s assumptions are more restrictive than those needed for the standard IV estimator to

be consistent. For one, it would be a fluke if (2.10) held without the conditional covariance
Covv1,y2|z being independent of z. Plus, like HV (1998), Garen relies on a linear model for
Ey2|z. Further, Garen adds the assumptions that Eu1|v2 and Ev1|v2 are linear functions,
something not needed by the IV approach.

Of course, one can make Garen’s approach less parametric by replacing the linear functions
in (2.10) with unknown functions. But independence of u1,v1,v2 and z – or something very
close to independence – is needed. And this assumption is not needed for the usual IV
estimator,

If the assumptions needed for Garen’s CF estimator to be consistent hold, it is likely more
efficient than the IV estimator, although a comparison of the correct asymptotic variances is
complicated. Again, there is a tradeoff between efficiency and robustness.

In the case of binary y2, we have what is often called the “switching regression” model.
Now, the right hand side of equation (2.11) represents Ey1|z,v2 where y2  1z2  v2 ≥ 0.
If we assume (2.10) and that v2|z is Normal0,1, then

Ey1|z,y2  1  z11  1y2  1h2y2,z2  1h2y2,z2y2,

where

h2y2,z2  y2z2 − 1 − y2−z2

is the generalized residual function. The two-step estimation method is the one due to
Heckman (1976).

There are two ways to embellish the model. The first is common: interact z1 − 1 with y2

to allow different slopes for the “treated” and non-treated groups (keeping 1 as the average
treatment effect). This is common, and then the CF regression

yi1 on 1, zi11  1yi2  zi1 − z̄1yi2, h2yi2,zî2, h2yi2,zî2yi2

is identical to running two separate regressions, including the IMRs for y2  0 and y2  1. The
estimate of 1 is then the difference in the two intercepts.

An extension that is not so common – in fact, it seems not to appear in the literature –
comes from allowing z1 to also interact with heterogeneity, as in

y1  z1d1  a1y2  y2z1 − 1g1  u1.

Now all coefficients are heterogeneous. If we assume that Ea1|v2, Ed1|v2, and Eg1|v2 are

8
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linear in v2, then

Ey1|z,y2  z11  1y2  y2z1 − 11  1Ev2|z,y2  1Ev2|z,y2y2

 z1Ev2|z,y21  y2z1 − 1Ev2|z,y21

 z11  1y2  1h2y2,z2  1h2y2,z2y2

 h2y2,z2z11  h2y2,z2y2z1 − 11

and the second-step estimation after the first stage probit is a regression

yi1 on 1, zi11  1yi2  zi1 − z̄1yi2, h2yi2,zî2, h2yi2,zî2yi2,
h2yi2,zî2zi1, h2yi2,zî2yi2zi1 − z̄1.

across all observations i. It is easy use bootstrapping to obtain valid standard errors because the
first-stage estimation is just a probit and the second stage is just linear regression.

If not for the term v1y2, we could, in a much more robust manner, use an IV procedure
(where the standard errors are easier to obtain, too). The IVs would be
1,zi1, ̂i2, zi1 − z̄1  ̂i2, and the same procedure consistently estimates the average effects
whether or not there are random coefficients on zi1.

Interesting, the addition of the terms h2yi2,zî2zi1 and h2yi2,zî2yi2zi1 − z̄1 has
similarities with methods that allow Ev1|v2 and so on to be more flexible. For example, as
shown in Heckman and MaCurdy (1986), if Eu1|v2  1v2  1v2

2 − 1, then the extra term

for y2  1 is −zî2zî2 and there is a similar expression for yi2  0.
Newey (1988), in the standard switching regression framework, proposed a flexible

two-step procedure that estimates 2 semiparametrically in the first stage – see Powell (1994)

for a survey of such methods – and then uses series in zî2 in place of the usual IMR terms. He
obtains valid standard errors and, in most cases, bootstrapping is valid, too.
3. Some Common Nonlinear Models and Limitations of the CF
Approach

Like standard IV methods, control function approaches are more difficult to apply to
nonlinear models, even relatively simple ones. Methods are available when the endogenous
explanatory variables are continuous, but few if any results apply to cases with discrete y2.

3.1. Binary and Fractional Responses

The probit model provides a good illustration of the general approach. With a single
endogenous explanatory variable, the simplest specification is

y1  1z11  1y2  u1 ≥ 0,     (3.1)

9
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where u1|z ~Normal0,1. But the analysis goes through if we replace z1,y2 with any known
function g1z1,y2, provided we have sufficient identifying assumptions. An example is
y1  z11  y2z11  1y2

2  u1  0. The nonlinearity in y2 is not itself a problem (unless we
inappropriately try to mimic 2SLS – more on this later).

The Blundell-Smith (1986) and Rivers-Vuong (1988) approach is to make a
homoskedastic-normal assumption on the reduced form for y2,

y2  z2  v2, v2|z ~Normal0,2
2.     (3.2)

A key point is that the RV approach essentially requires

u1,v2 independent of z;     (3.3)

as we will see in the next section, semiparametric and nonparametric CF methods also rely on
(3.3), or at least something close to it..

If we assume

u1,v2 ~Bivariate Normal     (3.4)

with 1  Corru1,v2, then we can proceed with MLE based on fy1,y2|z. A simpler
two-step approach, which is convenient for testing H0 : 1  0 (y2 is exogenous) is also
available, and works if we replace the normality assumption in (3.2), the independence
assumption in (3.3), and joint normality in (3.4) with

Du1|v2,z  Normal1v2, 1 − 1
2,     (3.5)

where 1  1/2 is the regression coefficient. That we can relax the assumptions to some
degree using a two-step CF approach has implications for less parametric approaches.
Certainly we can relax the homoskedasticity and linear expectation in (3.3) without much
additional work, as discussed in Wooldridge (2005a).

Under the weaker assumption (3.5) we can write

Py1  1|z,y2  z11  1y2  1v2     (3.6)

where each coefficient is multiplied by 1 − 1
2−1/2.

The RV two-step approach is
(i) OLS of y2 on z, to obtain the residuals, v̂2.
(ii) Probit of y1 on z1,y2, v̂2 to estimate the scaled coefficients.

The original coefficients, which appear in the partial effects, are easily obtained from the
set of two-step estimates:

10
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̂1  ̂1/1  ̂1
2 ̂2

21/2,     (3.7)

where ̂1 is the coeffcient on v̂2 and ̂2
2 is the usual error variance estimator from the first step

OLS, and ̂1 includes ̂1 and ̂1. Standard errors can be obtained from the delta method of

bootstrapping. Of course, they are computed directly from MLE. Partial effects are based on

x1̂1 where x1  z1,y2. Hopefully it is clear that nothing changes if x1  g1z1,y2

expect how one computes the partial effects.
A simple t test on v̂2 is valid to test H0 : 1  0.
A different way to obtain partial effects is to use the average structural function approach,

which leads to Ev2x11. Notice this holds under (3.5) without joint normality. A

consistent, N -asymptotically normal estimator is

ASFz1,y2  N−1∑
i1

N

x1̂1  ̂1v̂i2,     (3.8)

that is, we average out the reduced form residuals, v̂i2. This formulation is useful for more
complicated models.

Given that the probit structural model is essentially arbitrary, one might be so bold as to
specify models for Py1  1|z1,y2,v2 directly. For example, we can add polynomials in v2 or
even interact v2 with elements of x1 side a probit or logit function. We return to this in the next
section.

The two-step CF approach easily extends to fractional responses. Now, we start with an
omitted variables formulation in the conditional mean:

Ey1|z,y2,q1  Ey1|z1,y2,q1  x11  q1,     (3.9)

where x1 is a function of z1,y2 and q1 contains unobservables. As usual, we need some
exclusion restrictions, embodied by omitting z2 from x1. The specification in equation (3.9)
allows for responses at the corners, zero and one, and y1 may take on any values in between.
Under the assumption that

Dq1|v2,z ~ Normal1v2,1
2     (3.10)

Given (3.9) and (3.10), it can be shown, using the mixing property of the normal distribution,
that

Ey1|z,y2,v2  x11  1v2,     (3.11)

11
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where the index “” denotes coefficients multiplied by 1  1
2−1/2. Because the Bernoulli log

likelihood is in the linear exponential family, maximizing it consistently estimates the
parameters of a correctly specified mean; naturally, the same is true for two-step estimation.
That is, the same two-step method can be used in the binary and fractional cases. Of course,
the variance associated with the Bernoulli distribution is generally incorrect. In addition to
correcting for the first-stage estimates, a robust sandwich estimator should be computed to
account for the fact that Dy1|z,y2 is not Bernoulli. The best way to compute partial effects is
to use (3.8), with the slight notational change that the implicit scaling in the coefficients is
different. By using (3.8), we can directly use the scaled coefficients estimated in the second
stage – a feature common across CF methods for nonlinear models. The bootstrap that
reestimates the first and second stages for each iteration is an easy way to obtain standard
errors. Of course, having estimates of the parameters up to a common scale allows us to
determine signs of the partial effects in (3.9) as well as relative partial effects on the
continuous explanatory variables.

Wooldridge (2005) describes some simple ways to make the analysis starting from (3.9)
more flexible, including allowing Varq1|v2 to be heteroskedastic. We can also use strictly
monotonic transformations of y2 in the reduced form, say h2y2, regardless of how y2 appears
in the structural model: the key is that y2 can be written as a function of z,v2. The extension
to multivariate y2 is straightforward with sufficient instruments provide the elements of y2, or
strictly monotonic functions of them, have reduced forms with additive errors that are
effectively indendent of z. (This assumption rules out applications to y2 that are discrete
(binary, multinomial, or count)or have a discrete component (corner solution).

The control function approach has some decided advantages over another two-step
approach – one that appears to mimic the 2SLS estimation of the linear model. Rather than
conditioning on v2 along with z (and therefore y2) to obtain
Py1  1|z,v2  Py1  1|z,y2,v2, we can obtain Py1  1|z. To find the latter probability,
we plug in the reduced form for y2 to get y1  1z11  1z2  1v2  u1  0. Because
1v2  u1 is independent of z and u1,v2 has a bivariate normal distribution,
Py1  1|z  z11  1z2/1 where
1

2 ≡ Var1v2  u1  1
22

2  1  21Covv2,u1. (A two-step procedure now proceeds by

using the same first-step OLS regression – in this case, to get the fitted values, ŷ i2  zî2 –
now followed by a probit of yi1 on zi1,ŷ i2. It is easily seen that this method estimates the

12
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coefficients up to the common scale factor 1/1, which can be any positive value (unlike in the
CF case, where we know the scale factor is greater than unity).

One danger with plugging in fitted values for y2 is that one might be tempted to plug ŷ2

into nonlinear functions, say y2
2 or y2z1. This does not result in consistent estimation of the

scaled parameters or the partial effects. If we believe y2 has a linear RF with additive normal
error independent of z, the addition of v̂2 solves the endogeneity problem regardless of how y2

appears. Plugging in fitted values for y2 only works in the case where the model is linear in y2.
Plus, the CF approach makes it much easier to test the null that for endogeneity of y2 as well as
compute APEs.

In standard index models such as (3.9), or, if you prefer, (3.1), the use of control functions
to estimate the (scaled) parameters and the APEs produces no surprises. However, one must
take care when, say, we allow for random slopes in nonlinear models. For example, suppose
we propose a random coefficient model

Ey1|z,y2,c1  Ey1|z1,y2,c1  z11  a1y2  q1,     (3.12)

where a1 is random with mean 1 and q1 again has mean of zero. If we want the partial effect
of y2, evaluated at the mean of heterogeneity, we have

1z11  1y2,     (3.13)

where  is the standard normal pdf, and this equation is obtained by differentiating (3.12)
with respect to y2 and then plugging in a1  1 and q1  0. Suppose we write a1  1  d1

and assume that d1,q1 is bivariate normal with mean zero. Then, for given z1,y2, the
average structural function can be shown to be

Ed1,q1z11  1y2  d1y2  q1  z11  1y2/q
2  2dqy2  d

2y2
21/2,     (3.14)

where q
2  Varq1, d

2  Vard1, and dq  Covd1,q1. The average partial effect with

respect to, say, y2, is the derivative of this function with respect to y2. While this partial effect
depends on 1, it is messier than (3.13) and need not even have the same sign as 1.
Wooldridge (2005) discusses related issues in the context of probit models with exogenous
variables and heteroskedasticity. In one example, he shows that, depending on whether
heteroskedasticity in the probit is due to heteroskedasticity in Varu1|x1, where u1 is the latent
error, or random slopes, the APEs are completely different in general. The same is true here:
the APE when the coefficient on y2 is random is generally very different from the APE
obtained if we maintain a1  1 but Varq1|v2 is heteroskedastic. In the latter case, the APE

13
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is a positive multiple of 1.
Incidentally, we can estimate the APE in (3.14) fairly generally. A parametric approach is

to assume joint normality of d1,q1,v2 (and independence with z). Then, with a normalization
restriction, it can be shown that

Ey1|z,v2  z11  1y2  1v2  1y2v2/1  1y2  1y2
21/2,     (3.15)

which can be estimated by inserting v̂2 for v2 and using nonlinear least squares or Bernoulli
QMLE. (The latter is often called “heteroskedastic probit” when y1 is binary.) This procedure
can be viewed as an extension to Garen’s method for linear models with correlated random
coefficients.

Estimation, inference, and interpretation would be especially straightforward (the latter
possibly using the bootstrap) if we squint and pretend the term 1  1y2  1y2

21/2 is not
present. Then, estimation would simply be Bernoulli QMLE of yi1 on zi1, yi2, v̂i2, and yi2v̂i2,
which means that we just add the interaction to the usual Rivers-Vuong procedure. The APE
for y2 would be estimated by taking the derivative with respect to y2 and averaging out v̂i2, as
usual:

N−1∑
i1

N

̂1  ̂1v̂i2  z1̂1  ̂1y2  ̂1v̂i2  ̂1y2v̂i2,     (3.16)

and evaluating this at chosen values for z1,y2 (or using further averaging across the sample
values). This simplification cannot be reconciled with (3.9), but it is in the spirit of adding
flexibility to a standard approach and treating functional forms as approximations. As a
practical matter, we can compare this with the APEs obtained from the standard Rivers-Vuong
approach, and a simple test of the null hypothesis that the coefficient on y2 is constant is
H0 : 1  0 (which should account for the first step estimation of ̂2). The null hypothesis
that y2 is exogenous is the joint test H0 : 1  0,1  0, and in this case no adjustment is
needed for the first-stage estimation. And why stop here? If we, add, say, y2

2 to the structural
model, we might add v̂2

2 to the estimating equation as well. It would be very difficult to relate
parameters estimated from the CF method to parameters in an underlying structural model;
indeed, it would be difficult to find a structural model given rise to this particular CF approach.
But if the object of interest are the average partial effects, the focus on flexible models for
Ey1|z1,y2,v2 can be liberating (or disturbing, depending on one’s point of view about
“structural” parameters).

14
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Lewbel (2000) has made some progress in estimating parameters up to scale in the model
y1  1z11  1y2  u1  0, where y2 might be correlated with u1 and z1 is a 1  L1 vector
of exogenous variables. Lewbel’s (2000) general approach applies to this situation as well. Let
z be the vector of all exogenous variables uncorrelated with u1. Then Lewbel requires a
continuous element of z1 with nonzero coefficient – say the last element, zL1– that does not
appear in Du1|y2,z. (Clearly, y2 cannot play the role of the variable excluded from
Du1|y2,z if y2 is thought to be endogenous.) When might Lewbel’s exclusion restriction
hold? Sufficient is y2  g2z2  v2, where u1,v2 is independent of z and z2 does not contain
zL1 . But this means that we have imposed an exclusion restriction on the reduced form of y2,
something usually discouraged in parametric contexts. Randomization of zL1 does not make its
exclusion from the reduced form of y2 legitimate; in fact, one often hopes that an instrument
for y2 is effectively randomized, which means that zL1 does not appear in the structural
equation but does appear in the reduced form of y2 – the opposite of Lewbel’s assumption.
Lewbel’s assumption on the “special” regressor is suited to cases where a quantity that only
affects the response is randomized. A randomly generated project cost presented to
interviewees in a willingness-to-pay study is one possibility.

Returning to the probit response function in (3.9), we can understand the limits of the CF
approach for estimating nonlinear models with discreted EEVs. The Rivers-Vuong approach,
and its extension to fractional responses, cannot be expected to produce consistent estimates of
the parameters or APEs for discrete y2. The problem is that we cannot write

y2  z2  v2

Dv2|z  Dv2  Normal0,2
2.     (3.17)

In other words, unlike when we estimate a linear structural equation, the reduced form in the
RV approach is not just a linear projection – far from it. In the extreme we have completely
specified Dy2|z as homoskedastic normal, which is clearly violated if y2 is a binary or count
variable, or a corner solution (commonly called a “censored” variable). Unfortunately, even
just assuming independence between v2 and z rules out discrete y2, an assumption that plays an
important role even in fully nonparametric approaches. The bottom line is that there are no
known two-step estimation methods that allow one to estimate a probit model or fractional
probit model with discrete y2, even if we make strong distributional assumptions. And, there
are some poor strategies that still linger. For example, suppose y1 and y2 are both binary, (3.1)
holds, and
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y2  1z2  v2 ≥ 0     (3.18)

and we maintain joint normality of u1,v2 – now both with unit variances – and, of course,
independence between the errors and z. Because Dy2|z follows a standard probit, it is
tempting to try to mimic 2SLS as follows: (i) Do probit of y2 on z and get the fitted

probabilities, ̂2  ẑ2. (ii) Do probit of y1 on z1, ̂2, that is, just replace y2 with ̂2. This
does not work, as it requires believing that the expected value passes through nonlinear
functions. Some have called prodedures like this a “forbidden regression.” We could find
Ey1|z,y2 as a function of the structural and reduced form parameters, insert the first-stage
estimates of the RF parameters, and then use binary response estimation in the second stage.
But the estimator is not probit with the fitted probabilities plugged in for y2.Currently, the only
strategy we have is maximum likelihood estimation based on fy1|y2,zfy2|z. (The lack of
options that allow some robustness to distributional assumptions on y2 helps explain why some
authors, notably Angrist (2001), have promoted the notion of just using linear probability
models estimated by 2SLS. This strategy seems to provide good estimates of the average
treatment effect in many applications.)

An issue that comes up occasionally is whether “bivariate” probit software be used to
estimate the probit model with a binary endogenous variable. In fact, the answer is yes, and the
endogenous variables can appear in any way in the model, particularly interacted with
exogenous variables. The key is that the likelihood function is constructed from
fy1|y2,x1f2y2|x2, and so its form does not change if x1 includes y2. (Of course, one should
have at least one exclusion restriction in the case x1 does depend on y2. ) MLE, of course, has
all of its desirable properties, and the parameter estimates needed to compute APEs are
provided directly.

If y1 is a fractional response satisfying (3.9), y2 follows (3.18), and q1,v2 are jointly
normal and independent of z, a two-step method based on Ey1|z,y2 is possible; the
expectation is not in closed form, and estimation cannot proceed by simply adding a control
function to a Bernoulli QMLE. But it should not be difficult to implement. Full MLE for a
fractional response is more difficult than for a binary response, particularly if y1 takes on
values at the endpoints with positive probability.

An essentially parallel discussion holds for ordered probit response models, where y1 takes
on the ordered values 0,1, . . . ,J. The RV procedure, and its extensions, applies immediately.
In computing partial effects on the response probabilities, we simply average out the reduced
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for residuals, as in equation (3.8). The comments about the forbidden regression are
immediately applicable, too: one cannot simply insert, say, fitted probabilities for the binary
EEV y2 into an ordered probit model for y1 and hope for consistent estimates of anything of
interest.

Likewise, methods for Tobit models when y1 is a corner solution, such as labor supply or
charitable contributions, are analyzed in a similar fashion. If y2 is a continuous variable, CF
methods for consistent estimation can be obtained, at least under the assumptions used in the
RV setup. Blundell and Smith (1986) and Wooldridge (2002, Chapter 16) contain treatments.
The embellishments described above, such as letting Du1|v2 be a flexible normal distribution,
carry over immediately to Tobit case, as do the cautions in looking for simple two-step
methods when Dy2|z is discrete.

3.2. Multinomial Responses

Allowing endogenous explanatory variables (EEVs) in multinomial response models is
notoriously difficult, even for continuous endogenous variables. There are two basic reasons.
First, multinomial probit (MNP), which mixes well well a reduced form normality assumption
for Dy2|z, is still computationally difficult for even a moderate number of choices.
Apparently, no one has undertaken a systematic treatment of MNP with EEVs, including how
to obtain partial effects.

The multinomial logit (MNL), and its extensions, such as nested logit, is much simpler
computationally with lots of alternatives. Unfortunately, the normal distribution does not mix
well with the extreme value distribution, and so, if we begin with a structural MNL model (or
conditional logit), the estimating equations obtained from a CF approach are difficult to obtain,
and MLE is very difficult, too, even if we assume a normal distribution in the reduced form(s).

Recently, some authors have suggested taking a practical approach to allowing at least
continuous EEVs in multinomial response. The suggestions for binary and fractional responses
in the previous subsection – namely, use probit, or even logit, with flexible functions of both
the observed variables and the reduced form residuals – is in this spirit.

Again it is convenient to model the source of endogeneity as an omitted variable. Let y1 be
the (unordered) multinomial response taking values 0,1, . . . ,J, let z be the vector of
endogenous variables, and let y2 be a vector of endogenous variables. If r1 represents omitted
factors that the researcher would like to control for, then the structural model consists of
specifications for the response probabilities
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Py1  j|z1,y2, r1, j  0,1, . . . ,J.     (3.20)

The average partial effects, as usual, are obtained by averaging out the unobserved
heterogeneity, r1. Assume that y2 follows the linear reduced form

y2  z2  v2.     (3.21)

Typically, at least as a first attempt, we would assume a convenient joint distribution for
r1,v2, such as multivariate normal and independent of z. This approach has been applied
when the response probabilities, conditional on r1, have the conditional logit form. For
example, Villas-Boas and Winer (1999) apply this approach to modeling brand choice, where
prices are allowed to correlated with unobserved tastes that affect brand choice. In
implementing the CF approach, the problem in starting with a multinomial or conditional logit
model for (3.zz) is computational. Nevertheless, estimation is possible, particular if one uses
simulation methods of estimation briefly mentioned in the previous subsection.

A much simpler control function approach is obtained if we skip the step of modeling
Py1  j|z1,y2, r1 and jump directly to convenient models for

Py1  j|zi1,y2,v2  Py1  j|z,y2. Villas-Boas (2005) and Petrin and Train (2006) are

proponents of this solution. The idea is that any parametric model for Py1  j|z1,y2, r1 is

essentially arbitrary, so, if we can recover quantities of interest directly from
Py1  j|z1,y2,v2, why not specify these probabilities directly? If we assume that

Dr1|z,y2  Dr1|v2, and that Py1  j|z1,y2,v2 can be obtained from Py1  j|z1,y2, r1 by

integrating the latter with respect to Dr1|v2 then we can estimate the APEs directly from
Py1  j|z1,y2,v2 be averaging out across the reduced form residuals, as in previous cases.

Once we have selected a model for Py1  j|z1,y2,v2, which could be multinomial logit,

conditional logit, or nested logit, we can apply a simple two-step procedure. First, estimate the

reduced form for yi2 and obtain the residuals, v̂i2  yi2 − zî2. (Alternatively, we can use

strictly monotonic transformations of the elements of yi2.) Then, we estimate a multinomial

response model with explanatory variables zi1,yi2, and v̂i2. As always with control function

approaches, we need enough exclusion restrictions in zi1 to identify the parameters and APEs.
We can include nonlinear functions of zi1,yi2, v̂i2, including quadratics and interactions for

more flexibility.
Given estimates of the probabilities pjz1,y2,v2, we can estimate the average partial

effects on the structural probabilities by estimating the average structural function:
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ASFz1,y2  N−1∑
i1

N

pjz1,y2, v̂i2.     (3.22)

Then, we can take derivatives or changes of ASFz1,y2 with respect to elements of z1,y2,

as usual. While the delta method can be used to obtain analytical standard errors, the bootstrap
is simpler and feasible if one uses, say, conditional logit.

In an application to choice of television service, Petrin and Train (2006) find the CF
approach gives remarkably similar parameter estimates to the approach proposed by Berry,
Pakes, and Levinsohn (1995), which we touch on in the cluster sample notes.

3.3. Exponential Models

Exponential models represent a middle ground between linear models and discrete
response models: to allow for EEVs in an exponential model, we need to impose more
assumptions than needed for standard linear models but fewer assumptions than discrete
response models. Both IV approaches and CF approaches are available for exponential models,
the latter having been worked out for continuous and binary EEVs. With a single EEV, write

Ey1|z,y2, r1  expz11  1y2  r1,     (3.23)

where r1 is the omitted variable. (Extensions to general nonlinear functions of z1,y2 are
immediate; we just add those functions with linear coefficients to (3.23). Leading cases are
polynomials and interactions.) Suppose first that y2 has a standard linear reduced form with an
additive, independent error:

y2  z2  v2

Dr1,v2|z  Dr1,v2,
    (3.24)
    (3.25)

so that r1,v2 is independent of z. Then

Ey1|z,y2  Ey1|z,v2  Eexpr1|v2expz11  1y2.     (3.26)

If r1,v2 are jointly normal, then Eexpr1|v2  exp1v2, where we set the intercept to
zero, assuming z1 includes an intercept. This assumption can hold more generally, too. Then

Ey1|z,y2  Ey1|z,v2  expz11  1y2  1v2,     (3.27)

and this expectation immediately suggest a two-step estimation procedure. The first step, as
before, is to estimate the reduced form for y2 and obtain the residuals. Then, include v̂2, along
with z1 and y2, in nonlinear regression or, especially if y1 is a count variable, in a Poisson
QMLE analysis. Like NLS, it requires only (3.27) to hold. A t test of H0 : 1  0 is valid as a

19



Imbens/Wooldridge, Lecture Notes 6, Summer ’07

test that y2 is exogenous. Average partial effects on the mean are obtained from

N−1∑
i1

N

exp̂1v̂i2 expz1̂1  ̂1y2.

Proportionate effects on the expected value, that is elasticities and semi-elasticities, the
expected value do not depend on the scale factor out front.

Like in the binary case, we can use a random coefficient model to suggest more flexible CF
methods. For example, if we start with

Ey1|z,y2,a1, r1  expz11  a1y2  r1

 expz11  1y2  d1y2  r1

    (3.28)

and assume trivariate normality of d1, r1,v2 (and independence from z), then it can be shown
that

Ey1|z,v2  expz11  1y2  1v2  1y2v2

 r
2  2dry2  d

2y2
2/2.

    (3.29)

Therefore, the estimating equation involves a quadratic in y2 and an interaction between y2 and
v2. Notice that the term r

2  2dry2  d
2y2

2/2 is present even if y2 is exogenous, that is,
1  1  0. If dr  Covd1, r1 ≠ 0 then (3.29) does not even identify 1  Ea1 (we
would have to use higher-order moments, such as a variance assumption). But (3.29) does
identify the average structural function (and, therefore, APEs). We just absorb r

2 into the
intercept, combine the linear terms in y2, and add the quadratic in y2. So, we would estimate

Ey1|z,v2  expz11  1y2  1v2  1y2v2  1y2
2     (3.30)

using a two-step QMLE. The ASF is more complicated, and estimated as

ASFz1,y2  N−1∑
i1

N

expz1̂1  ̂1y2  ̂1v̂i2  ̂1y2v̂i2  ̂1y2
2 ,     (3.31)

which, as in the probit example, implies that the APE with respect to y2 need not have the
same sign as 1.

Our inability to estimate 1 even in this very parametric setting is just one example of how
delicate identification of parameters in standard index models is. Natural extensions to models
with random slopes general cause even the mean heterogeneity (1 above) to be unidentified.
Again, it must be emphasized that the loss of identification holds even if y2 is assumed
exogenous.
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If y2 is a binary model following a probit, then a CF approach due to Terza (1998) can be
used. We return to the model in (3.23) where, for simplicity, we assume y2 is not interacted
with elements of z1; the extension is immediate.We can no longer assume (3.24) and (3.25).
Instead, replace (3.24)

y2  1z2  v2  0     (3.32)

and still adopt (3.25). In fact, we assume r1,v2 is jointly normal. To implement a CF
approach, we need to find

Ey1|z,y2  EEy1|z,v2|z,y2

 expz11  1y2Eexp1  1v2|z,y2

 expz11  1y2hy2,z2,1,     (3.34)

where we absorb 1 into the intercept in z1 without changing notation and

hy2,z2,1  exp1
2/2y21  z2/z2

 1 − y21 − 1  z2/1 − z2,
    (3.35)

as shown by Terza (1998). Now, 2 is estimated by a first-stage probit, and then NLS or, say,
Poisson QMLE can be applied to the mean function

expz11  1y2hy2,ẑ2,1.     (3.36)

As usual, unless 1  0, one must account for the estimation error in the first step when
obtaining inference in the second. Terza (1998) contains analytical formulas, or one may use
the bootstrap.

In the exponential case, an alternative to either of the control function approaches just
presented is available – and, it produces consistent estimators regardless of the nature of y2.
Write x1  g1z1,y2 as any function of exogenous and endogenous variables. If we start with

Ey1|z,y2, r1  expx11  r1     (3.37)

then we can use a transformation due to Mullahy (1997) to consistently estimate 1 by method

of moments. By definition, and assuming only that y1 ≥ 0, we can write

y1  expx11  r1a1

 expx11expr1a1, Ea1|z,y2, r1  1.

If r1 is independent of z then

Eexp−x11y1|z  Eexpr1|z  Eexpr1  1,     (3.38)
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where the last equality is just a normalization that defines the intercept in 1. Therefore, we

have conditional moment conditions

Eexp−x11y1 − 1|z  0,     (3.39)

which depends on the unknown parameters 1 and observable data. Any function of z can be

used as instruments in a nonlinear GMM procedure. An important issue in implementing the
procedure is choosing instruments. See Mullahy (1997) for further discussion.
4. Semiparametric and Nonparametric Approaches

Blundell and Powell (2004) show how to relax distributional assumptions on u1,v2 in the
model model y1  1x11  u1  0, where x1 can be any function of z1,y2. The key

assumption is that y2 can be written as y2  g2z  v2, where u1,v2 is independent of z. The
independence of the additive error v2 and z pretty much rules out discreteness in y2, even
though g2 can be left unspecified. Under the independence assumption,

Py1  1|z,v2  Ey1|z,v2  Hx11,v2     (4.1)

for some (generally unknown) function H, . The average structural function is just
ASFz1,y2  Evi2Hx11,vi2. We can estimate H and 1 quite generally by first estimating

the function g2 and then obtaining residuals v̂i2  yi2 − ĝ2zi. Blundell and Powell (2004)
show how to estimate H and 1 (up to scaled) and G, the distribution of u1. The ASF is

obtained from Gx11. We can also estimate the ASF by averaging out the reduced form

residuals,

ASFz1,y2  N−1∑
i1

N

Ĥx1̂1, v̂i2;     (4.2)

derivatives and changes can be computed with respect to elements of z1,y2.
Blundell and Powell (2003) allow Py1  1|z,y2 to have the general form Hz1,y2,v2,

and then the second-step estimation is entirely nonparametric. They also allow ĝ2 to be fully
nonparametric. But parametric approximations in each stage might produce good estimates of
the APEs. For example, yi2 can be regressed on flexible functions of zi to obtain v̂i2. Then, one
can estimate probit or logit models in the second stage that include functions of z1, y2, and v̂2

in a flexible way – for example, with levels, quadratics, interactions, and maybe even
higher-order polynomials of each. Then, one simply averages out v̂i2, as in equation (4.2).
Valid standard errors and test statistics can be obtained by bootstrapping or by using the delta
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method.
In certain cases, an even more parametric approach suggests itself. Suppose we have the

exponential regression

Ey1|z,y2, r1  expx11  r1,     (4.3)

where r1 is the unobservable. If y2  g2z2  v2 and r1,v2 is independent of z, then

Ey1|z1,y2,v2  h2v2expx11,     (4.4)

where now h2 is an unknown function. It can be approximated using series, say, and, of
course, first-stage residuals v̂2 replace v2.

Blundell and Powell (2003) consider a very general setup, which starts with
y1  g1z1,y2,u1, and then discuss estimation of the ASF, given by

ASF1z1,y2   g1z1,y2,u1dF1u1,     (4.5)

where F1 is the distribution of u1. The key restrictions are that y2 can be written as

y2  g2z  v2,     (4.6)

where u1,v2 is independent of z. The additive, independent reduced form errors in (4.6)
effectively rule out applications to discrete y2. Conceptually, Blundell and Powell’s method is
straightforward, as it is a nonparametric extenstion of parametric approaches. First, estimate g2

nonparametrically (which, in fact, may be done via a flexible parametric model, or kernel
estimators). Obtain the residuals v̂i2  yi2 − ĝ2zi. Next, estimate

Ey1|z1,y2,v2  h1z1,y2,v2 using nonparametrics, where v̂i2 replaces v2. Identification of

h1 holds quite generally, provided we have sufficient exclusion restrictions (elements in z not
in z1. BP discuss some potential pitfalls. Once we have ĥ1, we can consistently estimate the
ASF. For given x1

o  z1
o,y2

o, the ASF can always be written, using iterated expectations, as

Ev2Eg1x1
o,u1|v2.

Under the assumption that u1,v2 is independent of z, Eg1x1
o,u1|v2  h1x1

o,v2 – that is,
the regression function of y1 on x1,v2. Therefore, a consistent estimate of the ASF is

N−1∑
i1

N

ĥ1x1, v̂i2.     (4.7)

While semiparametric and parametric methods when y2 (or, more generally, a vector y2)

are continuous – actually, have a reduced form with an additive, independent error – they do
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not currently help us with discrete EEVs.
With univariate y2, it possible to relax the additivity of v2 in the reduced form equation

under monotonicity assumptions. Like Blundell and Powell (2003), Imbens and Newey (2006)
consider the triangular system, but without additivity in the reduced form of y2:

y1  g1z1,y2,u1,     (4.8)

where u1 is a vector heterogeneity (whose dimension may not even be known)

y2  g2z,e2,     (4.9)

where g2z,  is strictly monotonic. This assumption rules out discrete y2 but allows some
interaction between the unobserved heterogeneity in y2 and the exogenous variables. As one
special case, Imbens and Newey show that, if u1,e2 is assumed to be independent of z, then a
valid control function to be used in a second stage is v2 ≡ Fy2|zy2,z, where Fy2|z is the

conditional distribution of y2 given z. Imbens and Newey described identification of various
quantities of interest, including the quantile structural function. When u1 is a scalar and
monotonically increasing in u1, the QSF is

QSFx1  g1x1,Quantu1,     (4.10)

where Quantu1 is the  th of u1. We consider quantile methods in more detail in the quantile
methods notes.
5. Methods for Panel Data

We can combine methods for handling correlated random effects models with control
function methods to estimate certain nonlinear panel data models with unobserved
heterogeneity and EEVs. Here we provide as an illustration a parametric approach used by
Papke and Wooldridge (2007), which applies to binary and fractional responses. The
manipulations are routine but point to more flexible ways of estimating the average marginal
effects. It is important to remember that we currently have no way of estimating, say,
unobserved effects models for fractional response variables, either with or without endogenous
explanatory variables. Even the approaches that treat the unobserved effects as parameters –
and use large T approximations – to not allow endogenous regressors. Plus, recall from the
nonlinear panel data notes that most results are for the case where the data are assumed
independent across time. Jackknife approaches further assume homogeneity across time.

We write the model with time-constant unobserved heterogeneity, ci1, and time-varying
unobservables, vit1, as
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Eyit1|yit2,zi,ci1,vit1  Eyit1|yit2,zit1,ci1,vit1  1yit2  zit11  ci1  vit1.     (5.1)

Thus, there are two kinds of potential omitted variables. We allow the heterogeneity, ci1, to be
correlated with yit2 and zi, where zi  zi1, . . . ,ziT is the vector of strictly exogenous variables
(conditional on ci1). The time-varying omitted variable is uncorrelated with zi – strict
exogeneity – but may be correlated with yit2. As an example, yit1 is a female labor force
participation indicator and yit2 is other sources of income. Or, yit1 is a test pass rate, and the
school leve, and yit2 is a measure of spending per student.

When we write zit  zit1,zit2, we are assuming zit2 can be excluded from the “structural”
equation (4.1). This is the same as the requirement for fixed effects two stage least squares
estimation of a linear model.

To proceed, we first model the heterogeneity using a Chamberlain-Mundlak approach:

ci1  1  z̄i1  ai1,ai1|zi ~ Normal0,a1
2 .     (5.2)

We could allow the elements of zi to appear with separate coefficients, too. Note that only
exogenous variables are included in z̄i. Plugging into (5.1) we have

Eyit1|yit2,zi,ai1,vit1  1yit2  zit11  1  z̄i1  ai1  vit1

≡ 1yit2  zit11  1  z̄i1  rit1.     (5.3)

Next, we assume a linear reduced form for yit2:

yit2  2  zit2  z̄i2  vit2, t  1, . . . ,T,     (5.4)

where, if necessary, we can allow the coefficients in (5.4) to depend on t. The addition of the
time average of the strictly exogenous variables in (5.4) follows from the Mundlak (1978)
device. The nature of endogeneity of yit2 is through correlation between rit1  ai1  vit1 and
the reduced form error, vit2. Thus, yit2 is allowed to be correlated with unobserved
heterogeneity and the time-varying omitted factor. We also assume that rit1 given vit2 is
conditionally normal, which we write as

rit1  1vit2  eit1,     (5.5)

eit1|zi,vit2 ~ Normal0,e1
2 , t  1, . . . ,T.     (5.6)

Because eit1 is independent of zi,vit2, it is also independent of yit2. Using a standard mixing
property of the normal distribution,

Eyit1|zi,yit2,vit2  e1yit2  zit1e1  e1  z̄ie1  e1vit2     (5.7)
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where the “e” subscript denotes division by 1  e1
2 1/2. This equation is the basis for CF

estimation.
The assumptions used to obtain (5.7) would not hold for yit2 having discreteness or

substantively limited range in its distribution. It is straightfoward to include powers of vit2 in
(5.7) to allow greater flexibility. Following Wooldridge (2005) for the cross-sectional case, we
could even model rit1 given vit2 as a heteroskedastic normal.

In deciding on estimators of the parameters in (5.7), we must note that the explanatory
variables, while contemporaneous exogenous by construction, are not usually strictly
exogenous. In particular, we allow yis2 to be correlated with vit1 for t ≠ s. Therefore,
generalized estimation equations, that assume strict exogeneity – see the notes on nonlinear
panel data models – will not be consistent in general. We could apply method of moments
procedures. A simple approach is to use use pooled nonlinear least squares or pooled
quasi-MLE, using the Bernoulli log likelihood. (The latter fall under the rubric of generalized
linear models.) Of course, we want to allow arbitrary serial dependence and
Varyit1|zi,yit2,vit2 in obtaining inference, which means using a robust sandwich estimator.

The two step procedure is (i) Estimate the reduced form for yit2 (pooled across t, or maybe
for each t separately; at a minimum, different time period intercepts should be allowed).
Obtain the residuals, v̂it2 for all i, t pairs. The estimate of 2 is the fixed effects estimate. (ii)
Use the pooled probit QMLE of yit1 on yit2,zit1, z̄i, v̂it2 to estimate e1,e1,e1,e1 and e1.

Because of the two-step procedure, the standard errors in the second stage should be
adjusted for the first stage estimation. Alternatively, bootstrapping can be used by resampling
the cross-sectional units. Conveniently, if e1  0, the first stage estimation can be ignored, at
least using first-order asymptotics. Consequently, a test for endogeneity of yit2 is easily
obtained as an asymptotic t statistic on v̂it2; it should be make robust to arbitrary serial
correlation and misspecified variance. Adding first-stage residuals to test for endogeneity of an
explanatory variables dates back to Hausman (1978). In a cross-sectional contexts, Rivers and
Vuong (1988) suggested it for the probit model.

Estimates of average partial effects are based on the average structural function

Eci1,vit1 1yt2  zt11  ci1  vit1     (5.8)

with respect to the elements of yt2,zt1. It can be shown that

Ez̄i,vit2 e1yt2  zt1e1  e1  z̄ie1  e1vit2;     (5.9)
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that is, we “integrate out” z̄i,vit2 and then take derivatives or changes with respect to the
elements of zt1yt2. Because we are not making a distributional assumption about z̄i,vit2, we
instead estimate the APEs by averaging out z̄i, v̂it2 across the sample, for a chosen t:

N−1∑
i1

N

̂e1yt2  zt1̂e1  ̂e1  z̄îe1  ̂e1v̂it2.     (5.10)

APEs computed from (5.10) – typically with further averaging out across t and the values
of yt2 and zt1 – can be compared directly with linear model estimates, particular fixed effects
IV estimates.

We can use the approaches of Altonji and Matzkin (2005) and Blundell and Powell (2003)
to make the analysis less parametric. For example, we might replace (5.4) with
yit2  g2zit, z̄i  vit2 (or use functions in addition to , z̄i, as in AM). Then, we could maintain

Dci1  vit1|zi,vit2  Dci1  vit1|z̄i,vit2.

In the first estimation step, v̂it2 is obtained from a nonparametric or semiparametric pooled
estimation. Then the function

Eyit1|yit2,zi,vit2  h1xit11, z̄i,vit2

can be estimated in a second stage, with the first-stage residuals, v̂it2, inserted. Generally,
identification holds because the vit2 varying over time separately from xit1 due to time-varying
exogenous instruments zit2. The inclusion of z̄i requires that we have at least one time-varying,
strictly exogenous instrument for yit2.
References

(To be added.)
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What’s New in Econometrics NBER, Summer 2007

Lecture 7, Tuesday, July 31th, 11.00-12.30pm

Bayesian Inference

1. Introduction

In this lecture we look at Bayesian inference. Although in the statistics literature ex-

plicitly Bayesian papers take up a large proportion of journal pages these days, Bayesian

methods have had very little impact in economics. This seems to be largely for historial rea-

sons. In many empirical settings in economics Bayesian methods appear statistically more

appropriate, and computationally more attractive, than the classical or frequentist methods

typically used. Recent textbooks discussing modern Bayesian methods with an applied focus

include Lancaster (2004) and Gelman, Carlin, Stern and Rubin (2004).

One important consideration is that in practice frequentist and Baeysian inferences are

often very similar. In a regular parametric model, conventional confidence intervals around

maximum likelihood (that is, the maximum likelihood estimate plus or minus 1.96 times the

estimated standard error), which formally have the property that whatever the true value of

the parameter is, with probability 0.95 the confidence interval covers the true value, can in

fact also be interpreted as approximate Bayesian probability intervals (that is, conditional

on the data and given a wide range of prior distributions, the posterior probability that the

parameter lies in the confidence interval is approximately 0.95). The formal statement of

this remarkable result is known as the Bernstein-Von Mises theorem. This result does not

always apply in irregular cases, such as time series settings with unit roots. In those cases

there are more fundamental differences between Bayesian and frequentist methods.

Typically a number of reasons are given for the lack of Bayesian methods in econometrics.

One is the difficulty in choosing prior distributions. A second reason is the need for a fully

specified parametric model. A third is the computational complexity of deriving posterior

distributions. None of these three are compelling.
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Consider first the specification of the prior distribution. In regular cases the influence of

the prior distribution disappears as the sample gets large, as formalized in the Bernstein-Von

Mises theorem. This is comparable to the way in which in large samples normal approx-

imations can be used for the finite sample distributions of classical estimators. If, on the

other hand, the posterior distribution is quite sensitive to the choice of prior distribution,

then it is likely that the sampling distribution of the maximum likelihood estimator is not

well approximated by a normal distribution centered at the true value of the parameter in a

frequentist analysis.

A conventional Bayesian analysis does require a fully specified parameter model, as well

as a prior distribution on all the parameters of this model. In frequentist analyses it is

often possible to specify only part of the model, and use a semi-parametric approach. This

advantage is not as clear cut as it may seem. When the ultimate questions of interest do

not depend on certain features of the distribution, the results of a parametric model are

often robust given a flexible specification of the nuisance functions. As a result, extending

a semi-parametric model to a fully parametric one by flexibly modelling the nonparametric

component often works well in practice. In addition, Bayesian semi-parametric methods

have been developed.

Finally, traditionally computational difficulties held back applications of Bayesian meth-

ods. Modern computational advances, in particular the development of markov chain monte

carlo methods, have reduced, and in many cases eliminated, these difficulties. Bayesian anal-

yses are now feasible in many settings where they were not twenty years ago. There are now

few restrictions on the type of prior distributions that can be considered and the dimension

of the models used.

Bayesian methods are especially attractive in settings with many parameters. Examples

discussed in these notes include panel data with individual-level heterogeneity in multiple

parameters, instrumental variables with many instruments, and discrete choice data with

multiple unobserved product characteristics. In such settings, methods that attempt to es-

timate every parameter precisely without linking it to similar parameters, often have poor
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repeated sampling properties. This shows up in Bayesian analyses in the dogmatic poste-

rior distributions resulting from flat prior distributions. A more attractive approach, that

is succesfuly applied in the aforementioned examples, can be based on hierarchical prior

distributions where the parameters are assumed to be drawn independently from a common

distribution with unknown location and scale. The recent computational advances make

such models feasible in many settings.

2. Bayesian Inference

The formal set up is the following: we have a random variable X, which is known to have

a probability density, or probability mass, function conditional on an unknown parameter θ.

We are interested the value of the parameter θ, given one or more independent draws from

the conditional distribution of X given θ. In addition we have prior beliefs about the value

of the parameter θ. We will capture those prior beliefs in a prior probability distribution.

We then combine this prior distribution and the sample information, using Bayes’ theorem,

to obtain the conditional distribution of the parameter given the data.

2.1 The General Case

Now let us do this more formally. There are two ingredients to a Bayesian analysis. First

a model for the data given some unknown parameters, specified as a probability (density)

function:

fX |θ(x|θ).

As a function of the parameter this is called the likelihood function, and denoted by L(θ)

or L(θ|x). Second, a prior distribution for the parameters, p(θ). This prior distribution

is known to, that is, choosen by the researcher. Then, using Bayes’ theorem we calculate

the conditional distribution of the parameters given the data, also known as the posterior

distribution,

p(θ|x) =
fX,θ(x, θ)

fX(x)
=

fX |θ(x|θ) · p(θ)
∫

fX |θ(x|θ) · p(θ)dθ
.

In this step we often use a shortcut. First note that, as a function of θ, the conditional
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density of θ given X is proportional to

p(θ|x) ∝ fX |θ(x|θ) · p(θ) = L(θ|x) · p(θ).

Once we calculate this product, all we have to do is found the constant that makes this

expression integrate out to one as a function of the parameter. At that stage it is often easy

to recognize the distribution and figure out through that route what the constant is.

2.2 A Normal Example with Unknown Mean and Known Variance, and a

Single Observation

Let us look at a simple example. Suppose the conditional distribution of X given the

parameter µ is normal with mean µ and variance 1, denoted by N (µ, 1). Suppose we choose

the prior distribution for µ to be normal with mean zero and variance 100, N (0, 100). What

is the posterior distribution of µ given X = x? The posterior distribution is proportional to

fµ|X(µ|x) ∝ exp

(

−1

2
(x− µ)2

)

· exp

(

− 1

2 · 100µ2

)

= exp−1

2

(

x2 − 2xµ + µ2 + µ2/100

)

∝ exp

(

− 1

2(100/101)

(

µ − (100/101)x
)2

)

.

This implies that the conditional distribution of µ given X = x is normal with mean

(100/101) · x and variance 100/101, or N (x · 100/101, 100/101).

In this example the model was a normal distribution for X given the unknown mean µ,

and we choose a normal prior distribution. This was a very convenient choice, leading the

posterior distribution to be normal as well. In this case the normal prior distribution is a

conjugate prior distribution, implying that the posterior distribution is in the same family of

distributions as the prior distribution, allowing for analytic calculations. If we had choosen

a different prior distribution it would typically not have been possible to obtain an analytic

expression for the posterior distribution.

Let us continue the normal distribution example, but generalize the prior distribution.

Suppose that given µ the random variable X has a normal distribution with mean µ and
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known variance σ2, or N (µ, σ2). The prior distribution for µ is normal with mean µ0 and

variance τ 2, or N (µ0, τ
2). Then the posterior distribution is proportional to:

fµ|X(µ|x) ∝ exp

(

− 1

2σ2
(x − µ)2

)

· exp

(

− 1

2 · τ 2
(µ − µ0)

2

)

∝ exp−1

2

(

x2

σ2
− 2xµ

σ2
+

µ2

σ2
+

µ2

τ 2
− 2µµ0

τ 2
+

µ2
0

τ 2

)

∝ exp−1

2

(

µ2
σ2 + τ 2

τ 2σ2
− µ

2xτ 2 + 2µ0σ
2

τ 2 · σ2

)

∝ exp− 1

2(1/(1/τ 2 + 1/σ2))

(

(µ − (x/σ2 + µ0/τ
2)/(1/σ2 + 1/τ 2)

)

∼ N
(

x/σ2 + µ0/τ
2

1/σ2 + 1/τ 2
,

1

1/τ 2 + 1/σ2)

)

.

The result is quite intuitive: the posterior mean is a weighted average of the prior mean

µ0 and the observation x with weights adding up to one and proportional to the precision

(defined as one over the variance), 1/σ2 for x and 1/τ 2 for µ0:

E[µ|X = x] =
x
σ2 + µ0

τ2

1

σ2 + 1

τ2

.

The posterior precision is obtained by adding up the precision for each component

1

V(µ|X)
=

1

σ2
+

1

τ 2
.

So, what you expect ex post, E[µ|X], that is, after seeing the data, is a weighted average

of what you expected before seeing the data, E[µ] = µ0, and the observation, X, with the

weights determined by their respective variances.

There are a number of insights obtained by studying this example more carefully. Suppose

we are really sure about the value of µ before we conduct the experiment. In that case we

would set τ 2 small and the weight given to the observation would be small, and the posterior

distribution would be close to the prior distribution. Suppose on the other hand we are

very unsure about the value of µ. What value for τ should we choose? Obviously a large

value, but what is the limit? We can in fact let τ go to infinity. Even though the prior

distribution is not a proper distribution anymore if τ 2 = ∞, the posterior distribution is
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perfectly well defined, namely µ|X ∼ N (X, σ2). In that case we have an improper prior

distribution. We give equal prior weight to any value of µ. That would seem to capture

pretty well the idea that a priori we are ignorant about µ. This is the idea of looking for

an relatively uninformative prior distribution. This is not always easy, and the subject of

a large literature. For example, a flat prior distribution is not always uninformative about

particular functions of parameters.

2.3 A Normal Example with Unknown Mean and Known Variance and Mul-

tiple Observations

Now suppose we have N independent draws from a normal distribution with unknown

mean µ and known variance σ2. Suppose we choose, as before, the prior distribution to be

normal with mean µ0 and variance τ 2, or N (µ0, τ
2).

The likelihood function is

L(µ|σ2, x1, . . . , xN ) =

N
∏

i=1

1√
2πσ2

exp

(

− 1

2σ2
(xi − µ)2

)

,

so that with a normal (µ0, τ
2) prior distribution the posterior distribution is proportional to

p(µ|x1, . . . , xN ) ∝ exp

(

− 1

2τ 2
(µ − µ0)

2

)

·
N
∏

i=1

exp

(

− 1

2σ2
(xi − µ)2

)

.

Thus, with N observations x1, . . . , xN we find, after straightforward calculations,

µ|X1, . . . , XN ∼ N
(

µ0/τ
2 +

∑

xi/σ
2

1/τ 2 + N/σ2
,

1

1/τ 2 + N/σ2

)

.

2.4 The Normal Distribution with Known Mean and Unknown Variance

Let us also briefly look at the case of a normal model with known mean and unknown

variance. Thus,

Xi|σ2 ∼ N (0, σ2),

and X1, . . . , XN independent given σ2. The likelihood function is

L(σ2) =
N
∏

i=1

σ−N exp

(

− 1

2σ2
X2

i

)

.
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Now suppose that the prior distribution for σ2 is, for some fixed S2
0

and K0, such that the

distribution of σ−2 · S2
0 · K0 is chi-squared with K0 degrees of freedom. In other words, the

prior distribution of σ−2 is (S2
0 · K0)

−1 times a chi-squared distribution with K0 degrees of

freedom. Then the posterior distribution of σ−2 is (S2
0
· K0 +

∑

i X
2
i )−1 times a chi-squared

distribution with K0 + N degrees of freedom, so this is a conjugate prior distribution.

3. The Bernstein-Von Mises Theorem

Let us go back to the normal example with N observations, and unknown mean and

known variance. In that case with a normal N (µ0, τ
2) prior distribution the posterior for µ

is

µ|x1, . . . , xN ∼ N
(

x · 1

1 + σ2/(N · τ 2)
+ µ0 ·

σ2/(Nτ 2)

1 + σ2/(Nτ 2)
,

σ2/N

1 + σ2/(Nτ 2)

)

.

When N is very large, the distribution of
√

N (µ−x̄) conditional on the data is approximately

√
N (x̄− µ)|x1, . . . , xN ∼ N (0, σ2).

In other words, in large samples the influence of the prior distribution disappears, unless

the prior distribution is choosen particularly badly, e.g., τ 2 equal to zero. This is true in

general, i.e., for different models and different prior distributions. Moreover, in a frequentist

analysis we would find that in large samples (and in this specific normal example even in

finite samples),

√
N (x̄− µ)|µ ∼ N (0, σ2).

Let us return to the Bernoulli example to see the same point. Suppose that conditional on

the parameter P = p, the random variables X1, X2, . . . , XN are independent with Bernoulli

distributions with probability p. Let the prior distribution of P be Beta with parameters α

and β, or B(α, β). Now consider the conditional distribution of P given X1, . . . , XN :

fP |X1,...,XN
(p|x) ∝ pα−1+

P

N

i=1
Xi · (1 − p)β−1+N−

P

N

i=1
Xi,

which is a Beta distribution, B(α − 1 +
∑N

i=1
Xi, β − 1 + N − ∑N

i=1
Xi), with mean and
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variance

E[P |X1, . . . , XN ] =
α +

∑N

i=1
Xi

α + β + N
, and V(P ) =

(α +
∑N

i=1
Xi)(β + N − ∑N

i=1
Xi)

(α + β + N)2(α + β + 1 + N)
.

What happens if N gets large? Let p̂ =
∑

i Xi/N be the relative frequency of success (which

is the maximum likelihood estimator for p). Then the mean and variance converge to

E[P |X1, . . . , XN ] ≈ p̂,

and

V(P ) ≈ 0.

As the sample size gets larger, the posterior distribution becomes concentrated at a value

that does not depend on the prior distribution. This in fact can be taken a step further.

In this example, the limiting distribution of
√

N · (P − p̂) conditional on the data, can be

shown to be

√
N (p̂ − P |x1, . . . , xN

d−→ N (0, p̂(1 − p̂)),

again irrespective of the choice of α and β. The interpretation of this result is very impor-

tant: in large sample the choice of prior distribution is not important in the sense that the

information in the prior distribution gets dominated by the sample information. That is,

unless your prior beliefs are so strong that they cannot be overturned by evidence (i.e., the

prior distribution is zero over some important range of the parameter space), at some point

the evidence in the data outweights any prior beliefs you might have started out with.

This is known as the Bernstein-von Mises Theorem. Here is a general statement for the

scalar case. Let the information matrix Iθ at θ:

Iθ = −E

[

∂2

∂θ∂θ′
ln fX(x|θ)

]

= −
∫

∂2

∂θ∂θ′
ln fX(x|θ)fX(x|θ)dx,

and let σ2 be the inverse at a fixed value θ0.

σ2 = I−1

θ0
.
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Let p(θ) be the prior distribution, and pθ|X1,...,XN
(θ|X1, . . . , XN ) be the posterior distribution.

Now let us look at the distribution of a transformation of θ, γ =
√

N(θ − θ0), with density

pγ|X1,...,XN
(γ|X1, . . . , XN ) = pθ|X1,...,XN

(θ0 +
√

N ·γ|X1, . . . , XN )/
√

N . Now let us look at the

posterior distribution for θ if in fact the data were generated by f(x|θ) with θ = θ0. In that

case the posterior distribution of γ converges to a normal distribution with mean zero and

variance equal to σ2 in the sense that

sup
γ

∣

∣

∣

∣

pγ|X1,...,XN
(γ|X1, . . . , XN ) − 1√

2πσ2
exp

(

− 1

2σ2
γ2

)
∣

∣

∣

∣

−→ 0.

See Van der Vaart (2001), or Ferguson (1996). At the same time, if the true value is θ0, then

the mle θ̂mle also has a limiting distribution with mean zero and variance σ2:

√
N (θ̂ml − θ0)

d−→ N (0, σ2).

The implication is that we can interpret confidence intervals as approximate probability

intervals from a Bayesian perspective. Specifically, let the 95% confidence interval be [θ̂ml −
1.96 · σ̂/

√
N, θ̂ml + 1.96 · σ̂/

√
N ]. Then, approximately,

Pr
(

θ̂ml − 1.96 · σ̂/
√

N ≤ θ ≤ θ̂ml + 1.96 · σ̂/
√

N
∣

∣

∣
X1, . . . , XN

)

−→ 0.95.

There are important cases where this result does not hold, typically when convergence

to the limit distribution is not uniform. One is the unit-root setting. In a simple first

order autoregressive example it is still the case that with a normal prior distribution for the

autoregressive parameter the posterior distribution is normal (see Sims and Uhlig, 1991).

However, if the true value of the autoregressive parameter is unity, the sampling distribution

is not normal even in large samples. In that case one has to take a more principled stand

whether one wants to make subjective probability statements, or frequentist claims.

4. Markov Chain Monte Carlo Methods

Are we really restricted to choosing the prior distributions in these conjugate families as

we did in the examples so far? No. The posterior distributions are well defined irrespective

of conjugacy. Conjugacy only simplifies the computations. If you are outside the conjugate
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families, you typically have to resort to numerical methods for calculating posterior moments.

Recently many methods have been developed that make this process much easier, including

Gibbs sampling, Data Augmentation, and the Metropolis-Hastings algorithm. All three are

examples of M arkov-Chain-Monte-Carlo or MCMC methods.

The general idea is to construct a chain, or sequence of values, θ0, θ1, . . . , such that for

large k θk can be viewed as a draw from the posterior distribution of θ given the data. This

is implemented through an algorithm that, given a current value of the parameter vector θk,

and given the data X1, . . . , XN draws a new value θk+1 from a distribution f(·) indexed by

θk and the data:

θk+1 ∼ f(θ|θk, data),

in such a way that if the original θk came from the posterior distribution, then so does θk+1

(although θk and θk+1 in general will not be independent draws)

θk|data ∼ p(θ|data), then θk+1|data ∼ p(θ|data).

Even if we have such an algorithm, the problem is that in principle we would need a starting

value θ0 that such that

θ0 ∼ p(θ|data).

However, in many cases, irrespective of where we start, that is, irrespective of θ0, as k −→ ∞,

it will be the case that the distribution of the parameter conditional only on the data

converges to the posterior distribution:

θk|data
d−→ p(θ|data),

as k −→ ∞.

If that is true, then we can just pick a θ0, run the chain for a long time, collect the

values θ0, . . . , θK for a large value of K, and approximate the posterior distribution by the

distribution of θK0
, . . . , θK . For example, the mean and standard deviation of the posterior
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distribution would be estimated as

Ê[θ|data] =
1

K − K0 + 1

K
∑

k=K0

θk,

and

V̂[θ|data] =
1

K −K0 + 1

K
∑

k=K0

(

θk − Ê[θ|data]
)2

.

The first K0 − 1 iterations are discarded to let algorithm converge to the stationary distri-

bution, or “burn in.”

4.1 Gibbs Sampling

The idea being the Gibbs sampler is to partition the vector of parameters θ into two (or

more) parts, θ′ = (θ′1, θ
′
2). Instead of sampling θk+1 directly from a conditional distribution

of

f(θ|θk, data),

we first sample θ1,k+1 from the conditional distribution of

p(θ1|θ2,k, data),

and then sample θ2,k+1 from the conditional distribution of

p(θ2|θ1,k+1, data).

It is clear that if (θ1,k, θ2,k) is from the posterior distribution, then so is (θ1,k, θ2,k).

4.2 Data Augmentation

This is best illustrated with an example. Suppose we are interested in estimating the

parameters of a censored regression or Tobit model. There is a latent variable

Y ∗
i = X ′

iβ + εi,

with εi|Xi ∼ N (0, 1). (I assume the variance is known for simplicity. This is not essential).

We observe

Yi = max(0, Y ∗
i ),
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and the regressors Xi. Suppose the prior distribution for β is normal with some mean µ,

and some covariance matrix Ω.

The posterior distribution for β does not have a closed form expression. This is not due

to an awkward choice for the prior distribution, because there is no conjugate family for this

problem. There is however a simple way of obtaining draws from the posterior distribution

using data augmentation in combination with the Gibbs sampler. The first key insight is to

view both the vector Y∗ = (Y ∗
1 , . . . , Y ∗

N) and β as unknown random variables. The Gibbs

sampler consists of two steps. First we draw all the missing elements of Y∗ given the current

value of the parameter β, say βk. This involves drawing a series of truncated univariate

normal random variables:

Y ∗
i |β, data ∼ T N (X ′

iβ, 1, 0) ,

if observation i is truncated, where T N (µ, σ2, c) denotes a truncated normal distribution

with mean and variance (for the not truncated normal distribution) µ and σ2, and truncation

point c (truncated from above). (Note that we do not need to draw the observed values of

Y ∗
i .) Second, we draw a new value for the parameter, βk+1 given the data and given the

(partly drawn) Y∗. The latter is easy given the normal prior distribution: the posterior is

normal:

p (β|data,Y∗) ∼ N
(

(

X′X + Ω−1
)−1 ·

(

X′Y + Ω−1µ
)

,
(

X′X + Ω−1
)−1

)

.

In this example it would still have been feasible to do evaluate the likelihood function di-

rectly using numerical integration. Another example where the computational advantages

of using data augmentation are even more striking is the multinomial probit model with an

unrestricted covariance matrix. See Rossi, Allenby and McCulloch (2005).

4.3 Metropolis-Hastings

We are again interested in p(θ|data). In this case p(θ|data) is assumed to be easy to

evaluate, but difficult to draw from. Suppose we have a current value θk. Then we draw a new

candidate value for the chain from a candidate distribution q(θ|θk, data). This distribution
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may (but need not) depend on θk. Denote the candidate value by θ. We will either accept

the new value, or keep the old value. Then we calculate the ratio

r(θk, θ) =
p(θ|data) · q(θk|θ, data)

p(θk|data) · q(θ|θk, data)
.

The probability that the new draw θ is accepted is

ρ(θk, θ) = min (1, r(θk, θ)) ,

so that

Pr (θk+1 = θ) = ρ(θk, θ), and Pr (θk+1 = θk) = 1 − ρ(θk, θ).

The optimal choice for the candidate distribution is

q∗(θ|θk, data) = p(θ|data),

so that ρ(θk, θ) = 1 and every draw will get accepted. The trouble is that it is difficult to

draw from this distribution. In practice you want to have a relatively dispersed distribution

as the candidate distribution, so that the ratio r(θk, θ) does not get too large.

5. Examples

Here we discuss a number of applications of Bayesian methods. All models contain

parameters that are difficult to estimate consistently, and in all cases numerical methods are

required to obtain draws from the posterior distribution. The first two are about random

coeffiecients. In that case Bernstein-Von Mises would only apply to the individual level

parameters if the number of observations per individual would get large.

5.1 Demand Models with Unobserved Heterogeneity in Preferences

Rossi, McCulloch, and Allenby (1996, RMA) are interested in the optimal design of

coupon policies. Supermarkets can choose to offer identical coupons for a particular product

(tuna cans is the example they use). Alternatively, they may choose to offer differential

coupons based on consumer’s fixed characteristics. Taking this ever further, they could make

the value of the coupon a function of the purchase history of the individual, for example
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tailoring the amount of the discount offered in the coupon to the evidence for price sensitivity

contained in purchase patterns. RMA set out to estimate the returns to various coupon

policies. It is clear that for this investigation to be meaningful one needs to allow for

household-level heterogeneity in taste parameters and price elasticities. Even with large

amounts of data available, there will be many households for whom these parameters cannot

be estimated precisely. RMA therefore use a hieararchical or random coefficients model.

RMA model households choosing the product with the highest utility, where utility for

household i, product j, j = 0, 1, . . . , J , at purchase time t is

Uijt = X ′
itβi + εijt,

with the εijt independent accross households, products and purchase times, and normally

distributed with product-specific variances σ2
j (and σ2

0
normalized to one). The Xit are

observed choice characteristics that in the RMA application include price, some marketing

variables, as well as brand dummies. All choice characteristics are assumed to be exogenous,

although that assumption may be questioned for the price and marketing variables. Because

for some households we have few purchases, it is not possible to accurately estimate all βi

parameters. RMA therefore assume that the household-specific taste parameters are random

draws from a normal distribution centered at Z ′
iΓ:

βi = Z ′
iΓ + ηi, ηi ∼ N (0, Σ).

Now Gibbs sampling can be used to obtain draws from the posterior distribution of the βi.

To be a little more precise, let us describe the steps in the Gibbs sampler for this example.

For more details see RMA. RMA use a normal prior distribution for Γ, a Wishart prior

distribution for Σ−1, and inverse Gamma prior distributions for the σ2
j . To implement the

Gibbs sampler, the key is to treat the unobserved utilities as parameters.

The first step is to draw the household parameters βi given the utilities Uijt and the

common parameters Γ, Σ, and σ2
j . This is straightforward, because we have a standard

normal linear model for the utilities, with a normal prior distribution for βi with parameters
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Z ′
iΓ and variance Σ, and Ti observations. We can draw from this posterior distribution for

each household i.

In the second step we draw the σ2
j using the results for the normal distribution with

known mean and unknown variance.

The third step is to draw from the posterior of Γ and Σ, given the βi. This again is just

a normal linear model, now with unknown mean and unknown variance.

The fourth step is to draw the unobserved utilities given the βi and the data. Doing

this one household/choice at a time, conditioning on the utilities for the other choices, this

merely involves drawing from a truncated normal distribution, which is simple and fast.

For some households, those with many recorded purchases and sufficient variation in

product characteristics, the posterior distribution will be tight, whereas for others there may

be little information in the data and the posterior distribution, conditional on the data as

well as Γ and Σ, will essentially be the prior distribution for βi, which is N (Z ′
iΓ, Σ).

To think about optimal coupon policies given a particular information set it is useful

to think first about the posterior distribution of the household specific parameters βi. If

a supermarket had full information about the household parameters βi, there would be no

additional value in the household characteristics or the purchase history. When we therefore

compare a blanket coupon policy (where every household would receive a coupon with the

same value) with one that depends on a larger information set that household demographics,

or one that also includes purchase histories, the key question is how much precision the

information adds about the household level parameters. Specifically, how does the marginal

distribution of the household parameters compare with the conditional distribution given

purchase histories or given demographics. To make this specific, suppose that the there is

only one choice characteristic, price, with household parameter βi.

The starting point is the case with no household information whatsoever. We can simulate

draws from this distribution by drawing from the conditional distribution of βi given the data

for randomly selected households. In the second case we allow conditioning on the household
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demographic characteristics Zi. This leads to less dispersed posterior distributions for the

price coefficients. In the third case we also condition on purchase histories. Figure 1, taken

from RMA shows for ten households the boxplots of the posterior distribution of the price

coefficient under these information sets, one can see the increased precision that results from

conditioning on the purchase histories.

5.2 Panel Data Models with Multiple Individual Specific Parameters

Chamberlain and Hirano (1999, CH), see also Hirano (2002), are interested in deriving

predictive distributions for earnings using longitudinal data. They are particularly interested

in allowing for unobserved individual-level heterogeneity in earnings variances. The specific

model they use assumes that log earnings Yit follow the process

Yit = X ′
iβ + Vit + αi + Uit/hi.

The key innovation in the CH study is the individual variation in the conditional variance,

captured by hi. In this specification X ′
iβ is a systematic component of log earnings, similar

to that in specifications used in Abowd and Card () (CH actually use a more general non-

linear specification, but the simpler one suffices for the points we make here.) The second

component in the model, Vit, is a first order autoregressive component,

Vit = γ · Vit−1 + Wit,

where

Vi1 ∼ N (0, σ2

v), Wit ∼ N (0, σ2

w).

The first factor in the last component has a standard normal distribution,

Uit ∼ N (0, 1).

Analyzing this model by attempting to estimate the αi and hi directly would be misguided.

From a Bayesian perspective this corresponds to assuming a flat prior distribution on a

high-dimensional parameter space.
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To avoid such pitfalls CH model αi and hi through a random effects specification.

αi ∼ N (0, σ2

α). and hi ∼ G(m/2, τ/2).

In their empirical application using data from the Panel Study of Income Dynamics (PSID),

CH find strong evidence of heterogeneity in conditional variances. Some of this heterogeneity

is systematically associated with observed characteristics of the individual such as educa-

tion, with higher educated individuals experiences lower levels of volatility. Much of the

heterogeneity, however, is within groups homogenous in observed characteristics.

The following table, from CH, presents quantiles of the predictive distribution of the

conditional standard deviation 1/
√

hi for different demographic groups: Up to here one

Table 1: quantiles of the predictive distribution of the conditional standard
deviation

Quantile
Sample 0.05 0.10 0.25 0.50 0.75 0.90 0.95

All (N=813) 0.04 0.05 0.07 0.11 0.20 0.45 0.81
High School Dropouts (N=37) 0.06 0.08 0.11 0.16 0.27 0.49 0.79
High School Graduates (N=100) 0.04 0.05 0.06 0.11 0.21 0.49 0.93
College Graduates (N=122) 0.03 0.04 0.05 0.09 0.18 0.40 0.75

could have done essentially the same using frequentist methods. One could estimate first the

common parameters of the model, β, σ2
v, σ2

w, m, τ , and σ2
α by maximum likelihood given the

specification of the model. Conditional on the covariates one could for each demographic

group write the quantiles of the conditional standard deviation in terms of these parameters

and obtain point estimates for them.

However, CH wish to go beyond this and infer individual-level predictive distributions

for earnings. Taking a particular individual, one can derive the posterior distribution of

αi, hi, β, σ2
v, and σ2

w, given that individual’s earnings as well as other earnings, and predict

future earnings. To illustrate this CH report earnings predictions for a number of individuals.
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Taking two of their observations, one an individual with a sample standard deviation of log

earnings of 0.07 and one an individual with a sample standard deviation of 0.47, they report

the difference between the 0.90 and 0.10 quantile for the log earnings distribution for these

individuals 1 and 5 years into the future.

Table 2:

0.90-0.10 quantile
individual sample std 1 year out 5 years out

321 0.07 0.32 0.60

415 0.47 1.29 1.29

The variation reported in the CH results may have substantial importance for variation

in optimal savings behavior by individuals.

5.3 Instrumental Variables with Many Instruments

In Chamberlain and Imbens (1995, CI) analyze the many instrument problem from a

Bayesian perspective. CI use the reduced form for years of education,

Xi = π0 + Z ′
iπ1 + ηi,

combined with a linear specification for log earnings,

Yi = α + β · Z ′
iπ1 + εi.

CI assume joint normality for the reduced form errors,

(

εi

ηi

)

∼ N (0, Ω).

This gives a likelihood function

L(β, α, π0, π1, Ω|data).
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The focus of the CI paper is on inference for β, and the sensitivity of such inferences to the

choice of prior distribution in settings with large numbers of instruments. In that case the

dimension of the parameter space is high. Hence a flat prior distribution may in fact be a

poor choice. One way to illustrate see this is that a flat prior on π1 leads to a prior on the

sum
∑K

k=1
π2

ik that puts most probability mass away from zero. If in fact the concern is that

collectively, the instruments are all weak, one should allow for this possibility in the prior

distribution. To be specific, if the prior distribution for the π1k is dispersed, say N (0, 1002),

then the prior distribution for the
∑

i π
2
1k is 100 times a chi-squared random variable with

degrees of freedom equal to K, implying that a priori the concentration parameter is known

to be large.

CI then show that the posterior distribution for β, under a flat prior distribution for

π1 provides an accurate approximation to the sampling distribution of the TSLS estimator,

providing both a further illustration of the lack of appeal of TSLS in settings with many

instruments, and the unattractiveness of the flat prior distribution.

As an alternative CI suggest a hierarchical prior distribution with

π1k ∼ N (µπ, σ2

π).

In the Angrist-Krueger 1991 compulsory schooling example there is in fact a substantive

reason to believe that σ2
π is small. If the π1k represent the effect of the differences in the

amount of required schooling, one would expect the magnitude of the π1k to be less than the

amount of variation in the compulsory schooling. The latter is less than one year. Since any

distribution with support on [0, 1] has a variance less than or equal to 1/12, the standard

deviation of the first stage coefficients should not be more than
√

1/12 = 0.289. Using the

Angrist-Krueger data CI find that the posterior distribution for σπ is concentrated close to

zero, with the posterior mean and median equal to 0.119.

5.4 Binary Response with Endogenous Discrete Regressors

Geweke, Gowrisankaran, and Town (2003, GGT) are interested in estimating the effect of

hospital quality on mortality, taking into account possibly non-random selection of patients
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into hospitals. Patients can choose from 114 hospitals. Given their observed individual

characteristics Zi, latent mortality is

Y ∗
i =

113
∑

j=1

Cijβj + Z ′
iγ + εi,

where Cij is an indicator for patient i going to hospital j. The focus is on the hospital effects

on mortality, βj. Realized mortality is

Yi = 1{Y ∗
i ≥ 0}.

The concern is about selection into the hospitals, and the possibility that this is related to

unobserved components of latent mortality GGT model latent the latent utility for patient

i associated with hospital j as

C∗
ij = X ′

ijα + ηij,

where the Xij are hospital-individual specific characteristics, including distance to hospital.

Patient i then chooses hospital j if

C∗
ij ≥ Cik, for k = 1, . . . , 114.

The endogeneity is modelled through the potential correlation between ηij and εi. Specifi-

cally, GGT asssume that as

εi =

113
∑

j=1

ηij · δj + ζi,

where the ζi is a standard normal random variable, independent of the other unobserved

components. GGT model the ηij as standard normal, independent across hospitals and

across individuals. This is a very strong assumption, implying essentially the independence

of irrelevant alternatives property. One may wish to relax this by allowing for random

coefficients on the hospital characteristics.

Given these modelling decisions GGT have a fully specified joint distribution of hospi-

tal choice and mortality given hospital and individual characteristics. The log likelihood
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function is highly nonlinear, and it is unlikely it can be well approximated by a quadratic

function. GGT therefore use Bayesian methods, and in particular the Gibbs sampler to ob-

tain draws from the posterior distribution of interest. In their empirical analysis GGT find

strong evidence for non-random selection. They find that higher quality hospitals attract

sicker patients, to the extent that a model based on exogenous selection would have led to

misleading conclusions on hospital quality.

5.5 Discrete Choice Models with Unobserved Choice Characteristics

Athey and Imbens (2007, AI) study discrete choice models, allowing both for unobserved

individual heterogeneity in taste parameters as well as for multiple unobserved choice charac-

teristics. In such settings the likelihood function is multi-modal, and frequentist approxima-

tions based on quadratic approximations to the log likelihood function around the maximum

likelihood estimator are unlikely to be accurate. The specific model AI use assumes that the

utility for individual i in market t for choice j is

Uijt = X ′
itβi + ξ′jγi + εijt,

where Xit are market-specific observed choice characteristics, ξj is a vector of unobserved

choice characteristics, and εijt is an idiosyncratic error term, independent accross market,

choices, and individuals, with a normal distribution centered at zero, and with the variance

normalized to unity. The individual-specific taste parameters for both the observed and

unobserved choice characteristics normally distributed:

(

βi

γi

)

|Zi ∼ N (∆Zi, Ω),

with the Zi observed individual characteristics.

AI specify a prior distribution on the common parameters, ∆, and Ω, and on the values of

the unobserved choice characteristics ξj . Using gibbs sampling and data augmentation with

the unobserved utilities as unobserved random variables makes sampling from the posterior

distribution conceptually straightforward even in cases with more than one unobserved choice

characteristic. In contrast, earlier studies using multiple unobserved choice characteristics
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(Elrod and Keane, 1995; Goettler and Shachar, 2001), using frequentist methods, faced much

heavier computational burdens.



Imbens/Wooldridge, Lecture Notes 7, NBER, Summer ’07 23

References

Athey, S., and G. Imbens, (2007), “Discrete Choice Models with Multiple Unobserved

Product Characteristics,” International Economic Review, forthcoming.

Box, G., and G. Tiao, (1973), Bayesian Inference in Statistical Analysis, Wiley, NY.

Chamberlain, G., and K. Hirano, (1996), “Hirearchical Bayes Models with Many

Instrumental Variables,” NBER Technical Working Paper 204.

Chamberlain, G., and G. Imbens, (1999), “Predictive Distributions based on Lon-

gitudinal Eearnings Data,” Annales d’Economie et de Statistique, 55-56, 211-242.

Elrod, T., and M. Keane, (1995), “A Factor-Analytic Probit Model for Representing

the Market Structure in Panel Data, ”Journal of Marketing Research, Vol. XXXII, 1-16.

Ferguson, T., (1996), A Course in Large Sample Theory, Chapman and Hall, new

York, NY.

Gelman, A., J. Carlin, H. Stenr, and D. Rubin, (2004), Bayesian Data Analysis,

Chapman and Hall, New York, NY.

Gelman, A., and J. Hill, (2007), Data Analysis Using Regression and Multilevel/Hierarchical

Models, Cambridge University Press.

Geweke, J., G. Gowrisankaran, and R. Town, (2003), “Bayesian Inference for

Hospital Quality in a Selection Model,” Econometrica, 71(4), 1215-1238.

Geweke, J., (1997), “Posterior Simulations in Econometrics,” in Advances in Economics

and Econometrics: Theory and Applications, Vol III, Kreps and Wallis (eds.), Cambridge

University Press.

Gilks, W. S. Richardson and D. Spiegelhalter, (1996), Markvo Chain Monte

Carlo in Practice, Chapman and Hall, New York, NY.

Goettler, J., and R. Shachar (2001), “Spatial Competition in the Network Televi-



Imbens/Wooldridge, Lecture Notes 7, NBER, Summer ’07 24

sion Industry,” RAND Journal of Economics, Vol. 32(4), 624-656.

Lancaster, T., (2004), An Introduction to Modern Bayesian Econometrics, Blackwell

Publishing, Malden, MA.

Rossi, P., R. McCulloch, and G. Allenby, (1996), “The Value of Purchasing

History Data in Target Marketing,” Marketing Science, Vol 15(4), 321-340.

Rossi, P., G. Allbeny, and R. McCulloch, (2005), Bayesian Statistics and Mar-

keting, Wiley, Hoboken, NJ.

Sims, C., and H. Uhlig, (1991), “Understanding Unit Rotters: A Helicopter View,”

Econometrica, 59(6), 1591-1599.



Imbens/Wooldridge, Lecture Notes 8, Summer ’07

What’s New in Econometrics? NBER, Summer 2007
Lecture 8, Tuesday, July 31st, 2.00-3.00 pm

Cluster and Stratified Sampling
These notes consider estimation and inference with cluster samples and samples obtained

by stratifying the population. The main focus is on true cluster samples, although the case of
applying cluster-sample methods to panel data is treated, including recent work where the sizes
of the cross section and time series are similar. Wooldridge (2003, extended version 2006)
contains a survey, but some recent work is discussed here.
1. THE LINEAR MODEL WITH CLUSTER EFFECTS

This section considers linear models estimated using cluster samples (of which a panel data
set is a special case). For each group or cluster g, let ygm,xg, zgm : m  1, . . . ,Mg be the

observable data, where Mg is the number of units in cluster g, ygm is a scalar response, xg is a

1  K vector containing explanatory variables that vary only at the group level, and zgm is a

1  L vector of covariates that vary within (as well as across) groups.
1.1 Specification of the Model

The linear model with an additive error is

ygm    xg  zgm  vgm,m  1, . . . ,Mg;g  1, . . . ,G.     (1.1)

Our approach to estimation and inference in equation (1.1) depends on several factors,
including whether we are interested in the effects of aggregate variables  or
individual-specific variables . Plus, we need to make assumptions about the error terms. In
the context of pure cluster sampling, an important issue is whether the vgm contain a common

group effect that can be separated in an additive fashion, as in

vgm  cg  ugm,m  1, . . . ,Mg,     (1.2)

where cg is an unobserved cluster effect and ugm is the idiosyncratic error. (In the statistics

literature, (1.1) and (1.2) are referred to as a “hierarchical linear model.”) One important issue
is whether the explanatory variables in (1.1) can be taken to be appropriately exogenous.
Under (1.2), exogeneity issues are usefully broken down by separately considering cg and ugm.

Throughout we assume that the sampling scheme generates observations that are
independent across g. This assumption can be restrictive, particularly when the clusters are
large geographical units. We do not consider problems of “spatial correlation” across clusters,
although, as we will see, fixed effects estimators have advantages in such settings.

We treat two kinds of sampling schemes. The simplest case also allows the most flexibility

1
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for robust inference: from a large population of relatively small clusters, we draw a large
number of clusters (G), where cluster g has Mg members. This setup is appropriate, for

example, in randomly sampling a large number of families, classrooms, or firms from a large
population. The key feature is that the number of groups is large enough relative to the group
sizes so that we can allow essentially unrestricted within-cluster correlation. Randomly
sampling a large number of clusters also applies to many panel data sets, where the
cross-sectional population size is large (say, individuals, firms, even cities or counties) and the
number of time periods is relatively small. In the panel data setting, G is the number of
cross-sectional units and Mg is the number of time periods for unit g.

A different sampling scheme results in data sets that also can be arranged by group, but is
better interpreted in the context of sampling from different populations are different strata
within a population. We stratify the population into into G ≥ 2 nonoverlapping groups. Then,
we obtain a random sample of size Mg from each group. Ideally, the group sizes are large in

the population, hopefully resulting in large Mg. This is the perspective for the “small G” case

in Section 1.3.
1.2. Large Group Asymptotics

In this section I review methods and estimators justified when the asymptotic
approximations theory is with The theory with G →  and the group sizes, Mg, fixed is well

developed; see, for example, White (1984), Arellano (1987), and Wooldridge (2002, Chapters
10, 11). Here, the emphasis is on how one might wish to use methods robust to cluster
sampling even when it is not so obvious.

First suppose that the covariates satisfy

Evgm|xg, zgm  0,m  1, . . . ,Mg;g  1, . . . ,G.     (1.3)

For consistency, we can, of course, get by with zero correlation assumptions, but we use (1.3)
for convenience because it meshes well with assumptions concerning conditional second
moments. Importantly, the exogeneity in (1.3) only requires that zgm and vgm are uncorrelated.

In particular, it does not specify assumptions concerning vgm and zgp for m ≠ p. As we saw in

the linear panel data notes, (1.3) is called the “contemporaneous exogeneity” assumption when
m represents time. Allowing for correlation between vgm and zgp,m ≠ p is useful for some

panel data applications and possibly even cluster samples (if the covariates of one unit can
affect another unit’s response). Under (1.3) and a standard rank condition on the covariates,
the pooled OLS estimator, where we regress ygm on 1,xg, zgm,m  1, . . . ,Mg;g  1, . . . ,G, is

2
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consistent for  ≡ , ′, ′ ′ (as G →  with Mg fixed) and G -asymptotically normal.

Without more assumptions, a robust variance matrix is needed to account for correlation
within clusters or heteroskedasticity in Varvgm|xg, zgm, or both. When vgm has the form in

(1.2), the amount of within-cluster correlation can be substantial, which means the usual OLS
standard errors can be very misleading (and, in most cases, systematically too small). Write Wg

as the Mg  1  K  L matrix of all regressors for group g. Then the

1  K  L  1  K  L variance matrix estimator is

Avar̂POLS  ∑
g1

G

Wg
′ Wg

−1

∑
g1

G

Wg
′ v̂gv̂g

′ Wg ∑
g1

G

Wg
′ Wg

−1

    (1.4)

where v̂g is the Mg  1 vector of pooled OLS residuals for group g. This asymptotic variance

is now computed routinely using “cluster” options.
Pooled OLS estimation of the parameters in (1.1) ignores the within-cluster correlation of

the vgm; even if the procedure is consistent (again, with G →  and the Mg fixed), the POLS

estimators can be very inefficient. If we strengthen the exogeneity assumption to

Evgm|xg,Zg  0,m  1, . . . ,Mg;g  1, . . . ,G,     (1.5)

where Zg is the Mg  L matrix of unit-specific covariates, then we can exploit the presence of

cg in (1.2) in a generalized least squares (GLS) analysis. With true cluster samples, (1.5) rules

out the covariates from one member of the cluster affecting the outcomes on another, holding
own covariates fixed. In the panel data case, (1.5) is the strict exogeneity assumption on
zgm : m  1, . . . ,Mg that we discussed in the linear panel data notes The standard random

effects approach makes enough assumptions so that the Mg  Mg variance-covariance matrix

of vg  vg1,vg2, . . . ,vg,Mg ′ has the so-called “random effects” form,

Varvg  c
2jMg
′ jMg  u

2IMg ,     (1.6)

where jMg is the Mg  1 vector of ones and IMg is the Mg  Mg identity matrix. In the standard

setup, we also make the “system homoskedasticity” assumption,

Varvg|xg,Zg  Varvg.     (1.7)

It is important to understand the role of assumption (1,7): it implies that the conditional
variance-covariance matrix is the same as the unconditional variance-covariance matrix, but it
does not restrict Varvg; it can be any Mg  Mg matrix under (1.7). The particular random

effects structure on Varvg is given by (1.6). Under (1.6) and (1.7), the resulting GLS

3
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estimator is the well-known random effects (RE) estimator.
The random effects estimator ̂RE is asymptotically more efficient than pooled OLS under

(1.5), (1.6), and (1.7) as G →  with the Mg fixed. The RE estimates and test statistics are

computed routinely by popular software packages. Nevertheless, an important point is often
overlooked in applications of RE: one can, and in many cases should, make inference
completely robust to an unknown form of Varvg|xg,Zg.

The idea in obtaining a fully robust variance matrix of RE is straightforward and we
essentially discussed it in the notes on nonlinear panel data models. Even if Varvg|xg,Zg does

not have the RE form, the RE estimator is still consistent and G -asymptotically normal under
(1.5), and it is likely to be more efficient than pooled OLS. Yet we should recognize that the
RE second moment assumptions can be violated without causing inconsistency in the RE
estimator. For panel data applications, making inference robust to serial correlation in the
idiosyncratic errors, especially with more than a few time periods, can be very important.
Further, within-group correlation in the idiosyncratic errors can arise for cluster samples, too,
especially if underlying (1.1) is a random coefficient model,

ygm    xg  zgmg  vgm,m  1, . . . ,Mg;g  1, . . . ,G.     (1.8)

By estimating a standard random effects model that assumes common slopes , we effectively
include zgmg −  in the idiosyncratic error; this generally creates within-group correlation

because zgmg −  and zgpg −  will be correlated for m ≠ p, conditional on Zg. Also, the

idiosyncratic error will have heteroskedasticity that is a function of zgm. Nevertheless, if we

assume Eg|Xg,Zg  Eg ≡  along with (1.5), the random effects estimator still

consistently estimates the average slopes, . Therefore, in applying random effects to panel
data or cluster samples, it is sensible (with large G) to make the variance estimator of random
effects robust to arbitrary heteroskedasticity and within-group correlation.

One way to see what the robust variance matrix looks like for ̂RE is to use the pooled OLS
characterization of RE on a transformed set of data. For each g, define
̂g  1 − 1/1  Mĝc

2/̂u
21/2, where ̂c

2 and ̂u
2 are estimators of the variances of cg and

ugm, respectively. Then the RE estimator is identical to the pooled OLS estimator of

ygm − ̂gȳg on 1 − ̂g, 1 − ̂gxg, zgm − ̂gz̄g,m  1, . . . ,Mg;g  1, . . . ,G;     (1.9)

see, for example, Hsiao (2003). For fully robust inference, we can just apply the fully robust
variance matrix estimator in (1.4) but on the transformed data.

4
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With panel data, it may make sense to estimate an unrestricted version of Varvg,

especially if G is large. Even in that case, it makes sense to obtain a variance matrix robust to
Varvgm|xg,Zg ≠ Varvg, as the GEE literature does. One can also specify a particular

structure, such as an AR(1) model for the idiosyncratic errors. In any case, fully robust
inference is still a good idea.

In summary, with large G and relatively small Mg, it makes sense to compute fully robust

variance estimators even if we apply a GLS procedure that allows Varvg to be unrestricted.

Nothing ever guarantees Varvgm|xg,Zg  Varvg. Because RE imposes a specific structure

on Varvg, there is a strong case for making RE inference fully robust. When cg is in the error

term, it is even more critical to use robust inference when using pooled OLS because the usual
standard errors ignore within-cluster correlation entirely.

If we are only interested in estimating , the “fixed effects” (FE) or “within” estimator is
attractive. The within transformation subtracts off group averages from the dependent variable
and explanatory variables:

ygm − ȳg  zgm − z̄g  ugm − ūg,m  1, . . . ,Mg;g  1, . . . ,G,     (1.10)

and this equation is estimated by pooled OLS. (Of course, the xg get swept away by the

within-group demeaning.) Under a full set of “fixed effects” assumptions – which, unlike
pooled OLS and random effects, allows arbitrary correlation between cg and the zgm –

inference is straightforward using standard software. Nevertheless, analogous to the random
effects case, it is often important to allow Varug|Zg to have an arbitrary form, including

within-group correlation and heteroskedasticity. For panel data, the idiosyncratic errors can
always have serial correlation or heteroskedasticity, and it is easy to guard against these
problems in inference. Reasons for wanting a fully robust variance matrix estimator for FE
applied to cluster samples are similar to the RE case. For example, if we start with the model
(1.8) then zgm − z̄gg −  appears in the error term. As we discussed in the linear panel data

notes, the FE estimator is still consistent if Eg|zg1 − z̄g, . . . , zg,Mg − z̄g  Eg  , an

assumption that allows g to be correlated with z̄g. Nevertheless, ugm,ugp will be correlated for

m ≠ p. A fully robust variance matrix estimator is

Avar̂FE  ∑
g1

G

Z̈g
′ Z̈g

−1

∑
g1

G

Z̈g
′ ûgûg

′ Z̈g ∑
g1

G

Z̈g
′ Z̈g

−1

,     (1.11)

where Z̈g is the matrix of within-group deviations from means and ûg is the Mg  1 vector of

5
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fixed effects residuals. This estimator is justified with large-G asymptotics.
One benefit of a fixed effects approach, especially in the standard model with constant

slopes but cg in the composite error term, is that no adjustments are necessary if the cg are

correlated across groups. When the groups represent different geographical units, we might
expect correlation across groups close to each other. If we think such correlation is largely
captured through the unobserved effect cg, then its elimination via the within transformation

effectively solves the problem. If we use pooled OLS or a random effects approach, we would
have to deal with spatial correlation across g, in addition to within-group correlation, and this
is a difficult problem.

The previous discussion extends immediately to instrumental variables versions of all
estimators. With large G, one can afford to make pooled two stage least squares (2SLS),
random effects 2SLS, and fixed effects 2SLS robust to arbitrary within-cluster correlation and
heteroskedasticity. Also, more efficient estimation is possible by applying generalized method
of moments (GMM); again, GMM is justified with large G.

1.3. Should we Use the “Large” G Formulas with “Large” Mg?

Until recently, the standard errors and test statistics obtained from pooled OLS, random
effects, and fixed effects were known to be valid only as G →  with each Mg fixed. As a

practical matter, that means one should have lots of small groups. Consider again formula
(1.4), for pooled OLS, when the cluster effect, cg, is left in the error term. With a large number

of groups and small group sizes, we can get good estimates of the within-cluster correlations –
technically, of the cluster correlations of the cross products of the regressors and errors – even
if they are unrestricted, and that is why the robust variance matrix is consistent as G →  with
Mg fixed. In fact, in this scenario, one loses nothing in terms of asymptotic local power (with

local alternatives shrinking to zero at the rate G−1/2) if cg is not present. In other words, based

on first-order asymptotic analysis, there is no cost to being fully robust to any kind of
within-group correlation or heteroskedasticity. These arguments apply equally to panel data
sets with a large number of cross sections and relatively few time periods, whether or not the
idiosyncratic errors are serially correlated.

What if one applies robust inference in scenarios where the fixed Mg, G →  asymptotic

analysis not realistic? Hansen (2007) has recently derived properties of the cluster-robust
variance matrix and related test statistics under various scenarios that help us more fully
understand the properties of cluster robust inference across different data configurations. First

6
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consider how his results apply to true cluster samples. Hansen (2007, Theorem 2) shows that,
with G and Mg both getting large, the usual inference based on (1.4) is valid with arbitrary

correlation among the errors, vgm, within each group. Because we usually think of vgm as

including the group effect cg, this means that, with large group sizes, we can obtain valid

inference using the cluster-robust variance matrix, provided that G is also large. So, for
example, if we have a sample of G  100 schools and roughly Mg  100 students per school,

and we use pooled OLS leaving the school effects in the error term, we should expect the
inference to have roughly the correct size. Probably we leave the school effects in the error
term because we are interested in a school-specific explanatory variable, perhaps indicating a
policy change.

Unfortunately, pooled OLS with cluster effects when G is small and group sizes are large
fall outside Hansen’s theoretical findings: the proper asymptotic analysis would be with G
fixed, Mg → , and persistent within-cluster correlation (because of the presence of cg in the

error). Hansen (2007, Theorem 4) is aimed at panel data where the time series dependence
satisfies strong mixing assumptions, that is, where the correlation within each group g is
weakly dependent. Even in this case, the variance matrix in (1.4) must be multiplied by
G/G − 1 and inference based on the tG−1 distribution. (Conveniently, this adjustment is
standard in Stata’s calculation of cluster-robust variance matrices.) Interestingly, Hansen finds,
in simulations, that with G  10 and Mg  50 for all g, using the adjusted robust variance

matrix estimator with critical values from the tG−1 distribution produces fairly small size
distortions. But the simulation study is special (one covariate whose variance is as large as the
variance of the composite error).

We probably should not expect good properties of the cluster-robust inference with small
groups and very large group sizes when cluster effects are left in the error term. As an
example, suppose that G  10 hospitals have been sampled with several hundred patients per
hospital. If the explanatory variable of interest is exogenous and varies only at the hospital
level, it is tempting to use pooled OLS with cluster-robust inference. But we have no
theoretical justification for doing so, and reasons to expect it will not work well. In the next
section we discuss other approaches available with small G and large Mg.

If the explanatory variables of interest vary within group, FE is attractive for a couple of
reasons. The first advantage is the usal one about allowing cg to be arbitrarily correlated with

the zgm. The second advantage is that, with large Mg, we can treat the cg as parameters to

7
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estimate – because we can estimate them precisely – and then assume that the observations are
independent across m (as well as g). This means that the usual inference is valid, perhaps with
adjustment for heteroskedasticity. Interestingly, the fixed G, large Mg asymptotic results in

Theorem 4 of Hansen (2007) for cluster-robust inference apply in this case. But using
cluster-robust inference is likely to be very costly in this situation: the cluster-robust variance
matrix actually converges to a random variable, and t statistics based on the adjusted version of
(1.11) – that is, multiplied by G/G − 1 – have an asymptotic tG−1 distribution. Therefore,
while the usual or heteroskedasticity-robust inference can be based on the standard normal
distribution, the cluster-robust inference is based on the tG−1 distribution (and the cluster-robust
standard errors may be larger than the usual standard errors). With small G, inference based on
cluster-robust statistics could be very conservative when it need not be. (Also, Hansen’s
Theorem 4 is not completely general, and may not apply with heterogeneous sampling across
groups.)

In summary, for true cluster sample applications, cluster-robust inference using pooled
OLS delivers statistics with proper size when G and Mg are both moderately large, but they

should probably be avoided with large Mg and small G. When cluster fixed effects are

included, the usual inference is often valid, perhaps made robust to heteroskedasticity, and is
likely to be much more powerful than cluster-robust inference.

For panel data applications, Hansen’s (2007) results, particularly Theorem 3, imply that
cluster-robust inference for the fixed effects estimator should work well when the cross section
(N) and time series (T) dimensions are similar and not too small. If full time effects are allowed
in addition to unit-specific fixed effects – as they often should – then the asymptotics must be
with N and T both getting large. In this case, any serial dependence in the idiosyncratic errors
is assumed to be weakly dependent. The similulations in Bertrand, Duflo, and Mullainathan
(2004) and Hansen (2007) verify that the fully robust cluster-robust variance matrix works
well.

There is some scope for applying the fully robust variance matrix estimator when N is
small relative to T when unit-specific fixed effects are included. Unlike in the true cluster
sampling case, it makes sense to treat the idiosyncratic errors as correlated with only weakly
dependent. But Hansen’s (2007, Theorem 4) does not allow time fixed effects (because the
asymptotics is with fixed N and T → , and so the inclusion of time fixed effects means adding
more and more parameters without more cross section data to estimate them). As a practical

8
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matter, it seems dangerous to rely on omitting time effects or unit effects with panel data.
Hansen’s result that applies in this case requires N and T both getting large.
2. Estimation with a Small Number of Groups and Large Group
Sizes

We can summarize the findings of the previous section as follows: fully robust inference
justified for large G (N) and small Mg (T) can also be relied on when Mg (T) is also large,

provided G N is also reasonably large. However, whether or not we leave cluster
(unobserved) effects in the error term, there are good reasons not to rely on cluster-robust
inference when G N) is small and Mg (T) is large.

In this section, we describe approaches to inference when G is small and the Mg are large.

These results apply primarily to the true cluster sample case, although we will draw on them
for difference-in-differences frameworks using pooled cross sections in a later set of notes.

In the large G, small Mg case, it often makes sense to think of sampling a large number of

groups from a large population of clusters, where each cluster is relatively small. When G is
small while each Mg is large, this thought experiment needs to be modified. For most data sets

with small G, a stratified sampling scheme makes more sense: we have defined G groups in the
population, and we obtain our data by randomly sampling from each group. As before, Mg is

the sample size for group g. Except for the relative dimensions of G and Mg, the resulting data

set is essentially indistinguishable from that described in Section 1.2.
The problem of proper inference when Mg is large relative to G was brought to light by

Moulton (1990), and has been recently studied by Donald and Lang (2007). DL focus on
applications that seem well described by the stratified sampling scheme, but their approach
seems to imply a different sampling experiment. In particular, they treat the parameters
associated with the different groups as outcomes of random draws. One way to think about the
sampling in this case is that a small number of groups is drawn from a (large) population of
potential groups; therefore, the parameters common to all members of the group can be viewed
as random. Given the groups, samples are then obtained via random sampling within each
group.

To illustrate the issues considered by Donald and Lang, consider the simplest case, with a
single regressor that varies only by group:

ygm    xg  cg  ugm

 g  xg  ugm, m  1, . . . ,Mg;g  1, . . . ,G.
    (2.1)
    (2.2)

9
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Notice how (2.2) is written as a model with common slope, , but intercept, g, that varies

across g. Donald and Lang focus on (2.1), where cg is assumed to be independent of xg with

zero mean. They use this formulation to highlight the problems of applying standard inference
to (2.1), leaving cg as part of the composite error term, vgm  cg  ugm. We know this is a bad

idea even in the large G, small Mg case, as it ignores the persistent correlation in the errors

within each group. Further, from the discussion of Hansen’s (2007) results, using
cluster-robust inference when G is small is likely to produce poor inference.

One way to see the problem with the usual inference in applying standard inference is to
note that when Mg  M for all g  1, . . . ,G, the pooled OLS estimator, ̂, is identical to the

“between” estimator obtained from the regression

ȳg on 1,xg,g  1, . . . ,G.     (2.3)

Conditional on the xg, ̂ inherits its distribution from v̄g : g  1, . . . ,G, the within-group

averages of the composite errors vgm ≡ cg  ugm. The presence of cg means new observations

within group do not provide additional information for estimating  beyond how they affect
the group average, ȳg. In effect, we only have G useful pieces of information.

If we add some strong assumptions, there is a solution to the inference problem. In addition
to assuming Mg  M for all g, assume cg|xg ~Normal0,c

2 and assume

ugm|xg,cg  Normal0,u
2. Then v̄g is independent of xg and v̄g  Normal0,c

2  u
2/M for

all g. Because we assume independence across g, the equation

ȳg    xg  v̄g,g  1, . . . ,G     (2.4)

satisfies the classical linear model assumptions. Therefore, we can use inference based on the
tG−2 distribution to test hypotheses about , provided G  2. When G is very small, the
requirements for a significant t statistic using the tG−2 distribution are much more stringent then
if we use the tM1M2...MG−2 distribution – which is what we would be doing if we use the usual
pooled OLS statistics. (Interestingly, if we use cluster-robust inference and apply Hansen’s
results – even though they do not apply – we would use the tG−1 distribution.)

When xg is a 1  K vector, we need G  K  1 to use the tG−K−1 distribution for inference.

[In Moulton (1990), G  50 states and xg contains 17 elements]

As pointed out by DL, performing the correct inference in the presence of cg is not just a

matter of correcting the pooled OLS standard errors for cluster correlation – something that
does not appear to be valid for small G, anyway – or using the RE estimator. In the case of
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common group sizes, there is only estimator: pooled OLS, random effects, and the between
regression in (2.4) all lead to the same ̂. The regression in (2.4), by using the tG−K−1

distribution, yields inference with appropriate size.
We can apply the DL method without normality of the ugm if the common group size M is

large: by the central limit theorem, ūg will be approximately normally distributed very

generally. Then, because cg is normally distributed, we can treat v̄g as approximately normal

with constant variance. Further, even if the group sizes differ across g, for very large group
sizes ūg will be a negligible part of v̄g: Varv̄g  c

2  u
2/Mg. Provided cg is normally

distributed and it dominates v̄g, a classical linear model analysis on (2.4) should be roughly

valid.
The broadest applicability of DL’s setup is when the average of the idiosyncratic errors, ūg,

can be ignored – either because u
2 is small relative to c

2, Mg is large, or both. In fact,

applying DL with different group sizes or nonnormality of the ugm is identical to ignoring the

estimation error in the sample averages, ȳg. In other words, it is as if we are analyzing the

simple regression g    xg  cg using the classical linear model assumptions (where ȳg is

used in place of the unknown group mean, g). With small G, we need to further assume cg is

normally distributed.
If zgm appears in the model, then we can use the averaged equation

ȳg    xg  z̄g  v̄g,g  1, . . . ,G,     (2.5)

provided G  K  L  1. If cg is independent of xg, z̄g with a homoskedastic normal

distribution and the group sizes are large, inference can be carried out using the tG−K−L−1

distribution.
The DL solution to the inference problem with small G is pretty common as a strategy to

check robustness of results obtained from cluster samples, but often it is implemented with
somewhat large G (say, G  50). Often with cluster samples one estimates the parameters
using the disaggregated data and also the averaged data. When some covariates that vary
within cluster, using averaged data is generally inefficient. But it does mean that standard
errors need not be made robust to within-cluster correlation. We now know that if G is
reasonably large and the group sizes not too large, the cluster-robust inference can be
acceptable. DL point out that with small G one should think about simply using the group
averages in a classical linear model analysis.

For small G and large Mg, inference obtained from analyzing (2.5) as a classical linear

11
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model will be very conservative in the absense of a cluster effect. Perhaps in some cases it is
desirable to inject this kind of uncertainty, but it rules out some widely-used staples of policy
analysis. For example, suppose we have two populations (maybe men and women, two
different cities, or a treatment and a control group) with means g,g  1,2, and we would like

to obtain a confidence interval for their difference. In almost all cases, it makes sense to view
the data as being two random samples, one from each subgroup of the population. Under
random sampling from each group, and assuming normality and equal population variances,
the usual comparison-of-means statistic is distributed exactly as tM1M2−2 under the null
hypothesis of equal population means. (Or, we can construct an exact 95% confidence interval
of the difference in population means.) With even moderate sizes for M1 and M2, the tM1M2−2

distribution is close to the standard normal distribution. Plus, we can relax normality to obtain
approximately valid inference, and it is easy to adjust the t statistic to allow for different
population variances. With a controlled experiment the standard difference-in-means analysis
is often quite convincing. Yet we cannot even study this estimator in the DL setup because
G  2. The problem can be seen from (2.2): in effect, we have three parameters, 1, 2, and ,
but only two observations.

DL criticize Card and Krueger (1994) for comparing mean wage changes of fast-food
workers across two states because Card and Krueger fail to account for the state effect (New
Jersery or Pennsylvania), cg, in the composite error, vgm. But the DL criticism in the G  2

case is no different from a common question raised for any difference-in-differences analyses:
How can we be sure that any observed difference in means is due entirely to the policy
change? To characterize the problem as failing to account for an unobserved group effect is
not necessarily helpful.

To further study the G  2 case, recall that cg is independent of xg with mean zero. In other

words, the expected deviation in using the simple comparison-of-means estimator is zero. In
effect, it estimates

2 − 1  2   − 1    c2   −   c1    c2 − c1.     (2.6)

Under the DL assumptions, c2 − c1 has mean zero, and so estimating it should not bias the
analysis. DL work under the assumption that  is the parameter of interest, but, if the
experiment is properly randomized – as is maintained by DL – it is harmless to include the cg

in the estimated effect.
Consider now a case where the DL approach can be applied. Assume there are G  4
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groups with groups one and two control groups (x1  x2  0) and two treatment groups
x3  x4  1. The DL approach would involve computing the averages for each group, ȳg,

and running the regression ȳg on 1,xg, g  1, . . . , 4. Inference is based on the t2 distribution.

The estimator ̂ in this case can be written as

̂  ȳ3  ȳ4/2 − ȳ1  ȳ2/2.     (2.7)

(The pooled OLS regression using the disaggregated data results in the weighted average
p3ȳ3  p4ȳ4 − p1ȳ1  p2ȳ2, where p1  M1/M1  M2, p2  M2/M1  M2,
p3  M3/M3  M4, and p4  M4/M3  M4 are the relative proportions within the control
and treatment groups, respectively.) With ̂ written as in (2.7), we are left to wonder why we
need to use the t2 distribution for inference. Each ȳg is usually obtained from a large sample –

Mg  30 or so is usually sufficient for approximate normality of the standardized mean – and

so ̂, when properly standardized, has an approximate standard normal distribution quite
generally.

In effect, the DL approach rejects the usual inference based on group means from large
sample sizes because it may not be the case that 1  2 and 3  4. In other words, the
control group may be heterogeneous as might be the treatment group. But this in itself does not
invalidate standard inference applied to (2.7).

Equation (2.7) hints at a different way to view the small G, large Mg setup. In this

particular application, we estimate two parameters,  and , given four moments that we can
estimate with the data. The OLS estimates from (2.4) in this case are minimum distance
estimates that impose the restrictions 1  2   and 3  4    . If we use the 4  4
identity matrix as the weight matrix, we get ̂ as in (2.7) and ̂  ȳ1  ȳ2/2. Using the MD
approach, we see there are two overidentifying restrictions, which are easily tested. But even if
we reject them, it simply implies at least one pair of means within each of the control and
treatment groups is different.

With large group sizes, and whether or not G is especially large, we can put the probably
generally into an MD framework, as done, for example, by Loeb and Bound (1996), who had
G  36 cohort-division groups and many observations per group. For each group g, write

ygm  g  zgmg  ugm,m  1, . . . ,Mg,     (2.8)

where we assume random sampling within group and independent sampling across groups.
We make the standard assumptions for OLS to be consistent (as Mg → ) and
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Mg -asymptotically normal; see, for example, Wooldridge (2002, Chapter 4). The presence

of group-level variables xg in a “structural” model can be viewed as putting restrictions on the

intercepts, g, in the separate group models in (2.8). In particular,

g    xg,g  1, . . . ,G,     (2.9)

where we now think of xg as fixed, observed attributes of heterogeneous groups. With K

attributes we must have G ≥ K  1 to determine  and . If Mg is large enough to estimate the

g precisely, a simple two-step estimation strategy suggests itself. First, obtain the ̂g, along

with ̂g, from an OLS regression within each group. If G  K  1 then, typically, we can solve

for ̂ ≡ ̂, ̂′ ′ uniquely in terms of the G  1 vector ̂:. ̂  X−1̂, where X is the
K  1  K  1 matrix with gth row 1,xg. If G  K  1 then, in a second step, we can use a

minimum distance approach, as described in Wooldridge (2002, Section 14.6). If we use as the
weighting matrix IG, the G  G identity matrix, then the minimum distance estimator can be
computed from the OLS regression

̂g on 1,xg,g  1, . . . ,G.     (2.10)

Under asymptotics such that Mg  gM where 0  g ≤ 1 and M → , the minimum distance

estimator ̂ is consistent and M -asymptotically normal. Still, this particular minimum
distance estimator is asymptotically inefficient except under strong assumptions. Because the
samples are assumed to be independent, it is not appreciably more difficult to obtain the
efficient minimum distance (MD) estimator, also called the “minimum chi-square” estimator.

First consider the case where zgm does not appear in the first stage estimation, so that the ̂g

is just ȳg, the sample mean for group g. Let ̂g
2 denote the usual sample variance for group g.

Because the ȳg are independent across g, the efficient MD estimator uses a diagonal weighting

matrix. As a computational device, the minimum chi-square estimator can be computed by
using the weighted least squares (WLS) version of (2.10), where group g is weighted by Mg/̂g

2

(groups that have more data and smaller variance receive greater weight). Conveniently, the
reported t statistics from the WLS regression are asymptotically standard normal as the group
sizes Mg get large. (With fixed G, the WLS nature of the estimation is just a computational

device; the standard asymptotic analysis of the WLS estimator has G → .). The minimum
distance approach works with small G provided G ≥ K  1 and each Mg is large enough so that

normality is a good approximation to the distribution of the (properly scaled) sample average
within each group.
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If zgm is present in the first-stage estimation, we use as the minimum chi-square weights the

inverses of the asymptotic variances for the g intercepts in the separate G regressions. With
large Mg, we might make these fully robust to heteroskedasticity in Eugm

2 |zgm using the White

(1980) sandwich variance estimator. At a minimum we would want to allow different g
2 even

if we assume homoskedasticity within groups. Once we have the Avar̂g – which are just the

squared reported standard errors for the ̂g – we use as weights 1/Avar̂g in the

computationally simple WLS procedure. We are still using independence across g in obtaining
a diagonal weighting matrix in the MD estimation.

An important by-product of the WLS regression is a minimum chi-square statistic that can
be used to test the G − K − 1 overidentifying restrictions. The statistic is easily obtained as the
weighted sum of squared residuals, say SSRw. Under the null hypothesis in (2.9),
SSRw

a G−K−1
2 as the group sizes, Mg, get large. If we reject H0 at a reasonably small

significance level, the xg are not sufficient for characterizing the changing intercepts across

groups. If we fail to reject H0, we can have some confidence in our specification, and perform
inference using the standard normal distribution for t statistics for testing linear combinations
of the population averages.

We might also be interested in how one of the slopes in g depends on the group features,

xg. Then, we simple replace ̂g with, say ̂g1, the slope on the first element of zgm. Naturally,

we would use 1/Avar̂g1 as the weights in the MD estimation.

The minimum distance approach can also be applied if we impose g   for all g, as in

the original model (1). Obtaining the ̂g themselves is easy: run the pooled regression

ygm on d1g,d2g, . . . ,dGg, zgm,m  1, . . . ,Mg;g  1, . . . ,G     (2.11)

where d1g,d2g, . . . ,dGg are group dummy variables. Using the ̂g from the pooled regression

(2.11) in MD estimation is complicated by the fact that the ̂g are no longer asymptotically

independent; in fact, ̂g  ȳg − z̄ĝ, where ̂ is the vector of common slopes, and the presence

of ̂ induces correlation among the intercept estimators. Let V̂ be the G  G estimated

(asymptotic) variance matrix of the G  1 vector ̂. Then the MD estimator is
̂  X ′V̂−1X−1X ′V̂−1̂ and its estimated asymptotic variance is X ′V̂−1X−1. If the OLS
regression (2.10) is used, or the WLS version, the resulting standard errors will be incorrect
because they ignore the across group correlation in the estimators. (With large group sizes the
errors might be small; see the next section.)
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Intermediate approaches are available, too. Loeb and Bound (1996) (LB for short) allow
different group intercepts and group-specific slopes on education, but impose common slopes
on demographic and family background variable. The main group-level covariate is the
student-teacher ratio. Thus, LB are interested in seeing how the student-teach ratio affects the
relationship between test scores and education levels. LB use both the unweighted estimator
and the weighted estimator and find that the results differ in unimportant ways. Because they
impose common slopes on a set of regressors, the estimated slopes on education (say ̂g1) are

not asymptotically independent, and perhaps using a nondiagonal estimated variance matrix V̂
(which would be 36  36 in this case) is more appropriate; but see Section 3.

If we reject the overidentifying restrictions, we are essentially concluding that
g    xg  cg, where cg can be interpreted as the deviation from the restrictions in (2.9)

for group g. As G increases relative to K, the likelihood of rejecting the restrictions increases.
One possibility is to apply the Donald and Lang approach, which is to analyze the OLS
regression in (2.10) in the context of the classical linear model (CLM), where inference is
based on the tG−K−1 distribution. Why is a CLM analysis justified? Since

̂g  g  OpMg
−1/2, we can ingore the estimation error in ̂g for large Mg (Recall that the

same “large Mg” assumption underlies the minimum distance approach.) Then, it is as if we

are estimating the equation g    xg  cg,g  1, . . . ,G by OLS. If the cg are drawn from a

normal distribution, classical analysis is applicable because cg is assumed to be independent of

xg. This approach is desirable when one cannot, or does not want to, find group-level

observables that completely determine the g. It is predicated on the assumption that the other

factors in cg are not systematically related to xg, a reasonable assumption if, say, xg is a

randomly assigned treatment at the group level, a case considered by Angrist and Lavy (2002).
Beyond the treatment effect case, the issue of how to define parameters of interest appears

complicated, and deserves further research.
3. What if G and Mg are Both “Large”?

Section 1 reviewed methods appropriate for a large number of groups and relatively small
group sizes. Section 2 considered two approaches appropriate for large group sizes and a small
number of groups. The DL and minimum distance approaches use the large group sizes
assumption differently: in its most applicable setting, DL use the large Mg assumption to

ignore the first-stage estimation error entirely, with all uncertainty coming from unobserved
group effects, while the asymptotics underlying the MD approach is based on applying the
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central limit theorem within each group. Not surprisingly, more flexibility is afforded if G and
Mg are both “large.”

For example, suppose we adopt the DL specification (with an unobserved cluster effect),

g    xg  cg,g  1, . . . ,G,     (3.1)

and G  50 (say, states in the U.S.). Further, assume first that the group sizes are large enough
(or the cluster effects are so strong) that the first-stage estimation error can be ignored. Then,
it matters not whether we impose some common slopes or run separate regressions for each
group (state) in the first stage estimation. In the second step, we can treat the group-specific
intercepts, ̂g,g  1, . . . ,G, as independent “observations” to be used in the second stage. This

means we apply regression (2.10) and apply the usual inference procedures. The difference
now is that with G  50, the usual t statistics have some robustness to nonnormality of the cg,

assuming the CLT approximation works well With small G, the exact inference was based on
normality of the cg.

Loeb and Bound (1996), with G  38, essentially use regression (2.10), but with estimated
slopes as the dependent variable in place of estimated intercepts. As mentioned in Section 2,
LB impose some common slopes across groups, which means the estimated parameters are
dependent across group. The minimum distance approach without cluster effects is one way to
account for the dependence. Alternatively, one can simply adopt the DL perspective and just
assume the estimation error is swamped by cg; then standard OLS analysis is approximately

justfied.
4. NONLINEAR MODELS

Many of the issues for nonlinear models are the same as for linear models. The biggest
difference is that, in many cases, standard approaches require distributional assumptions about
the unobserved group effects. In addition, it is more difficult in nonlinear models to allow for
group effects correlated with covariates, especially when group sizes differ. For the small G
case, we offer extensions of the Donald and Lang (2007) approach (with large group sizes) and
the minimum distance approach.

Rather than using a general, abstract setting, the issues for nonlinear models are easily
illustrated with the probit model. Wooldridge (2006) considers other models (which are also
covered in the nonlinear panel data notes).

4.1. Large Group Asymptotics

We can illustrate many issues using an unobserved effects probit model. Let ygm be a
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binary response, with xg and zgm, m  1, . . . ,Mg,g  1, . . . ,G defined as in Section 1. Assume

that

ygm  1  xg  zgm  cg  ugm ≥ 0
ugm|xg,Zg,cg~Normal0,1

    (4.1)
    (4.2)

(where 1 is the indicator function). Equations (4.1) and (4.2) imply

Pygm  1|xg, zgm,cg  Pygm  1|xg,Zg,cg    xg  zgm  cg,     (4.3)

where  is the standard normal cumulative distribution function (cdf). We assume
throughout that only zgm affects the response probability of ygm conditional on xg and cg; the

outcomes of zgp for p ≠ m are assumed not to matter. This is captured in (4.3). For pooled

methods we could relax this restriction (as in the linear case), but, with the presence of cg, this

affords little generality in practice.
As in nonlinear panel data models, the presence of cg in (4.3) raises several important

issues, including how we estimate quantities of interest. As in the panel data case, we have
some interest in estimating average partial or marginal effects. For example, if the first element
of xg is continuous,

∂Pygm  1|xg, zgm,cg
∂xg1

 1  xg  zgm  cg,     (4.4)

where  is the standard normal density function. If

cg|xg,Zg~Normal0,c
2,     (4.5)

where the zero mean is without loss of generality because (4.1) contains an intercept, , then
the APEs are obtained from the function

Pygm  1|xg,Zg    xg  zgm/1  c
21/2 ≡ c  xgc  zgmc,     (4.6)

where c  /1  c
21/2, and so on. Conveniently, the scaled coefficients are exactly the

coefficients estimated by using a simple pooled probit procedure. So, for estimating the
average partial effects, pooled probit is perfectly acceptable. With large G and small group
sizes, we can easily make the standard errors and test statistics robust to arbitarary within
group correlation using standard sandwich variance estimators (robust to within-cluster
correlation).

Some authors prefer to call procedures such as pooled probit applied to cluster samples
pseudo maximum likelihood. Unfortunately, this term is used in contexts where only the
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conditional mean is correctly specified in the context of the linear exponential family.
Wooldridge (2002, Chapter 13) calls such methods partial maximum likelihood to emphasize
that we have partially specified a distribution, namely the marginal distribution of ygm given

xg,Zm, without specifying a joint distribution yg1, . . . ,yg,Mg conditional on xg,Zg.

If we supplement (4.1),.(4.2), and (4.5) with

ug1, . . . ,ug,Mg are independent conditional on xg,Zg,cg     (4.7)

then we have the so-called random effects probit model. Under the RE probit assumptions,
,, and c

2 are all identified, and estimable by MLE, which means we can estimate the
APEs as well as the partial effects evaluated at the mean of cg, which is zero. We can also

compute partial effects at other values of cg that we might select from the normal distribution

with estimated standard deviation c. The details for random effects probit in the balanced
panel data case are given in Wooldridge (2002, Chapter 15). The unbalanced case is similar.

As we discussed in the nonlinear panel data notes, minimum distance estimator or
generalized estimating equations can be used to obtain estimators (of the scaled coefficients)
more efficient than pooled probit but just as robust. (Remember, the RE probit estimator has no
known robustness properties to violation of assumption (4.7).)

A very challenging task, and one that appears not to have gotten much attention for true
cluster samples, is allowing correlation between the unobserved heterogeneity, cg, and the

covariates that vary within group, zgm. (For notational simplicity, we assume there are no

group-level controls in the model, but these can always be added.) For linear models, we know
that the within or fixed effects estimator allows arbitrary correlation, and does not restrict the
within-cluster dependence of ug1, . . . ,ug,Mg. Unfortunately, allowing correlation between cg

and zg1, zg2, . . . , zgM is much more difficult in nonlinear models. In the balanced case, where

the group sizes Mg are the same for all g, the Chamberlain (1980) device can be used:

cg|Zg~Normal  z̄g,a
2,     (4.8)

where a
2 is the conditional variance Varcg|Zg. If we use all random effects probit

assumptions but with (4.8) in place of (4.5), then we obtain a simple extension of the RE probit
model: simply add the group averages, z̄g, as a set of additional explanatory variables. This is

identical to the balanced panel case we covered earlier. The marginal distributions are

Pygm  1|Zg    zgm  z̄g/1  a
21/2 ≡ a  zgma  z̄ga     (4.9)

where now the coefficients are scaled by a function of the conditional variance. This is just as
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in the case of a balanced panel, and all calculations, including those for APEs, follow
immediately.

The Chamberlain-Mundlak needs to be modified for the unbalanced case. [One possibility
is to discard observations and balance the cluster sample under the assumption that the cluster
sizes are exogenous, and that might be desirable if there is not much variation in the cluster
sizes.] An alternative is to use the cluster setup and assuming a kind of exchangeability
assumption concerning the correlation between the cluster effect and the covariates. At a
minimum, (4.8) should be modified to allow the variances to depend on the cluster size, Mg.

Under restrictive assumptions, such as joint normality of cg, zg1, . . . , zg,Mg, with the zgm

independent and identically distributed within a cluster, one can derive Varcg|Zg. But these

are strong assumptions. We might just assume

cg|zg1, . . . , zg,Mg ~Normal  z̄g,a,Mg
2 ,     (4.10)

where a,Mg
2 denotes a different variance for each group size, Mg. Then the marginal

distributions are

Pygm  1|Zg    zgm  z̄g/1  a,Mg
2 1/2.     (4.11)

Equation (4.11) can be estimated by pooled probit, allowing for different group variances. (A
normalization is also required.) A simpler approach is to estimate a different set of parameters,
Mg ,Mg ,Mg, for each group size, and then to impose the restrictions in (4.11) by minimum

distance estimation. With very large G and little variation in Mg, we might just use the

unrestricted estimates ̂Mg , ̂Mg , ̂Mg, estimate the APEs for each group size, and then average

these across group size. But more work needs to be done to see if such an approach loses too
much in terms of efficiency.

The methods of Altonji and Matzkin (2005) – see also Wooldridge (2005) – can be applied.
A completely nonparametric approach is based on

Pygm  1|Zg,cg  Pygm  1|zgm,cg ≡ Fzgm,cg     (4.12)

and

Dcg|zg1, zg2, . . . , zg,Mg  Dcg|z̄g.     (4.13)

Define Hgzgm, z̄g  Pygm  1|zgm, z̄g. As discussed in the nonlinear panel data notes, under

(4.12) and (4.13), it can be show that the APEs are obtained from

Ez̄gHgz, z̄g.     (4.14)
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If the group sizes differ, Hg,  generally depends on g. If there are relatively few group sizes,

it makes sense to estimate the Hg,  separately for each group size Mg. Then, the APEs can

be estimated from

G−1∑
g1

G

Ĥgz, z̄g.     (4.15)

As discussed before, as a practical matter we might just use flexible parametric models, such as
probit with flexible functional forms.

Other strategies are available for estimating APEs. We can apply “fixed effects probit” to
cluster samples just as with panel data and treat the cg as parameters to estimate in

Pygm  1|Zg,cg  Pygm  1|zgm,cg  zgm  cg.     (4.16)

The same issues arise as in the panel data case, except with true cluster samples the conditional
indepdence assumption likely is more reasonable than in the panel data case. With small group
sizes Mg (say, siblings or short panel data sets), treating the cg as parameters to estimate

creates an incidental parameters problem. As before, we might use

G−1∑
g1

G

ẑ  ĉg,     (4.17)

to estimate the APEs.
The logit conditional MLE can be applied to cluster samples essentially without change,

which means we can estimate the parameters, , without restricting Dcg|Zg. This is especially

convenient in the unbalanced case.
4.2. A Small Number of Groups and Large Group Sizes

Unlike in the linear case, for nonlinear models exact inference is unavailable even under
the strongest set of assumptions. Nevertheless, if the group sizes Mg are reasonably large, we

can extend the DL approach to nonlinear models and obtain approximate inference. In
addition, the the minimum distance approach carries over essentially without change.

We can apply the methods to any nonlinear model that has an index structure – which
includes all of the common ones, and many other models besides, but we again consider the
probit case. With small G and random sampling of ygm, zgm : m  1, . . . ,Mg within each g,

write

Pygm  1|zgm  g  zgmg,m  1, . . . ,Mg     (4.18)
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g    xg,g  1, . . . ,G.     (4.19)

As with the linear model, we assume the intercept, g in (4.18), is a function of the group

features xg. With the Mg moderately large, we can get good estimates of the g. The

̂g,g  1, . . . ,G, are easily obtained by estimating a separate probit for each group. Or, we can

impose common g and just estimate different group intercepts (sometimes called “group fixed

effects”).

Under (4.19), we can apply the minimum distance approach just as before. Let Avar̂g

denote the estimated asymptotic variances of the ̂g (so these shrink to zero at the rate 1/Mg). If

the ̂g are obtained from G separate probits, they are independent, and the Avar̂g are all we

need. As in the linear case, if a pooled method is used, the G  G matrix Avar̂ should be
obtained as the weighting matrix. For binary response, we use the usual MLE estimated
variance. If we are using fractional probit for a fractional response, these would be from a
sandwich estimate of the asymptotic variance. In the case where the ̂g are obtained from

separate probits, we can obtain the minimum distance estimates as the WLS estimates from

̂g on 1,xg,g  1, . . . ,G     (4.20)

using weights 1/Avar̂g are used as the weights. This is the efficient minimum distance

estimator and, conveniently, the proper asymptotic standard errors are reported from the WLS
estimation (even though we are doing large Mg, not large G, asymptotics.) Generally, we can

write the MD estimator as in the linear case, ̂  X ′V̂−1X−1X ′V̂−1̂, where ̂ is the G  1

vector of ̂g and V̂  Avar̂. The overidentification test is obtained exactly as in the linear

case: there are G − K − 1 degrees-of-freedom in the chi-square distribution.
The same cautions about using the overidentification test to reject the minimum distance

approach apply here as well. In particular, in the treatment effect setup, where xg is zero or

one, we might reject a comparision of means across multiple groups simply because the means
within the control or within the treatment group differ, or both. It might make sense to define
the treatment effect as the difference in averages between treatment and control, or use
weighted averages, without worrying about whether the means are the same. (We consider an
alternative, namely, using data to choose a synthetic control from a set of potentil control
groups, the the notes on difference-in-differences.)

If we reject the overidentification restrictions, we can adapt Donald and Lang (2007) and
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treat

̂g    xg  errorg,g  1, . . . ,G     (4.21)

as approximately satisfying the classical linear model assumptions, provided G  K  1, just as
before. As in the linear case, this approach is justified if g    xg  cg with cg

independent of xg and cg drawn from a homoskedastic normal distribution. It assumes that we

can ignore the estimation error in ̂g, based on ̂g  g  O1/ Mg . Because the DL

approach ignores the estimation error in ̂g, it is unchanged if one imposes some constant

slopes across the groups, as with the linear model.
Once we have estimated  and , the estimated effect on the response probability can be

obtained by averaging the response probability for a given x:

G−1∑
g1

G

Mg
−1∑

m1

Mg

̂  x̂  zgm̂g ,     (4.22)

where derivatives or differences with respect to the elements of x can be computed. Here, the
minimum distance approach has an important advantage over the DL approach: the finite
sample properties of (4.22) are viritually impossible to obtain, whereas the large-Mg

asymptotics underlying minimum distance would be straightforward using the delta method.
How the bootstrap might work in this situation is an interesting question.

Particularly with binary response problems, the two-step methods described here are
problematical when the response does not vary within group. For example, suppose that xg is a

binary treatment – equal to one for receiving a voucher to attend college – and ygm is an

indicator of attending college. Each group is a high school class, say. If some high schools
have all students attend college, one cannot use probit (or logit) of ygm on zgm,m  1, . . . ,Mg.

A linear regression returns zero slope coefficients and intercept equal to unity. Of course, if
randomization occurs at the group level – that is, xg is independent of group attributes – then it

is not necessary to control for the zgm. Instead, the within-group averages can be used in a

simple minimum distance approach. In this case, as ygm is binary, the DL approximation will

not be valid, as the CLM assumptions will not even approximately hold in the model
ȳg    xg  eg (because ȳg is always a fraction regardless of the size of Mg).

4.3. Large G and Large Mg

As in the linear case, more flexibility is afforded if G is somewhat large along with large
Mg. If we can ignore the estimation error in the ̂g, then, in implementing the DL approach –
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with or without common slopes imposed in the first stage – one gains robustness to

nonnormality of cg if G is large enough so that G−1/2∑g1
G cg and G−1/2∑g1

G xgcg are

approximately normally distributed. The second step is the same as in the linear model case: ̂g

is regressed on 1, xg, g  1, . . . ,G; one can use heteroskedasticity-robust inference with large

G to partly account for the estimation error in the ̂g.

A version of the method proposed by Berry, Levinsohn, and Pakes (1995) for estimating
structural models using both individual-level and product-level data, or market-level data, or
both can be treated in the large G, large Mg framework, where g indexes good or market and m

indexes individuals within a market. BLP’s original application was where g indexes different
automobile models. Petrin and Train (2002) cover the case of about 170 television markets and
four TV services. To handle this case, assume that H products are available in each market.
Therefore, we now think of g as an H-vector for each g, and so is cg. The main difference

here with the previous setup is that, for reasons discussed in BLP and Petrin and Train, we
must allow the cgh to be correlated with the xgh (which contains the price of good j in market g,

in addition to product/market attributes). BLP propose a two-step estimation strategy. In the
first step, a choice model, such as multinomial logit, is estimated using the individual-level
data pooled across markets. The key estimates are what we call the ̂g – the market “fixed

effects.” Typically, most or all of the “slope” parameters in the multinomial logit estimation
are assumed to be constant across g, although, with many individuals per market, that is not
necessary.

In the second step, the ̂gh are used in place of gh in the market/good-level equation

gh    xgh  cgh, h  1, . . . ,H; g  1, . . . ,G,     (4.23)

where, say, wg is a set of instruments for xgh. (Typically, wg varies only by market, g, and not

by good, h.) This allows for market/good-specific unobservables in the individual choice
equations to be correlated with prices. If we could observe the gh, then (4.23) would be a

standard problem in IV estimation for a cross section system of equations, provided G is large
enough to invoke the law of large numbers and central limit theorem. Replacing g with ̂g is

justified if the Mg are large because the variance of cg will dominate that of the ̂g. Further,

any correlation induced in the ̂g by pooling in the first-stage estimation shrinks to zero at the

rate 1/M, where we can think of M as the average group size. In other words, we just apply,
say, 2SLS in the second step.
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Ignoring the estimation in ̂g, efficient estimation is obtained by writing the system of

equations as

̂g ≈ Xg  cg     (4.24)

where Xg is the J  K  1 matrix of attributes (including an intercept and prices). Because

(4.24) is a system of equations with instruments IJ ⊗ wg, we can use the 3SLS estimator or

GMM to efficiently account for the correlation across cgh : h  1, . . . ,H.

5. Estimation of Population Parameters with Stratified Samples
We now provide a brief, modern treatment of estimation with stratified samples. The

emphasis here is in estimation parameters from a population that has been stratified. Typically,
with stratified sampling, some segments of the population are over- or underrepresented by the
sampling scheme. Fortunately, if we know enough information about the stratification scheme,
we can often modify standard econometric methods and consistently estimate population
parameters.

There are two common types of stratified sampling, standard stratified (SS) sampling and
variable probability (VP) sampling. A third type of sampling, typically called multinomial
sampling, is practically indistinguishable from SS sampling, but it generates a random sample
from a modified population (thereby simplifying certain theoretical analyses). See Cosslett
(1993), Imbens (1992), Imbens and Lancaster (1996), and Wooldridge (1999) for further
discussion. We focus on SS and VP sampling here.

SS sampling begins by partitioning the sample space (set of possible outcomes), say W,
into G non-overlapping, exhaustive groups, Wg : g  1, . . .G. Then, a random sample is

taken from each group g, say wgi : i  1, . . . ,Ng, where Ng is the number of observations

drawn from stratum g and N  N1  N2 . . .NG is the total number of observations. If w is a
random vector representing the population, and taking values in W, then each random draw
from stratum g has the same distribution as w conditional on w belonging to Wg:

Dwgi  Dw|w ∈ Wg, i  1, . . . ,Ng.

Therefore, the resulting sample across all strata consists of independent but not identically
distributed observations. Unless we are told, we have no way of knowing that our data came
from SS sampling.

What if we want to estimate the mean of w from an SS sample? It turns out we cannot get
an unbiased or consistent estimator of unless we have some additional information. Typically,
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the information comes in the form of population frequencies for each of the strata. Specifically,
let g  Pw ∈ Wg be the probability that w falls into stratum g; the g are often called the

“aggregate shares.”
If we know the g (or can consistently estimate them), then w  Ew is identified by a

weighted average of the expected values for the strata:

w  1Ew|w ∈ W1 . . .GEw|w ∈ WG.     (5.1)

Because we can estimate each of the conditional means using the random sample from the
appropriate stratum, an unbiased estimator of is simply

̂w  1w̄1  2w̄2. . .Gw̄G,     (5.2)

where w̄g is the sample average from stratum g. As the strata sample sizes grow, ̂w is also a

consistent estimator of w. The variance of ̂w is easily obtained because of independence
withing and between strata:

Var̂w  1
2Varw̄1 . . .G

2 Varw̄G.     (5.3)

Because Varw̄g  g
2/Nf, each of the variances can be estimated in an unbiased fashion by

using the usual unbiased variance estimator,

̂g
2  Ng − 1−1∑

i1

Ng

wgi − w̄g2.     (5.4)

Sometimes it is useful to have a formula for ̂w that shows it is a weighted average across
all observations:

̂w  1/h1N−1∑
i1

N1

w1i . . .G/hGN−1∑
i1

NG

wGi

 N−1∑
i1

N

gi /hgiwi     (5.5)

where hg  Ng/N is the fraction of observations in stratum g and in (5.5) we drop the strata

index on the observations and use the stratum for observation i, gi, to pick out the appropriate
weight, gi /hgi . Formula (1.5) is useful because the sampling weights associated with SS

samples are reported as gi /hgi, and so applying these weights in averaging across all N

produces an unbiased, consistent estimator. Nevertheless, the large sample properties of
estimators from SS samples are properly derived from (5.2) and its extensions.

A different sampling scheme is usually called variable probability (VP) sampling, which is
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more convenient for telephone or email surveys, where little, if anything, is known ahead of
time about those being contacted. With VP sampling, each stratum g is assigned a nonzero
sampling probability, pg. Now, a random draw wi is taking from the population, and it is kept

with probability pg if wi ∈ Wg. With VP sampling, the population is sampled N times. Often N

is not reported with VP samples (although, as we discuss latter, knowing how many times each
stratum was sampled can improve efficiency). Instead, we know how many data points were
kept, and we call this M. Because of the randomness in whether an observation is kept, M is
properly viewed as a random variable. With VP sampling, it is handy for each draw from the
population to have a selection indicator, si, which is one of observation i is kept (and then its

stratum is also known). Then M  ∑ i1
N si. Let zi be a G-vector of stratum indicators, and let

pzi  p1zi1 . . .pGziG be the function that delivers the sampling probability for any random
draw i.

A key assumption for VP sampling is that conditional on being in stratum g, the chance of
keeping an observation is pg. Statistically, this means that, conditional on zi, si and wi are

independent. Using this assumption, we can show, just as in the treatment effect case,

Esi/pziwi  Ewi;     (5.6)

that is, weighting a selected observation by the inverse of its sampling probability allows us to
recover the population mean. (We will use a more general version of this result when we
discuss missing data general. Like estimating counterfactual means in program evaluation, VP
sampling is, in effect, a missing data problem. But it is usually treated along with other
stratified sampling schemes.) It follows that

N−1∑
i1

N

si/pziwi     (5.7)

is a consistent estimator of Ewi. We can also write this as

M/NM−1∑
i1

N

si/pziwi;     (5.8)

if we define weights as v̂i  ̂/pzi where ̂  M/N is the fraction of observations retained

from the sampling scheme, then (5.8) is M−1∑ i1
M v̂iwi, where only the observed points are

included in the sum. Thus, like in the SS case, we can write the esimator for the mean under
VP sampling as a weighted average of the observed data points. In the VP case, the weight is
(an estimate of) the probability of keeping an observation,   Psi  1, over the probability
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that an observation in its stratum is kept. If pg  , the observations for stratum g are

underpresented in the eventual sample (asymptotically), and they receive weight greater than
one.

In both the SS and VP cases, one may replace the number of observed data points in the
average with the sum of the weights described in each case.

Virtually any estimation method can be used with SS or VP sampled data. Wooldridge
(1999, 2001) covers M-estimation for the VP and SS cases, respectively. This includes a wide
variety of estimators, including least squares, MLE, and quasi-MLE. There are several
interesting findings concerning asymptotic efficiency and estimating the asymptotic variances.
Consider the problem of linear regression for simplicity; analogous claims hold for MLE, NLS,
and many other estimators. The model in the population is

y  x  u,     (5.9)

where  may index the conditional mean, but consistency follows from Ex′u  0. Consider

SS sampling. Then a consistent estimator ̂ is obtained from the “weighted” least squares
problem

min
b
∑
i1

N

viyi − xib2,     (5.10)

where vi  gi /hgi is the weight for observation i. Remember, the weighting used here is not to

solve any heteroskedasticity problem; it is to reweight the sample in order to consistently
estimate the population parameter .

One possibility for performing inference on ̂ is to use the White (1980) robust sandwich
estimator and associated statistics. This estimator is routinely reported by regression packages
when sampling weights are included. In fact, sometimes this estimator is consistent for

Avar N ̂ − . There are two assumptions that imply consistency of this widely used
variance matrix estimator: (i) Ey|x  x, so that we are actually estimating a conditional

mean; and (ii) the strata are determined by the explanatory variables, x. It turns out that when
the White estimator is not consistent, it is actually conservative. In other words, the White
estimator converges to a matrix that is larger, in the matrix sense, than the correct asymptotic
variance.

To obtain the correct asymptotic variance, we need to use a more detailed formulation of
the estimation problem, which is
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min
b
∑
g1

G

g Ng
−1∑

i1

N

ygi − xgib2     (5.11)

so that we are minimizing the a weighted average sum of squared residuals. Using this
formulation – actually, the M-estimator version of it – Wooldridge (2001) showed that a

consistent estimator of the asymptotic variance of ̂ is

Avar̂ −   ∑
i1

N

gi /hgixi
′xi

−1

 ∑
g1

G

g/hg2 ∑
i1

Ng

xgi
′ ûgi − xg

′ ûgxgi
′ ûgi − xg

′ ûg ′

 ∑
i1

N

gi /hgixi
′xi

−1

.

    (5.12)

This formula looks a bit daunting, but, it can be seen that the outer parts of the sandwich are
identical to the usual White sandwich estimator. The difference is in the middle. The usual
estimator ignores the information on the strata of the observations, which is the same as

dropping the within-strata averages, xg
′ ûg. Because a smaller sum of squared residuals (in a

matrix sense) is obtained by subtracting off the same average – rather than centering around
zero – the matrix in (5.12) is smaller than the usual White matrix. That happens
asymptotically, too, provided the means Ex′u|w ∈ Wg, where w  x,y, are nonzero. So, it

is the difference between subtracting off within-strata averages and not that produces the more
precise inference with stratified sampled data. Econometrics packages, such as Stata, will
compute (5.12) provided strata membership is included along with the weights. If only the
weights are provided, the larger asymptotic variance is computed.

One case where there is no gain from subtracting within-strata means is when Eu|x  0
and w ∈ Wg is the same as x ∈ Xg for some partition of the regressor space. In fact, if we add

the homoskedasticity assumption Varu|x  2, then the weighted estmator is less efficient
than the unweighted estimator, which, of course, is also consistent because Ey|x  x and
stratification is based on x. So, the cost to weighting when the classical linear model
assumptions hold and stratification is exogenous is in terms of efficiency loss.

Some argue that even if stratification is based on x, one should use the weighted estimator.
The argument is based on consistently estimating the linear projection, Ly|x, even if the
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conditional mean is not linear. If we can only assume Ly|x  x, then the weighted estimator

consistently estiimates  whether or not the stratification is based on x. The unweighted
estimator does not consistently estimate  in either case.

The previous discussion applies to nonlinear least squares and maximum likelihood
problems, and others. Now, to exploit the stratification, strata means should be subtracted from
the gradient of the objective function when computing the asymptotic variance. This requires
knowing the stratum and its weight for each observation. A conservative estimate is obtained
by the Huber-White sandwich form for misspecified MLE – but with sampling weights. This is
the proper formula for, say, MLE if the conditional density fy|x, is correctly specified and
stratification is based on x. But in that case the unweighted MLE is fully efficient, and the
usual variance matrix estimators can be used. The weighted estimator does consistently
estimate the solution to the population problem mint Elog fy|x, t if the density is
misspecified, and that is valuable in some situations.

The above findings have analogs for VP sampling. One interesting finding is that while the
Huber-White sandwich matrix applied to the weighted objective function (weighted by the
1/pg) is consistent when the known pg are used, an asymptotically more efficient estimator is

available when the retention frequencies, p̂g  Mg/Ng, are observed, where Mg is the number

of observed data points in stratum g and Ng is the number of times stratum g was sampled. We

always know Mg if we are given a stratum indicator with each observation. Generally, Ng

might not be known. If it is, we should use the p̂g in place of pg. Results such as this are

discussed in Imbens (1992), Imbens and Lancaster (1996), and Wooldridge (1999, 2007). The
VP sampling example in Wooldridge (2007) can be used to show that the following matrix is
valid:

Avar̂ −   ∑
i1

M

xi
′xi/p̂gi

−1

 ∑
g1

G

p̂g
−2 ∑

i1

Mg

xgi
′ ûgi − xg

′ ûgxgi
′ ûgi − xg

′ ûg ′

 ∑
i1

M

xi
′xi/p̂gi

−1

,

    (5.13)

where, remember, Mg is the number of observed data points in stratum g, and the above sums

are over the observed data points. This formula is essentially the same as (5.12) in that the
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quantities are weighted so that the sample represents the population and xgi
′ ûgi are centered

about the within-strata means. If we use the known sampling weights, we drop xg
′ ûg from

(5.13). If Eu|x  0 and the sampling is exogenous, we also drop this term because
Ex′u|w ∈ Wg  0 for all g, and this is whether or not we estimate the pg. See Wooldridge

(2007) for how these same claims carry over to general nonlinear models and estimation
methods.
References

(To be added.)
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Lecture 9, Tuesday, July 31th, 3.15-4.15pm

Partial Identification

1. Introduction

Traditionally in constructing statistical or econometric models researchers look for models

that are (point-)identified: given a large (infinite) data set, one can infer without uncertainty

what the values are of the objects of interest, the estimands. Even though the fact that a

model is identified does not necessarily imply that we do well in finite samples, it would

appear that a model where we cannot learn the parameter values even in infinitely large

samples would not be very useful. Traditionally therefore researchers have stayed away from

models that are not (point-)identified, often adding assumptions beyond those that could

be justified using substantive arguments. However, it turns out that even in cases where

we cannot learn the value of the estimand exactly in large samples, in many cases we can

still learn a fair amount, even in finite samples. A research agenda initiated by Manski

(an early paper is Manski (1990), monographs include Manski (1995, 2003)), referred to as

partial identification, or earlier as bounds, and more recently adopted by a large number

of others, notably Tamer in a series papers (Haile and Tamer, 2003, Ciliberto and Tamer,

2007; Aradillas-Lopez and Tamer, 2007), has taken this perspective. In this lecture we focus

primarily on a number of examples to show the richness of this approach. In addition we

discuss some of the theoretical issues connected with this literature, and some practical issues

in implementation of these methods.

The basic set up we adopt is one where we have a random sample of units from some

population. For the typical unit, unit i, we observe the value of a vector of variables Zi.

Sometimes it is useful to think of there being in the background a latent variable variable

Wi. We are interested in some functional θ of the joint distribution of Zi and Wi, but, not

observing Wi for any units, we may not be able to learn the value of θ even in infinite samples

because the estimand cannot be written as a functional of the distribution of Zi alone. The
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three key questions are (i) what we can learn about θ in large samples (identification), (ii)

how do we estimate this (estimation), and (iii) how do we quantify the uncertainty regarding

θ (inference).

The solution to the first question will typically be a set, the identified set. Even if we

can characterize estimators for these sets, computing them can present serious challenges.

Finally, inference involves challenges concerning uniformity of the coverage rates, as well as

the question whether we are interested in coverage of the entire identified set or only of the

parameter of interest.

There are a number of cases of general interest. I will discuss two leading cases in more

detail. In the first case the focus is on a scalar, with the identified set equal to an interval with

lower and upper bound a smooth,
√
N -estimable functional of the data. A second case of

interest is that where the information about the parameters can be characterized by moment

restrictions, often arising from revealed preference comparisons between utilities at actions

taken and actions not taken. I refer to this as the generalized inequality restrictions (GIR)

setting. This set up is closely related to the generalized method of moments framework.

2. Partial Identification: Examples

Here we discuss a number of examples to demonstrate the richness of the partial identi-

fication approach.

2.1 Missing Data

This is a basic example, see e.g., Manski (1990), and Imbens and Manski (2004). It is

substantively not very interesting, but it illustrates a lot of the basic issues. Suppose the

observed variable is the pair Zi = (Di, Di ·Yi), and the unobserved variable is Wi = Yi. Di is

a binary variable. This corresponds to a missing data case. If Di = 1, we observe Yi, and if

Di = 0 we do not observe Yi. We always observe the missing data indicator Di. We assume

the quantity of interest is the population mean θ = E[Yi].

In large samples we can learn p = E[Di] and µ1 = E[Yi|Di = 1]. The data contain no
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information about µ0 = E[Yi|Di = 0]. It can be useful, though not always possible, to write

the estimand in terms of parameters that are point-identified and parameters that the data

are not informative about. In this case we can do so:

θ = p · µ1 + (1 − p) · µ0.

Since even in large samples we learn nothing about µ0, it follows that without additional

information there is no limit on the range of possible values for θ. Even if p is very close to

1, this small probability that Di = 0 combined with the possibility that µ0 is very large or

very small allows for a wide range of values for θ.

Now suppose we know that the variable of interest is binary: Yi ∈ {0, 1}. Then natural

(not data-informed) lower and upper bounds for µ0 are 0 and 1 respectively. This implies

bounds on θ:

θ ∈ [θLB, θUB] = [p · µ1, p · µ1 + (1 − p)] .

These bounds are sharp, in the sense that without additional information we can not improve

on them. Formally, for all values θ in [θLB, θUB], we can find a joint distribution of (Yi,Wi)

that is consistent with the joint distribution of the observed data and with θ. Even if Y is

not binary, but has some natural bounds, we can obtain potentially informative bounds on

θ.

We can also obtain informative bounds if we modify the object of interest a little bit.

Suppose we are interested in quantiles of the distribution of Yi. To make this specific,

suppose we are interested in the median of Yi, θ0.5 = med(Yi). The largest possible value

for the median arises if all the missing value of Yi are large. Define qτ(Yi|Di = d) to be the

τ quantile of the conditional distribution of Yi given Di = d. Then the median cannot be

larger than q1/(2p)(Yi|Di = 1) because even if all the missing values were large, we know that

at least p · (1/(2p)) = 1/2 of the units have a value less than or equal to q1/(2p)(Yi|Di = 1).

Similarly, the smallest possible value for the median corrresponds to the case where all the
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missing values are small, leading to a lower bound of q(2p−1)/(2p)(Yi|Di = 1). Then, if p > 1/2,

we can infer that the median must satisfy

θ0.5 ∈ [θLB, θUB] =
[

q(2p−1)/(2p)(Yi|Di = 1), q1/(2p)(Yi|Di = 1)
]

,

and we end up with a well defined, and, depending on the data, more or less informative

identified interval for the median. If fewer than 50% of the values are observed, or p < 1/2,

then we cannot learn anything about the median of Yi without additional information (for

example, a bound on the values of Yi), and the interval is (−∞,∞). More generally, we can

obtain bounds on the τ quantile of the distribution of Yi, equal to

θτ ∈ [θLB, θUB] =
[

q(τ−(1−p))/p(Yi|Di = 1), qτ/p(Yi|Di = 1)
]

.

which is bounded if the probability of Yi being missing is less than min(τ, 1 − τ ).

2.2 Returns to Schooling

Manski and Pepper (2000, MP) are interested in estimating returns to schooling. They

start with an individual level response function Yi(w), where w ∈ {0, 1, . . . , 20} is years of

schooling. Let

∆(s, t) = E[Yi(t)− Yi(s)],

be the difference in average outcomes (log earnings) given t rather than s years of schooling.

Values of ∆(s, t) at different combinations of (s, t) are the object of interest. Let Wi be

the actual years of school, and Yi = Yi(Wi) be the actual log earnings. If one makes an

unconfoundedness type assumption that

Yi(w) ⊥⊥ Wi

∣

∣

∣ Xi,

for some set of covariates, one can estimate ∆(s, t) consistently given some support con-

ditions. MP relax this assumption. Dropping this assumption entirely without additional
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assumptions one can derive the bounds using the missing data results in the previous sec-

tion. In this case most of the data would be missing, and the bounds would be wide. More

interestingly MP focus on a number of alternative, weaker assumptions, that do not allow

for point-identification of ∆(s, t), but that nevertheless may be able to narrow the range of

values consistent with the data to an informative set. One of their assumptions requires that

increasing education does not lower earnings:

Assumption 1 (Monotone Treatment Response)

If w′ ≥ w, then Yi(w
′) ≥ Yi(w).

Another assumption states that, on average, individuals who choose higher levels of education

would have higher earnings at each level of education than individuals who choose lower levels

of education.

Assumption 2 (Monotone Treatment Selection)

If w′′ ≥ w′, then for all w, E[Yi(w)|Wi = w′′] ≥ E[Yi(w)|Wi = w′].

Both assumptions are consistent with many models of human capital accumulation. They

also address the main concern with the exogenous schooling assumption, namely that higher

ability individuals who would have had higher earnings in the absence of more schooling, are

more likely to acquire more schooling.

Under these two assumptions, the bound on the average outcome given w years of school-

ing is

E[Yi|Wi = w] · Pr(Wi ≥ w) +
∑

v<w

E[Yi|Wi = v] · Pr(Wi = v)

≤ E[Yi(w)] ≤

E[Yi|Wi = w] · Pr(Wi ≤ w) +
∑

v>w

E[Yi|Wi = v] · Pr(Wi = v).



Imbens/Wooldridge, Lecture Notes 9, Summer ’07 6

Using data from the National Longitudinal Study of Youth MP a point estimator for the

upper bound on the the returns to four years of college, ∆(12, 16) to be 0.397, with a 0.95

upper quantile of 0.450. Translated into an average yearl returns this gives us 0.099, which

is in fact lower than some estimates that have been reported in the literature. This analysis

suggests that the upper bound is in this case reasonably informative, given a remarkably

weaker set of assumptions.

2.3 Changes in Inequality and Selection

There is a large literature on the changes in the wage distribution and the role of changes

in the returns to skills that drive these changes. One concern is that if one compares the

wage distribution at two points in time, any differences may be partly or wholly due to

differences in the composition of the workforce. Blundell, Gosling, Ichimura, and Meghir

(2007, BGHM) investigate this using bounds. They study changes in the wage distribution

in the United Kingdom for both men and women. Even for men at prime employment ages

employment in the late nineties is less than 0.90, down from 0.95 in the late seventies. The

concern is that the 10% who do not work are potentially different, both from those who work,

as well as from those who did not work in the seventies, corrupting comparisons between

the wage distributions in both years. Traditionally such concerns may have been ignored by

implicitly assuming that the wages for those not working are similar to those who are working,

possibly conditional on some observed covariates, or they may have been addressed by using

selection models. The type of selection models used ranges from very parametric models of

the type originally developed by Heckman (1978), to semi- and non-parametric versions of

this (Heckman, 1990). The concern that BGHM raise is that those selection models rely on

assumptions that are difficult to motivate by economic theory. They investigate what can

be learned about the changes in the wage distributions without the final, most controversial

assumptions of those selection models.

BGHM focus on the interquartile range as their measure of dispersion in the wage dis-

tribution. As discussed in Section 2.1, this is convenient, because bounds on quantiles often

exist in the presence of missing data. Let FY |X(y|x) be the distribution of wages condi-
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tional on some characteristics X. This is assumed to be well defined irrespective of whether

an individual works or not. However, if an individual does not work, Yi is not observed.

Let Di be an indicator for employment. Then we can estimate the conditional wage dis-

tribution given employment, FY |X,D(y|x, d = 1), as well as the probability of employment,

p(x) = pr(Di = 1|Xi = x). This gives us tight bounds on the (unconditional on employment)

wage distribution

FY |X,D(y|x, d = 1) · p(x) ≤ FY |X,D(y|x, d = 1) ≤ FY |X,D(y|x, d = 1) · p(x) + (1 − p(x)).

We can convert this to bounds on the τ quantile of the conditional distribution of Yi given

Xi = x, denoted by qτ(x):

q(τ−(1−p(x)))/p(x)(Yi|Di = 1) ≤ qτ (x) ≤ qτ/p(x)(Yi|Di = 1),

Then this can be used to derive bounds on the interquartile range q0.75(x)− q0.25(x):

q(0.75−(1−p(x)))/p(x)(Yi|Di = 1) − q0.25/p(x)(Yi|Di = 1)

≤ q0.75(x) − q0.25(x) ≤

q(0.25−(1−p(x)))/p(x)(Yi|Di = 1) − q0.75/p(x)(Yi|Di = 1).

So far this is just an application of the missing data bounds derived in the previous

section. What makes this more interesting is the use of additional information short of

imposing a full selection model that would point identify the interquartile range. The first

assumption BGHM add is that of stochastic dominance of the wage distribution for employed

individuals:

FY |X,D(y|x, d = 1) ≤ FY |X,D(y|x, d = 0).
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One can argue with this stochastic dominance assumption, but within groups homogenous

in background characteristics including education, it may be reasonable. This assumption

tightens the bounds on the distribution function to:

FY |X,D(y|x, d = 1) ≤ FY |X,D(y|x, d = 1) ≤

FY |X,D(y|x, d = 1) · p(x) + (1 − p(x)).

Another assumption BGHM consider is a modification of an instrumental variables as-

sumption that an observed covariate Z is excluded from the wage distribution:

FY |X,Z(y|X = x, Z = z) = FY |X,Z(y|X = x, Z = z′), for all x, z, z′.

This changes the bounds on the distribution function to:

max
z
FY |X,Z,D(y|x, z, d = 1) · p(x, z)

≤ FY |X,D(y|x) ≤

min
z
FY |X,Z,D(y|x, z, d = 1) · p(x) + (1 − p(x)).

(An alternative weakening of the standard instrumental variables assumption is in Hotz,

Mullin and Sanders (1997), where a valid instrument exists, but is not observed directly.)

Such an instrument may be difficult to find, and BGHM argue that it may be easier

to find a covariate that affects the wage distribution in one direction, using a monotone

instrumental variables restriction suggested by Manski and Pepper (2000):

FY |X,Z(y|X = x, Z = z) ≤ FY |X,Z(y|X = x, Z = z′), for all x, z < z′.

This discussion is somewhat typical of what is done in empirical work in this area. A

number of assumptions are considered, with the implications for the bounds investigated.

The results lay out part of the mapping between the assumptions and the bounds.
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2.4 Random Effects Panel Data Models with Initial Condition Problems

Honoré and Tamer (2006) study dynamic random effects panel data models. We observe

(Xi1, Yi1, . . . , XiT , YiT ), for i = 1, . . . , N . The time dimension T is small relative to the

cross-section dimension N . Large sample approximations are based on fixed T and large

N . Inference would be standard if we specified a parametric model for the (components of

the) conditional distribution of (Yi1, . . . , YiT ) given (Xi1, . . . , XiT ). In that case we could use

maximum likelihood methods. However, it is difficult to specify this conditional distribution

directly. Often we start with a model for the evolution of Yit in terms of the present and

past covariates and its lags. As an example, consider the model

Yit = 1{X ′
itβ + Yit−1γ + αi + εit ≥ 0},

with the εit independent over time and individuals, and normally distributed, εit ∼ N (0, 1).

The object of interest is the parameter governing the dynamics, γ. This model gives us the

conditional distribution of Yi2, . . . , YiT given Yi1, αi and given Xi1, . . . , XiT . Suppose we also

postulate a parametric model for the random effects αi:

α|Xi1, . . . , XiT ∼ G(α|θ),

(so in this case αi is independent of the covariates). Then the model is (almost) complete, in

the sense that we can almost write down the conditional distribution of (Yi1, . . . , YiT ) given

(Xi1, . . . , XiT ). All that is missing is the conditional distribution of the initial condition:

p(Yi1|αi, Xi1, . . . , XiT ).

This is a difficult distribution to specify. One could directly specify this distribution, but

one might want it to be internally consistent across different number of time periods, and

that makes it awkward to choose a functional form. See for general discussions of this initial

conditions problem Wooldridge (2002). Honoré and Tamer investigate what can be learned

about γ without making parametric assumptions about this distribution. From the literature
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it is known that in many cases γ is not point-identified (for example, the case with T ≤ 3,

no covariates, and a logistic distribution for εit). Nevertheless, it may be that the range of

values of γ consistent with the data is very small, and it might reveal the sign of γ.

Honoré and Tamer study the case with a discrete distribution for α, with a finite and

known set of support points. They fix the support to be −3,−2.8, . . . , 2.8, 3, with unknown

probabilities. Given that the εit are standard normal, this is very flexible. In a computational

exercise they assume that the true probabilities make this discrete distribution mimic the

standard normal distribution. In addition they set Pr(Yi1 = 1|αi) = 1/2. In the case with

T = 3 they find that the range of values for γ consistent with the data generating process

(the identified set) is very narrow. If γ is in fact equal to zero, the width of the set is zero.

If the true value is γ = 1, then the width of the interval is approximately 0.1. (It is largest

for γ close to, but not equal to, -1.) See Figure 1, taken from Honoré and Tamer (2006).

The Honoré-Tamer analysis, in the context of the literature on initial conditions problems,

shows very nicely the power of the partial identification approach. A problem that had been

viewed as essentially intractable, with many non-identification results, was shown to admit

potentially precise inferences despite these non-identification results.

2.5 Auction Data

Haile and Tamer (2003, HT from hereon), in what is one of the most influential appli-

cations of the partial identification approach, study English or oral ascending bid auctions.

In such auctions bidders offer increasingly higher prices until only one bidder remains. HT

focus on a symmetric independent private values model. In auction t, for t = 1, . . . , T , bid-

der i has a value νit, drawn independently from the value for bidder j. Large sample results

refer to the number of auctions getting large. HT assume that the value distribution is the

same in each auction (after adjusting for observable auction characteristics). A key object of

interest, is the value distribution. Given that one can derive other interesting objects, such

as the optimal reserve price.

One can imagine a set up where the researcher observes, as the price increases, for each
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bidder whether that bidder is still participating in the auction. (Milgrom and Weber (1982)

assume that each bidder continuously confirms their participation by holding down a button

while prices rise continuously.) In that case one would be able to infer for each bidder their

valuation, and thus directly estimate the value distribution.

This is not what is typically observed. Instead of prices rising continuously, there are

jumps in the bids, and for each bidder we do not know at any point in time whether they are

still participating unless they subsequently make a higher bid. HT study identification in

this, more realistic, setting. They assume that no bidder ever bids more than their valuation,

and that no bidder will walk away and let another bidder win the auction if the winning

bid is lower than their own valuation. Under those two assumptions, HT show that one can

derive bounds on the value distribution.

One set of bounds they propose is as follows. Let the highest bid for participant i in

auction t be bit. The number of participants in auction t is nt. Ignoring any covariates,

let the distribution of the value for individual i, νit, be Fν(v). This distribution function is

the same for all auctions. Let Fb(b) = Pr(bit ≤ b) be the distribution function of the bids

(ignoring variation in the number of bidders by auction). This distribution can be estimated

because the bids are observed. The winning bid in auction t is Bt = maxi=1,...,nt bit. First

HT derive an upper bound on the distribution function Fν(v). Because no bidder ever bids

more than their value, it follows that bit ≤ νit. Hence, without additional assumptions,

Fν(v) ≤ Fb(v), for all v.

For a lower bound on the distribution function one can use the fact that the second

highest of the values among the n participants in auction t must be less than or equal to the

winning bid. This follows from the assumption that no participant will let someone else win

with a bid below their valuation. Let Fν,m:n(v) denote the mth order statistic in a random

sample of size n from the value distribution, and let FB,n:n(b) denote the distribution of the



Imbens/Wooldridge, Lecture Notes 9, Summer ’07 12

winning bid in auctions with n participants. Then

FB,n:n(v) ≤ Fν,n−1:n(v).

The distribution of the any order statistic is monotonically related to the distribution of the

parent distribution, and so a lower bound on Fν,n−1:n(v) implies a lower bound on Fν(v).

HT derive tighter bounds based on the information in other bids and the inequalities

arising from the order statistics, but the above discussion illustrates the point that outside

of the Milgrom-Weber button auction model one can still derive bounds on the value dis-

tribution in an English auction even if one cannot point-identify the value distribution. If

in fact the highest bid for each individual was equal to their value (other than for the win-

ner for whom the bid is equal to the second highest value), the bounds would collaps and

point-identification would be obtained.

2.6 Entry Models and Inequality Conditions

Recently a number of papers has studied entry models in settings with multiple equilibria.

In such settings traditionally researchers have added ad hoc equilbrium selection mechanisms.

In the recent literature a key feature is the avoidance of such assumptions, as these are often

difficult to justify on theoretical grounds. Instead the focus is on what can be learned in the

absence of such assumptions. In this section I will discuss some examples from this literature.

An important feature of these models is that they often lead to inequality restrictions, where

the parameters of interest θ satisfy

E[ψ(Z, θ)] ≥ 0,

for known ψ(z, θ). This relates closely to the standard (Hansen, 1983) generalized method of

moments (GMM) set up where the functions ψ(Z, θ) would have expectation equal to zero at

the true values of the parameters. We refer to this as the generalized inequality restrictions

(GIR) form. These papers include Pakes, Porter, Ho, and Ishii (2006), Cilberto and Tamer

(2004, CM from hereon), Andrews, Berry and Jia (2004). Here I will discuss a simplified
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version of the CM model. Suppose two firms, A and B, contest a set of markets. In market

m, m = 1, . . . ,M , the profits for firms A and B are

πAm = αA + δA · dBm + εAm, and πBm = αB + δB · dAm + εBm.

where dFm = 1 if firm F is present in market m, for F ∈ {A,B}, and zero otherwise. The

more realistic model CM consider also includes observed market and firm characteristics.

Firms enter market m if their profits in that market are positive. Firms observe all compo-

nents of profits, including those that are unobserved to the econometrician, (εAm, εBm), and

so their decisions satisfy:

dAm = 1{πAm ≥ 0}, dBm = 1{πBm ≥ 0}. (1)

(Pakes, Porter, Ho, and Ishii allow for incomplete information where expected profits are

at least as high for the action taken as for actions not taken, given some information set.)

The unobserved (to the econometrician) components of profits, εFm, are independent accross

markets and firms. For ease of exposition we assume here that they have a normal N (0, 1)

distribution. (Note that we only observe indicators of the sign of profits, so the scale of

the unobserved components is not relevant for predictions.) The econometrician observes in

each market only the pair of indicators dA and dB . We focus on the case where the effect of

entry of the other firm on a firm’s profits, captured by the parameters δA and δB is negative,

which is the case of most economic interest.

An important feature of this model is that given the parameters θ = (αA, δA, αB, δB), for

a given set of (εAm, εBm) there is not necessarily a unique solution (dAm, dBm). For pairs of

values (εAm, εBm) such that

−αA < εA ≤ −αA − δA, −αB < εB ≤ −αB − δB,

both (dA, dB) = (0, 1) and (dA, dB) = (1, 0) satisfy the profit maximization condition (1).

In the terminology of this literature, the model is not complete. It does not specify the
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outcomes given the inputs. Figure 1, adapted from CM, shows the different regions in the

(εAm, εBm) space.

The implication of this is that the probability of the outcome (dAm, dBm) = (0, 1) cannot

be written as a function of the parameters of the model, θ = (αA, δA, αB, δB), even given

distributional assumptions on (εAm, εBm). Instead the model implies a lower and upper

bound on this probability:

HL,01(θ) ≤ Pr ((dAm, dBm) = (0, 1)) ≤ HU,01(θ).

Inspecting Figure 1 shows that

HL,01(θ) = Pr(εAm < −αA,−αB < εBm)

+Pr(−αA ≤ εAm < −αA − δA,−αB − δB < εBm),

and

HU,01(θ) = Pr(εAm < −αA, αB < εBm)

+Pr(−αA ≤ εAm < −αA − δA,−αB − δB < εBm),

+Pr(−αA ≤ εAm < −αA − δA,−αB < εBm < −αB − δB),

Similar expressions can be derived for the probability Pr ((dAm, dBm) = (1, 0)). Thus in

general we can write the information about the parameters in large samples as









HL,00(θ)
HL,01(θ)
HL,10(θ)
HL,11(θ)









≤









Pr ((dAm, dBm) = (0, 0))
Pr ((dAm, dBm) = (0, 1))
Pr ((dAm, dBm) = (1, 0))
Pr ((dAm, dBm) = (1, 1))









≤









HU,00(θ)
HU,01(θ)
HU,11(θ)
HU,11(θ)









.

(For (dA, dB) = (0, 0) or (dA, dB) = (1, 1) the lower and upper bound coincide, but for ease

of exposition we treat all four configurations symmetrically.) The HL,ij(θ) and HU,ij(θ) are
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known functions of θ. The data allow us to estimate the foru probabilities, which contain

only three separate pieces of information because the probabilities add up to one. Given

these probabilities, the identified set is the set of all θ that satisfy all eight inequalities. In

the simple model above, there are four parameters. Even in the case with the lower and

upper bounds for the probabilities coinciding, these would in general not be identified.

We can write this in the GIR form by defining

ψ(dA, dB |αA, αB, δA, δB) =

























HU,00(θ) − (1 − dA) · (1 − dB)
(1 − dA) · (1 − dB) −HL,00(θ)
HU,01(θ) − (1 − dA) · dB

(1 − dA) · dB −HL,01(θ)
HU,10(θ) − dA · (1 − dB)
dA · (1 − dB) −HL,10(θ)
HU,11(θ) − dA · dB

dA · dB −HL,11(θ)

























,

so that the model implies that at the true values of the parameters

E [ψ(dA, dB |αA, αB, δA, δB)] ≥ 0.

3. Estimation

Chernozhukov, Hong, and Tamer (2007, CHT) consider, among other things, the case

with moment inequality conditions,

E[ψ(Z, θ)] ≥ 0,

where ψ(z, θ) is a known vector of functions, of dimension M , and the unknown parameter

θ is of dimension K. Let Θ be the parameter space, a subset of R
K .

Define for a vector x the vector (x)+ to be the component-wise non-negative part, and

(x)− to be the component-wise non-positive part, so that for all x, x = (x)− + (x)+. For a

givenM×M non-negative definite weight matrix W , CHT consider the population objective

function

Q(θ) = E[ψ(Z, θ)]′−WE[ψ(Z, θ)]−.
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For all θ in the identified set, denoted by ΘI ⊂ Θ, we have Q(θ) = 0.

The sample equivalent to this population objective function is

QN(θ) =

(

1

N

N
∑

i=1

ψ(Zi, θ)

)′

−

W

(

1

N

N
∑

i=1

ψ(Zi, θ)

)

−

.

We cannot simply estimate the identified set as

Θ̃I = {θ ∈ Θ |QN (θ) = 0} ,

The reason is that even for θ in the identified setQN (θ) may be positive with high probability.

A simple way to see that is to consider the standard GMM case with equalities and over-

identification. If E[ψ(Z, θ)] = 0, the objective function will not be zero in finite samples in

the case with over-identification. As a result, Θ̃I can be empty when ΘI is not, even in large

samples.

This is the reason CHT estimate the set ΘI as

Θ̂I = {θ ∈ Θ |QN (θ) ≤ aN } ,

where aN → 0 at the appropriate rate. In most regular problems aN = c/N , leading to an

estimator Θ̂I that is consistent for ΘI , by which we mean that the two sets get close to each

other, in the Hausdorf sense that

sup
θ∈ΘI

inf
θ′∈Θ̂I

d(θ, θ′) −→ 0, and sup
θ′∈Θ̂I

inf
θ∈ΘI

d(θ, θ′) −→ 0,

where d(θ, θ′) = ((θ − θ)′(θ − θ′))1/2.

3. Inference: General Issues

There is a rapidly growing literature concerned with developing methods for inference in

partially identified models, including Beresteanu and Molinari (2006), Chernozhukov, Hong,

and Tamer (2007), Imbens and Manski (2004), Rosen (2006), and Romano and Shaikh
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(2007ab). In many cases the partially identified set itself is difficult to characterize. In the

scalar case this can be much simpler. There it often is an interval, [θLB, θUB]. There are by

now a number of proposals for constructing confidence sets. They differ in implementation

as well as in their goals. One issue is whether one wants a confidence set that includes

each element of the identified set with fixed probability, or the entire identified set with that

probability. Formally, the first question looks for a confidence set CIθ
α that satisfies

inf
θ∈[θLB,θUB]

Pr
(

θ ∈ CIθ
α

)

≥ α.

In the second case we look for a set CI[θLB,θUB]

α such that

Pr
(

[θLB, θUB] ⊂ CIθα
)

≥ α.

The second requirement is stronger than the first, and so generally CIθ
α ⊂ CI[θLB,θUB]

α . Here

we follow Imbens and Manski (2004) and Romano and Shaikh (2007a) who focus on the

first case. This seems more in line with teh traditional view of confidence interval in that

they should cover the true value of the parameter with fixed probability. It is not clear why

the fact that the object of interest is not point-identified should change the definition of a

confidence interval. CHT and Romano and Shaikh (2007b) focus on the second case.

Next we discuss two specific examples to illustrate some of the issues that can arise, in

particular the uniformity of confidence intervals.

3.1 Inference: A Missing Data Problem

Here we continue the missing data example from Section 2.1. We have a random sample

of (Wi,Wi · Yi), for i = 1, . . . , N . Yi is known to lie in the interval [0, 1], interest is in

θ = E[Y ], and the parameter space is Θ = [0, 1]. Define µ1 = E[Y |W = 1], λ = E[Y |W = 0],

σ2 = V(Y |W = 1), and p = E[W ]. For ease of exposition we assume p is known. The

identified set is

ΘI = [p · µ1, p · µ1 + (1 − p)].
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Imbens and Manski (2004) discuss confidence intervals for this case. The key feature of this

problem, and similar ones, is that the lower and upper bounds are well-behaved functionals

of the joint distribution of the data that can be estimated at the standard parametric
√
N

rate with an asymptotic normal distribution. In this specific example the lower and upper

bound are both functions of a single unknown parameter, the conditional mean µ1. The first

step is a 95% confidence interval for µ1. Let N1 =
∑

i Wi and Y 1 =
∑

iWi · Yi/N1. The

standard confidence interval is

CIµ1

α =
[

Y − 1.96 · σ/
√
N1, Y + 1.96 · σ/

√
N1

]

.

Consider the confidence interval for the lower and upper bound:

CIp·µ1

α =
[

p ·
(

Y − 1.96 · σ/
√
N 1

)

, p ·
(

Y + 1.96 · σ/
√
N1

)]

,

and

CIp·µ1+(1−p)

α =
[

p ·
(

Y − 1.96 · σ/
√
N1

)

+ (1 − p), p ·
(

Y + 1.96 · σ/
√
N1

)

+ 1 − p
]

.

A simple and valid confidence interval can be based on the lower confidence bound on the

lower bound and the upper confidence bound on the upper bound:

CIθ
α =

[

p ·
(

Y − 1.96 · σ/
√
N1

)

, p ·
(

Y + 1.96 · σ/
√
N 1

)

+ 1 − p
]

.

This is generally conservative. For each θ in the interior of ΘI, the asymptotic coverage rate

is 1. For θ ∈ {θLB, θUB}, the coverage rate is α + (1 − α)/2.

The interval can be modified to give asymptotic coverage equal to α by changing the

quantiles used in the confidence interval construction, essentially using one-sided critical

values,

CIθ
α =

[

p ·
(

Y − 1.645 · σ/
√
N 1

)

, p ·
(

Y + 1.645 · σ/
√
N1

)

+ 1 − p
]

.
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This has the problem that if p = 0 (when θ is point-identified), the coverage is only α−(1−α).

In fact, for values of p close to zero, the confidence interval would be shorter than the

confidence interval in the point-identified case. Imbens and Manski (2004) suggest modifying

the confidence interval to

CIθ
α =

[

p ·
(

Y − CN · σ/
√
N1

)

, p ·
(

Y + CN · σ/
√
N1

)

+ 1 − p
]

,

where the critical value CN satisfies

Φ

(

CN +
√
N · 1 − p

σ/
√
p

)

− Φ(−CN ) = α.

and CN = 1.96 if p = 0. This confidence interval has asymptotic coverage 0.95, uniformly

over p.

3.2. Inference: Multiple Inequalities

Here we look at inference in the Genereralized Inequality (GIR) setting. The example is

a simplified version of the moment inequality type of problems discussed in CHT, Romano

and Shaikh (2007ab), Pakes, Porter, Ho, and Ishii (2006), and Andrews and Guggenberger

(2007). Suppose we have two moment inequalities,

E[X] ≥ θ, and E[Y ] ≥ θ.

The parameter space is Θ = [0,∞). Let µX = E[X], and µY = E[Y ]. We have a random

sample of size N of the pairs (X, Y ). The identified set is

ΘI = [0,min(µX , µY )].

The key difference with the previous example is that the upper bound is no longer a

smooth, well-behaved functional of the joint distribution. In the simple two-inequality ex-

ample, if µX is close to µY , the distribution of the estimator for the upper bound is not well

approximated by a normal distribution. Suppose we estimate the means of X and Y by
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X, and Y , and that the variances of X and Y are known to be equal to σ2. A naive 95%

confidence interval would be

Cθ
α = [0,min(X, Y ) + 1.645 · σ/N ].

This confidence interval essentially ignores the moment inequality that is not binding in the

sample. It has asymptotic 95% coverage for all values of µX , µY , as long as min(µX , µY ) > 0,

and µX 6= µY . The first condition (min(µX , µY ) > 0) is the same as the condition in the

Imbens-Manski example. It can be dealt with in the same way by adjusting the critical value

slightly based on an initial estimate of the width of the identified set.

The second condition raises a different uniformity concern. The naive confidence interval

essentially assumes that the researcher knows which moment conditions are binding. This is

true in large samples, unless there is a tie. However, in finite samples ignoring uncertainty

regarding the set of binding moment inequalities may lead to a poor approximation, especially

if there are many inequalities. One possibility is to construct conservative confidence intervals

(e.g., Pakes, Porter, Ho, and Ishii, 2007). However, such intervals can be unnecessarily

conservative if there are moment inequalities that are far from binding.

One would like construct confidence intervals that asymptotically ignore irrelevant in-

equalities, and at the same time are valid uniformly over the parameter space. Bootstrap-

ping is unlikely to work in this setting. One way of obtaining confidence intervals that are

uniformly valid is based on subsampling. See Romano and Shaikh (2007a), and Andrews

and Guggenberger (2007). Little is known about finite sample properties in realistic settings.
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What’s New in Econometrics? NBER, Summer 2007
Lecture 10, Tuesday, July 31st, 4.30-5.30 pm

Difference-in-Differences Estimation
These notes provide an overview of standard difference-in-differences methods that have

been used to study numerous policy questions. We consider some recent advances in Hansen
(2007a,b) on issues of inference, focusing on what can be learned with various group/time
period dimensions and serial independence in group-level shocks. Both the repeated cross
sections and panel data cases are considered. We discuss recent work by Athey and Imbens
(2006) on nonparametric approaches to difference-in-differences, and Abadie, Diamond, and
Hainmueller (2007) on constructing synthetic control groups.
1. Review of the Basic Methodology

Since the work by Ashenfelter and Card (1985), the use of difference-in-differences
methods has become very widespread. The simplest set up is one where outcomes are observed
for two groups for two time periods. One of the groups is exposed to a treatment in the second
period but not in the first period. The second group is not exposed to the treatment during
either period. In the case where the same units within a group are observed in each time period,
the average gain in the second (control) group is substracted from the average gain in the first
(treatment) group. This removes biases in second period comparisons between the treatment
and control group that could be the result from permanent differences between those groups, as
well as biases from comparisons over time in the treatment group that could be the result of
trends. We will treat the panel data case in Section 4.

With repeated cross sections, we can write the model for a generic member of any of
groups as

y  0  1dB  0d2  1d2  dB  u     (1.1)

where y is the outcome of interest, d2 is a dummy variable for the second time period. The
dummy variable dB captures possible differences between the treatment and control groups
prior to the policy change. The time period dummy, d2, captures aggregate factors that would
cause changes in y even in the absense of a policy change. The coefficient of interest, 1,
multiplies the interaction term, d2  dB, which is the same as a dummy variable equal to one
for those observations in the treatment group in the second period. The
difference-in-differences estimate is

̂1  ȳB,2 − ȳB,1 − ȳA,2 − ȳA,1.     (1.2)

1
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Inference based on even moderate sample sizes in each of the four groups is straightforward,
and is easily made robust to different group/time period variances in the regression framework.

In some cases a more convincing analysis of a policy change is available by further
refining the definition of treatment and control groups. For example, suppose a state
implements a change in health care policy aimed at the elderly, say people 65 and older, and
the response variable, y, is a health outcome. One possibility is to use data only on people in
the state with the policy change, both before and after the change, with the control group being
people under 65 and the treatment group being people 65 and older. The potential problem
with this DD analysis is that other factors unrelated to the state’s new policy might affect the
health of the elderly relative to the younger population, for example, changes in health care
emphasis at the federal level. A different DD analysis would be to use another state as the
control group and use the elderly from the non-policy state as the control group. Here, the
problem is that changes in the health of the elderly might be systematically different across
states due to, say, income and wealth differences, rather than the policy change.

A more robust analysis than either of the DD analyses described above can be obtained by
using both a different state and a control group within the treatment state. If we again label the
two time periods as one and two, let B represent the state implementing the policy, and let E
denote the group of elderly, then an expanded verson of (1.1) is

y  0  1dB  2dE  3dB  dE  0d2  1d2  dB  2d2  dE  3d2  dB  dE  u     (1.3)

The coefficient of interest is now 3, the coefficient on the triple interaction term, d2  dB  dE.
The OLS estimate ̂3 can be expressed as follows:

̂3  ȳB,E,2 − ȳB,E,1 − ȳA,E,2 − ȳA,E,1 − ȳB,N,2 − ȳB,N,1     (1.4)

where the A subscript means the state not implementing the policy and the N subscript
represents the non-elderly. For obvious reasons, the estimator in (1.4) is called the
difference-in-difference-in-differences (DDD) estimate. [The population analog of (1.4) is
easily established from (1.3) by finding the expected values of the six groups appearing in
(1.4).] If we drop either the middle term or the last term, we obtain one of the DD estimates
described in the previous paragraph. The DDD estimate starts with the time change in averages
for the elderly in the treatment state and then nets out the change in means for elderly in the
control state and the change in means for the non-elderly in the treatment state. The hope is
that this controls for two kinds of potentially confounding trends: changes in health status of

2
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elderly across states (that would have nothing to do with the policy) and changes in health
status of all people living in the policy-change state (possibly due to other state policies that
affect everyone’s health, or state-specific changes in the economy that affect everyone’s
health). When implemented as a regression, a standard error for ̂3 is easily obtained, including
a heteroskedasticity-robust standard error. As in the DD case, it is straightforward to add
additional covariates to (1.3) and inference robust to heteroskedasticity.
2. How Should We View Uncertainty in DD Settings?

The standard approach just described assumes that all uncertainty in inference enters
through sampling error in estimating the means of each group/time period combination. This
approach has a long history in statistics, as it is equivalent to analysis of variance. Recently,
different approaches have been suggest that focus on different kinds of uncertainty – perhaps
in addition to sampling error in estimating means. Recent work by Bertrand, Duflo, and
Mullainathan (2004), Donald and Lang (2007), Hansen (2007a,b), and Abadie, Diamond, and
Hainmueller (2007) argues for additional sources of uncertainty. In fact, in most cases the
additional uncertainty is assumed to swamp the sampling error in estimating group/time period
means. We already discussed the DL approach in the cluster sample notes, although we did not
explicitly introduce a time dimension. One way to view the uncertainty introduced in the DL
framework – and a perspective explicitly taken by ADH – is that our analysis should better
reflect the uncertainty in the quality of the control groups.

Before we turn to a general setting, it is useful to ask whether introducing more than
sampling error into DD analyses is necessary, or desirable. As we discussed in the cluster
sample notes, the DL approach does not allow inference in the basic comparison-of-mean case
for two groups. While the DL estimate is the usual difference in means, the error variance of
the cluster effect cannot be estimated, and the t distribution is degenerate. It is also the case
that the DL approach cannot be applied to the standard DD or DDD cases covered in Section 1.
We either have four different means to estimate or six, and the DL regression in these cases
produces a perfect fit with no residual variance. Should we conclude nothing can be learned in
such settings?

Consider the example from Meyer, Viscusi, and Durbin (1995) on estimating the effects of
benefit generosity on length of time a worker spends on workers’ compensation. MVD have a
before and after period, where the policy change was to raise the cap on covered earnings. The
treatment group is high earners, and the control group is low earners – who should not have

3
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been affected by the change in the cap. Using the state of Kentucky and a total sample size of
5,626, MVD find the DD estimate of the policy change is about 19.2% (longer time on
workers’ compensation). The t statistic is about 2.76, and the estimate changes little when
some controls are added. MVD also use a data set for Michigan. Using the same DD approach,
they estimate an almost identical effect: 19.1%. But, with “only” 1,524 observations, the t
statistic is 1.22. It seems that, in this example, there is plenty of uncertainty in estimation, and
one cannot obtain a tight estimate without a fairly large sample size. It is unclear what we gain
by concluding that, because we are just identifying the parameters, we cannot perform
inference in such cases. In this example, it is hard to argue that the uncertainty associated with
choosing low earners within the same state and time period as the control group somehow
swamps the sampling error in the sample means.
3. General Settings for DD Analysis: Multiple Groups and Time
Periods

The DD and DDD methodologies can be applied to more than two time periods. In the first
case, a full set of time-period dummies is added to (1.1), and a policy dummy replaces d2  dB;
the policy dummy is simply defined to be unity for groups and time periods subject to the
policy. This imposes the restriction that the policy has the same effect in every year, and
assumption that is easily relaxed. In a DDD analysis, a full set of dummies is included for each
of the two kinds of groups and all time periods, as well as all pairwise interactions. Then, a
policy dummy (or sometimes a continuous policy variable) measures the effect of the policy.
See Gruber (1994) for an application to mandated maternity benefits.

With many time periods and groups, a general framework considered by BDM (2004) and
Hansen (2007b) is useful. The equation at the individual level is

yigt  t  g  xgt  zigtgt  vgt  uigt, i  1, . . . ,Mgt,     (3.1)

where i indexes individual, g indexes group, and t indexes time. This model has a full set of
time effects,  t, a full set of group effects, g, group/time period covariates, xgt (these are the

policy variables), individual-specific covariates, zigt, unobserved group/time effects, vgt, and

individual-specific errors, uigt. We are interested in estimating . Equation (3.1) is an example

of a multilevel model.
One way to write (3.1) that is useful is

yigt  gt  zigtgt  uigt, i  1, . . . ,Mgt,     (3.2 )

4
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which shows a model at the individual level where both the intercepts and slopes are allowed
to differ across all g, t pairs. Then, we think of gt as

gt  t  g  xgt  vgt.     (3.3)

Equation (3.3) is very useful, as we can think of it as a regression model at the group/time
period level.

As discussed by BDM, a common way to estimate and perform inference in (3.1) is to
ignore vgt, in which case the observations at the individual level are treated as independent.

When vgt is present, the resulting inference can be very misleading. BDM and Hansen (2007b)

allow serial correlation in vgt : t  1,2, . . . ,T and assume independence across groups, g.

A simple way to proceed is to view (3.3) as ultimately of interest. We observe xgt, t is

handled with year dummies,and g just represents group dummies. The problem, then, is that

we do not observe gt. But we can use the individual-level data to estimate the gt, provided

the group/time period sizes, Mgt, are reasonably large. With random sampling within each

g, t, the natural estimate of gt is obtained from OLS on (3.2) for each g, t pair, assuming

that Ezigt
′ uigt  0. (In most DD applications, this assumption almost holds by definition, as

the individual-specific controls are included to improve estimation of gt.) If a particular model

of heteroskedasticity suggests itself, and Euit|zigt  0 is assumed, then a weighted least

squares procedure can be used. Sometimes one wishes to impose some homogeneity in the
slopes – say, gt  g or even gt   – in which case pooling can be used to impose such

restrictions. In any case, we proceed as if the Mgt are large enough to ignore the estimation

error in the ̂gt; instead, the uncertainty comes through vgt in (3.3). Hansen (2007b) considers

adjustments to inference that accounts for sampling error in the ̂gt, but the methods are more

complicated. The minimum distance approach we discussed in the cluster sampling notes,
applied in the current context, effectively drops vgt from (3.3) and views gt  t  g  xgt

as a set of deterministic restrictions to be imposed on gt. Inference using the efficient

minimum distance estimator uses only sampling variation in the ̂gt, which will be independent

across all g, t if they are separately estimated, or which will be correlated if pooled methods
are used.

Because we are ignoring the estimation error in ̂gt, we proceed simply by analyzing the

panel data equation

̂gt  t  g  xgt  vgt, t  1, . . . ,T,g  1, . . . ,G,     (3.4)

5
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where we keep the error as vgt because we are treating ̂gt and gt interchangeably. If we

assume that We can apply the BDM findings and Hansen (2007a) results directly to this
equation. Namely, if we estimate (3.4) by OLS – which means full year and group effects,
along with xgt – then the OLS estimator has satisfying properties as G and T both increase,

provided vgt : t  1,2, . . . ,T is a weakly dependent (mixing) time series for all g. The

simulations in BDM and Hansen (2007a) indicate that cluster-robust inference, where each
cluster is a set of time periods, work reasonably well when vgt follows a stable AR(1) model

and G is moderately large.
Hansen (2007b), noting that the OLS estimator (the fixed effects estimator) applied to (3.4)

is inefficient when vgt is serially uncorrelated (and possibly heteroskedastic), proposes feasible

GLS. As is well known, if T is not large, estimating parameters for the variance matrix
g  Varvg, where vg is the T  1error vector for each g, is difficult when group effects

have been removed. In other words, using the FE residuals, v̂gt, to estimate g can result in

severe bias for small T. Solon (1984) highlighted this problem for the homoskedastic AR(1)
model. Of course, the bias disappears as T → , and regression packages such as Stata, that
have a built-in command to do fixed effects with AR(1) errors, use the usual AR(1) coefficient
̂, obtained from

v̂gt on v̂g,t−1, t  2, . . . ,T,g  1, . . . ,G.     (3.5)

As discussed in Wooldridge (2003) and Hansen (2007b), one way to account for the bias in ̂
is to still use a fully robust variance matrix estimator. But Hansen’s simulations show that this
approach is quite inefficient relative to his suggestion, which is to bias-adjust the estimator ̂
and then use the bias-adjusted estimator in feasible GLS. (In fact, Hansen covers the general
ARp model.) Hansen derives many attractive theoretical properties of his the estimator.An
iterative bias-adjusted procedure has the same asymptotic distribution as ̂ in the case ̂ should
work well: G and T both tending to infinity. Most importantly for the application to DD
problems, the feasible GLS estimator based on the iterative procedure has the same asymptotic
distribution as the GLS etsimator when G →  and T is fixed. When G and T are both large,
there is no need to iterated to achieve efficiency.

Hansen further shows that, even when G and T are both large, so that the unadjusted AR
coefficients also deliver asymptotic efficiency, the bias-adusted estimates deliver higher-order
improvements in the asymptotic distribution. One limitation of Hansen’s results is that they
assume xgt : t  1, . . . ,T are strictly exogenous. We know that if we just use OLS – that is,

6
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the usual fixed effects estimate – strict exogeneity is not required for consistency as T → .
GLS, in exploiting correlations across different time periods, tends to exacerbate bias that
results from a lack of strict exogeneity. In policy analysis cases, this is a concern if the policies
can switch on and off over time, because one must decide whether the decision to implement
or remove a program is related to past outcomes on the response.

With large G and small T, one can estimate an unstricted variance matrix g and proceed

with GLS – this is the approach suggested by Kiefer (1980) and studied more recently by
Hausman and Kuersteiner (2003). It is equivalent to dropping a time period in the
time-demeaned equation and proceeding with full GLS (and this avoids the degeneracy in the
variance matrix of the time-demeaned errors). Hausman and Kuersteiner show that the Kiefer
approach works pretty well when G  50 and T  10, although substantial size distortions
exist for G  50 and T  20.

Especially if the Mgt are not especially large, we might worry about ignoring the estimation

error in the ̂gt. One simple way to avoid ignoring the estimation error in ̂gt is to aggregate

equation (3.1) over individuals, giving

ȳgt  t  g  xgt  z̄gt  vgt  ūgt, t  1, . . ,T,g  1, . . . ,G.     (3.6)

Of course, this equation can be estimated by fixed effects, too, and fully robust inference is
available using Hansen (2007a) because the composite error, rgt ≡ vgt  ūgt, is weakly

dependent. Fixed Effects GLS using an unrestricted variance matrix can be used with large G
and small T. The complication with using specific time series model for the error is the
presence of ūgt. With different Mgt, Varūgt is almost certainly heteroskedastic (and might be

with the same Mgt, of course). So, even if we specify, say, an AR(1) model vgt  vg,t−1  egt,

the variance matrix of rg is more complicated. One possibility is to just assume the composite

error, rgt, follows a simple model, implement Hansen’s methods, but then use fully robust

inference.
The Donald and Land (2007) approach applies in the current setting by using finite sample

analysis applied to the pooled regression (3.4). However, DL assume that the errors vgt are

uncorrelated across time, and so, even though for small G and T it uses small
degrees-of-freedom in a t distribution, it does not account for uncertainty due to serial
correlation in vgt : t  1, . . . ,T.

4. Individual-Level Panel Data
Individual-level panel data is a powerful tool for estimating policy effects. In the simplest

7
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case we have two time periods and a binary program indicator, wit, which is unity if unit i
participates in the program at time t. A simple, effective model is

yit    d2t  wit  ci  uit, t  1,2,     (4.1)

where d2t  1 if t  2 and zero otherwise, ci is an observed effect, and uit are the idiosyncratic
errors. The coefficient  is the treatment effect. A simple estimation procedure is to first
difference to remove ci :

yi2 − yi1    wi2 − wi1  ui2 − ui1     (4.2)

or

Δyi    Δwi  Δui.     (4.3)

If EΔwiΔui  0, that is, the change in treatment status is uncorrelated with changes in the
idiosyncratic errors, then OLS applied to (4.3) is consistent. The leading case is when wi1  0
for all i, so that no units we exposed to the program in the initial time period. Then the OLS
estimator is

̂  Δȳtreat − Δȳcontrol,     (4.4)

which is a difference-in-differences estimate except that we different the means of the same
units over time.This same estimate can be derived without introducing heterogeneity by simply
writing the equation for yit with a full set of group-time effects. Also, (4.4) is not the same
estimate obtained from the regression yi2 on 1,yi1, wi2 – that is, using yi1 as a control in a cross
section regression. The estimates can be similar, but their consistency is based on different
assumptions.

More generally, with many time periods and arbitrary treatment patterns, we can use

yit  t  wit  xit  ci  uit, t  1, . . . ,T,     (4.5)

which accounts for aggregate time effects and allows for controls, xit. Estimation by FE or FD
to remove ci is standard, provided the policy indicator, wit, is strictly exogenous: correlation
beween wit and uir for any t and r causes inconsistency in both estimators, although the FE
estimator typically has smaller bias when we can assume conteporaneous exogeneity,
Covwit,uit  0. Strict exogeneity can be violated if policy assignment changes in reaction to
past outcomes on yit. In cases where wit  1 whenever wir  1 for r  t, strict exogeneity is
usually a reasonable assumption.

Equation (4.5) allows policy designation to depend on a level effect, ci, but wit might be

8
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correlated with unit-specific trends in the response, too. This suggests the “correlated random
trend” model

yit  ci  git  t  wit  xit  uit, t  1, . . . ,T,     (4.6)

where gi is the trend for unit i. A general analysis allows arbitrary corrrelation between ci,gi

and wit, which requires at least T ≥ 3. If we first difference, we get

Δyit  gi   t  Δwit  Δxit  Δuit, t  2, . . . ,T,     (4.7)

where  t  t − t−1 is a new set of time effects. We can estimate (4.7) by differencing again,
or by using FE. The choice depends on the serial correlation properties in Δuit (assume strict
exogeneity of treatment and covariates). If Δuit is roughly uncorrelated, FE is preferred. If the
original errors uit are essentially uncorrelated, applying FE to (4.6), in the general sense of
sweeping out the linear trends from the response, treatment, and covariates, is preferred. Fully
robust inference using cluster-robust variance estimators is straightforward. Of course, one
might want to allow the effect of the policy to change over time, which is easy by interacting
time dummies with the policy indicator.

We can derive standard panel data approaches using the counterfactural framework from
the treatment effects literature.For each i, t, let yit1 and yit0 denote the counterfactual
outcomes, and assume there are no covariates. One way to state the assumption of
unconfoundedness of treatment is that, for time-constant heterogeneity ci0 and ci1,

Eyit0|wi,ci0,ci1  Eyit0|ci0

Eyit1|wi,ci0,ci1  Eyit1|ci1,
    (4.8)
    (4.9)

where wi  wi1, . . . ,wiT is the time sequence of all treatments. We saw this kind of strict
exogeneity assumption conditional on latent variables several times before. It allows treatment
to be correlated with time-constant heterogeneity, but does not allow treatment in any time
period to be correlated with idiosyncratic changes in the counterfactuals. Next, assume that the
expected gain from treatment depends at most on time:

Eyit1|ci1  Eyit0|ci0   t, t  1, . . . ,T.     (4.10)

Writing yit  1 − wityit0  wityi1, and using (4.8), (4.9), and (4.10) gives

Eyit|wi,ci0,ci1  Eyit0|ci0  witEyit1|ci1 − Eyit0|ci0

 Eyit0|ci0   twit.     (4.11)

If we now impose an additive structure on Eyit0|ci0, namely,

9
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Eyit0|ci0   t0  ci0,     (4.12)

then we arrive at

Eyit|wi,ci0,ci1   t0  ci0   twit,     (4.13)

an estimating equation that leads to well-known procedures. Because wit : t  1, . . . ,T is
strictly exogenous conditional on ci0, we can use fixed effects or first differencing, with a full
set of time period dummies. A standard analysis would use  t  , but, of course, we can
easily allow the effects of the policy to change over time.

Of course, we can add covariates xit to the conditioning sets and assume linearity, say
Eyit0|xit,ci0   t0  xit0  ci0. If (4.8) becomes

Eyit0|wi,xi,ci0,ci1  Eyit0|xit,ci0,     (4.14)

and similarly for (4.9), then the estimating equation simply adds xit0 to (4.13). More

interesting models are obtained by allowing the gain from treatment to depend on
heterogeneity. Suppose we assume, in addition to the ignorability assumption in (4.14) (and the
equivalent condition for yit1

Eyit1 − yit0|xit,ci0,ci1   t  ai  xit−t     (4.15)

where ai is a function of ci0,ci1 normalized so that Eai  0 and t  Exit. Equation

(4.15) allows the gain from treatment to depend on time, unobserved heterogeneity, and
observed covariates. Then

Eyit|wi,xi,ci0,ai   t0   twit  xit0

 witxit−t  ci0  aiwit.

    (4.16)

This is a correlated random coefficient model because the coefficient on wit is  t  ai, which
has expected value  t. Generally, we want to allow wit to be correlated with ai and ci0. With
small T and large N, we do not try to estimate the ai (nor the ci0). But an extension of the
within transformation effectively eliminates aiwit. Suppose we simplify a bit and assume
 t   and drop all other covariates. Then, a regression that appears to suffer from an
incidental parameters problem turns out to consistently estimate : Regress yit on year
dummies, dummies for each cross-sectional observation, and latter dummies interacted with
wit. In other words, we estimate

ŷ it  ̂ t0  ĉ i0  ̂ iwit.     (4.17)

While ̂ i is usually a poor estimate of  i    ai, their average is a good estimator of  :

10
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̂  N−1∑
i1

N

̂ i.     (4.18)

A standard error can be calculated using Wooldridge (2002, Section 11.2) or bootstrapping.
We can apply the results from the linear panel data notes to determine when the usual FE

estimator – that is, the one that ignores aiwit – is consistent for . In addition to the
unconfoundedness assumption, sufficient is

E i|ẅit  E i  , t  1, . . . ,T,     (4.19)

where ẅit  wit − w̄i. Essentially, the individual-specific treatment effect can be correlated
with the average propensity to recieve treatment, w̄i, but not the deviations for any particular
time period.

Assumption (4.19) is not completely general, and we might want a simple way to tell
whether the treatment effect is heterogeneous across individuals. Here, we an exploit
correlation between the  i and treatment. Recalling that  i    ai, a useful assumption (that
need not hold for obtaining a test) is

Eai|wi1, . . .wiT  Eai|w̄i  w̄i − w̄i,     (4.20)

where other covariates have been suppressed. Then we can estimate the equation (with
covariates)

yit   t0  wit  xit0  witxit−x̄t

 witw̄i − w̄  ci0  eit

    (4.21)

by standard fixed effects. Then, we use a simple t test on ̂, robust to heteroskedasticity and
serial correlation. If we reject, it does not mean the mean usual FE estimator is inconsistent,
but it could be.
5. Semiparametric and Nonparametric Approaches

Return to the setting with two groups and two time periods. Athey and Imbens (2006)
generalize the standard DD model in several ways. Let the two time periods be t  0 and 1 and
label the two groups g  0 and 1. Let Yi0 be the counterfactual outcome in the absense of
intervention and Yi1 the counterfactual outcome with intervention. AI assume that

Yi0  h0Ui,Ti,     (5.1)

where Ti is the time period and

h0u, t strictly increasing in u for t  0,1     (5.2)

11
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The random variable Ui represents all unobservable characteristics of individual i. Equation
(5.1) incorporates the idea that the outcome of an individual with Ui  u will be the same in a
given time period, irrespective of group membership. The strict monotonicity assumption in
(5.2) rules out discrete responses, but Athey and Imbens (2006) provide bounds under weak
monotonicity, and show how, with additional assumptions, point identification be be
recovered.

The distribution of Ui is allowed to vary across groups, but not over time within groups, so
that

DUi|Ti,Gi  DUi|Gi.     (5.3)

This assumption implies that, within group, the population distribution is stable over time.
The standard DD model can be expressed in this way, with

h0u, t  u    t     (5.4)

and

Ui    Gi  Vi, Vi  Gi,Ti     (5.5)

although, because of the linearity, we can get by with the mean independence assumption
EVi|Gi,Ti  0. If the treatment effect is constant across individuals,   Yi1 − Yi0, then
we can write

Yi    Ti  Gi  GiTi  Vi,     (5.6)

where Yi  1 − GiTiYi0  GiTiYi1 is the realized outcome. Because EVi|Gi,Ti  0, the
parameters in (5.6) can be estimated by OLS.

Athey and Imbens call the extension of the usual DD model the changes-in-changes (CIC)
model. They show not only how to recover the average treatment effect, but also that the
distribution of the counterfactual outcome conditional on intervention, that is

DYi0|Gi  1,Ti  1,     (5.7)

is identified. The distribution of DYi1|Gi  1,Ti  1 is identified by the data because
Yi  Yi1 when Gi  Ti  1. The extra condition AI use is that the support of the distribution
of DUi|Gi  1 is contained in the support of DUi|Gi  0, written as

U1 ⊆ U0.     (5.8)

Let Fgt
0 y the be cumulative distribution function of DYi0|Gi  g,Ti  t for g  1,2

and t  1,2, and let Fgty be the cdf for the observed outcome Yi conditional on Gi  g and

12
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Ti  t. By definition, Fgty is generally identified from the data, assuming random sampling

for each g, t pair. AI show that, under (5.1), (5.2), (5.3), and (5.8),

F11
0y  F10F00

−1F01y,     (5.9)

where F00
−1 is the inverse function of F00

−1, which exists under the strict monotonicity
assumption. Notice that all of the cdfs appearing on the right hand size of (5.9) are estimable
from the data; they are simply the cdfs for the observed outcomes conditional on different g, t

pairs. Because F11
1y  F11y, we can estimate the entire distributions of both

counterfactuals conditional on intervention, Gi  Ti  1.
The average treatment effect in the CIC framework as

CIC  EY1|G  1,T  1 − EY0|G  1,T  1.
 EY111 − EY110,

    (5.10)

where we drop the i subscript, Ygt1 is a random variable having distribution DY1|G  g, t,

and Ygt0 is a random variable having distribution DY0|G  g, t. Under the same

assumptions listed above,

CIC  EY11 − EF01
−1F00Y10     (5.11)

where Ygt is a random variable with distribution DY|G  g, t. Given random samples from

each subgroup, a generally consistent estimator of CIC is

̂CIC  N11
−1∑

i1

N11

Y11,i − N10
−1∑

i1

N10

F̂01
−1F̂00Y10, i,     (5.12)

for consistent estimators F̂00 and F̂01 of the cdfs for the control groups in the initial and later
time periods, respectively. Now, Y11,i denotes a random draw on the observed outcome for the
g  1, t  1 group and similarly for Y10,i. Athey and Imbens establish weak conditions under
which ̂CIC is N -asymptotically normal (where, naturally, observations must accumulate
within each of the four groups). In the case where the distributions of Y10 and Y00 are the same,
a simple difference in means for the treatment group over time.

The previous approach can be applied either with repeated cross sections or panel data.
Athey and Imbens discuss how the assumptions can be relaxed with panel data, and how
alternative estimation strategies are available. In particular, if Ui0 and Ui1 represent
unobservables for unit i in the initial and later time periods, respectively, then (5.3) can be
modified to

13
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DUi0|Gi  DUi1|Gi,     (5.13)

which allows for unobservd components structures Uit  Ci  Vit where Vit has the same
distribution in each time period.

As discussed by AI, with panel data there are other estimation approaches. As discussed
earlier, Altonji and Matzkin (2005) use exchangeability assumptions to identify average partial
effects. To illustrate how their approach might applie, suppose the counterfactuals satisfy the
ignorability assumption

EYitg|Wi1, . . . ,WiT,Ui  htgUi, t  1, . . . ,T,g  0,1.     (5.14)

The treatment effect for unit i in period t is ht1Ui − ht0Ui, and the average treatment effect
is

 t  Eht1Ui − ht0Ui, t  1, . . . ,T.     (5.15)

Suppose we make the assumption

DUi|Wi1, . . . ,WiT  DUi|W̄i,     (5.16)

which means that only the intensity of treatment is correlated with heterogeneity. Under (5.14)
and (5.16), it can be shown that

EYit|Wi  EEYit|Wi,Ui|Wi  EYit|Wit,W̄i.     (5.17)

The key is that EYit|Wi does not depend on Wi1, . . . ,WiT in an unrestricted fashion; it is a
function only of Wit,W̄i. If Wit are continuous, or take on numerous values, we can use local
smoothing methods to estimate Eyit|Wit,W̄i. In the treatment effect case, estimation is very
simple because Wit,W̄i can take on only 2T. The average treatment effect can be estimated as

̂ t  N−1∑
i1

n

̂ t
Y1,W̄i − ̂ t

Y0,W̄i.     (5.18)

If we pool across t (as well as i) and use a linear regression, Yit on
1,d2t, . . . ,dTt,Wit,W̄i, t  1, . . . ,T; i  1, . . . ,N, we obtain the usual fixed effects estimate ̂FE

as the coefficient on Wit. Wooldridge (2005) describes other scenarios and compares this
strategy to other approaches. As we discussed earlier, a condtional MLE logit can estimate
parameters by not generally ATEs, and require conditional independence. Chamberlain’s
correlated random effects probit models the heterogeneity as
Ui|Wi  Normal0  1Wi1 . . .TWiT,2, which identifies the ATEs without assuming

exchangeability but maintaining a distributional assumption (and functional form for the
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response probability).
For the leading case of two time periods, where treatment does not occur in the initial time

period for any unit, but does for some units in the second time period, Abadie (2005) provides
methods for both repeated cross sections and panel data that use unconfoundedness
assumptions on changes over time. Here we describe the panel data approach. Omitting the
i subscript, for any unit from the population there are counterfactual outcomes, which we write
as Ytw, where t  0,1 are the two time periods and w  0,1 represent control and treatment.
In this setup, interest lies in two parameters, the average treatment effect in the second time
period,

ATE  EY11 − Y10,     (5.19)

or the average treatment effect on the treated,

ATT  EY11 − Y10|W  1.     (5.20)

Remember, in the current setup, no units are treated in the initial time period, so W  1 means
treatment in the second time period.

As in Heckman, Ichimura, Smith, and Todd (1997), Abadie uses unconfoundedness
assumptions on changes over time to identify ATT, and straightforward extensions serve to
identify ATE. Given covariates X (that, if observed in the second time period, should not be
influenced by the treatment), Abadie assumes

EY10 − Y00|X,W  EY10 − Y00|X,     (5.21)

so that, conditional on X, treatment status is not related to the gain over time in the absense of
treatment. In addition, the overlap assumption,

0  PW  1|X  1     (5.22)

is critical. (Actually, for estimating ATT, we only need PW  1|X  1.) Under (5.21) and
(5.22), it can be shown that

ATT  PW  1−1E W − pXY1 − Y0
1 − pX ,

where Y1 is the observed outcome in period 1, Y0, is the outcome in period 0, and
pX  PW  1|X is the propensity score. Dehejia and Wahba (1999) derived (5.23) for the
cross-sectional case; see also Wooldridge (2002, Chapter 18). All quantities in (5.23) are
observed or, in the case of the pX and   PW  1, can be estimated. As in Hirano,
Imbens, and Ridder (2003), a flexible logit model can be used for pX; the fraction of units
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treated would be used for ̂. Then

̂ATT  ̂−1N−1∑
i1

N
Wi − p̂XiΔYi

1 − p̂Xi
    (5.23)

is consistent and N -asymptotically normal. HIR discuss variance estimation. Imbens and
Wooldridge (2007) provide a simple adjustment available in the case that p̂ is treated as a
parametric model.

If we also add

EY11 − Y01|X,W  EY10 − Y00|X,     (5.24)

so that treatment is mean independent of the gain in the treated state, then

ATE  E W − pXY1 − Y0
pX1 − pX ,     (5.25)

which dates back to Horvitz and Thompson (1952); see HIR. Now, to estimate the ATE over
the specified population, the full overlap assumption in (5.22) is needed, and

̂ATE  N−1∑
i1

N
Wi − p̂XiΔYi

p̂Xi1 − p̂Xi
.     (5.26)

Hirano, Imbens, and Ridder (2003) study this estimator in detail where p̂x is a series logit
estimator. If we treat this estimator parametrically, a simple adjustment makes valid inference
on ̂ATE simple. Let K̂i be the summand in (5.26) less ̂ATE, and let D̂i  hXiWi − hXî

be the gradient (a row vector) from the logit estimation. Compute the residuals, R̂i from the
OLS regression K̂i on D̂i, i  1, . . . ,N. Then, a consistent estimator of Avar N ̂ATE − ATE is
just the sample variance of the R̂i. This is never greater than if we ignore the estimation of px
and just use the sample variance of the K̂i themselves.

Under the unconfoundedness assumption, other strategies are available for estimating the
ATE and ATT. One possibility is to run the regression

ΔYi on 1,Wi, p̂Xi, i  1, . . . ,N,

which was studied by Rosenbaum and Rubin (1983) in the cross section case. The coefficient
on Wi is the estimated ATE, although it requires some functional form restrictions for
consistency. This is much preferred to pooling across t and running the regression Yit on 1, d1t,
d1t  Wi, p̂Xi. This latter regression requires unconfoundedness in the levels, and as
dominated by the basic DD estimate from ΔYi on 1,Wi: putting in any time-constant function

16



Imbens/Wooldridge, Lecture Notes 10, Summer ’07

as a control in a pooled regression is always less general than allowing an unobserved effect
and differencing it away.

Regression adjustment is also possible under the previous assumptions. As derived by
HIST,

EY11 − Y01|X,W  1  EY1|X,W  1 − EY1|X,W  0
− EY0|X,W  1 − EY0|X,W  0

    (5.27)

where, remember, Yt denotes the observed outcome for t  0,1. Each of the four conditional
expectations on the right hand side is estimable using a random sample on the appropriate
subgroup. Call each of these ̂wtx for w  0,1and t  0,1. Then a consistent estimator of
ATT is

N1
−1∑

i1

N

Wî11Xi − ̂01Xi − ̂10Xi − ̂00Xi.     (5.28)

Computationally, this requires more effort than the weighted estimator proposed by Abdadie.
Nevertheless, with flexible parametric functional forms that reflect that nature of Y,
implementing (5.28) is not difficult. If Y is binary, then the ̂wt should be obtained from binary
response models; if Y is nonnegative, perhaps a count variable, then wtx  expxwt is
attractive, with estimates obtained via Poisson regression (quasi-MLE).
6. Synthetic Control Methods for Comparative Case Studies

In Section 3 we discussed difference-in-differences methods that ignore sampling uncertain
in the group/time period means (more generally, regression coefficients). Abadie, Diamond,
and Haimmueller (2007), building on the work of Abadie and Gardeazabal (2003), argue that
in policy analysis at the aggregate leve, there is no estimation uncertainty: the goal is to
determine the effect of a policy on an entire population – say, a state – and the aggregate is
measured without error (or very little error). The application in ADH is the effects of
California’s tobacco control program on state-wide smoking rates.

Of course, one source of uncertainty in any study using data with a time series dimension is
the change in outcomes over time, even if the outcomes are aggregates measured without error.
Event study methodology is one such example: often, time series regressions for a single
entity, such as a state, are used to determine the effect of a policy (speed limit change, tobacco
control program, and so on) on an aggregate outcome. But such event studies can suffer
because they do not use a control group to account for aggregate effects that have nothing to
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do with the specific state policy.
In the context of case control studies, where a time series is available for a particular unit –

the treatment group – there are often many potential control groups. For example, in the
tobacco control example, each state in the U.S. is a potential control for California (provided a
state did not undergo a similar policy). ADH study this setup and emphasize the uncertainty
associated with choosing suitable control groups. They point out that, even in the absense of
sampling error, surely someone analyzing a state-level policy must nevertheless seal with
uncertainty.

The approach of ADH is to allow one to select a synthetic control group out of a collection
of possible controls. For example, in the California tobacco control case, ADH identify 38
states that did not implement such programs during the time period in question. Rather than
just use a standard fixed effects analysis – which effectively treats each state as being of equal
quality as a control group – ADH propose choosing a weighted average of the potential
controls. Of course, choosing a suitable control group or groups is often done informally,
including matching on pre-treatment predictors. ADH formalize the procedure by optimally
choosing weights, and they propose methods of inference.

Consider a simple example, with only two time periods: one before the policy and one
after. Let yit be the outcome for unit i in time t, with i  1 the (eventually) treated unit.
Suppose there are J possible controls, and index these as 2, . . . ,J  1. Let xi be observed
covariates for unit i that are not (or would not be) affected by the policy; xi may contain period
t  2 covariates provided they are not affected by the policy. Generally, we can estimate the
effect of the policy as

y12 −∑
j2

J1

wjyj2,

where wj are nonnegative weights that add up to one. The question is: how can we choose the

weights – that is, the synthetic control – to obtain the best estimate of the intervention effect?
ADH propose choosing the weights so as to minimize the distance between, in this simple

case, y11,x1 and∑ j2
J1 wj  yj1,xj, or some linear combinations of elements of y11,x1 and

yj1,xj. The optimal weights – which differ depending on how we define distance – produce

the synthetic control whose pre-intervention outcome and predictors of post-intervention
outcome are “closest.” With more than two time periods, one can use averages of
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pre-intervention outcomes, say, or weighted averages that give more weight to more recent
pre-intervention outcomes.

ADH propose permutation methods for inference, which require estimating a placebo
treatment effect for each region (potential control), using the same synthetic control method as
for the region that underwent the intervention. In this way, one can compare the estimated
intervention effect using the synthetic control method is substantially larger than the effect
estimated from a region chosen at random. The inference is exact even in the case the
aggregate outcomes are estimated with error using individual-level data.
References

(To be added.)
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What’s New in Econometrics NBER, Summer 2007

Lecture 11, Wednesday, Aug 1st, 9.00-10.30am

Discrete Choice Models

1. Introduction

In this lecture we discuss multinomial discrete choice models. The modern literature

on these models goes back to the work by Daniel McFadden in the seventies and eighties,

(McFadden, 1973, 1981, 1982, 1984). In the nineties these models received much attention in

the Industrial Organization literature, starting with Berry (1994), Berry, Levinsohn, Pakes

(1995, BLP), and Goldberg (1995). In the IO literature the applications focused on demand

for differentiated products, in settings with relatively large numbers of products, some of

them close substitutes. In these settings a key feature of the conditional logit model, namely

the Independence of Irrelevant Alternatives (IIA), was viewed as particularly unattractive.

Three approaches have been used to deal with this. Goldberg (1995) used nested logit models

to avoid the IIA property. McCulloch and Rossi (1994), and McCulloch, Polson and Rossi

(2000) studied multinomial probit models with relatively unrestricted covariance matrices

for the unobserved components. BLP, McFadden and Train (2000) and Berry, Levinsohn

and Pakes (2004) uses random effects or mixed logit models, in BLP in combination with

unobserved choice characteristics and using methods that allow for estimation using only ag-

gregate choice data. The BLP approach has been very influential in the subsequent empirical

IO literature.

Here we discuss these models. We argue that the random effects approach to avoid IIA is

indeed very attractive, both substantively and computationally, compared to the nested logit

or unrestricted multinomial probit models. In addition to the use of random effects to avoid

the IIA property, the inclusion in the BLP methodology of unobserved choice characteristics,

and the ability to estimate the models with market share rather than individual level data

makes their methods very flexible and widely applicable. We discuss extensions to the BLP

set up allowing multiple unobserved choice characteristics, and the richness required for these
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models to rationalize general choice data based on utility maximization. We also discuss the

potential benefits of using Bayesian methods.

2. Multinomial and Conditional Logit Models

First we briefly review the multinomial and conditional logit models.

2.1 Multinomial Logit Models

We focus on models for discrete choice with more than two choices. We assume that

the outcome of interest, the choice Yi takes on non-negative, un-ordered integer values

between zero and J ; Yi ∈ {0, 1, . . . , J}. Unlike the ordered case there is no particular

meaning to the ordering. Examples are travel modes (bus/train/car), employment status

(employed/unemployed/out-of-the-laborforce), car choices (suv, sedan, pickup truck, con-

vertible, minivan), and many others.

We wish to model the distribution of Y in terms of covariates. In some cases we will

distinguish between covariates Zi that vary by units (individuals or firms), and covariates

that vary by choice (and possibly by individual), Xij . Examples of the first type include

individual characteristics such as age or education. An example of the second type is the

cost associated with the choice, for example the cost of commuting by bus/train/car, or the

price of a product, or the speed of a computer chip. This distinction is important from

the substantive side of the problem. McFadden developed the interpretation of these models

through utility maximizing choice behavior. In that case we may be willing to put restrictions

on the way covariates affect utilities: characteristics of a particular choice should affect the

utility of that choice, but not the utilities of other choices.

The strategy is to develop a model for the conditional probability of choice j given the

covariates. Suppose we only have individual-specific covariates, and the model is Pr(Yi =

j|Zi = z) = Pj(z; θ). Then the log likelihood function is

L(θ) =

N∑

i=1

J∑

j=0

1{Yi = j} · lnPj(Zi; θ).



Imbens/Wooldridge, Lecture Notes 11, NBER, Summer ’07 3

A natural extension of the binary logit model is to model the response probability as

Pr(Yi = j|Zi = z) =
exp(z′γj)

1 +
∑J

l=1
exp(z′γl)

,

for choices j = 1, . . . , J and

Pr(Yi = 0|Zi = z) =
1

1 +
∑J

l=1
exp(z′γl)

,

for the first choice. The γl here are choice-specific parameters. This multinomial logit model

leads to a very well-behaved likelihood function, and it is easy to estimate using standard

optimization techniques. Interestingly, it can be viewed as a special case of the following

conditional logit.

2.2 Conditional Logit Models

Suppose all covariates vary by choice (and possibly also by individual, but that is not

essential here). Then McFadden proposed the conditional logit model:

Pr(Yi = j|Xi0, . . . , XiJ ) =
exp(X ′

ijβ)
∑J

l=0
exp(X ′

ilβ)
,

for j = 0, . . . , J . Now the parameter vector β is common to all choices, and the covariates

are choice-specific.

The multinomial logit model can be viewed as a special case of the conditional logit

model. Suppose we have a vector of individual characteristics Zi of dimension K, and J

vectors of coefficients γj , each of dimension K. Then define for choice j, j = 1, . . . , J , the

vector of covariates Xij as the vector of dimension K × J , with all elements equal to zero

other than the elements K × (j − 1) + 1 to K × j which are equal to Zi:

Xi1 =




Zi

0
...
...
0




, . . . Xij =




0
...

Zi

...
0




, . . . XiJ =




0
...
...
0
Zi




, and Xi0 =




0
...
0
...
0




,
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and define the common parameter vector β, of dimension K · J , as

β =




γ1

γ2

...
γJ


 .

Then

Pr(Yi = j|Zi) =
exp(Z ′

iγj)

1 +
∑J

l=1
exp(Z ′

iγl)
=

exp(X ′
ijβ)

∑J

l=0
exp(X ′

ilβ)
= Pr(Yi = j|Xi0, . . . , XiJ),

for j = 1, . . . , J , and

Pr(Yi = 0|Zi) =
1

1 +
∑J

l=1
exp(Z ′

iγl)
=

exp(X ′
i0β)∑J

l=0
exp(X ′

ilβ)
= Pr(Yi = 0|Xi0, . . . , XiJ ).

2.3 Link with Utility Maximization

McFadden motivates the conditional logit model by extending the single latent index

model to multiple choices. Suppose that the utility, for individual i, associated with choice

j, is

Uij = X ′
ijβ + εij. (1)

Furthermore, let individual i choose option j (so that Yi = j) if choice j provides the highest

level of utility, or

Yi = j if Uij ≥ Uil for all l = 0, . . . , J,

(ties have probability zero because of the continuity of the distribution for ε).

Now suppose that the εij are independent accross choices and individuals and have type

I extreme value distributions. Then the choice Yi follows the conditional logit model. The

type I extreme value distribution has cumulative distribution function

F (ε) = exp(− exp(−ε)), and pdf f(ε) = exp(−ε) · exp(− exp(−ε)).
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This distribution has a unique mode at zero, a mean equal to 0.58, and a a second moment

of 1.99 and a variance of 1.65. See Figure 1 for the probability density function and the

comparison with the normal density. Note the assymmetry of the distribution.

Given the extreme value distribution the probability of choice 0 is

Pr(Yi = 0|Xi0, . . . , XiJ ) = Pr(Ui0 > Ui1, . . . , Ui0 > UiJ )

= Pr(εi0 + X ′
i0β − X ′

i1β > εi1, . . . , εi0 + X ′
i0β − X ′

iJβ > εiJ)

=

∫ ∞

−∞

∫ εi0+X ′

i0
β−X ′

i1
β

−∞

. . .

∫ εi0+X ′

iJ
β−X ′

iJ
β

−∞

f(εi0) . . . f(εiJ )dεiJ . . . , dεi0

=

∫ ∞

−∞

exp(−ε0i) exp(− exp(−ε0i) · exp(− exp(−εi0 − X ′
i0β + X ′

i1β)) . . .

× exp(− exp(−εi0 − X ′
i0β + X ′

iJβ))dεi0

=

∫ ∞

−∞

exp(−ε0i) exp
[
− exp(−ε0i) − exp(−εi0 − X ′

i0β + X ′
i1β)) . . .

− exp(−εi0 − X ′
i0β + X ′

iJβ)
]
dεi0

=
exp(X ′

i0β)∑J

j=0
exp(X ′

j0β)
.

To see the different steps in this derivation note that

∫ c

−∞

exp(−ε) · exp(− exp(−ε))dε = F (c) = exp(− exp(−c)),

for the extreme value distribution. Also,

∫ ∞

−∞

exp(−ε) · exp(− exp(−ε− c))dε
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=

∫ ∞

−∞

exp(−η + c) · exp(− exp(−η))dη

= exp(c) ·

∫ ∞

−∞

exp(−η) · exp(− exp(−η))dη = exp(c),

by change of variables, which we apply with

c = − ln (1 + exp(X ′
i1β − X ′

i0β) + . . . + exp(X ′
iJβ −X ′

i0β)) .

3. Independence of Irrelevant Alternatives

The main problem with the conditional logit is the property of Independence of Irrelevant

Alternative (IIA). Consider the conditional probability of choosing j given that you choose

either j or l:

Pr(Yi = j|Yi ∈ {j, l}) =
Pr(Yi = j)

Pr(Yi = j) + Pr(Yi = l)
=

exp(X ′
ijβ)

exp(X ′
ijβ) + exp(X ′

ilβ)
.

This probability does not depend on the characteristics Xim of alternatives m other than j

and l. This is sometimes unattractive. The traditional example is McFadden’s famous blue

bus/red bus example. Suppose there are initially three choices: commuting by car, by red

bus or by blue bus. It would seem reasonable be to assume that people have a preference

over cars versus buses, but are indifferent between red versus blue buses. One could capture

this by assuming that

Ui,redbus = Ui,bluebus,

with the choice between the blue and red bus being random. So, to be explicit, suppose that

Xi,bluebus = Xi,redbus = Xi,bus. Then suppose that the probability of commuting by bus is

Pr(Yi = bus) = Pr(Yi = redbus or bluebus) =
exp(X ′

i,busβ)

exp(X ′
i,bus

β) + exp(X ′
i,carβ)

,
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and the probability of choosing a red bus or blue bus, conditional on choosing a bus, is

Pr(Yi = redbus|Yi = bus) =
1

2
.

That would imply that the conditional probability of commuting by car, given that one

commutes by car or red bus, would differ from the same conditional probability if there is

no blue bus. Presumably taking away the blue bus choice would lead all the current blue

bus users to shift to the red bus, and not to cars.

The conditional logit model does not allow for this type of substitution pattern. Another

way of stating the problems with the conditional logit model is to say that it generates

unrealistic substitution patterns. Let us make that argument more specific. Suppose that

individuals have the choice out of three Berkeley restaurants, Chez Panisse (C), Lalime’s (L),

and the Bongo Burger (B). Suppose the two characteristics of the restaurants are price with

PC = 95, PL = 80, and PB = 5, and quality, with QC = 10, QL = 9, and QB = 2. Suppose

that market shares for the three restaurants are SC = 0.10, SL = 0.25, and SB = 0.65. These

numbers are roughly consistent with a conditional logit model where the utility associated

with individual i and restaurant j is

Uij = −0.2 · Pj + 2 · Qj + εij,

with independent extreme value εij, and individuals go to the restaurant with the highest

utility. Now suppose that we raise the price at Lalime’s to 1000 (or raise it to infinity,

corresponding to taking it out of business). In that case the prediction of the conditional

logit model is that the market shares for Chez Panisse and the Bongo Burger go to S̃C = 0.13

and S̃B = 0.87. That seems implausible. The people who were planning to go to Lalime’s

would appear to be more likely to go to Chez Panisse if Lalime’s is closed than to go to the

Bongo Burger, and so one would expect S̃C ≈ 0.35 and S̃B ≈ 0.65. The model on the other

hand predicts that most of the individuals who would have gone to Lalime’s will now dine

(if that is the right term) at the Bongo Burger.
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Recall the latent utility set up with the utility for individual i and choice j equal to

Uij = X ′
ijβ + εij. (2)

In the conditional logit model we assume independent εij with extreme value distributions.

This is essentially what creates the IIA property. (This is not completely correct, because

other distributions for the unobserved, say with normal errors, we would not get IIA exactly,

but something pretty close to it.) The solution is to allow in some fashion for correlation

between the unobserved components in the latent utility representation. In particular, with

a choice set that contains multiple versions of essentially the same choice (like the red bus

or the blue bus), we should allow the latent utilities for these choices to be identical, or at

least very close. In order to achieve this the unobserved components of the latent utilities

would have to be highly correlated for those choices. This can be done in a number of ways.

4. Models without Independence of Irrelevant Alternatives

Here we discuss three ways of avoiding the IIA property. All can be interpreted as relax-

ing the independence between the unobserved components of the latent utility. All of these

originate in some form or another in McFadden’s work (e.g., McFadden, 1981, 1982, 1984).

The first is the nested logit model where the researcher groups together sets of choices. In

the simple version with a single layer of nests this allows for non-zero correlation between

unobserved components of choices within a nest and maintains zero correlation between the

unobserved components of choices in different nests. Second, the unrestricted multinomial

probit model with no restrictions on the covariance between unobserved components, beyond

normalizations. Third, the mixed or random coefficients logit where the marginal utilities

associated with choice characteristics are allowed to vary between individuals. This gener-

ates positive correlation between the unobserved components of choices that are similar in

observed choice characteristics.

4.1 Nested Logit

One way to induce correlation between the choices is through nesting them. Suppose the
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set of choices {0, 1, . . . , J} can be partitioned into S sets B1, . . . , BS, so that the full set of

choices can be written as

{0, 1, . . . , J} = ∪S
s=1Bs.

Let Zs be set-specific characteristics. (It may be that the set of set specific variables is

empty, or just a vector of indicators, with Zs an S-vector of zeros with a one for the sth

element.) Now let the conditional probability of choice j given that your choice is in the set

Bs, or Yi ∈ Bs be equal to

Pr(Yi = j|Xi, Yi ∈ Bs) =
exp(ρ−1

s X ′
ijβ)∑

l∈Bs
exp(ρ−1

s X ′
ilβ)

,

for j ∈ Bs, and zero otherwise. In addition suppose the marginal probability of a chocie in

the set Bs is

Pr(Yi ∈ Bs|Xi) =
exp(Z ′

sα)
(∑

l∈Bs
exp(ρ−1

s X ′
ilβ)
)ρs

∑S

t=1
exp(Z ′

tα)
(∑

l∈Bt
exp(ρ−1

t X ′
ilβ)
)ρs

.

If we fix ρs = 1 for all s, then

Pr(Yi = j|Xi) =
exp(X ′

ijβ + Z ′
sα)

∑S

t=1

∑
l∈Bt

exp(X ′
ilβ + Ztα)

,

and we are back in the conditional logit model.

In general this model corresponds to individuals choosing the option with the highest

utility, where the utility of choice j in set Bs for individual i is

Uij = X ′
ijβ + Z ′

sα + εij,

where the joint distribution function of the εij is

F (εi0, . . . , εiJ) = exp

(
−

S∑

s=1

(∑

j∈Bs

exp
(
−ρ−1

s εij

)
)ρs
)

.
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Within the sets the correlation coefficient for the εij is approximately equal to 1−ρ. Between

the sets the εij are independent.

The nested logit model could capture the blue bus/red bus example by having two nests,

the first B1 = {redbus, bluebus}, and the second one B2 = {car}.

How do you estimate these models? One approach is to construct the log likelihood

and directly maximize it. That is complicated, especially since the log likelihood function

is not concave, but it is not impossible. An easier alternative is to directly use the nesting

structure. Within a nest we have a conditional logit model with coefficients β/ρs. Hence

we can directly estimate β/ρs using the concavity of the conditional logit model. Denote

these estimates of β/ρs by β̂/ρs. Then the probability of a particular set Bs can be used to

estimate ρs and α through

Pr(Yi ∈ Bs|Xi) =
exp(Z ′

sα)
(∑

l∈Bs
exp(X ′

ilβ̂/ρs)
)ρs

∑S

t=1
exp(Z ′

tα)
(∑

l∈Bt
exp(X ′

ilβ̂/ρt)
)ρs

=
exp(Z ′

sα + ρsŴs)∑S

t=1
exp(Z ′

tα + ρtŴt)
,

where

Ŵs = ln

(∑

l∈Bs

exp(X ′
ilβ̂/ρs)

)
,

known as the “inclusive values”. Hence we have another conditional logit model back that

is easily estimable. These two-step estimators are not efficient. The variance/covariance

matrix is provided in McFadden (1981).

These models can be extended to many layers of nests. See for an impressive example

of a complex model with four layers of multiple nests Goldberg (1995). Figure 2 shows the

nests in the Goldberg application. The key concern with the nested logit models is that

results may be sensitive to the specification of the nest structure. The researcher chooses

the choices that are potentially close, with the data being used to estimate the amount of

correlation. In contrast, in the random effects models, choices can only be close if they are

close in terms of observed choice characteristics, with the data being used to estimate the
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relative importance of the various choice characteristics. In that sense the nested logit model

can be more flexible, allowing the researcher to group together choices that are far apart in

terms of observed choice characteristics, but it is more demanding in requiring the researcher

to make these decisions a priori.

4.2 Multinomial Probit

A second possibility is to directly free up the covariance matrix of the error terms. This

is more natural to do in the multinomial probit case. See McCulloch and Rossi (1994)

McCulloch, Polson, and Rossi (2000) for general discussion.

We specify:

Ui =




Ui0

Ui1

...
UiJ


 =




X ′
i0β + εi0

X ′
i1β + εi1

...
X ′

iJβ + εiJ


 ,

with

εi =




εi0

εi1

...
εiJ



∣∣∣Xi ∼ N (0, Ω),

for some relatively unrestricted (J + 1) × (J + 1) covariance matrix Ω. We do need some

normalizations on Ω beyond symmetry. Recall that in the binary choice case (which corre-

sponds to J = 1) there were no free parameters in the distribution of ε, which implies three

restrictions on the symmetric matrix Ω.

In principle we can derive the probability for each choice given the covariates, construct

the likelihood function based on that, and maximize it using an optimization algorithm like

Davidon-Fletcher-Powell (Gill, Murray, and Wright, 1981) or something similar. In practice

this is very difficult with J ≥ 3. Evaluating the probabilities involves calculating a third

order integral involving normal densities. This is difficult to to using standard integration

methods. There are two alternatives.
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There is a substantial literature on simulation methods for computing estimates in these

models. See for an early example Manski and Lerman (1981), general studies McFadden

(1989), and Pakes and Pollard (1989), and Hajivassiliou and Ruud (1994) for a review.

Geweke, Keane, and Runkle (1994) and Hajivasilliou and McFadden (1990) proposed a way

of calculating the probabilities in the multinomial probit models that allowed researchers to

deal with substantially larger choice sets. A simple attempt to estimate the probabilities

would be to draw the εi from a multivariate normal distribution and calculate the probability

of choice j as the number of times choice j corresponded to the highest utility. This does

not work well in cases with many (more than four) choices. The Geweke-Hajivasilliou-

Keane (GHK) simulator uses a more complicated procedure that draws sequentially and

combines the draws with the calculation of univariate normal integrals so that the resulting

probabilities are smooth in the parameters.

From a Bayesian perspective drawing from the posterior distribution of β and Ω is

straightforward. The key is setting up the vector of unobserved random variables as

θ = (β, Ω, Ui0, . . . , UiJ ) ,

and defining the most convenient partition of this vector. Suppose we know the latent

utilities Ui for all individuals. Then the normality makes this a standard linear model

problem, and we can sample sequentially from β|Ω and Ω|β given the appropriate conjugate

prior distributions (normal for β and inverse Wishart for Ω). Given the parameters drawing

from the unobserved utilities can be done sequentially: for each unobserved utility given the

others we would have to draw from a truncated normal distribution, which is straightforward.

See McCulloch, Polson, and Rossi (2000) for details.

The attraction of this approach is that there are no restrictions on which choices are

close. In contrast, in the nested logit approach the researcher specifies which choices are

potentially close, and in the random effects approach only choices that are close in terms of

observed choice characteristics can be close. The difficulty, however, with the unrestricted

multinomial probit approach is that with a reasonable number of chocies this frees up a
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large number of parameters (all elements in the (J + 1) × (J + 1) dimensional covariance

matrix of latent utilities, minus some that are fixed by normalizations.) Estimating all these

covariance parameters precisely, based on only first choice data (as opposed to data where

we know for each individual additional orderings, e.g., first and second choices), is difficult

with the sample sizes typically available.

4.3 Random Coefficient (Mixed) Logit (or Probit)

A third possibility to get around the IIA property is to allow for unobserved heterogeneity

in the slope coefficients. This is a very natural idea. Why do we fundamentally think that if

Lalime’s price goes up, the individuals who were planning to go Lalime’s go to Chez Panisse

instead, rather than to the Bongo Burger? The reason is that we think individuals who

have a taste for Lalime’s are likely to have a taste for close substitute in terms of observable

characteristics, Chez Panisse as well, rather than for the Bongo Burger.

We can model this by allowing the marginal utilities to vary at the individual level:

Uij = X ′
ijβi + εij,

where the εij are again independent of everything else, and of each other, either extreme

value, or normal. We can also write this as

Uij = X ′
ijβ + νij,

where

νij = ε +ij +Xij · (βi − β),

which is no longer independent across choices. The key ingredient is the vector of individual

specific taste parameters βi. See for a general discussion of such models and their properties

in approximating general choice patterns McFadden and Train (2000). One possibility is to
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assume the existence of a finite number of types of individuals, similar to the mixture models

used by Heckman and Singer (1984) in duration settings:

βi ∈ {b0, b1, . . . , bK},

with

Pr(βi = bk|Zi) = pk, or Pr(βi = bk|Zi) =
exp(Z ′

iγk)

1 +
∑K

l=1
exp(Z ′

iγl)
.

Here the taste parameters take on a finite number of values, and we have a finite mixture. We

can use either Gibbs sampling with the indicator of which mixture an observations belongs

to as an unobserved random variable, or use the EM algorithm (Dempster, Laird, and Rubin,

1977).

Alternatively we could specify

βi|Zi ∼ N (Z ′
iγ, Σ),

where we use a normal (continuous) mixture of taste parameters. Just evaluating the likeli-

hood function would be very difficult in this setting if there is a large number of choices. This

would involve integrating out the random coefficients which could be very computationally

intensive. See McFadden and Train (2000). Using Gibbs sampling with the unobserved βi

as additional unobserved random variables may be an effective way of doing inference.

5. Berry-Levinsohn-Pakes

Here we consider again random effects logit models. BLP extended these models to allow

for unobserved product characteristics, endogeneity of choice characteristics, and developed

methods that allowed for consistent estimation without individual level choice data. Their

approach has been widely used in Industrial Organization, where it is used to model demand

for differentiated products, often in settings with a large number of products. See Nevo

(2000) and Ackerberg, Benkard, Berry, and Pakes (2005) for reviews and references.
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Compared to the earlier examples we have looked at there is an emphasis in this study,

and those that followed it, on the large number of goods and the potential endogeneity of

some of the product characteristics. (Typically one of the regressors is the price of the good.)

In addition the procedure only requires market level data. We do not need individual level

purchase data, just market shares and estimates of the distribution of individual characteris-

tics by market. In practice we need a fair amount of variation in these things to estimate the

parameters well, but in principle this is less demanding in terms of data required. On the

other hand, we do need data by market, where before we just needed individual purchases

in a single market (although to identify price effects we would need variation in prices by

individuals in that case).

The data have three dimensions: products, indexed by j = 0, . . . , J , markets, t =

1, . . . , T , and individuals, i = 1, . . . , Nt. We only observe one purchase per individual.

The large sample approximations are based on large N and T , and fixed J .

Let us go back to the random coefficients model, now with each utility indexed by indi-

vidual, product and market:

Uijt = β ′
iXjt + ζjt + εijt.

The ζjt is a unobserved product characteristic. This component is allowed to vary by market

and product. It can include product and market dummies (for example, we can have ζjt =

ζj + ζt). Unlike the observed product characteristics this unobserved characteristic does not

have a individual-specific coefficient. The inclusion of this component allows the model to

rationalize any pattern of market shares. The observed product characteristics may include

endogenous characteristics like the price.

The εijt unobserved components have extreme value distributions, independent across all

individuals i, products j, and markets t.

The random coefficients βi, with dimension equal to that of the observable characteristics

Xjt, say K, are assumed to be related to individual observable characteristics. We postulate
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the following linear form:

βi = β + Z ′
iΓ + ηi,

with

ηi|Zi ∼ N (0, Σ).

So if the dimension of Zi is L× 1, then Γ is a L×K matrix. The Zi are normalized to have

mean zero, so that the β’s are the average marginal utilities. The normality assumption

is not necessary, and unlikely to be important. Other distributional assumptions can be

substituted.

BLP developed an approach to estimate models of this type that does not require in-

dividual level data. Instead it exploits aggregate (market level) data in combination with

estimates of the distribution of Zi. Specifically the data consist of estimated shares ŝtj for

each choice j in each market t, combined with observations from the marginal distribution

of individual characteristics (the Zi’s) for each market, often from representative data sets

such as the CPS.

First write the latent utilities as

Uijt = δjt + νijt + εijt,

where

δjt = β ′Xjt + ζjt, and νijt = (Z ′
iΓ + ηi)

′Xjt.

Now consider for fixed Γ and Σ and δjt the implied market share for product j in market

t, sjt. This can be calculated analytically in simple cases. For example with Γjt = 0 and

Σ = 0, the market share is a very simple function of the δjt:

sjt(δjt, Γ = 0, Σ = 0) =
exp(δjt)∑J
l=0

exp(δlt)
.
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More generally, this is a more complex relationship. We can always calculate the implied

market share by simulation: draw from the distribution of Zi in market t, draw from the

distribution of ηi, and calculate the implied purchase probability (or even simulate the im-

plied purchase by also drawing from the distribution of εijt). Do that repeatedly and you

will be able to calculate the market share for this product/market. Call the vector function

obtained by stacking these functions for all products and markets s(δ, Γ, Σ).

Next, fix only Γ and Σ. For each value of δjt we can find the implied market share. Now

find the vector of δjt such that the implied market shares are equal to the observed market

shares ŝjt for all j, t. BLP suggest using the following algorithm. Given a starting value for

δ0
jt, use the updating formula:

δk+1
jt = δk

jt + ln sjt − ln sjt(δ
k, Γ, Σ).

BLP show this is a contraction mapping, and so it defines a function δ(s, Γ, Σ) expressing the

δ as a function of observed market shares, and parameters Γ and Σ. In order to implement

this, one needs to approximate the implied market shares accurately for each iteration in the

contraction mapping, and then you will need to do this repeatedly to get the contraction

mapping to converge.

Note that does require that each market share is accurately estimated. If all we have is

an estimated market share, then even if this is unbiased, the procedures will not necessarily

work. In that case the log of the estimated share is not unbiased for the log of the true share.

In practice the precision of the estimated market share is so much higher than that of the

other parameters that this is unlikely to matter.

Given this function δ(s, Γ, Σ) define the residuals

ωjt = δjt(s, Γ, Σ) − β ′Xjt.

At the true values of the parameters and the true market shares this is equal to the unob-

served product characteristic ζjt.
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Now we can use GMM or instrumental variable methods. We assume that the unobserved

product characteristics are uncorrelated with observed product characteristics (other than

typically price). This is not sufficient since the observed product characteristics enter directly

into the model. We need more instruments, and typically use things like characteristics of

other products by the same firm, or average characteristics by competing products. The

general GMM machinery will also give us the standard errors for this procedure. This is

where the method is most challenging. Finding values of the parameters that set the average

moments closest to zero can be difficult.

It is instructive to see what this approach does if we in fact have, and know we have, a

conditional logit model with fixed coefficients. In that case Γ = 0, and Σ = 0. Then we can

invert the market share equation to get the market specific unobserved choice-characteristics

δjt = ln sjt − ln s0t,

where we set δ0t = 0. (this is typically the outside good, whose average utility is normalized

to zero). The residual is

ζjt = δjt − β ′Xjt = ln sjt − ln s0t − β ′Xjt.

With a set of instruments Wjt, we run the regression

ln sjt − ln s0t = β ′Xjt + εjt,

using Wjt as instrument for Xjt, using as the observational unit the market share for product

j in market t.

So here the technique is very transparent. It amounts to transforming the market shares

to something linear in the coefficients so we can use two-stage-least-squares. More generally

the transformation is going to be much more difficult with the random coefficients implying

that there is no analytic solution. Computationally these things can get very complicated.

Note however that we can estimate these models now without having individual level data,
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and that at the same time we can get a fairly flexible model for the substitution patterns.

At the same time you would expect to need a lot of structure to get the parameters precisely

estimated just as in the other models. Of course if you compare the current model to the

nested logit model you can impose such structure by imposing restrictions on the covariance

matrix.

Comparisons of the models are difficult. Obviously if the structure imposed is correct it

helps, but we typically do not know what the truth is, so we cannot conclude which one is

better on the basis of the data typically available.

6. Models with Multiple Unobserved Choice Characteristics

The BLP approach allows for a single unobserved choice characteristic. This is essential

for their estimation strategy that requires only market share data, and exploits a one-to-one

relationship between market-specific unobserved product characteristics and market shares

given other parameters and covariates. With individual level data one may be able to, and

wish to allow for, multiple unobserved product characteristics. Elrod and Keane (1995),

Goettler and Shachar (2001), and Athey and Imbens (2007), among others, study such

models, in all cases with the unobserved choice characteristics constant across markets.

Athey and Imbens model the latent utility for individual i in market t for choice j as

Uijt = X ′
itβi + ζ ′

jγi + εijt,

with the individual-specific taste parameters for both the observed and unobserved choice

characteristics normally distributed:

(
βi

γi

)
|Zi ∼ N (∆Zi, Ω).

Even in the case with all choice characteristics exogenous, maximum likelihood estimation

would be difficult. Athey and Imbens show that Bayesian methods, and in particular markov-

chain-monte-carlo methods are effective tools for conducting inference in these settings.
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7. Hedonic Models and the Motivation for a Choice and Individual Specific

Error Term

Recently researchers have reconsidered using pure characteristics models for discrete

choices, that is models with no idiosyncratic error εij, instead relying solely on the presence

of a few unobserved product characteristics and unobserved variation in taste parameters

to generate stochastic choices. Such an error term is the only source of stochastic variation

in the original multinomial choice models with only observed choice and individual charac-

teristics, but in models with unobserved choice and individual characteristics their presence

needs more motivation. Athey and Imbens (2007) discuss two arguments for including the

additive error term.

First, the pure characteristics model can be extremely sensitive to measurement error,

because it can predict zero market shares for some products. Consider a case where choices

are generated by a pure characteristics model that implies that a particular choice j has

zero market share. Now suppose that there is a single unit i for whom we observe, due to

measurement error, the choice Yi = j. Irrespective of the number of correctly measured ob-

servations available that were generated by the pure characteristics model, the estimates of

the latent utility function will not be close to the true values corresponding to the pure char-

acteristics model due to the single mismeasured observation. Such extreme sensitivity puts

a lot of emphasis on the correct specification of the model and the absence of measurement

error, and is undesirable in most settings.

Thus, one might wish to generalize the model to be robust against small amounts of

measurement error of this type. One possibility is to define the optimal choice Y ∗
i as the

choice that maximizes the utility and assume that the observed choice Yi is equal to the

optimal choice Y ∗
i with probability 1 − δ, and with probability δ/(J − 1) any of the other

choices is observed:

Pr(Yi = y|Y ∗
i , Xi, νi, Z1, . . . , ZJ , ζ1, . . . , ζJ ) =

{
1 − δ if Y = Y ∗

i ,
δ/(J − 1) if Y 6= Y ∗

i .

This nests the pure characteristics model (by setting δ = 0), without having the disad-
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vantages of extreme sensitivity to mismeasured choices that the pure characteristics model

has. If the true choices are generated by the pure characteristics model the presence of

a single mismeasured observation will not prevent the researcher from estimating the true

utility function. However, this specific generalization of the pure characteristics model has

an unattractive feature: if the optimal choice Y ∗
i is not observed, all of the remaining choices

are equally likely. One might expect that choices with utilities closer to the optimal one are

more likely to be observed conditional on the optimal choice not being observed.

An alternative modification of the pure characteristics model is based on adding an

idiosyncratic error term to the utility function. This model will have the feature that,

conditional on the optimal choice not being observed, a close-to-optimal choice is more likely

than a far-from-optimal choice. Suppose the true utility is U∗
ij but individuals base their

choice on the maximum of mismeasured version of this utility:

Uij = U∗
ij + εij,

with an extreme value εij, independent across choices and individuals. The εij here can be

interpreted as an error in the calculation of the utility associated with a particular choice.

This model does not directly nest the pure characteristics model, since the idiosyncratic error

term has a fixed variance. However, it approximately nests it in the following sense. If the

data are generated by the pure characteristics model with the utility function g(x, ν, z, ζ),

then the model with the utility function λ · g(x, ν, z, ζ) + εij leads, for sufficiently large λ, to

choice probabilities that are arbitrarily close to the true choice probabilities (e.g., Berry and

Pakes, 2007).

Hence, even if the data were generated by a pure characteristics model, one does not lose

much by using a model with an additive idiosyncratic error term, and one gains a substantial

amount of robustness to measurement or optimization error.
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What’s New in Econometrics? NBER, Summer 2007
Lecture 12, Wednesday, August 1st, 11-12.30 pm

Missing Data
These notes discuss various aspects of missing data in both pure cross section and panel

data settings. We begin by reviewing assumptions under which missing data can be ignored
without biasing estimation or inference. Naturally, these assumptions are tied to “exogenous”
sampling.

We then consider three popular solutions to missing data: inverse probability weighting,
imputation, and Heckman-type selection corrections. The first to methods maintain “missing at
random” or “ignorability” or “selection on observables” assumptions. Heckman corrections,
whether applied to cross section data or panel data, linear models or (certain) nonlinear
models, allow for “selection on unobservables.” Unfortunately, their scope of application is
limited. An important finding is that all methods can cause more harm than good if selection is
on conditioning variables that are unobserved along with response variables.
1. When Can Missing Data be Ignored?

It is easy to obtain conditions under which we can ignore the fact that certain variables for
some observations, or all variables for some observations, have missing values. Start with a
linear model with possibly endogenous explanatory variables:

yi  xi  ui,     (1.1)

where xi is 1  K and the instruments zi are 1  L, L ≥ K. We model missing data with a
selection indicator, drawn with each i. The binary variable si is defined as si  1 if we can use
observation i, si  0 if we cannot (or do not) use observation i. In the L  K case we use IV on
the selected sample, which we can write as

̂IV  N−1∑
i1

N

sizi
′xi

−1

N−1∑
i1

N

sizi
′yi

   N−1∑
i1

N

sizi
′xi

−1

N−1∑
i1

N

sizi
′ui

    (1.2)

    (1.3)

For consistency, we essentially need

rank Esizi
′xi  K     (1.4)

and

Esizi
′ui  0,     (1.5)

1
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which holds if Ezi
′ui|si  0, which in turn is implied by

Eui|zi, si  0.     (1.6)

Sufficient for (1.6) is

Eui|zi  0, si  hzi     (1.7)

for some function h. Note that the zero covariance assumption, Ezi
′ui  0, is not sufficient

for consistency when si  hzi. A special case is when Eyi|xi  xi and selection si is a
function of xi. Provided the selected sample has sufficient variation in x, can consistently
estimate  by OLS on the selected sample.

We can use similar conditions for nonlinear models. What is sufficient for consistency on
the selected sample?

(Linear or Nonlinear) Least Squares: Ey|x, s  Ey|x.
Least Absolute Deviations: Medy|x, s  Medy|x
Maximum Likelihood: Dy|x, s  Dy|x.

All of these allow selection on x but not generally on y (or unobservables that affect y).
In the statistics literature, just using the data for which we observe all of yi,xi, zi (or just

yi,xi without instruments) is called the “complete case method.” In cases where we model
some feature of Dy|x, it is clear that the richer is x, the more likely ignoring selection will not
bias the results. In the case of estimating unconditional moments, say   Eyi, unbiasedness
and consistency of the sample on the selected sample requires Ey|s  Ey.

Similar conditions can be obtained for panel data. For example, if we model Dyt|xt, and
st is the indicator equal to one if xt,yt is observed, then the condition sufficient to ignore
selection is

Dst|xt,yt  Dst|xt, t  1, . . . ,T.     (1.8)

If, for example, xt contains yt−1, then selection is allowed to depend on the lagged response
under (1.8). To see that (1.8) suffices, let the true conditional density be ftyit|xit,. Then the
partial log-likelihood function for a random draw i from the cross section can be written as

∑
t1

T

sit log ftyit|xit,g ≡ ∑
t1

T

sitlitg.     (1.9)

Except for ensuring identifiability of , it suffices to show that Esitlit ≥ Esitlitg for all
g ∈ Γ (the parameter space). But by a well-known result from MLE theory – the
Kulback-Leibler information inequality –  maximizes Elitg|xit for all xit. But

2
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Esitlitg|xit  EEsitlitg|yit,xit|xit  EEsit|yit,xitlitg|xit

 EEsit|xitlitg|xit  Esit|xitElitg|xit,

where we used Esit|yit,xit  Esit|xit from (1.8). Because Esit|xit  Psit  1|xit ≥ 0, it
follows that Esitlit|xit ≥ Esitlitg|xit for all g ∈ Γ. Taking expectations of this inequality
and using iterated expectations gives the result. Thus, we have shown that  maximizes the
expected value of each term in the summand in (1.9) – often not uniquely – and so it also
maximizes the expected value of the sum. For identification, we have to assume it is the unique
maximizer, as is usually the case of the model is identified in an unselected population and the
selection scheme selects out “enough” of the population. One implication of this finding is that
selection is likely to be less of a problem in dynamic models where lags of y and lags of other
covariates appear, because then selection is allowed to be an arbitrary function of them. But,
what is ruled out by (1.8) is selection that depends on idiosyncratic shocks to y between t − 1
and t.

Methods to remove time-constant, unobserved heterogeneity deserve special attention.
Suppose we have the linear model, written for a random draw i,

yit   t  xit  ci  uit.     (1.10)

Suppose that we have instruments, say zit, for xit, including the possibility that zit  xit. If we
apply random effects IV methods on the unbalanced panel, sufficient for consistency (fixed T)
are

Euit|zi1, . . . , ziT, si1, . . . , siT,ci  0, t  1, . . . ,T     (1.11)

and

Eci|zi1, . . . , ziT, si1, . . . , siT  Eci  0,     (1.12)

along with a suitable rank condition. Somewhat weaker conditions suffice, but the general
point is that selection must be strictly exogenous with respect to the idiosyncratic errors as well
as the unobserved effect, ci. If we use the fixed effects estimator on the unbalanced panel, we
can get by with the first assumption, but, of course, all the instruments and selection to be
arbitrarily correlated with ci. To see why, consider the just identified case and define, say,

ÿit  yit − Ti
−1∑r1

T siryir and similarly for and ẍit and z̈it, where Ti  ∑r1
T sir is the number of

time periods for observation i (properly viewed as random). The FEIV estimator is

3
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̂FEIV  N−1∑
i1

N

∑
t1

T

sitz̈it
′ ẍit

−1

N−1∑
i1

N

∑
t1

T

sitz̈it
′ ÿit

   N−1∑
i1

N

∑
t1

T

sitz̈it
′ ẍit

−1

N−1∑
i1

N

∑
t1

T

sitz̈it
′ uit .

Because z̈it is a function of zi1, . . . , ziT, si1, . . . , siT, (1.11) implies∑ t1
T Esitz̈it

′ uit  0 (as do

weaker assumptions). There is a set of second moment assumptions that makes the usual,
nonrobust inference procedures valid, but these impose homoskedasticity and serial
independence of the uit conditional on zi, si,ci.

There are some simple ways to test for selection bias in panel data applications. One
important violation of (1.11) is when units drop out of the sample in period t  1 because of
shocks realized in time t. This generally induces correlation between si,t1 and uit. A simple test
in the FE environment is to simply add si,t1 to the equation at time t, and estimate the resulting
model by fixed effects (or FEIV). A simple t test can be used (probably fully robust). Of course
the test entails dropping the last time period, and it need not have power for detecting
correlation between sit and uit – that is, contemporaneous selection.

The consistency of FE (and FEIV) on the unbalanced panel under (1.11) breaks down if the
slope coefficients are random but one ignores this in estimatin. That is, replace  with bi but
still use the FE estimator. Then the error term contains the term xidi where di  bi − . If
selection is a function of di, then the usual FE estimator will be inconsistent. (Recall that the
FE estimator, on balanced panels, has some robustness to random slopes.) A simple test is to
allow di to be correlated with selection through the number of available time periods, Ti. The
idea is to consider alternatives with

Ebi|zi1, . . . , ziT, si1, . . . , siT  Ebi|si1, . . . , siT  Ebi|Ti.     (1.13)

Then, add interaction terms of dummies for each possible sample size (with Ti  T as the base
group),

1Ti  2xit, 1Ti  3xit, ..., 1Ti  T − 1xit     (1.14)

to the equation and estimate it by FE. Significance of these interaction terms indicates that
random slopes are correlated with the available time periods, and suggests one might have to
remove those random slopes (if possible).

If we first difference instead to remove ci – a method that has important advantages for

4
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attrition problems – we can apply the pooled IV results:

Δyit   t  Δxit  Δuit, t  2, . . . ,T     (1.15)

and, if zit is the set of IVs at time t, we can use

EΔuit|zit, sit  0     (1.16)

as being sufficient to ignore the missingess. Again, can add si,t1 to test for attrition.
Not suprisingly, nonlinear models with unosberved effects are considerably more difficult

to handle, although certain conditional MLEs (logit, Poisson) can accomodate selection that is
arbitrarily correlated with the unobserved effect.
2. Inverse Probability Weighting
2.1. Weighting with Cross-Sectional Data

A general solution to solving missing data problems when selection is not exogenous is
based on probability weights. To illustrate, for simplicity, suppose y is a random variable
whose population mean   Ey we would like to estimate, but some observations are
missing on y. Let yi, si, zi : i  1, . . . ,N indicate independent, identically distributed draws
from the population, where zi is a vector that, for now, we assume is always observed. Suppose
we assume the “selection on observables” assumption

Ps  1|y, z  Ps  1|z ≡ pz     (2.1)

where pz  0 for all possible values of z. Then we can solve the missing data problem by
weighting the observed data points by 1/pzi:

̃IPW  N−1∑
i1

N
si

pzi
yi,     (2.2)

where note that si selects out the observed data points. It is easy to show, using iterated
expectations, that ̂IPW is not only consistent for yi, it is unbiased, too. (This same kind of
estimator arises in treatment effect estimation.) Of course, except in special cases, we must
estimate pzi; when zi is always observed along with si, flexible binary response models such
as logit or probit, or nonparametric methods, can be used. Let p̂zi denote the estimated
selection probability (also called the propensity score). Then an operational estimator is

̂IPW  N−1∑
i1

N
si

p̂zi
yi.     (2.3)

As written, this estimator assumes we know the size of the random sample, N, which is not

5
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necessarily the case for some sampling schemes, such as variable probability sampling. We can
also write ̂IPW as

̂IPW  N1
−1N1/N∑

i1

N
si

p̂zi
yi  N1

−1∑
i1

N

si
̂

p̂zi
yi     (2.4)

where N1  ∑ i1
N si is the number of selected observations and ̂  N1/N is a consistent

estimate of Psi  1. The weights reported to account for missing data are often ̂/p̂zi,
which can be greater or less than unity. (By iterated expectatins,   Epzi.) Equation (2.4)
shows that ̂IPW is a weighted average of the observed data points with weights ̂/p̂zi. Yet a
different estimator is obtained by solving the least squares problem

minm ∑
i1

N
si

p̂zi
yi − m2,

which results in

 IPW  ∑
h1

N
sh

p̂zh

−1

∑
i1

N
si

p̂zi
yi ,     (2.5)

which is a different version a weighted.average.
Horowitz and Manski (1998) have considered the problem of estimating population means

using IPW. Their main focus is on establishing bounds that do not rely on potentially strong,
untestable assumptions such as the unconfoundedness assumption in (2.1). But they also note a
particular problem with certain IPW estimators even when the conditioning variable, x, is
always observed. They consider estimation of the mean Egy|x ∈ A for some set A. If we
define di  1xi ∈ A then the problem is to estimate Egy|d  1. HM point out that, if one
uses the weights commonly reported with survey data – weights that do not condition on the
event d  1 – then the IPW estimate of the mean can lie outside the logically possible values
of Egy|d  1. HM note that this problem can be fixed by using probability weights
Ps  1|d  1/Ps  1|d  1, z unfortunately, this choice is not possible when data on x can
also be missing.

Failure to condition on d  1 when computing the probability weights when interest lies in
Egy|d  1 is related to a general problem that arises in estimating models of conditional
means when data are missing on x. To see why, suppose the population regression function is
linear:

6
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Ey|x    x.     (2.6)

Let z be a variables that are always observed and let pz be the selection probability, as
before. Now, suppose that at least part of x is not always observed, so that x is not a subset of z.
This means that some elements of x cannot appear in pz because pz normally has to be
estimated using the data on si, zi for all i. The IPW estimator of  solves

min
a,b
∑
i1

N
si

p̂zi
yi − a − xib2.     (2.7)

Here is the problem: suppose that selection is exogenous in the sense that

Ps  1|x,y  Ps  1|x.     (2.8)

Then we saw in Section 1 that using least squares on the selected sample results in a consistent
estimator of   , ′ ′, which is also N -asymptotically normal. What about the weighted
estimator? The problem is that if (2.8) holds, and z does not include x, then it is very unlikely
that

Ps  1|x,y, z  Ps  1|z.     (2.9)

In other words, the key unconfoundedness assumption fails, and the IPW estimator of  is
generally inconsistent. We actually introduce inconsistency by weighting when a standard
unweighted regression on the complete cases would be consistent. In effect, the IPW estimator
uses weights that are functions of the wrong variables.

If x is always observed and can (and should) be included in z, then weighting is much more
attractive. Typically, z might contain lagged information, or interview information that would
not be included in x. If it turns out that selection is a function only of x, flexible estimation of
the model Ps  1|z will pick that up in large sample sizes.

If x is always observed and we know that Ps  1|x,y  Ps  1|x, is there any reason to
weight by 1/px? If Ey|x    x and Vary|x, weighting is asymptotically inefficient. If
Ey|x    x but Vary|x is heteroskedastic, then weighting may or may not be more
efficient than not. (The efficient estimator would be the WLS estimator that appropriately
accounts for Vary|x, different issue than probability weighting.) But both weighting and not
weighting are consistent. The advantage of weighting is that, if the population “model” is in
fact just a linear projection, the IPW estimator consistently estimates that linear projection
while the unweighted estimator does not. In other words, if we write

7
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Ly|1,x  ∗  x∗     (2.10)

where L| denotes the linear projection, then under Ps  1|x,y  Ps  1|x, the IPW
estimator is consistent for ∗. The unweighted estimator has a probabilty limit that depends on
px.

One reason to be interested in the LP is that the parameters of the LP show up in certain
treatment effect estimators. The notes on treatment effects contained a discussion of a “double
robustness” result due to Robins and Ritov (1997); see also Wooldridge (2007). The idea is
this. In treatment effect applications, the ATE requires estimation of Eyg for the two

counterfactual outcomes, g  0,1). The LP has the property that Ey1  1
∗  Ex1

∗, and so,
if we consistently estimate 1

∗ and 1
∗ then we can estimate Ey1 by averaging across x. A

similar statement holds for y0. Now, the IPW estimator identifies 1
∗ and 1

∗ if the model for
px is correctly specified. But if Ey1|x  1  x1 then the IPW estimator is consistent for
1 and 1 even if px is misspecified. And, of course, Ey1  1  Ex1. So, regardless of
whether we are estimating the conditional mean parameters or the LP parameters, we
consistently estimate Ey1. The case where the IPW estimator does not consistently estimate
Ey1 is when Ey1|x is not linear and px is misspecified.

The double robustness result holds for certain nonlinear models, too, although one must
take care in combining the conditional mean function with the proper objective function –
which, in this case, means quasi-log-likelihood function. The two cases of particular interest
are the logistic response function for binary or fractional responses coupled with the Bernoulli
QLL, and the exponential response function coupled with the Poisson QLL.

Returning to the IPW regression estimator that solves (2.7), suppose we assume the
ignorability assumption (2.9),

Eu  0, Ex ′u  0,

pz  Gz,

for a parametric function G (such as flexible logit), and ̂ is the binary response MLE. Then,
as shown by Robins, Rotnitzky, and Zhou (1995) and Wooldridge (2007), the asymptotic
variance of ̂IPW, using the estimated probability weights, is

Avar N ̂IPW −   Exi
′xi−1Eriri

′Exi
′xi−1,     (2.11)

where ri is the P  1 vector of population residuals from the regression si/pzixi
′ui on di

′,
where di is the M  1 score for the MLE used to obtain ̂. The asymptotic variance of ̂IPW is

8
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easy to estimate:

∑
i1

N

si/Gzi, ̂xi
′xi

−1

∑
i1

N

r̂ir̂i
′ ∑

i1

N

si/Gzi, ̂xi
′xi

−1

,     (2.12)

or, if xi is always observed, the terms si/Gzi, ̂ can be dropped in the outer parts of the

sandwich. In the case that di is the score from a logit model of si on functions, say, hzi, d̂i

has the simple form

d̂i  hi
′si − hî,     (2.13)

where a  expa/1  expa and hi  hzi. This illustrates a very interesting finding of
Robins, Rotnitzky, and Zhou (1995) and related to the Hirano, Imbens, and Ritter (2003)
efficient estimator for means using IPW estimators. Suppose that, for a given set of functions
hi1, the logit model is correctly specified in the sense that there is a 1 such that
Psi  1|zi  hi11. Now suppose we take some additional functions of zi, say
hi2  h2zi, and add them to the logit. Then, asymptotically, the coefficients on hi2 are zero,
and so the adjustment to the asumptotic variance comes from regressing si/hi11xi

′ui on
hi1,hi2si − hi11. Now, notice that, even though the coefficients on hi2 are zero in the
logit model, the score vector depends on hi1,hi2. Therefore, the residual variance from
regressing si/hi11xi

′ui on hi1,hi2si − hi11 is generally smaller than that from using
the correct logit model, which is obtained from regressing on hi1si − hi11. By
overspecifying the logit model for si, we generally reduce the asymptotic variance of the IPW
estimator. And the process does not stop there. We can keep adding functions of zi to the logit
to reduce the asymptotic variance of the estimator of the IPW estimator. In the limit, if we have
chosen the sequence of functions so that they approximate any well-behaved function, then we
achieve asymptotic efficiency. This is precisly what the HIR estimator does by using a logit
series estimator for the propensity score.

Wooldridge (2007) shows that the adjustment to the asymptotic variance in (2.12) carries
over to general nonlinear models and estimation methods. One consequence is that ignoring
the estimation in p̂z – as commercial software typically does when specifying probability
weights – results in conservative inference. But the adjustment to obtain the correct asymptotic
variance is fairly straightforward.

Nevo (2003) explicitly considers a generalized method of moments framework, and shows
how to exploit known population moments to allow selection to depend on selected elements
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of the data vector w. (Hellerstein and Imbens (1998) use similar methods to improve estimation
when population moments are known.) In particular, Nevo assumes that, along with the
moment conditions Erw,  0, the population moments of the vector hw, say h, are
known. Under the assumption that selection depends on hw, that is,
Ps  1|w  Ps  1|hw, Nevo obtains an expanded set of moment conditions that can be
used to estimate  and the parameters  in the selection equation. Suppose we use a logit model
for Ps  1|hw. Then

E si
hwi

rwi,  0     (2.14)

and

E sihwi
hwi

 h.     (2.15)

Equation (2.15) generally identifies , and then this ̂ can be used in a second step to choose ̂
to make the weighted sample moments

N−1∑
i1

N
si

hwî
rwi, ̂     (2.16)

as close to zero as possible. Because (2.15) adds as many moment restrictions as parameters,
the GMM estimator using both sets of moment conditions is equivalent to the two-step
estimator just described.

Another situation where the missing data problem can be solved via weighting is when data
have been censored due to a censored duration. The response variable of interest may be the
duration, or it may be a variable observed only if a duration or survival time is observed. Let y
be a univariate response and x a vector of conditioning variables, and suppose we are interested
in estimating Ey|x. A random draw i from the population is denoted xi, yi. Let ti  0 be a
duration and let ci  0 denote a censoring time (where ti  yi is allowed). Assume that xi, yi

is observed whenever ti ≤ ci, so that si  1ti ≤ ci. Under the assumption that ci is
independent of xi, yi, ti,

Psi  1|xi,yi, ti  Gti,     (2.17)

where Gt ≡ Pci ≥ t. In order to use inverse probability weighting, we need to observe ti

whenever si  1, which simply means that ti is uncensored. Plus, we need only observe ci

when si  0. of ci. As shown in Wooldridge (2007), it is more efficient to estimate G using
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the density of minci, ti given ti. Generally, let hc, denote a parametric model for the
density of the censoring times, ci, and let Gt, be the implied model for Pci ≥ t. The log
likelihood is

∑
i1

N

1 − si loghci,  si logGti,,     (2.18)

which is just the log-likelihood for a standard censored estimation problem but where ti (the
underlying duration) plays the role of the censoring variable. As shown by Lancaster (1990 for
grouped duration data, where hc, is piecewise constant, the solution to (2.18) gives a
survivor function identical to the Kaplan-Meier estimator but where the roles of ci and ti are
reversed; that is, we treat ti as censoring ci. The linear regression model has a long history, and
has been studied recently by Honoré, Khan, and Powell (2002). See also Rotnitzky and Robins
(2005) for a survey of how to obtain semiparametrically efficient estimators. The
Koul-Susarla-van Ryzin (1981) estimator is an IPW least squares estimator, but their proposals
for inference are very difficult to implement. As shown by Wooldridge (2007), this is another
instance where estimating the selection probability by MLE is more efficient than using the
known probability (if you could). Plus, obtaining the smaller variance matrix involves only a
multivariate regression of the weighted score for the second stage problem – OLS, NLS, MLE,
or IV – on the score for the first-stage Kaplan-Meier estimation. This simple procedure is valid
when the distribution of ci is taken to be discrete. Other authors undertake the asymptotics
allowing for an underlying continuous censoring time, which makes estimating asymptotic
variances considerably more difficult.

2.2 Attrition in Panel Data

Inverse probability weighting can be applied to solve, in some cases, the attrition problem
in panel data. For concreteness, consider maximum pooled maximum likelihood, where we
model a density ftyt|xt for any conditioning variables xt. These need not be strictly
exogenous or always observed. Let ftyt|xt, be the parametric model, and let sit be the
selection indicator. We assume that attrition is absorbing, so sit  1  sir  1 for r  t. The
estimator that ignores attrition solves

max
∈Θ
∑
i1

N

∑
t1

T

sit log ftyit|xit,,     (2.19)

which is consistent if Psit  1|yit,xit  Psit  1|xit. This follows by showing
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EPsit  1|xitElog ftyit|xit,|xit, and using the fact that the true value of  maximizes
Elog ftyit|xit,|xit for all t, and Psit  1|xit ≥ 0. But, if selection depends on yit even after
conditioning on xit, the unweighted estimator is generally inconsistent. If wit  xit,yit, then
perhaps we can find variables r it, such that

Psit  1|wit,r it  Psit  1|r it ≡ pit  0, t  1, . . . ,T.     (2.20)

(The “obvious” set of variables rit  wit is not usually available since we will have estimate
the probabilities.) If we could observe the pit, we could use the weighted MLE,

max
∈Θ
∑
i1

N

∑
t1

T

sit/pit log ftyit|xit,,     (2.21)

which we call ̂w. The estimator ̂w is generally consistent because

Esit/pitqtwit,  Eqtwit,, t  1, . . . ,T, .     (2.22)

where qtwit,  log ftyit|xit, is the objective function.
How do we choose r it to make (2.20) hold (if possible)? A useful strategy, considered by

RRZ, is to build the pit up in a sequential fashion. At time t, zit is a set of variables observed
for the subpopulation with si,t−1  1. (si0 ≡ 1 by convention). Let

it  Psit  1|zit, si,t−1  1, t  1, . . . ,T.     (2.23)

Typically, zit contains elements from wi,t−1, . . . ,wi1, and perhaps variables dated at t − 1 or
earlier that do not appear in the population model. Unfortunately, zit rarely can depend on
time-varying variables that are observed in period t (since we have to apply a binary response
model for the sample with si,t−1  1, and this includes units that have left the sample at time t!)
Given the monotone nature of selection, we can estimate models for it sequential when the zit

are observed for every unit in the sample at time t − 1.
How do we obtain pit from the it? Not without some assumptions. Let

vit wit,zit, t  1, . . . ,T. An ignorability assumption that works is

Psit  1|vi1, . . . ,viT, si,t−1  1  Psit  1|zit, si,t−1  1, t ≥ 1.     (2.24)

That is, given the entire history vi vi1, . . . ,viT, selection at time t (given being still in the

sample at t − 1) depends only on zit; in practice, this means only on variables observed at t − 1.
This is a strong assumption; RRZ (1995) show how to relax it somewhat in a regression
framework with time-constant covariates. Using this assumption, we can show that

pit ≡ Psit  1|vi  iti,t−1   i1.     (2.25)
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In the general framework, we have r it zit, . . . ,zi1 but, because of the ignorability

assumption, it is as if we can take r it wi1,zi1, . . . , wiT,zit.

So, a consistent two-step method is:
(1) In each time period, estimate a binary response model for Psit  1|zit, si,t−1  1,

which means on the group still in the sample at t − 1. The fitted probabilities are the ̂it. Form
p̂it  ̂it̂i,t−1   ̂i1. Note that we are able to compute p̂it only for units in the sample at time
t − 1.

(2) Replace pit with p̂it in (2.21), and obtain the weighted M-estimator.
Consistency is straightforward – standard two-step estimation problem – if we have the

correct functional form and the ignorability of selection assumption holds. As shown by RRZ
(1995) in the regression case, it is more efficient to estimate the pit than to use know weights,
if we could. See RRZ (1995) and Wooldridge (2002) for a simple regression method for
adjusting the score; it is similar to that used for the cross section case, but just pooled across t.

IPW for attrition suffers from a similar drawback as in the cross section case. Namely, if
Psit  1|wit  Psit  1|xit then the unweighted estimator is consistent. If we use weights
that are not a function of xit in this case, the IPW estimator is generally inconsistent: weighting
uncessesarily causes inconsistency.

Related to the previous point is that it would be rare to apply IPW in the case of a model
with completely specified dynamics. Why? Suppose, for example, we have a model of
Eyit|xit,yi,t−1, . . . ,xi1,yi0. If our variables affecting attrition, zit, are functions of
yi,t−1, . . . ,xi1,yi0 – as they often must be – then selection is on the basis of conditioning
variables, and so the unweighted estimator is also consistent. RRZ (1995) explicitly cover
regressions that do not have correct dynamics.
3. Imputation

Section 1 discussed conditions under which dropping observations with any missing data
results in consistent estimators. Section 2 showed that, under an unconfoundedness
assumption, inverse probability weighting can be applied to the complete cases to recover
population parameters. One problem with using IPW for models that contain covariates is that
the weighting may actually hurt more than it helps if the covariates are sometimes missing and
selection is largely a function of those covariates.

A different approach to missing data is to try to fill in the missing values, and then analyze
the resulting data set as a complete data set. Imputation methods, and multiple imputation use
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either means, fitted values, values or averages from “similar” observations, or draws from
posterior distributions to fill in the missing values. Little and Rubin (2002) provides an
accessible treatment with lots of references to work by Rubin and coauthors.

Naturally, such procedures cannot always be valid. Most methods depend on a missing at
random (MAR) assumption. When data are missing on only one variable – say, the response
variable, y – MAR is essentially the same as the unconfoundedness assumption
Ps  1|y,x  Ps  1|x. (The assumption missing completely at random (MCAR) is when s
is independent of w  x,y.) MAR can be defined for general missing data patterns. For
example, in a bivariate case, let wi  wi1,wi2 be a random draw from the population, where
data can be missing on either variable. Let ri  ri1, ri2 be the “retention” indicators for wi1

and wi2, so rig  1 implies wig is observed. The MCAR assumption is that ri is independent of

wi, so Dri|wi  Dri. The MAR assumption is that implies
Pri1  0, ri2  0|wi  Pri1  0, ri2  0 ≡ 00, Pri1  1, ri2  0|wi1,
Pri1  0, ri2  1|wi2, and then
Pri1  1, ri2  1|wi  1 − 00 − Pri1  1, ri2  0|wi1 − Pri1  0, ri2  1|wi2. Even with
just two variables, the restrictions imposed by MAR are not especially appealing, unless, of
course, we have good reason to just assume MCAR.

MAR is more natural with monotone missing data problems, which sometime apply in
panel data situations with attrition. Order the wig so that if wih is observed the so is wig, g  h.

Then the retention indicators satisfy rig  1  ri,g−1  1. Under MAR, the joint density

fw1, . . . ,wG is easy to estimate. Write
fw1, . . . ,wG  fwG|wG−1, . . . ,w1  fwG−1|wG−1, . . . ,w1fw2|w1fw1. Given parametric
models, we can write partial log likelihood as

∑
g1

G

rig log fwig|wi,g−1, . . . ,wi1,,     (3.1)

where fw1|w0, ≡ fw1|w0,, and it suffices to multiply only by rig because

rig  rigri,g−1ri2. Under MAR,

Erig|wig, . . . ,wi1  Erig|wi,g−1, . . . ,wi1,     (3.2)

and so by (3.2),

Erig log fwig|wi
g−1|wi

g−1  Erig|wi
g−1Elog fwig|wi

g−1|wi
g−1.     (3.3)

The first term on the RHS of (3.3) is Erig|wi
g−1  Prig  1|wi

g−1 ≥ 0 and the true value of
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 maximizes the second part by the conditional Kullback-Leibler information inequality (for
example, Wooldridge (2002, Chapter 13)). Therefore, the parameters of the conditional
densities are generally identified, provided the missing data problem is not too severe.

Before briefly describing how multiple imputation works, a simple example helps illustrate
the general idea behind imputation. Suppose y is a random variable in a population with mean
y, but data are missing on some yi random drawn from the population. Let si be the binary

selection indicator, and let xi be a set of observed covariates. So, a random draw consists of
xi,yi, si but where yi is missing if si  0. As we discussed earlier, unless s is independent of
y – that is, the data are MCAR – the complete-case sample average,

̃y  ∑
i1

N

si

−1

∑
i1

N

siyi,     (3.4)

is not unbiased or consistent for y; its probability limit is, of course, Ey|s  1.

Suppose, however, that the selection is ignorable conditional on x:

Ey|x, s  Ey|x  mx,,     (3.5)

where mx, is, for simplicity, a parametric function. As we discussed in Section 1, nonlinear
least squares, and a variety of quasi-MLEs, are consistent for  using the selected sample.

Now, because we observe xi for all i, we can obtained fitted values, mxi, ̂, for any unit it the

sample. Let ŷ i  siyi  1 − simxi, ̂ be the imputed data. Then an imputation estimator of
y is

̂y  N−1∑
i1

N

siyi  1 − simxi, ̂.     (3.6)

The plim of ̂y is easy to find by replacing ̂ with  and sample average with the population

average:

Esiyi  1 − simxi,  EEsiyi|xi, si  E1 − simxi,
 EsiEyi|xi, si  E1 − simxi,
 Esimxi,  E1 − simxi,
 Emxi,  y.     (3.7)

(Of course, we could average the mxi, ̂ across all i, but that would throw away some
information on the yi that we observe.)

If Dy|x, s  Dy|x then we can use MLE on the complete cases, obtain estimates of the
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parameters, say ̂, and then use mxi, ̂ as above, where mx, is the mean function implied
by the model for Dy|x. For example, y could be a corner solution response and then we use a
Tobit or some flexible extension for Dy|x.

One danger in using even simple imputation methods like the one just covered is that we
will ignore the errors in the imputed values. ŷ i differs from yi for two reasons. First, if we write

yi  mxi,  ui,     (3.8)

then, even if we knew , the error would be ui. (In effect, we are replace yi with its conditional
expectation.) Having to estimate  further introduces estimation error. Analytical formulas can
be worked out, but bootstrapping a standard error or confidence interval for ̂y is also

straightforward: we would draw observation indices at random, without replacement, and
perform the imputation steps on each new bootstrap sample.

As an example of how just using the imputed values as if they were real data, suppose we

run a linear regression using the complete data and obtain xî. Again defining

ŷ i  siyi  1 − sixî, suppose we use the imputed data set to reestimate . It is well known

that we just get ̂ back again. However, our estimated error variance will be too small because
every residual for an imputed data point is identically zero. It follows that, while SSR/N1 − K
is generally unbiased for u

2 (under the Gauss-Markov assumptions), where N1 is the number
of complete cases, SSR/N − K has a downward bias.

The previous method ignores the random error in (3.4); Little and Rubin (2002) call it the
method of “conditional means.” Generally, as they show in Table 4.1, the method of
conditional means results in downward bias in estimating variances. Instead, LR propose

adding a random draw to mxi, ̂ to impute a value. Of course, this entails have a distribution

from which to draw the ui. If we assume that ui is independent of xi and normally distributed,
then we can draw, say, u i from a Normal0, ̂u

2, distribution, where ̂u
2 is estimated using the

complete case nonlinear regression residuals. This procedure works well for estimating y
2 in

the case where linear regression is used and xi,yi is jointly normal. LR refer to this as the
“conditional draw” method of imputation, which is a special case of stochastic imputation.

Little and Rubin argue that the conditional draw approach, at least in the jointly normal
case, works well when a covariate is missing. Suppose that x  x1,x2 and data are missing
on x2 but not x1,y. One possibility for imputing xi2 when it is missing is to regress xi2 on xi1

using the complete cases, and then use fitted values, or conditional draws, to impute xi2. LR
show that the method of conditional draws (not conditional means) works well when y is
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included along with x1 in obtained the estimated conditional means from the complete-case
regression.

Unfortunately, except in simple cases, it is difficult to quantity the uncertainty from
single-imputation methods, where one imputed values is obtained for each missing variable.
One possibility, which has been studied in the statistics literature, is to bootstrap the entire
estimation method – assuming, of course, that the imputations eliminates the nonresponse bias
(so that missing at random holds). In the example of conditional draws above, the imputation
procedure is simply included in any subsequent estimation, and bootstrap samples are obtained
over and over again. On each bootstrap replication, say b, an estimate of the parameters using

the complete cases, ̂complete
b is obtained (which would be the beta hats and error variance

estimate in the regression case), missing data values are imputed using conditional draws, and

then an estimate of  using the imputed data, ̂ imputed
b , can be obtained. Of course, this can be

computationally intensive for nonlinear estimation problems.
An alternative is the method of multiple imputation. Its justification is Bayesian, and based

on obtaining the posterior distribution – in particular, mean and variance – of the parameters
conditional on the observed data. For general missing data patterns, the computation required
to impute missing values is quite complicated, and involves simulation methods of estimation.
LR and Cameron and Trivedi (2005) provide discussion. But the idea is easily illustrated using
the above example. Rather than just impute one set of missing values to create one “complete”
data set, created several imputed data sets. (Often the number is fairly small, such as five or
so.) Then, estimate the parameters of interest using each imputed data set, and then use an
averaging to obtain a final parameter estimate and sampling error.

Briefly, let Wmis denote the matrix of missing data and Wobs the matrix of observations.
Assume that MAR holds. Then multiple imputation is justified as a way to estimate E|Wobs,
the posterier mean of  given Wobs. But by iterated expectations,

E|Wobs  EE|Wobs,Wmis|Wobs.     (3.9)

Now, if we can obtain estimates ̂d  E|Wobs,Wmis
d  for imputed data set d, then we can

approximate E|Wobs as

̄  D−1∑
d1

D

̂d,     (3.10)

which is just the average of the parameter estimates across the imputed samples.
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Further, we can obtain a “sampling” variance by estimating Var|Wobs using

Var|Wobs  EVar|Wobs,Wmis|Wobs  VarE|Wobs,Wmis|Wobs,     (3.11)

which suggests

Var|Wobs  D−1∑
d1

D

V̂d  D − 1−1∑
d1

D

̂d − ̄̂d − ̄
′

≡ V̄  B,

    (3.12)

where V̄ is the average of the variance estimates across imputed samples and B is the
between-imputation variance. For small a small number of imputations, a correction is usually
made, namely, V̄  1  D−1B. Therefore, assume that one trusts the MAR assumption, and
the underlying distributions used to draw the imputed values, inference with multiple
imputations is fairly straightforward. Because D need not be very large, estimation of
nonlinear models using multiple imputations is not computationally prohibitive (once one has
the imputed data, of course).

Like weighting methods, imputation methods have an important shortcoming when applied
to estimation of models with missing conditioning variables. Suppose again that x  x1,x2,

we are interested in some feature of the conditional distribution Dy|x, data are missing on y
and x2 – say, for the same units – and selection is a function of x2. Then, as we discussed in
Section 1, MLE using the complete cases is consistent, asymptotically normal, and inference is
standard. What about imputation methods? Because they generally rely on MAR, they would
require that Ds|y,x1,x2  Ds|x1. Because this is false in this example, MI cannot be
expected to produce convincing imputations.

Imputation for the monotone case discussed above is relatively straightforward under
MAR, and MAR is at least plausible. Because the conditional densities are identified,
imputation can proceed sequentially: given wi1 and ̂, missing values on wi2 can be imputed by
drawing from f2|wi1, ̂. Then, wi3 can be imputed by drawing from f|ŵi2,wi1, ̂, where ŵi2

may or may not be imputed. And so on.
4. Heckman-Type Selection Corrections
4.1. Corrections with Instrumental Variables

Here we briefly cover the well-known Heckman selection correction with endogenous
explanatory variables in a linear model. The model is
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y1  z11  1y2  u1

y2  z2  v2

y3  1z3  v3  0.

    (4.1)
    (4.2)
    (4.3)

where z is 1  L with first element unity (and also in z1). As usually, L1  L for identification.
The key point to be made here is, depending on how the Heckman correction is carried out in
this case, (4.2) can just be a linear projection – in which case the nature of y2 is unrestricted –
or, effectively, v2 must be normal and independent of z. Intuitively, we need two elements in z
not also in z1: loosely, one to induce exogenous variation in y2 and the other to induce
exogenous variation in selection. If we assume (a) z,y3 is always observed, y1,y2 observed
when y3  1; (b) Eu1|z,v3  1v3; (c) v3|z ~Normal0,1; (d) Ez′v2  0 and 22 ≠ 0, then
we can write

y1  z11  1y2  gz,y3  e1     (4.4)

where e1  u1 − gz,y3  u1 − Eu1|z,y3. So, selection is exogenous in (4.4) because
Ee1|z,y3  0. Because y2 is not exogenous, we estimate (4.4) by IV, using the selected
sample, where the instruments are z,z3 because gz, 1  z3. So, the two-step
estimator is

(i) Probit of y3 on z to (using all observations) to get ̂i3 ≡ zî3

(ii) IV (2SLS if overidentifying restrictions) of yi1 on zi1,yi2, ̂i3 using the selected
sample and instruments zi, ̂i3.

If y2 is always observed, it is tempting to obtain the fitted values ŷ i2 from the reduced form
yi2 on zi, and then use OLS of yi1 on zi1,ŷ i2, ̂i3 in the second stage. But this effectively puts
1v2 in the error term, so we would need u1  2v2 to be normal (or something similar); it
would not be consistent for discrete y2, for example. Implicitly, the reduced form estimated by
the proper two-step procedure is, on the selected sample, y2  z2  2z3  r3. But this is
just a linear projection; generally, the rank condition on the selected sample should hold if z
causes sufficient variation in y2 and y3 in the population.

This example raises another point: even if y2 is exogenous in the full population, one
should generally treat it as endogenous in the selected subsample. Why? Because y2 cannot be
included in the first-stage probit if it is not always observed, so consistency of the Heckman
procedure would require Py3  1|z1,y2  Py3  1|z1, a tenuous assumption. Unless we
have an instrument for y2, simply treating it as exogenous in the second stage after omitting it
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from the first is tantamount to imposing an exclusion restriction on a reduced form.
In addition to the linear model, with or without endogenous variables, Heckman-type

corrections are available for a limited set of nonlinear models. Terza (1998) contains the
approach for exponential functions with exogenous explanatory variables, where the selection
equation follows a probit; see also Wooldridge (2002, Chapter 19). A selection correction is
also fairly easy to implement in probit models, too; see Wooldridge (2002, Chapter 17). As in
trying to account for endogenous explanatory variables in such models, merely inserting an
estimated inverse Mills ratio inside, say, an exponential model, or probit model, or Tobit
model. One can always base a test on a variable-addition approaches, but they cannot be shown
to solve the selection problem.

A very similar issue arises when using Heckman’s method to correct for attrition in panel
data (when selection on observables does not hold). With attrition as an absorbing state, it is
common to estimate models in first differences to remove additive heterogeneity, say

Δyit  Δxit  Δuit, t  2, . . . ,T.     (4.5)

We assume sit  1  sir  1, r  t. Let wit be a set of variables that we always observe when
si,t−1  1 such that wit is a good predictor of selection – in a sense soon to be made precise.
We model the selection in time period t conditional on si,t1  1 as

sit  1wit t  vit  0
vit|wit, si,t−1  1~Normal0,1, t  2,3, . . . ,T.

    (4.6)
    (4.7)

Since attrition is an absorbing state, sit−1  0 implies sit  0. This leads to a probit model for
sit conditional on si,t−1  1 :

Psit  1|wit, si,t−1  1  wit t, t  2, . . . ,T.     (4.8)

Naturally, we need to estimate  t, which we do as a sequence of probits. For t  2, we use the
entire sample to estimate a probit for still being in the sample in the second period. For t  3,
we estimate a probit for those units still in the sample as of t  2. And so on. When we reach
t  T, we have the smallest group of observations because we only use units still in the sample
as of T − 1. Where might the wit come from? Since they have to be observed at time t for the
entire subgroup with si,t−1  1, wit generally cannot contain variables dated at time t (unless
some information is known at time t on people who attrit at time t). When the xit are strictly
exogenous, we can always include in wit elements of xi,t−1,xi,t−2, . . . ,xi1. Note that the
potential dimension of wit grows as we move ahead through time. Unfortunately, yi,t−1 cannot

20
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be in wit because yi,t−1 is necessarily correlated with Δuit. But, if we assume that

Euit|xi,yi,t−1, . . . ,yi1,ci  0, t  2, . . . ,T, |     (4.9)

then elements from yi,t−2,yi,t−3, . . . ,yi1 can be in wit. If we start with a model where xit is
strictly exogenous, as in standard panel data models, assumption (4.9) is very strong because in
such models uit tends to be serially correlated, and therefore correlated with lagged yit in
general. Still, since we are allowing for ci, it might be that the errors uit are serially
uncorrelated.

In what sense do we need the wit to be good predictors of attrition? A sufficient condition
is, given si,t−1  1,

Δuit,vit is independent of Δxit,wit.     (4.10)

Now, Δuit is independent of Δxit,wit holds if wit contains only lags of xit because we assume
xit is strictly exogenous. Unfortunately, vit is independent of Δxit,wit can be very restrictive
because Δxit cannot be included in wit in interesting cases (because xit is not observed for
everyone with si,t−1  1. Therefore, when we apply a sequential Heckman method, we must
omit at least some of the explanatory variables in the first-stage probits. If attrition is largely
determined by changes in the covariates (which we do not see for everyone), using pooled
OLS on the FD will be consistenty, whereas the Heckman correction would actually cause
inconsistency.

As in the cross section case, we can “solve” this problem by using instrumental variables
for any elements of Δxit not observed at time t. Assume sequential exogeneity, that is

Euit|xit,xi,t−1, . . . ,xi1,ci  0, t  1, . . . ,T.     (4.11)

(Recall that this condition does allow for lagged dependent variables in xit). We now replace
(4.10) with

Δuit,vit is independent of zit,wit     (4.12)

conditional on si,t−1  1. Choosing zit to be a subset of wit is attractive, because then (4.12)
EΔuit|zit,wit,vit, si,t−1  1  EΔuit|wit,vit, si,t−1  1, in which case (4.12) holds if Δuit,vit

is independent of wit given si,t−1  1. Then, after a sequence of probits (where, in each time
period, we use observations on all units available in the previous time periods), we can apply
pooled 2SLS, say, on the selected sample, to the equation

Δyit  Δxit  2d2t̂it  3d3t̂it . . .TdTt̂it  errorit.     (4.13)
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with instruments zit,d2t̂it,d3t̂it, . . . ,dTt̂it. Because ̂it depends on wit, it is critical to have
an element in wit moving around selection separately from its correlation with Δxit.

One can also test and correct for selection bias for any pattern of missing data on the
response variable (or, generally, on endogenous explanatory variables). The key is that data are
always observed on variables taken to be strictly exogenous, conditional on unobserved
heterogeneity. Semykina and Wooldridge (2006) work through the details for the model

yit  xit  ci  uit

Euit|zi,ci  0,
    (4.14)

where zi  zi1, . . . , ziT, so that some elements of xit are possibly endogenous, but the
instruments, zit, are strictly exogenous but allowed to be correlated with ci. A simple test for
correlation between sit and the idiosyncratic error – which, recall from Section 1, causes
inconsistency in the FE-IV estimator, is available using Heckman’s approach. In the first stage,
estimate a pooled probit, or separate probit models, on zit and, say, the time averages, z̄i.
Obtain estimated inverse Mills ratios. Then, estimate the equation

yit  xit  ̂ it  ci  errorit     (4.15)

by FEIV, and use a standard (but robust) test of   0. This allows for endogeneity of xit under
H0, and so is a pure selection bias test. Or, the ̂it can be interacted with year dummies. The
usefulness of this test is that it maintains only EEuit|zi, si,ci  0 under H0. Unfortunately, as
a correction procedure, it generally does not lead to consistent estimators. (See Semykina and
Wooldridge (2006).) As it turns out, a procedure that does produce consistent estimates under
certain assumptions is just to add the time-average of the instruments, z̄i, to (4.15) and use
pooled IV, where z̄i and ̂it act as their own instruments.
References

(To be added.)
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What’s New in Econometrics NBER, Summer 2007

Lecture 13, Wednesday, Aug 1st, 2.00-3.00pm

Weak Instruments and Many Instruments

1. Introduction

In recent years a literature has emerged that has raised concerns with the quality of

inferences based on conventional methods such as Two Stage Least Squares (TSLS) and

Limited Information Maximum Likelihood (LIML) in instrumental variables settings when

the instrument(s) is/are only weakly correlated with the endogenous regressor(s). Although

earlier work had already established the poor quality of conventional normal approximations

with weak or irrelevant instruments, the recent literature has been motivated by empirical

work where ex post conventional large sample approximations were found to be misleading.

The recent literature has aimed at developing better estimators and more reliable methods

for inference.

There are two aspects of the problem. In the just-identified case (with the number of

instruments equal to the number of endogenous regressors), or with low degrees of over-

identification, the focus has largely been on the construction of confidence intervals that

have good coverage properties even if the instruments are weak. Even with very weak, or

completely irrelevant, instruments, conventional methods are rarely substantively mislead-

ing, unless the degree of endogeneity is higher than one typically encounters in studies using

cross-section data. Conventional TSLS or LIML confidence intervals tend to be wide when

the instrument is very weak, even if those intervals do not have the correct nominal cov-

erage for all parts of the parameter space. In this case better estimators are generally not

available. Improved methods for confidence intervals based on inverting test statistics have

been developed although these do not have the simple form of an estimate plus or minus a

constant times a standard error.

The second case of interest is that with a high degree of over-identification. These settings

often arise by interacting a set of basic instruments with exogenous covariates in order to
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improve precision. If there are many (weak) instruments, standard estimators can be severely

biased, and conventional methods for inference can be misleading. In particular TSLS has

been found to have very poor properties in these settings. Bootstrapping does not solve these

problems. LIML is generally much better, although conventional LIML standard errors are

too small. A simple to implement proportional adjustment to the LIML standard errors based

on the Bekker many-instrument asymptotics or the Chamberlain-Imbens random coefficients

argument appears to lead to substantial improvements in coverage rates.

2. Motivation

Much of the recent literature is motivated by a study by Angrist and Krueger (1991, AK).

Subsequently Bound, Jaeger and Baker (1996, BJB) showed that for some specifications AK

employed normal approximations were not appropriate despite very large sample sizes (over

300,000 observations).

2.1 The Angrist-Krueger Study

AK were interested in estimating the returns to years of education. Their basic specifi-

cation is:

Yi = α + β · Ei + εi,

where Yi is log (yearly) earnings and Ei is years of education. Their concern, following a

long literature in economics, e.g., Griliches, (1977), Card (2001), is that years of schooling

may be endogenous, with pre-schooling levels of ability affecting both schooling choices and

earnings given education levels. In an ingenuous attemp to address the endogeneity problem

AK exploit variation in schooling levels that arise from differential impacts of compulsory

schooling laws. School districts typically require a student to have turned six by January

1st of the year the student enters school. Since individuals are required to stay in school

till they turn sixteen, individual born in the first quarter have lower required minimum

schooling levels than individuals born in the last quarter. The cutoff dates and minimum

school dropout age differ a little bit by state and over time, so the full picture is more
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complicated but the basic point is that the compulsory schooling laws generate variation in

schooling levels by quarter of birth that AK exploit.

One can argue that a more natural analysis of such data would be as a Regression

Discontinuity (RD) design, where we focus on comparisons of individuals born close to the

cutoff date. We will discuss such designs in a later lecture. However, in the census only

quarter of birth is observed, not the actual date, so there is in fact little that can be done

with the RD approach beyond what AK do. In addition, there are substantive arguments

why quarter of birth need not be a valid instrument (e.g., seasonal patterns in births, or

differential impacts of education by age at entering school). AK discuss many of the potential

concerns. See also Bound, Jaeger and Baker (1996). We do not discuss these concerns here

further.

Table 1 shows average years of education and average log earnings for individual born in

the first and fourth quarter, using the 1990 census. This is a subset of the AK data.

Table 1: Summary Statistics Subset of AK Data

Variable 1st Quarter 4th Quarter difference

Year of Education 12.688 12.840 0.151

Log Earnings 5.892 5.905 0.014

ratio 0.089

The sample size is 162,487. The last column gives the difference between the averages by

quarter, and the last row the ratio of the difference in averages. The last number is the Wald

estimate of the returns to education based on these data:

β̂ =
Y 4 − Y 1

E4 − E1

= 0.0893 (0.0105),

where Y t and Et are the average level of log earnings and years of education for individuals
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born in the t-th quarter. This is also equal to the Two-Stage-Least-Squares (TSLS) and

Limited-Information-Maximum-Likelihood (LIML) estimates because there is only a single

instrument and a single endogenous regressor. The standard error here is based on the delta

method and asymptotic joint normality of the numerator and denominator.

AK also present estimates based on additional instruments. They take the basic instru-

ment and interact it with 50 state and 9 year of birth dummies. Here we take this a bit

further, and following Chamberlain and Imbens (2004) we interact the single binary instru-

ment with state times year of birth dummies to get 500 instruments. Also including the

state times year of birth dummies as exogenous covariates leads to the following model:

Yi = X ′
iβ + εi, E[Zi · εi] = 0,

where Xi is the 501-dimensional vector with the 500 state/year dummies and years of edu-

cation, and Zi is the vector with 500 state/year dummies and the 500 state/year dummies

multiplying the indicator for the fourth quarter of birth. Let Y, X, and Z be the N × 1

vector of log earnings, the N × 501 matrix with regressors, and the N × 1000 matrix of

instruments. The TSLS estimator for β is then

β̂TSLS =
(

X′Z (Z′Z)
−1

Z′X
)−1 (

X′Z (Z′Z)
−1

Z′Y
)

.

For these data this leads to

β̂TSLS = 0.073 (0.008).

The LIML estimator is based on maximization of the log likelihood function

L(β, π, Ω) =

N
∑

i=1

(

−1

2
ln |Ω| − 1

2

(

Yi − X ′
iβ

Ei − Z ′
iπ

)′

Ω−1

(

Yi − X ′
iβ

Ei − Z ′
iπ

))

,

For this subset of the AK data we find, for the coefficient on years of education,

β̂LIML = 0.095 (0.017).
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In large samples the LIML and TSLS are equivalent under homoskedasticity.

2.2 The Bound-Jaeger-Baker critique

BJB found that are potential problems with the AK results. They suggested that despite

the large samples used by AK large sample normal approximations may be very poor. The

reason is that the instruments are only very weakly correlated with the endogenous regressor.

The most striking evidence for this is based on the following calculations, that are based

on a suggestion by Alan Krueger. Take the AK data and re-calculate their estimates after

replacing the actual quarter of birth dummies by random indicators with the same marginal

distribution. In principle this means that the standard (gaussian) large sample approxima-

tions for TSLS and LIML are invalid since they rely on non-zero correlations between the

instruments and the endogenous regressor. Doing these calculations once for the single and

500 instrument case, for both TSLS and LIML, leads to the results in Table 2

Table 2: Real and Random QOB Estimates

Single Instrument 500 Instruments

TSLS LIML

Real QOB 0.089 (0.011) 0.073 (0.008) 0.095 (0.017)

Random QOB -1.958 (18.116) 0.059 (0.085) -0.330 (0.1001)

With the single instrument the results are not so disconcertening. Although the confidence

interval is obviously not valid, it is wide, and few researchers would be misled by the results.

With many instruments the results are much more troubling. Although the instrument con-

tains no information, the results suggest that the instruments can be used to infer precisely

what the returns to education are. These results have provided the motivation for the re-

cent weak instrument literature. Note that there is an earlier literature, e.g., Phillips (1984)
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Rothenberg (1984), but it is the BJB findings that got the attention of researchers doing

empirical work.

2.3 Simulations with Weak Instruments and Varying Degrees of Endogeneity

Here we provide slightly more systematic simulation evidence of the weak instrument

problems in the AK setting. We create 10,000 artificial data sets, all of size 160,000, designed

to mimic the key features of the AK data. In each of these data sets half the units have

quarter of birth (denoted by Qi) equal to 0 and 1 respectively. Then we draw the two reduced

form residuals νi and ηi from a joint normal distribution

(

νi

ηi

)

∼ N
((

0
0

)

,

(

0.446 ρ ·
√

0.446 ·
√

10.071

ρ ·
√

0.446 ·
√

10.071 10.071

))

.

The variances of the reduced form errors mimic those in the AK data. The correlation

between the reduced form residuals in the AK data is 0.318. The implied OLS coefficient is

ρ ·
√

0.446/
√

10.071. Then years of education is equal to

Ei = 12.688 + 0.151 · Qi + ηi,

and log earnings is equal to

Yi = 5.892 + 0.014 · Qi + νi.

Now we calculate the IV estimator and its standard error, using either the actual qob

variable or a random qob variable as the instrument. We are interested in the size of tests

of the null that coefficient on years of education is equal to 0.089 = 0.014/0.151. We base

the test on the t-statistic. Thus we reject the null if the ratio of the point estimate minus

0.089 and the standard error is greater than 1.96 in absolute value. We repeat this for 12

different values of the reduced form error correlation. In Table 3 we report the proportion

of rejections and the median and 0.10 quantile of the width of the estimated 95% confidence

intervals.
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Table 3: Coverage Rates of Conv. TSLS CI by Degree of Endogeneity

ρ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
implied OLS 0.00 0.02 0.04 0.06 0.08 0.11 0.13 0.15 0.17 0.19 0.20 0.21

Real QOB 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.95 0.95 0.95 0.95
Med Width 95% CI 0.09 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.06 0.05 0.05 0.05
0.10 quant Width 0.08 0.08 0.08 0.07 0.07 0.07 0.06 0.06 0.05 0.04 0.04 0.04

Random QOB 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.92 0.82 0.53
Med Width 95% CI 1.82 1.81 1.78 1.73 1.66 1.57 1.45 1.30 1.09 0.79 0.57 0.26
0.10 quant Width 0.55 0.55 0.5403 0.53 0.51 0.48 0.42 0.40 0.33 0.24 0.17 0.08

In this example, unless the reduced form correlations are very high, e.g., at least 0.95,

with irrelevant the conventional confidence intervals are wide and have good coverage. The

amount of endogeneity that would be required for the conventional confidence intervals to

be misleading is higher than one typically encounters in cross-section settings. It is likely

that these results extend to cases with a low degree of over-identification, using either TSLS,

or preferably LIML. Put differently, although formally conventional confidence intervals are

not valid uniformly over the parameter space (e.g., Dufour, 1997), there are no examples we

are aware of where they have substantively misleading in just-identified examples. This in

contrast to the case with many weak instruments where especially TSLS can be misleading

in empirically relevant settings.

3. Weak Instruments

Here we discuss the weak instrument problem in the case of a single instrument, a single

endogenous regressor, and no additional exogenous regressors beyond the intercept. More

generally the qualitative features of these results by and large apply to the case with a few
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weak instruments. We consider the model

Yi = β0 + β1 ·Xi + εi,

Xi = π0 + π1 · Zi + ηi,

with (εi, ηi) ⊥⊥ Zi, and jointly normal with covariance matrix Σ. (The normality is mainly

for some of the exact results, and it does not play an important role.) The reduced form for

the first equation is

Yi = α0 + α1 · Zi + νi,

where the parameter of interest is β1 = α1/π1. Let

Ω = E

[(

νi

ηi

)

·
(

νi

ηi

)′]

, and Σ = E

[(

εi

ηi

)

·
(

εi

ηi

)′]

,

be the covariance matrix of the reduced form and stuctural disturbances respectively. Many

of the formal results in the literature are for the case of known Ω, and normal disturbances.

This is largely innocuous, as Ω can be precisely estimated in typical data sets. Note that

this it not the same as assuming that Σ is known, which is not innocuous since it depends

on Ω and β, and cannot be precisely estimated in settings with weak instruments

Σ =

(

Ω11 − 2βΩ12 + β2Ω22 Ω12 − βΩ22

Ω12 − βΩ22 Ω22

)

.

The standard estimator for β1 is

β̂IV

1 =
1

N

∑N

i=1

(

Yi − Y
) (

Zi − Z
)

1

N

∑N

i=1

(

Xi − X
) (

Zi − Z
) ,

where Y =
∑

i Yi/N , and similarly for X and Z.
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A simple interpretation of the weak instrument is that with the concentration parameter

λ = π2

1 ·
N
∑

i=1

(

Zi − Z
)2
/

σ2

η.

close to zero, both the covariance in the numerator and the covariance in the denomina-

tor are close to zero. In reasonably large samples both are well approximated by normal

distributions:

√
N

(

1

N

N
∑

i=1

(

Yi − Y
) (

Zi − Z
)

−Cov(Yi, Zi)

)

≈ N (0, V (Yi · Zi)) ,

and

√
N

(

1

N

N
∑

i=1

(

Xi − X
) (

Zi − Z
)

− Cov(Xi, ZI)

)

≈ N (0, V (Xi · Zi)) .

These two normal approximations tend to be accurate in applications with reasonable sample

sizes, irrespective of the population values of the covariances. If π1 6= 0, as the sample size

gets large, then the ratio will eventually be well approximated by a normal distribution

as well. However, if Cov(Xi, Zi) ≈ 0, the ratio may be better approximated by a Cauchy

distribution, as the ratio of two normals centered close to zero.

The weak instrument literature is concerned with inference for β1 when the concentration

parameter λ is too close to zero for the normal approximation to the ratio to be accurate.

Staiger and Stock (1997, SS) formalize the problem by investigating the distribution of

the standard IV estimator under an alternative asymptotic approximation. The standard

asymptotics (strong instrument asymptotics in the SS terminology) is based on fixed param-

eters and the sample size getting large. In their alternative asymptotic sequence SS model π1

as a function of the sample size, π1N = c/
√

N , so that the concentration parameter converges

to a constant:

λ −→ c2 · V (Zi).
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SS then compare coverage properties of various confidence intervals under this (weak instru-

ment) asymptotic sequence.

The importance of the SS approach is not in the specific sequence. The concern is more

that if a particular confidence interval does not have the appropriate coverage asymptotically

under the SS asymptotics, then there are values of the (nuisance) parameters in a potentially

important part of the parameter space (namely around πi = 0) such that the actual coverage

is substantially away from the nominal coverage for any sample size. More recently the issue

has therefore been reformulated as requiring confidence intervals to have asymptotically the

correct coverage probabilities uniformly in the parameter space. See for a discussion from

this perspective Mikusheva (2007). For estimation this perspective is not helpful: there

cannot be estimators that are consistent for β∗ uniformly in the parameter space since if

π1 = 0, there are no consistent estimators for β1. However, for testing there are generally

confidence intervals that are uniformly valid, but they are not of the conventional form, that

is, a point estimate plus or minus a constant times a standard error.

3.1 Tests and Confidence Intervals in the Just-identified Case

Let the instrument Z̃i = Zi − Z be measured in deviations from its mean. Then define

the statistic

S(β1) =
1

N

N
∑

i=1

Z̃i · (Yi − β1 · Xi) .

Then, under the null hypothesis that β1 = β∗
1
, and conditional on the instruments, the

statistic
√

N · S(β∗
1) has an exact normal distribution

√
N · S(β∗

1) ∼ N
(

0,
N
∑

i=1

Z̃2

i · σ2

ε

)

.

Importantly, this result does not depend on the strength of the instrument. Anderson and

Rubin (1949, AR) propose basing tests for the null hypothesis

H0 : β1 = β0

1 , against the alternative hypothesis Ha : β1 6= β0

1 ,
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on this idea, through the statistic

AR
(

β0

1

)

=
N · S(β0

1)
2

∑N

i=1
Z̃2

i

·
(

(

1 −β0
1

)

Ω

(

1
−β0

1

))−1

.

This statistic has an exact chi-squared distribution with degrees of freedom equal to one. In

practice, of course, one does not know the reduced form covariance matrix Ω, but substituting

an estimated version of this matrix based on the average of the estimated reduced form

residuals does not affect the large sample properties of the test.

A confidence interval can be based on this test statistic by inverting it. For example, for

a 95% confidence interval for β1, we would get

CIβ1
0.95

= {β1 |AR(β1) ≤ 3.84} .

Note that this AR confidence interval cannot be empty, because at the standard IV estimator

β̂IV
1

we have AR(β̂IV
1

) = 0, and thus β̂IV
1

is always in the confidence interval. The confidence

interval can be equal to the entire real line, if the correlation between the endogenous re-

gressor and the instrument is close to zero. This is not surprising: in order to be valid even

if π1 = 0, the confidence interval must include all real values with probability 0.95.

3.3 Tests and Confidence Intervals in the Over-identified Case

The second case of interest is that with a single endogenous regressor and multiple in-

struments. We deal separately with the case where there are many (similar) instrument,

so this really concerns the case where the instruments are qualitatively different. Let the

number of instrumens be equal to K, so that the reduced form is

Xi = π0 + π′
1
Zi + ηi,

with Zi a k-dimensional column vector. There is still only a single endogenous regressor,

and no exogenous regressors beyond the intercept. All the results generalize to the case with

additional exogenous covariates at the expense of additional notatio. The AR approach can
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be extended easily to this over-identified case, because the statistic
√

N · S(β∗
1
) still has a

normal distribution, but now a multivariate normal distribution. Hence one can base tests

on the AR statistic

AR
(

β0

1

)

= N · S
(

β0

1

)′

(

N
∑

i=1

Z̃i · Z̃ ′
i

)−1

S
(

β0

1

)

·
(

(

1 −β0
1

)

Ω

(

1
−β0

1

))−1

.

Under the same conditions as before this has an exact chi-squared distribution with degrees

of freedom equal to the number of instruments, k. A practical problem arises if we wish

to construct confidence intervals based on this statistic. Suppose we construct a confidence

interval, analogously to the just-identified case, as

CIβ1
0.95 =

{

β1

∣

∣AR(β1) ≤ X 2

0.95(K)
}

,

where X 2
0.95(k) is the 0.95 quantile of the chi-squared distribution with degrees of freedom

equal to k. The problem is that this confidence interval can be empty. The interpretation

is that the test does not only test whether β1 = β0
1
, but also tests whether the instruments

are valid. However, one generally may not want to combine those hypotheses.

Kleibergen (2002) modifies the AR statistic and confidence interval construction. Instead

of the statistic S(β1), he considers a statistic that looks at the correlation between a particular

linear combination of the instruments (namely the estimated endogenous regressor) and the

residual:

S̃
(

β0

1

)

=
1

N

N
∑

i=1

(

Z̃ ′
iπ̂1(β

0

1)
)

·
(

Yi − β0

1 · Xi

)

,

where π̂ is the maximum likelihood estimator for π1 under the restriction β1 = β0
1 . The test

is then based on the statistic

K
(

β0

1

)

=
N · S(β0

1)
2

∑N

i=1
Z̃2

i

·
(

(

1 −β0
1

)

Ω

(

1
−β0

1

))−1

.
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This statistic has no longer an exact chi-squared distribution, but in large samples it still

has an approximate chi-square distribution with degrees of freedom equal to one. Hence the

test is straightforward to implement using standard methods.

Moreira (2003) proposes a method for adjusting the critical values that applies to a

number of tests, including the Kleibergen test. His idea is to focus on similar tests, test

that have the same rejection probability for all values of the nuisance parameter. The

nuisance parameter is here the vector of reduced form coefficients π, since we assume the

residual covariance matrix is known. The way to adjust the critical values is to consider the

distribution of a statistic such as the Kleibergen statistic conditional on a complete sufficient

statistic for the nuisance parameter. In this setting a complete sufficient statistic is readily

available in the form of the maximum likelihood estimator under the null, π̂1(β
0
1). Moreira’s

preferred test is based on the likelihood ratio. Let

LR
(

β0

1

)

= 2 ·
(

L
(

β̂1, π̂
)

− L
(

β0

1 , π̂(β0

1)
)

)

,

be the likelihood ratio. Then let cLR(p, 0.95), be the 0.95 quantile of the distribution of

LR(β0
1
) under the null hypothesis, conditional on π̂(β0

1
) = p. The proposed test is to reject

the null hypothesis at the 5% level if

LR
(

β0

1

)

> cLR(π̂(β0

1), 0.95),

where conventional test would use critical values from a chi-squared distribution with a

single degree of freedom. This test can then be converted to construct a 95% confidence

intervals. Calculation of the (large sample) critical values is simplified by the fact that they

only depend on the number of instruments k, and a scaled version of the π̂(β0
1). Tabulations

of these critical values are in Moreira (2003) and have been programmed in STATA (See

Moreira’s website).

3.4 Conditioning on the First Stage

The AR, Kleibergen and Moreira proposals for confidence intervals are asymptotically
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valid irrespective of the strength of the first stage (the value of π1). However, they are not

valid if one first inspects the first stage, and conditional on the strength of that, decides to

proceed. Specifically, if in practice one first inspects the first stage, and decide to abandon

the project if the first stage F-statistic is less than some fixed value, and otherwise proceed

by calculating an AR, Kleibergen or Moreira confidence interval, the large sample coverage

probabilities would not necessarily be the nominal ones. In practice researchers do tend

to inspect and report the strength of the first stage. This is particularly true in recent

instrumental variables literature where researchers argue extensively for the validity of the

instrumental variables assumption. This typically involves detailed arguments supporting

the alleged mechanism that leads to the correlation between the endogenous regressor and the

instruments. For example, Section I in AK (page 981-994) is entirely devoted to discussing

the reasons and evidence for the relation between their instruments (quarter of birth) and

years of education. In such cases inference conditional on this may be more appropriate.

Chioda and Jansson (2006) propose a clever alternative way to construct a confidence

interval that is valid conditional on the strength of the first stage. Their proposed confidence

interval is based on inverting a test statistic similar to the AR statistic. It has a non-standard

distribution conditional on the strength of the first stage, and they suggest a procedure that

involves numerically approximating the critical values. A caveat is that because the first

stage F-statistic, or the first stage estimates are not ancillary, conditioning on them involves

loss of information, and as a result the Chioda-Jansson confidence intervals are wider than

confidence intervals that are not valid conditional on the first stage.

4. Many Weak Instruments

In this section we discuss the case with many weak instruments. The problem is both

the bias in the standard estimators, and the misleadingly small standard errors based on

conventional procedures, leading to poor coverage rates for standard confidence intervals in

many situations. The earlier simulations showed that especially TSLS, and to a much lesser

extent LIML, have poor properties in this case. Note first that resampling methods such as

bootstrapping do not solve these problems. In fact, if one uses the standard bootstrap with
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TSLS in the AK data, one finds that the average of the bootstrap estimates is very close to

the TSLS point estimat, and that the bootstrap variance is very close to the TSLS variance.

The literature has taken a number of approaches. Part of the literature has focused on

alternative confidence intervals analogues to the single instrument case. In addition a variety

of new point estimators have been proposed.

4.1 Bekker Asymptotics

In this setting alternative asymptotic approximations play a bigger role than in the single

instrument case. In an important paper Bekker (1995) derives large sample approximations

for TSLS and LIML based on sequences where the number of instruments increases propor-

tionally to the sample size. He shows that TSLS is not consistent in that case. LIML is

consistent, but the conventional LIML standard errors are not valid. Bekker then provides

LIML standard errors that are valid under this asymptotic sequence. Even with relatively

small numbers of instruments the differences between the Bekker and conventional asymp-

totics can be substantial. See also Chao and Swanson (2005) for extensions.

For the simple case with a single endogenous regressor, and no exogenous regressors

beyond the intercept, the adjustment to the variance is multiplicative. Thus, one can simply

multiply the standard LIML variance by

1 +
K/N

1 − K/N
·
(

∑

i=1

(

π′
1
Z̃i

)2/

N

)−1

·
((

1
β1

)′

Ω−1

(

1
β1

))−1

.

Substituting estimated values for the unknown parameters is likely to work fairly well in

practice. One can see from this expression why the adjustment can be substantial even

if K is small. The second factor can be large if the instruments are weak, and the third

factor can be large if the degree of endogeneity is high. If the instruments are strong, then
∑

i=1
(π′

1Z̃i)
2/K will diverge, and the adjustment factor will converge to one.

4.2 Random Effects Estimators

Chamberlain and Imbens (2004, CI) propose a random effects quasi maximum likelihood
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estimator. They propose modelling the first stage coefficients πk, for k = 1, . . . , K, in the

regression

Xi = π0 + π′
1Zi + ηi = π0 +

K
∑

k=1

πk · Zik + ηi,

(after normalizing the instruments to have mean zero and unit variance,) as independent

draws from a normal N (µπ, σ2
π) distribution. (More generally CI allow for the possibility that

only some of the first stage coefficients come from this common distribution, to take account

of settings where some of the instruments are qualitatively different from the others.) The

idea is partly that in most cases with many instruments, as for example in the AK study, the

instruments arise from interacting a small set of distinct instruments with other covariates.

Hence it may be natural to think of the coefficients on these instruments in the reduced

form as exchangeable. This notion is captured by modelling the first stage coefficients as

independent draws from the same distribution. In addition, this set up parametrizes the

many-weak instrument problem in terms of a few parameters: the concern is that the values

of both µπ and σ2
π are close to zero.

Assuming also joint normality for (εi, ηi), one can derive the likelihood function

L(β0, β1, π0, µπ, σ2

π, Ω).

In contrast to the likelihood function in terms of the original parameters (β0, β1, π0, π1, Ω),

this likelihood function depends on a small set of parameters, and a quadratic approximation

to its logarithms is more likely to be accurate.

CI discuss some connections between the REQML estimator and LIML and TSLS in

the context of this parametric set up. First they show that in large samples, with a large

number of instruments, the TSLS estimator corresponds to the restricted maximum likeli-

hood estimator where the variance of the first stage coefficients is fixed at a large number,

or σ2
π = ∞:

β̂TSLS ≈ arg max
β0,β1,π0,µπ

= L(β0, β1, π0, µπ, σ2

π = ∞, Ω).
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From a Bayesian perspective, TSLS corresponds approximately to the posterior mode given

a flat prior on all the parameters, and thus puts a large amount of prior mass on values of

the parameter space where the instruments are jointly powerful.

In the same setting with a large number of instruments, no exogenous covariates, and a

known reduced form covariance matrix, the LIML estimator corresponds approximately to

the REQML estimator where we fix σ2
π · (1 β1)

′Ω−1(1 β1)
′ at a large number. In the special

case where we fix µπ = 0 and the random effects specification applies to all isntruments, CI

show that the REQML estimator is identical to LIML. However, like the Bekker asymptotics,

the REQML calculations suggests that the standard LIML variance is too small: the variance

of the REQML estimator is approximately equal to the standard LIML variance times

1 + σ−2

π ·
((

1
β1

)′

Ω−1

(

1
β1

))−1

.

This is similar to the Bekker adjustment if we replace σ2
π by

∑

i=1
(π′

1Z̃i)
2(K · N) (keeping

in mind that the instruments have been normalized to have unit variance). In practice the

CI adjustment will be bigger than the Bekker adjustment because the ml estimator for σ2
π

will take into account noise in the estimates of the π̂, and so σ̂2
π <

∑

i=1
(π̂′

1Z̃i)
2(K · N).

4.3 Choosing Subsets of the Instruments

In an interesting paper Donald and Newey (2001) consider the problem of choosing a

subset of an infinite sequence of instruments. They assume the instruments are ordered,

so that the choice is the number of instruments to use. Given the set of instruments they

consider a variety of estimators including TSLS and LIML. The criterion they focus on

is based on an approximation to the expected squared error. This criterion is not feasible

because it depends on unknown parameters, but they show that using an estimated version of

this leads to approximately the same expected squared error as using the infeasible criterion.

Although in its current form not straightforward to implement, this is a very promising

approach that can apply to many related problems such as generalized method of moments

settings with many moments.
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4.4 Other Estimators

Other estimators have also been investigated in the many weak instrument settings.

Hansen, Hausman and Newey (2006), and Hausman, Newey and Woutersen (2007) look at

Fuller’s estimator, which is modification of LIML that has finite moments. Phillips and Hale

(1977) (and later Angrist, Imbens and Krueger, 1999) suggest a jackknive estimator. Hahn,

Hausman and Kuersteiner (2004) look at jackknife versions of TSLS.

4.5 Flores’ simulations

Many simulations exercises have been carried out for evaluating the performance of testing

procedures and point estimators. In general it is difficult to assess the evidence of these

experiments. They are rarely tied to actual data sets, and so the choices for parameters,

distributions, sample sizes, and number of instruments are typically arbitrary.

In one of the more extensive simulation studies Flores-Lagunes (2007) reports results

comparing TSLS, LIML, Fuller, Bias corrected versions of TSLS, LIML and Fuller, a Jack-

nife version of TSLS (Hahn, Hausman and Kuersteiner, 2004), and the REQML estimator, in

settings with 100 and 500 observations, and 5 and 30 instruments for the single endogenous

variable. He looks at median bias, median absolute error, inter decile range, coverage rates,

and He concludes that “our evidence indicates that the random-effects quasi-maximum like-

lihood estimator outperforms alternative estimators in terms of median point estimates and

coverage rates.”
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What’s New in Econometrics? NBER, Summer 2007
Lecture 14, Wednesday, August 1st, 3:15-4:15 pm

Quantile Methods
These notes review quantile estimation in a variety of situations, including models with

endogenous explanatory variables – including endogenous treatment effects – and panel data
models with unobserved heterogeneity. Recent work on interpreting quantile estimators when
the quantile is misspecified is also covered.
1. Reminders About Means, Medians, and Quantiles

Consider the standard linear model in a population, with intercept  and K  1 slopes :

y    x  u.     (1.1)

Assume Eu2  , so that the distribution of u is not too spread out. Given a large random
sample, when should we expect ordinary least squares, which solves

min
a,b
∑
i1

N

yi − a − xib2,     (1.2)

and least absolute deviations (LAD), which solves

min
a,b
∑
i1

N

|yi − a − xib|,     (1.3)

to provide similar parameter estimates? There are two important cases. If

Du|x is symmetric about zero     (1.4)

then OLS and LAD both consistently estimate  and . If

u is independent of x with Eu  0,     (1.5)

where Eu  0 is the normalization that identifies , then OLS and LAD both consistently
estimate the slopes, . If u has an asymmetric distribution, then Medu ≡  ≠ 0, and ̂LAD

converges to    because Medy|x    x  Medu|x    x  . Of course,

independence between u and x rules out heteroskedasticity in Varu|x.
In many applications, neither (1.4) nor (1.5) is likely to be true. For example, y may be a

measure of wealth, in which case the error distribution is probably asymmetric and Varu|x
not constant. Therefore, it is important to remember that if Du|x is asymmetric and changes
with x, then we should not expect OLS and LAD to deliver similar estimates of , even for
“thin-tailed” distributions. In other words, it is important to separate discussions of resiliency
to outliers from the different quantities identified by least squares (the conditional mean,

1



Imbens/Wooldridge, Lecture Notes 14, Summer ’07

Ey|x) and least absolution deviations the conditional median, Medy|x. Of course, it is true
that LAD is much more resilient to changes in extreme values because, as a measure of central
tendency, the median is much less sensitive than the mean to changes in extreme values. But a
significant difference between OLS and LAD should not lead one to somehow prefer LAD. It
is possible that Ey|x    x, Medy|x is not linear, and therefore LAD does not
consistently estimate . Generally, if we just use linear models as approximations to underlying
nonlinear functions, we should not be surprised if the linear approximation to the conditional
mean, and that for the median, can be very different. (Warning: Other so-called “robust”
estimators, which are intended to be insensitive to outliers or influential data, usually require
symmetry of the error distribution for consistent estimation. Thus, they are not “robust” in the
sense of delivering consistency under a wide range of assumptions.)

Sometimes one can use a transformation to ensure conditional symmetry or the
independence assumption in (1.5). When yi  0, the most common transformation is the
natural log. Often, the linear model logy    x  u is more likely to satisfy symmetry or
independence. Suppose that symmetry about zero holds in the linear model for logy. Then,
because the median passes through monotonic functions (unlike the expectation),
Medy|x  expMedlogy|x  exp  x, and so we can easily recover the partial
effects on the median of y itself. By contrast, we cannot generally find
Ey|x  exp  xEexpu|x. If, instead, we assume Du|x  Du, then Medy|x and
Ey|x are both exponential functions of x, but with different “intercepts” inside the
exponential function.

The fact that the median passes through monotonic functions is very handy for applying
LAD to a variety of problems, particularly corner solution responses where an outcome has
nonnegative support and a mass point at zero. But the expectation operator has useful
properties that the median does not: linearity and the law of iterated expectations. To see how
these help to identify interesting quantities, suppose we begin with a random coefficient model

yi  ai  xibi,     (1.6)

where ai is the heterogeneous intercept and bi is a 1  K matrix of heterogeneous slopes
(“random coefficients”). If we assume that ai,bi is independent of xi, then

Eyi|xi  Eai|xi  xiEbi|xi ≡   xi,     (1.7)

where   Eai and   Ebi. Because OLS consistently estimates the parameters of a

2
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conditional mean linear in those parameters, OLS consistently estimates the population
averaged effects, or average partial effects, . Even under independence, there is no way to
derive Medyi|xi without imposing more restrictions. In general, LAD of yi on 1,xi does not
consistently estimate  or the medians of the elements of bij. Are there any reasonable

assumptions that imply LAD consistenty estimates something of interest in (1.7)? Yes,
although multivariate symmetry is involved. With multivariate distributions there is no unique
definition of symmetry. A fairly strong restriction is the notion of a centrally symmetric
distribution (Serfling (2006)). If ui is a vector, then its distribution conditional on xi is
centrally symmetric if

Dui|xi  D−ui|xi.     (1.8)

This condition implies that, for any gi a function of xi, Dgi
′ui|xi has a univariate distribution

that is symmetric about zero. Of course, (1.8) implies that Eui|xi  0.
We can apply this to the random coefficient model as follows. Write ci  ai,bi with

  Ec i, and let di  c i − . Then we can write

yi    xi  ai −   xibi − 

≡   xi  gi
′di

    (1.9)

with gi  1,xi. Therefore, if c i has a centrally symmetric distribution about , then

Medgi
′di|xi  0, and LAD applied to the usual model yi    xi  ui consistently estimates

 and . Because ai and bi have centrally symmetric distributions about their  and ,
respectively, it is clear that these are the only sensible measures of central tendency in the
distribution of c i.

Usually, we are interested in how covariates affect quantiles other than the median, in
which case quantile estimation is applied to a sequence of linear models. Write the  th quantile
in the distribution Dyi|xi as Quantyi|xi. Under linearity,

Quantyi|xi    xi     (1.10)

where, in general, the intercept and slopes depend on the quantile, . Under (1.10), consistent
estimators of  and  are obtained by minimizing the asymmetric absolute loss function
or the “check” function:

min
∈,∈K

∑
i1

N

cyi −  − xi,     (1.11)

3
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where

cu  1u ≥ 0  1 − 1u  0|u|  − 1u  0u     (1.12)

and 1 is the “indicator function.” Consistency is relatively easy to establish because the
objective function is continuous in its parameters. Asymptotic normality is more difficult
because any sensible definition of the Hessian of the objective function, away from the
nondifferentiable kink, is identically zero. But it has been worked out under a variety of
conditions; see Koenker (2005) for a recent treatment.
2. Some Useful Asymptotic Results
2.1. What Happens if the Quantile Function is Misspecified?

When we use OLS to estimate the parameters of a linear model, we always have a simple
characterization of the plim of the OLS estimator when the mean is not linear: If ∗ and ∗ are
the plims from the OLS regression yi on 1,xi then these provide the smallest mean squared
error approximation to Ey|x  x. In other words, ∗,∗ solves

min
a,b

Ex −  − x2,     (2.1)

where, of course, the expectation is over the distribution of x. Under some restrictions, (albeit
restrictive), j

∗ is the average partial effect Ex∂x/∂xj – multivariate normality of x is

sufficient – and under less restrictive (but still restrictive) assumptions, the j
∗ estimate the

average partial effects up. These follow from the work of Chung and Goldberger (1984), Ruud
(1984), and Stoker (1986).

Although the linear formulation of quantiles has been viewed by some – for example,
Buchinsky (1991) and Chamberlain (1991) – as a linear approximation to the true conditional
quantile, most of the the linear model is treated as being correctly specified. In some ways, this
is strange because usually many quantiles are estimated. Yet assuming that different quantiles
are linear in the same functions of x might be unrealistic.

Angrist, Chernozhukov, and Fernandez-Val (2006) provide a treatment of quantile
regression under misspecification of the quantile function and characterize the probability limit
of the LAD estimator. To describe the result, absorb the intercept into x and, rather than
assume a correctly specified conditional quantile, let  be the solution to the population
quantile regression problem. Therefore, x is the plim of the estimated quantile function.
ACF have a couple of different ways to characterize . One result is that  solves

4
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min


Ewx,qx − x2,     (2.2)

where the weight function wx, is

wx,  
0

1
1 − ufy|xux  1 − uqx|xdu ≥ 0.     (2.3)

In other words,  is the best weighted mean square approximation to the true quantile
function, where the weights are the average of the conditional density of yi over a line from the
candidate approximation, x, to the true quantile function, qx. The multiplication of the
density by 1 − u gives more weight to points closer to the true conditional quantile. It is
interesting that the ACF characterization is in terms of a weighted mean squared error, a
concept we usually associate with conditional mean approximation. ACF also show an
approximation where the weighting function does not depend on , and use it characterize a
“partial” regression quantiles, and to characterize omitted variables bias with quantile
regression.
2.2. Computing Standard Errors

First consider the case where we want to estimate the parameters in a linear quantile model,
for a given quantile, . For a random draw, write

yi  xi  ui, Quantui|xi  0,     (2.4)

where we include unity in xi so that contains an intercept and the slopes. Let ̂ be the quantile
estimators, and define the quantile regression residuals, ûi  yi − xî. Under weak conditions
(see, for example, Koenker (2005)), N ̂ −  is asymptotically normal with asymptotic
variance

A−1BA−1,     (2.5)

where

A ≡ Efu0|xixi
′xi     (2.6)

and

B ≡ 1 − Exi
′xi.     (2.7)

Expression (2.5) is the now familiar standard “sandwich” form of asymptotic variances. It is
fully robust in the sense that it is valid without further assumptions on Dui|xi. The matrix B
is simple to estimate as

5
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B̂  1 −  N−1∑
i1

N

xi
′xi ,     (2.8)

where 0    1 is the chosen quantile. This estimator is consistent under the weak
assumption of finite second moments for xi. The matrix A is harder to estimate because of the
presence of fu0|xi, and we do not have a parametrix model for the density of ui given xi. But
we only have to estimate this conditional density at u  0, so we could use a nonparametric
density estimator (based on the ûi. Powell (1986, 1991) proposed a simpler approach, which
leads to

Â  2NhN−1∑
i1

N

1|ûi|≤ hNxi
′xi,     (2.9)

where hN  0 is a nonrandom sequence shrinking to zero as N →  with N hN → . are
sufficient for consistency. The second condition controls how quickly hN shrinks to zero. For
example, hN  aN−1/3 for any a  0 satisfies these conditions. The practical problem in
choosing a (or choosing hN more generally) is discussed by Koenker (2005), who also
discusses some related estimators. In particular, in equation (2.9), observation i does not
contribute if |ûi| hN. Other methods allow each observation to enter the sum but with a weight
that declines as |ûi| increases. (As an interesting aside, the derivation of (2.9) involves the
simple equality E1|ui|≤ hN|xixi

′xi  E1|ui|≤ hNxi
′xi, which is analogous to the key

step in the regression frameworks for justifying the heteroskedasticity-robust variance matrix
estimator.)

The nonparametric bootstrap can be applied to quantile regression, but if the data set is
large, the computation using several hundred bootstrap samples can be costly.

If we assume that ui is independent of xi then fu0|xi  fu0 and equation (2.5) simplifies
to

1 − 
fu02 Exi

′xi−1     (2.10)

and its estimator has the general form

1 − 
f̂u02

N−1∑
i1

N

xi
′xi

−1

,     (2.11)

and a simple, consistent estimate of fu0 is the histogram estimator

6



Imbens/Wooldridge, Lecture Notes 14, Summer ’07

f̂u0  2NhN−1∑
i1

N

1|ûi|≤ hN.     (2.12)

Of course, one can use other kernel estimators for f̂u0. This nonrobust estimator is the one
commonly reported as the default be statistical packages, including Stata.

If the quantile function is misspecified, even the “robust” form of the variance matrix,
based on the estimate in (2.9), is not valid. In the generalized linear models and generalized
estimating equations literature, the distinction is sometimes made between a “fully robust”
variance estimator and a “semi-robust” variance estimator. In the GLM and GEE literatures,
the semi-robust estimator assumes Eyi|xi, or the panel version of it, is correctly specified, but
does not impose restrictions on Varyi|xi or other features of Dyi|xi. On the other hand, a
fully robust variance matrix estimator is consistent for the asymptotic variance even if the
mean function is misspecified. For, say, nonlinear least squares, or quasi-MLE in the linear
exponential family, one needs to include the second derivative matrix of the conditional mean
function to have a fully robust estimator. For some combinations of mean functions and
objective functions, the Hessian of the mean function disappears, and the fully robust and
semi-robust estimators are the same. For two-step methods, such as GEE, analytical formulas
for fully robust estimators are very difficult to obtain, and almost all applications use the
semi-robust form. This is a long-winded way to say that there is precedent for worrying about
how to estimate asymptotic variances when the main feature being estimated is misspecified.

In GEE terminology, Â−1B̂Â−1 where Â is given by (2.9), is only semi-robust.
Kim and White (2002) and Angrist, Chernozhukov, and Fernández-Val (2006) provide a

fully robust variance matrix estimator when the linear quantile function is possibly
misspecified. The estimator of A in (2.9) is still valid, but the estimator of B needs to be
extended. If we use the outer product of the score we obtain

B̂  N−1∑
i1

N

 − 1ûi  02xi
′xi ,     (2.13)

where the ûi are the residuals from the (possibly) misspecified quantile regression, is generally
consistent.

As shown by Hahn (1995, 1997), the nonparametric bootstrap (and the Bayesian bootstrap)
generally provides consistent estimates of the fully robust variance without claims about the
conditional mean being correct. It does not, however, provide asymptotic refinements for
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testing and confidence intervals compared with those based on first-order asymptotics. See
Horowitz (2001) for a discussion, and on how to smooth the problem so that refinements are
possible.

ACF actually provide the covariance function for the process ̂ :  ≤  ≤ 1 −  for
some   0, which can be used to test hypotheses jointly across multiple quantiles (including
all quantiles at once).

As an example of quantile regression, we use the data from Abadie (2003). Stata was used
to do the estimation and obtain the standard errors; these are the nonrobust standard errors that
use

Dependent Variable: nettfa

(1) (2) (3) (4) (5) (6)

Explanatory Variable Mean (OLS) .10 Quantile .25 Quantile Median (LAD) .75 Quantile .90 Quantile

inc . 783 −. 0179 . 0713 . 324 . 798 1. 291

. 104 . 0177 . 0072 . 012 . 025 . 048

age −1. 568 −. 0663 . 0336 −. 244 −1. 386 −3. 579

1. 076 . 2307 . 0955 . 146 . 287 . 501

age2 . 0284 . 0024 . 0004 . 0048 . 0242 . 0605

. 0138 . 0027 . 0011 . 0017 . 0034 . 0059

e401k 6. 837 . 949 1. 281 2. 598 4. 460 6. 001

2. 173 . 617 . 263 . 404 . 801 1. 437

N 2, 017 2, 017 2, 017 2, 017 2, 017 2, 017

The effect of income is very different across quantiles, with its largest effect at upper
quantiles. Similarly, eligibility for a 401(k) plan has a much larger effect on financial wealth at
the upper end of the wealth distribution. The mean and median slope estimates are very
different, implying that the model with an additive error that is either independent of the
covariates, or has a symmetric distribution given the covariates, is not a good characterization.
3. Quantile Regression with Endogenous Explanatory Variables

Recently, there has been much interest in using quantile regression in models with
endogenous explanatory variables. Some strategies are fairly simple, others are more
complicated. Suppose we start with the model

y1  z11  1y2  u1,     (3.1)

where the full vector of exogenous variables is z and y2 is potential endogenous – whatever
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that means in the context of quantile regression. The most straightforward case to handle is
least absolute deviations, because median restrictions are easier to justify when joint
distributions are involved.

Amemiya’s (1982) two-stage LAD estimator, whose asymptotic properties were derived by
Powell (1986), adds a reduced form for y2, say

y2  z2  v2.     (3.2)

While (3.2) can be estimated by OLS to obtain ̂2, using LAD in the first stage to estimate 2

is more in the spirit of 2SLAD. In the second step, the fitted values, ŷ i2  zî2, are inserted in
place of yi2 to given LAD of yi1 on zi1,ŷ i2. By replacing ̂2 with 2, it is clear that the 2SLAD
estimator essentially requires symmetry of the composite error 1v2  u1. While the properties
of 2SLAD were originally worked out for nonstochastic zi – so that ui1,vi2 is independent of
zi – it is clear that symmetry of 1v2  u1 given z is sufficient.

We might as well assume Du1,v2|z is centrally symmetric, in which case a control
function approach can be used, too. Write

u1  1v2  e1,     (3.3)

where e1 given z would have a symmetric distribution. Because Medv2|z  0, the first stage
estimator can be LAD. Given the LAD residuals v̂i2  yi2 − zî2, these residuals can be added
to second-stage LAD. So, we do LAD of yi1 on zi1,yi2, v̂i2. It seems likely that a t test on v̂i2 is
valid as a test for the null that y2 is exogenous.

There can be problems of interpretation in just applying either 2SLAD or the CF approach.
Suppose we view this as an omitted variable problem, where a1 is the omitted variable, and
interest lies in the “structual” median

Medy1|z,y2,a1  Medy1|z1,y2,a1  z11  1y2  a1.     (3.4)

Then we can write

y1  z11  1y2  a1  e1

Mede1|z,y2,a1  0.
    (3.5)
    (3.6)

If (3.4) was stated in terms of means, then Ee1|z  0 by construction, and a very sensible
exogeneity condition is Ea1|z  Ea1  0 (as a normalization) or that Covz,a1  0. But
here we cannot even assert that Mede1|z  Mede1 because (3.6) does not imply this; there
is no law of iterated medians. To further compound the problem, the median of the sum is not
the sum of the medians; so, even if we stated exogeneity as Meda1|z  Meda1 and just
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asserted Mede1|z  Mede1, a1  e1  u1 would not generally satisfy
Medu1|z  Medu1. Of course, we can make enough multivariate symmetric assumptions so
that all linear combinations of errors have symmetric distributions. But then LAD methods are
purely to guard against outliers; usual 2SLS will provide consisten, asymptotically normal
estimates of the parameters under symmetry (and, of course, weaker assumptions).

With quantile estimation, such two-step estimators are even more difficult to justify. The
Angrist, Chernozhukov, and Fernandez-Val (2006) partialling out representations can provide
some sort of interpretation of netting out the control, v2, but it is difficult to know whether the
parameters are ultimately interesting.

Abadie (2003) and Abadie, Angrist, and Imbens (2002) show how to define and estimate
policy parameters with a binary endogenous treatment, say D, and binary instrumental
variable, say Z. The outcome is Y with observed covariates, X. The potential outcomes on Y are
Yd, d  0,1 – that is, without treatment and with treatment, respectively. The counterfactuals
for treatment are Dz, z  0,1. Thus, D0 is what treatment status would be if the instrument
(often, randomized eligibility) equals zero, and D1 is treatment status if Z  1. The data we
observe are X,Z,D  1 − ZD0  ZD1, and Y  1 − DY0  DY1. As discussed in AAI,
identification of average treatment effects, and ATE on the treated, is difficult. Instead, they
focus on treatment effects for compliers, that is, the (unobserved) subpopulation with
D1  D0. This is the group of subjects who do not participate if ineligible but do participate if
eligible.

AAI specify the linear equation

QuantY|X,D,D1  D0  D  X,     (3.7)

and define  as the quantile treatment effect (QTE) for compliers. If we observed the event
D1  D0, then (3.7) could be estimated by standard quantile regression using the subsample of
compliers. But, in effect, the binary variable 1D1  D0 is an omitted variable. But Z is an
available instrument for D. As discussed by AAI, (3.7) identifies differences in quantiles on
the potential outcomes, Y1 and Y0, and not the quantile of the difference, Y1 − Y0. The latter
effects are harder to identify. (Of course, in the case of mean effects, there is no difference in
the two effects.)

The assumptions used by AAI to identify  are

Y1,Y0,D1,D0 is independent of Z conditional on X     (3.8)
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0  PZ  1|X  1     (3.9)

PD1  1|X ≠ PD0  1|X     (3.10)

PD1 ≥ D0|X  1.     (3.11)

Under these assumptions, AAI show that a weighted quantile estimation identifies . The
estimator that is computationally most convenient is obtained as follows. Define

vU  1 − D1 − vU
1 − X − 1 − DvU

X ,     (3.12)

where U  Y,D,X, vU  PZ  1|U, and X  PZ  1|X. AAI show that
u  PD1  D0|U  u, and so this weighting function is nonnegative. They also show
that  and  in (3.7) solve

min
,

EUcY − D − X,     (3.13)

where c is the check function defined earlier. To operationalize the estimate,  needs to
be estimated, which means estimating PZ  1|Y,D,X and PZ  1|X. AAI use linear series
estimators to approximate PZ  1|Y,D,X and PZ  1|X, and derive the asymptotic variance
of the two-step estimator that solves

min

∑
i1

N

1̂vUi ≥ 0̂vUicYi − Wi,     (3.14)

where Wi  Di,Xi and  contains  and . The indicator function 1̂vUi ≥ 0 ensures that
only observations with nonnegative weights are used. Asymptotically, ̂vu ≥ 0, and this
trimming of observations becomes less and less necessary. To ensure that v̂u and ̂x act
like probabilities, series estimation using logit functions, as in Hirano, Imbens, and Ridder
(2003), might be preferred (although that still would not ensure nonnegativity of ̂vUi for all
i).

Other recent work has looked at quantile estimation with endogenous treatment effects.
Chernozhukov and Hansen (2005, 2006) consider indentification and estimation of QTEs in a
model with endogenous treatment and without imposing functional form restrictions. Let
qd,x, denote the  th quantile function for treatment level D  d and covariates x. In the
binary case, CH define the QTE as

QTEx  q1,x, − q0,x,.     (3.15)

11



Imbens/Wooldridge, Lecture Notes 14, Summer ’07

Using a basic result from probability, the average treatment effect, again conditional on x, can
be obtained by integrating (3.15) over 0    1.

The critical representation used by CH is that each potential outcome, Yd, conditional on
X  x, can be expressed as

Yd  qd,x,Ud     (3.16)

where

Ud|Z ~Uniform0,1,     (3.17)

and Z is the instrumental variable for treatment assignment, D. Thus, D is allowed to be
correlated with Ud. Key assumptions are that qd,x,u is strictly increasing in u and a “rank
invariance” condition. The simplest form of the condition is that , conditional on X  x and
Z  z, Ud does not depend on d. The CH show that, with the observed Y defined as
Y  qD,X,UD,

PY ≤ qD,X,|X,Z  PY  qD,X,|X,Z  .     (3.18)

Equation (3.18) acts as a nonparametric conditional moment condition which, under certain
assumptions, allows identification of qd,x,. If we define R  Y − qD,X,, then (3.18)
implies that the  th quantile of R, conditional on X,Z, is zero. This is similar to the more
common situation where we have a conditional moment condition of the form ER|X,Z  0.
See Chernozhukov and Hansen (2005) for details concerning identification – they apply results
of Newey and Powell (2003) – and Chernozhukov and Hansen (2005) for estimation methods,
where they assume a linear form for qd,x, and obtain what they call the quantile regression
instrumental variables estimator.

Other work that uses monotonicity assumptions and identifies structural quantile functions
is Chesher (2003) and Imbens and Newey (2006).
4. Quantile Regression for Panel Data

Quantile regression methods can be applied to panel data, too. For a given quantile
0    1, suppose we specify

Quantyit|xit  xit, t  1, . . . ,T,     (4.1)

where xit probably allows for a full set of time period intercepts. Of course, we can write
yit  xit  uit where Quantuit|xit  0. The natural estimator of o is the pooled quantile

regression estimator. Unless we assume that (3.1) has correctly specified dynamics, the
variance matrix needs to be adjusted for serial correlation in the resulting score of the objective
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function. These scores have the form

sit  −xit
′ 1yit − xit ≥ 0 − 1 − 1yit − xit  0,     (4.2)

which can be shown to have zero mean (at the “true” parameter), conditional on xit, under
(4.1). The serial dependence properties are not restricted, nor is heterogeneity in the
distributions across t. A consistent estimator of B (with T fixed and N → ) is

B̂  N−1∑
i1

N

∑
t1

T

∑
r1

T

sit̂sir̂
′.     (4.3)

This estimator is not robust to misspecification of the conditional quantiles, but the extension
of Angrist, Chernozhukov, and Fernandez-Val (2006) should work in the pooled panel data
case as well..

Estimation of A is similar to the cross section case. A robust estimator, that does not
assume independence between uit and xit, and allows the distribution of uit to change across t,
is

Â  2NhN−1∑
i1

N

∑
t1

T

1|ûit|≤ hNxit
′ xit,     (4.4)

or, we can replace the indicator function with a smoothed version. Rather than using

Â−1B̂Â−1/N as the estimate of the asymptotic variance of ̂, the bootstrap can be applied by
resampling cross section units.

Allowing explicitly for unobserved effects in quantile regression is trickier. For a given
quantile 0    1, a natural specification, which incorporates strict exogeneity conditional on
ci, is

Quantyit|xi,ci  Quantyit|xit,ci  xit  ci, t  1, . . . ,T,     (4.5)

which is reminiscent of the way we specified the conditional mean in Chapter 10.
Equivalently, we can write

yit  xit  ci  uit, Quantuit|xi,ci  0, t  1, . . . ,T.     (4.6)

Unfortunately, unlike in the case of estimating effects on the conditional mean, we cannot
proceed without further assumptions. A “fixed effects” approach, where we allow Dci|xi to
be unrestricted, is attractive. Generally, there are no simple transformations to eliminate ci and
estimate . If we treat the ci as parameters to estimate along with , the resulting estimator
generally suffers from an incidental parameters problem. Briefly, if we try to estimate ci for
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each i then, with large N and small T, the poor quality of the estimates of ci causes the
accompanying estimate of  to be badly behaved. Recall that this was not the case when we
used the FE estimator for a conditional mean: treating the ci as parameters led us to the within
estimator. Koenker (2004) derives asymptotic properties of this estimation procedure when T
grows along with N, but also adds the assumptions that the regressors are fixed and
uit : t  1, . . . ,T is serially independent.

An alternative approach is suggested by Abrevaya and Dahl (2006) for T  2. They are
motivated by Chamberlain’s correlated random effects linear model. In the T  2 case,
Chamberlain (1982) specifies

Eyt|x1,x2   t  xt  x11  x22, t  1,2.     (4.7)

Notice that ∂Ey1|x/∂x1    1 and ∂Ey2|x/∂x1  1. Therefore,

  ∂Ey1|x
∂x1

− ∂Ey2|x
∂x1

,     (4.8)

and similarly if we reverse the roles of x1 and x2. Abrevaya and Dahl use this motivation to
estimate separate linear quantile regressions Quantyt|x1,x2 – reminiscent of Chamberlain’s
method – and then define the partial effect as

 
∂Quanty1|x

∂x1
−
∂Quanty2|x

∂x1
.     (4.9)

For quantile regression, CRE approaches are generically hampered because finding
quantiles of sums of random variables is difficult. For example, suppose we impose the
Mundlak representation ci  o  x̄io  ai. Then we can write

yit  o  xito  x̄io  ai  uit ≡ yit  o  xito  x̄io  vit, where vit is the composite

error. Now, if we assume vit is independent of xi, then we can estimate o and o using pooled

quantile regression of yit on 1,xit, and x̄i. (The intercept does not estimate a quantity of
particular interest.) But independence is very strong, and, if we truly believe it, then we
probably believe all quantile functions are parallel. Of course, we can always just assert that
the effect of interest is the set of coefficients on xit in the pooled quantile estimation, and we
allow these, along with the intercept and coefficients on x̄i, to change across quantile. The
asymptotic variance matrix estimator discussed for pooled quantile regression applies directly
once we define the explanatory variables at time t to be 1,xit, x̄i.

We have more flexibility if we are interested in the median, and a few simple approaches
suggest themselves. Write the model Medyit|xi,ci  Medyit|xit,ci  xit  ci in error form
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as

yit  xit  ci  uit, Meduit|xi,ci  0, t  1, . . ,T     (4.10)

and consider the multivariate conditional distribution Dui|xi. Above we discussed the
centrally symmetric assumption, conditional on xi: Dui|xi  D−ui|xi. If we make this
assumption, then the time-demeaned errors üit have (univariate) conditional (on xi

distributions symmetric about zero, which means we can consistently estimate  by applying
pooled least absolute deviations to the time-demeaned equation ÿit  ẍit  üit, being sure to
obtain fully robust standard errors for pooled LAD.

Alternatively, under the centrally symmetric assumption, the difference in the errors,
Δuit  uit − ui,t−1 have symmetric distributions about zero, so one can apply pooled LAD to
Δyit  Δxit  Δuit, t  2, . . . ,T. From Honoré (1992) applied to the uncensored case, LAD on
the first differences is consistent when uit : t  1, . . . ,T is an i.i.d. sequence conditional on
xi,ci, even if the common distribution is not symmetric – and this may afford robustness for
LAD on the first differences rather than on the time-demeaned data. Interestingly, it follows
from the discussion in Honoré (1992, Appendix 1) that when T  2, applying LAD on the first
differences is equivalent to estimating the ci along with o. So, in this case, there is no
incidental parameters problem in estimating the ci as long as ui2 − ui1 has a symmetric
distribution. Although not an especially weak assumption, central symmetry of Dui|xi allows
for serial dependence and heteroskedasticity in the uit (both of which can depend on xi or on t).
As always, we should be cautious in comparing the pooled OLS and pooled LAD estimates of
 on the demeaned or differenced data because they are only expected to be similar under the
conditional symmetry assumption.

If we impose the Mundlak-Chamberlain device, we can get by with conditional symmetry
of a sequence of bivariate distributions. Write yit   t  xit  x̄i  ai  uit, where
Meduit|xi,ai  0. If Dai,uit|xi has a symmetric distribution around zero then Dai  uit|xi

is symmetric about zero, and, if this holds for each t, pooled LAD of yit on 1,xit, and x̄i

consistently estimates  t,,. (Therefore, we can estimate the partial effects on
Medyit|xit,ci and also test if ci is correlated with x̄i.) The assumptions used for this approach
are not as weak as we would like, but, like using pooled LAD on the time-demeaned data,
adding x̄i to pooled LAD gives a way to compare with the usual FE estimate of . .
(Remember, if we use pooled OLS with x̄i included, we obtain the FE estimate.) Fully robust

inference can be obtained by computing B̂ and Â in (4.3) and (4.4).
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5. Quantile Methods for “Censored” Data
As is well known, the statistical structure of parametric models for data that have truly

been censored – such as top-coded wealth, or a right-censored duration – is essentially the
same as models for corner solution responses – that is, variables that have a mass point, or pile
up, at one or couple of values (usually, zero). Examples are labor supply, charitable
contributions, and amount of life insurance. But an important point is that the interpretation of
the estimates is different in these two cases. In the data censoring case, there is an underlying
linear model (usually) whose coefficients we are interested in. For example, we are interested
in the conditional distribution of wealth given covariates. That wealth has been top-coded
means that we do not observe underlying wealth over its entire range. In effect, it is a missing
data problem. The same is true with duration models.

In the corner solution case, we observe the response of interest over its entire range. We
use models such as Tobit simply because we want to recognize the mass point or points. Linear
functional forms for the mean, say, can miss important nonlinearities. When we apply, say,
standard Tobit to a corner solution, y, we are interested in features of Dy|x, such as
Py  0|x, Ey|x,y  0, and Ey|x. While the parameters in the model are important, they do
not directly provide partial effects on the quantities of interest. Of course, if we use a linear
model approximation for, say, Ey|x, then the coefficients are approximate partial effects. A
related point is: if we modify standard models for corner responses, say, consider
heteroskedasticity in the latent error of a Tobit, we should consider how it affects Dy|x, and
not just the paramter estimates. In the case of censored data, it is the parameters of the
underlying linear model we are interested in, and then it makes much more sense to focus on
parameter sensitivity.

In applying LAD methods to “censored” outcomes, we should also be aware of the
difference between true data censoring and corner solution responses. With true data censoring
we clearly have an interest in obtaining estimates of, say,

yi
∗  xi  ui,     (5.1)

where yi
∗ is the variable we would like to explain. If yi

∗ is top coded at, say, ri, then we observe
yi  minyi

∗, ri. If we assume Dui|xi, ri  Normal0,2, then we can apply censored
normal regression (also called type I Tobit). This method applies even if ri is observed only
when yi

∗ has been censored, which happens sometimes in duration studies. As shown by
Powell (1986), we can estimate (5.1) under much weaker assumptions than normality:
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Medui|xi, ri  0     (5.2)

suffices, provided the censoring values value, ri, are always observed. Because the median
passes through monotonic functions,

Medyi|xi, ri  Medminxi  ui, ri|xi, ri

 minMedxi  ui|xi, ri, ri

 minxi, ri.     (5.3)

Because LAD consistently estimates the parameters of a conditional median, at least under
certain regularity conditions, (5.3) suggest estimate  as the solution to

min
b
∑
i1

N

|yi − minxib, ri|.     (5.4)

Powell (1986) showed that, even though the objective function has a corner it it, the censored
least absolute deviations (CLAD) estimator is N -asymptotically normal. Honoré, Khan, and
Powell (2002) provide methods that can be used when ri is not always observed.

CLAD can also be applied to corner solution responses. Suppose the variable of interest, yi,
has a corner at zero, and is determined by

y  max0,x  u.     (5.5)

If Du|x is Normal0,2, then the MLE is the type I Tobit. Given ̂ and ̂2, we can compute
partial effects on the mean and various probabilities. The partial effects on Medy|x depend
only on , because

Medy|x  max0,x.     (5.6)

Of course, (5.6) provides a way to estimate  by CLAD under just

Medu|x  0.     (5.7)

The  j measure the partial effects on Medy|x once Medy|x  0.

Once we recognize in corner solution applications that it is features of Dy|x that are of
interest, (5.6) becomes just a particular feature of Dy|x that we can identify, and it is no
better or worse than other features of Dy|x that we might want to estimate, such as a quantile
other than the median, or the mean Ey|x, or the “conditional” mean, Ey|x,y  0. Emphasis
is often given on the fact that the functional form for the median in (5.6) holds very generally
when (5.5) holds; other than (5.7), no restrictions are made on the shape of the distribution
Du|x or of its dependence on x. But for corner solution responses, there is nothing sacred
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about (5.5). In fact, it is pretty restrictive because y depends on only one unobservable, u.
Two-part models, summarized recently in Wooldridge (2007), allow more flexibility.

A model that is no more or less restrictive than (5.5) is

y  a  expx,     (5.8)

where the only assumption we make is

Ea|x  1,     (5.9)

where Da|x is otherwise unrestricted. In particular, we do not know Pa  0|x, which is
positive if y has mass point at zero, or Meda|x. Under (5.9),

Ey|x  expx,     (5.10)

which means we can consistently estimate  using nonlinear regression or a quasi-MLE in the
linear exponential family (such as Poisson or Gamma); it does not matter that y is a corner if its
mean is given by (5.10). The point here is that, if we simply focus on assumptions and what
can be identified under those assumptions, the model in (5.8) and (5.9) identifies just as many
features of Dy|x as the model in (5.5) and (5.7). They are different features, but neither is
inherently better than the other.

Continuing with this point, we can modify (5.5) rather simply and see that CLAD breaks
down. Suppose we add multiplicative heterogeneity:

y  a  max0,x  u,     (5.11)

where a ≥ 0, and even make the strong assumption that a is independent of x,u. The
distribution Dy|x now depends on the distribution of a, and does not follow a type I Tobit
model; generally, finding its distribution would be difficult, even if we specify a simple
distribution for a. Nevertheless, if we normalize Ea  1, then
Ey|x,u  Ea|x,u  max0,x  u  max0,x  u (because Ea|x,u  1). It follows
immediately by iterated expectations that if assumption (17.3) holds, then Ey|x has exactly
the same form as the type I Tobit model:

Ey|x  x/x  x/.     (5.12)

Therefore, the parameters  and 2 are identified and could be estimate by nonlinear least
squares or weighted NLS, or a quasi-MLE using the mean function (5.12). Note that Dy|x
does not follow the type I Tobit distribution, so MLE is not available.

On the other hand, if we focus on the median, we have

18



Imbens/Wooldridge, Lecture Notes 14, Summer ’07

Medy|x,a  a  max0,x.     (5.13)

But there is no “law of iterated median,” so, generaly, we cannot determine Medy|x without
further assumptions. One might argue that we are still interested in the j because they

measure the average partial effects on the median. But the do not appear to be generally
identified under this variation on the standard Tobit model.

The issues in applying CLAD to corners gets even trickier in panel data applications.
Suppose

yit  max0,xit  ci  uit

Meduit|xi,ci  0,
    (5.14)
    (5.15)

so that (5.15) embodies strict exogeneity of xit conditional on ci. Under (5.14) and (5.15),

Medyit|xi,ci  max0,xit  ci.     (5.16)

Honoré (1992) and Honoré and Hu (2004) provide methods of estimating  without making

any assumptions about the distribution of ci, or restricting its dependence on xi. They do
assume conditional exchangeability assumptions on the uit; sufficient is independence with xi

and uit i.i.d. over t. Given estimates of the j, we can estimate the partial effects of the xtj on

Medyt|xt,c for Medyt|xt,c  0. Unfortunately, because we do not observe ci, or know
anything about its distribution, we do not know when the nonzero effect kicks in. We can write
the partial effect of xtj as

 tjxt,c  1xt  c  0j.     (5.17)

We might be interested in averaging these across the distribution of unobserved heterogeneity,
but this distribution is not identified. (Interesting, if ci has a Normalc,c

2 distribution, then
it is easy to show that the average of (5.17) across the heterogeneity is
Eci tjxt,ci  c − xt/cj, and we can see immediatly that it depends on the

location and scale of ci.)
We can compare the situation of the median with the mean. Using the Altonji and Matkin

(2005), suppose we assume Dci|xi  Dci|x̄i. Then Eyit|xi  gtxit, x̄i for some
unknown function gt, , and  is identified (usually only up to scale) and the average partial
effects on the mean are generally identified.
References

(To be added.)
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What’s New in Econometrics NBER, Summer 2007

Lecture 15, Wednesday, Aug 1st, 4.30-5.30pm

Generalized Method of Moments and Empirical Likelihood

1. Introduction

Generalized Method of Moments (henceforth GMM) estimation has become an important

unifying framework for inference in econometrics in the last twenty years. It can be thought

of as nesting almost all the common estimation methods such as maximum likelihood, or-

dinary least squares, instrumental variables and two–stage–least–squares and nowadays it is

an important part of all advanced econometrics text books (Gallant, 1987; Davidson and

McKinnon, 1993; Hamilton, 1994; Hayashi, 2000; Mittelhammer, Judge, and Miller, 2000;

Ruud, 2000; Wooldridge, 2002). Its formalization by Hansen (1982) centers on the presence

of known functions, labelled “moment functions”, of observable random variables and un-

known parameters that have expectation zero when evaluated at the true parameter values.

The method generalizes the “standard” method of moments where expectations of known

functions of observable random variables are equal to known functions of the unknown pa-

rameters. The “standard” method of moments can thus be thought of as a special case of

the general method with the unknown parameters and observed random variables entering

additively separable. The GMM approach links nicely to economic theory where orthogonal-

ity conditions that can serve as such moment functions often arise from optimizing behavior

of agents. For example, if agents make rational predictions with squared error loss, their

prediction errors should be orthogonal to elements of the information set. In the GMM

framework the unknown parameters are estimated by setting the sample averages of these

moment functions, the “estimating equations,” as close to zero as possible.

The framework is sufficiently general to deal with the case where the number of moment

functions is equal to the number of unknown parameters, the so–called “just–identified case”,

as well as the case where the number of moments exceeding the number of parameters to be

estimated, the “over–identified case.” The latter has special importance in economics where
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the moment functions often come from the orthogonality of potentially many elements of

the information set and prediction errors. In the just-identified case it is typically possible

to estimate the parameter by setting the sample average of the moments exactly equal to

zero. In the over-identified case this is not feasible. The solution proposed by Hansen

(1982) for this case, following similar approaches in linear models such as two– and three–

stage–least–squares, is to set a linear combination of the sample average of the moment

functions equal to zero, with the dimension of the linear combination equal to the number

of unknown parameters. The optimal linear combination of the moments depends on the

unknown parameters, and Hansen suggested to employ initial, possibly inefficient, estimates

to estimate this optimal linear combination. Chamberlain (1987) showed that this class of

estimators achieves the semiparametric efficient bound given the set of moment restrictions.

The Chamberlain paper is not only important for its substantive efficiency result, but also

as a precursor to the subsequent empirical likelihood literature by the methods employed:

Chamberlain uses a discrete approximation to the joint distribution of all the variables to

show that the information matrix based variance bound for the discrete parametrization is

equal to the variance of the GMM estimator if the discrete approximation is fine enough.

Th empirical likelihood literature developed partly in response to criticisms regarding

the small sample properties of the two-step GMM estimator. Researchers found in a number

of studies that with the degree of over-identification high, these estimators had substantial

biases, and confidence intervals had poor coverage rates. See among others, Altonji and

Segal (1996), Burnside and Eichenbaum (1996) , and Pagan and Robertson (1997). These

findings are related to the results in the instrumental variables literature that with many or

weak instruments two-stage-least squares can perform very badly (e.g., Bekker, 1994; Bound,

Jaeger, and Baker, 1995; Staiger and Stock, 1997). Simulations, as well as theoretical results,

suggest that the new estimators have LIML-like properties and lead to improved large sample

properties, at the expense of some computational cost.

2. Examples

First the generic form of the GMM estimation problem in a cross–section context is
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presented. The parameter vector θ∗ is a K dimensional vector, an element of Θ, which is

a subset of RK . The random vector Z has dimension P , with its support Z a subset of

RP . The moment function, ψ : Z × Θ → RM , is a known vector valued function such that

E [ψ(Z, θ∗)] = 0, and E [ψ(Z, θ)] 6= 0 for all θ ∈ Θ with θ 6= θ∗. The researcher has available

an independent and identically distributed random sample Z1, Z2, . . . , ZN . We are interested

in the properties of estimators for θ∗ in large samples.

Many, if not most models considered in econometrics fit this framework. Below are some

examples, but this list is by no means exhaustive.

I. Maximum Likelihood

If one specifies the conditional distribution of a variable Y given another variable X as

fY |X(y|x, θ), the score function satisfies these conditions for the moment function:

ψ(Y,X, θ) =
∂ ln f

∂θ
(Y |X, θ).

By standard likelihood theory the score function has expectation zero only at the true value

of the parameter. Interpreting maximum likelihood estimators as generalized method of

moments estimators suggests a way of deriving the covariance matrix under misspecification

(e.g., White, 1982), as well as an interpretation of the estimand in that case.

II. Linear Instrumental Variables

Suppose one has a linear model

Y = X ′θ∗ + ε,

with a vector of instruments Z. In that case the moment function is

ψ(Y,X, Z, θ) = Z ′ · (Y −X ′θ).

The validity of Z as an instrument, together with a rank condition implies that θ∗ is the

unique solution to E[ψ(Y,X, Z, θ)] = 0. This is a case where the fact that the methods allow

for more moments than unknown parameters is of great importance as often instruments are

independent of structural error terms, implying that any function of the basic instruments

is orthogonal to the errors.
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III. A Dynamic Panel Data Model

Consider the following panel data model with fixed effects:

Yit = ηi + θ · Yit−1 + εit,

where εit has mean zero given {Yit−1, Yit−2, . . .}. We have observations Yit for t = 1, . . . , T

and i = 1, . . . , N , with N large relative to T . This is a stylized version of the type of

panel data models studied in Keane and Runkle (1992), Chamberlain (1992), and Blundell

and Bond (1998). This specific model has previously been studied by Bond, Bowsher, and

Windmeijer (2001). One can construct moment functions by differencing and using lags as

instruments, as in Arellano and Bond (1991), and Ahn and Schmidt, (1995):

ψ1t(Yi1, . . . , YiT , θ) =











Yit−2

Yit−3

...
Yi1











·
(

(Yit − Yit−1 − θ · (Yit−1 − Yit−2)
)

.

This leads to t − 2 moment functions for each value of t = 3, . . . , T , leading to a total of

(T − 1) · (T − 2)/2 moments, with only a single parameter. One would typically expect

that the long lags do not necessarily contain much information, but they are often used to

improve efficiency. In addition, under the assumption that the initial condition is drawn

from the stationary long-run distribution, the following additional T − 2 moments are valid:

ψ2t(Yi1, . . . , YiT , θ) = (Yit−1 − Yit−2) · (Yit − θ · Yit−1).

Despite the different nature of the two sets of moment functions, which makes them poten-

tially very useful in the case that the autoregressive parameter is close to unity, they can all

be combined in the GMM framework.

3. Two-step GMM Estimation

3.1 Estimation and Inference

In the just-identified case where M , the dimension of ψ, and K, the dimension of θ are

identical, one can generally estimate θ∗ by solving

0 =
1

N

N
∑

i=1

ψ(Zi, θ̂gmm). (1)
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If the sample average is replaced by the expectation, the unique solution is equal to θ∗, and

under regularity conditions (e.g., Hansen, 1982, Newey and McFadden, 1994), solutions to

(1) will be unique in large samples and consistent for θ∗. If M > K the situation is more

complicated as in general there will be no solution to (1).

Hansen’s (1982) solution was to generalize the optimization problem to the minimization

of the quadratic form

QC,N (θ) =
1

N

[ N
∑

i=1

ψ(zi, θ)

]′

· C ·
[ N
∑

i=1

ψ(zi, θ)

]

, (2)

for some positive definite M × M symmetric matrix C . Under the regularity conditions

given in Hansen (1982) and Newey and McFadden (1994), the minimand θ̂gmm of (2) has the

following large sample properties:

θ̂gmm

p−→ θ∗,

√
N (θ̂gmm − θ∗)

d−→ N (0, (Γ′CΓ)−1Γ′C∆CΓ(Γ′CΓ)−1),

where

∆ = E [ψ(Zi, θ
∗)ψ(Zi, θ

∗)′] and Γ = E

[

∂

∂θ′
ψ(Zi, θ

∗)

]

.

In the just–identified case with the number of parameters K equal to the number of moments

M , the choice of weight matrix C is immaterial, as θ̂gmm will, at least in large samples, be

equal to the value of θ that sets the average moments exactly equal to zero. In that case

Γ is a square matrix, and because it is full rank by assumption, Γ is invertible and the

asymptotic covariance matrix reduces to (Γ′∆−1Γ)−1, irrespective of the choice of C . In the

overidentified case with M > K, however, the choice of the weight matrix C is important.

The optimal choice for C in terms of minimizing the asymptotic variance is in this case

the inverse of the covariance of the moments, ∆−1. Using the optimal weight matrix, the

asymptotic distribution is

√
N (θ̂gmm − θ∗)

d−→ N (0, (Γ′∆−1Γ)−1). (3)
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This estimator is generally not feasible because typically ∆−1 is not known to the researcher.

The feasible solution proposed by Hansen (1982) is to obtain an initial consistent, but gen-

erally inefficient, estimate of θ∗ by minimizing QC,N(θ) using an arbitrary positive definite

M ×M matrix C , e.g., the identity matrix of dimension M . Given this initial estimate, θ̃,

one can estimate the optimal weight matrix as

∆̂−1 =

[

1

N

N
∑

i=1

ψ(zi, θ̃) · ψ(zi, θ̃)
′

]−1

.

In the second step one estimates θ∗ by minimizing Q
∆̂−1,N (θ). The resulting estimator θ̂gmm

has the same first order asymptotic distribution as the minimand of the quadratic form with

the true, rather than estimated, optimal weight matrix, Q∆−1,N (θ).

Hansen (1982) also suggested a specification test for this model. If the number of moments

exceeds the number of free parameters, not all average moments can be set equal to zero,

and their deviation from zero forms the basis of Hansen’s test, similar to tests developed by

Sargan (1958). See also Newey (1985a, 1985b). Formally, the test statistic is

T = Q
∆̂,N(θ̂gmm).

Under the null hypothesis that all moments have expectation equal to zero at the true value of

the parameter, θ∗, the distribution of the test statistic converges to a chi-squared distribution

with degrees of freedom equal to the number of over-identifying restrictions, M −K.

One can also interpret the two–step estimator for over–identified GMM models as a just–

identified GMM estimator with an augmented parameter vector (e.g., Newey and McFadden,

1994; Chamberlain and Imbens, 1995). Define the following moment function:

h(x, δ) = h(x, θ,Γ,∆, β,Λ) =













Λ − ∂ψ

∂θ′
(x, β)

Λ′Cψ(x, β)
∆ − ψ(x, β)ψ(x, β)′

Γ − ∂ψ

∂θ′
(x, θ)

Γ′∆−1ψ(x, θ)













. (4)

Because the dimension of the moment function h(·), M×K+K+(M+1)×M/2+M×K+K =

(M +1)× (2K +M/2), is equal to the combined dimensions of its parameter arguments, the
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estimator for δ = (θ,Γ,∆, β,Λ) obtained by setting the sample average of h(·) equal to zero

is a just–identified GMM estimator. The first two components of h(x, δ) depend only on β

and Λ, and have the same dimension as these parameters. Hence β∗ and Λ∗ are implicitly

defined by the equations

E

[(

Λ − ∂ψ

∂θ′
(X, β)

Λ′Cψ(X, β)

)]

= 0.

Given β∗ and Λ∗, ∆∗ is defined through the third component of h(x, δ), and given β∗, Λ∗

and ∆∗ the final parameters θ∗ and Γ∗ are defined through the last two moment functions.

This interpretation of the over-identified two-step GMM estimator as a just-identified

GMM estimator in an augmented model is interesting because it also emphasizes that results

for just–identified GMM estimators such as the validity of the bootstrap can directly be

translated into results for over–identified GMM estimators. In another example, using the

standard approach to finding the large sample covariance matrix for just–identified GMM

estimators one can use the just-identified representation to find the covariance matrix for

the over–identified GMM estimator that is robust against misspecification: the appropriate

submatrix of

(

E

[

∂h

∂δ
(X, δ∗)

])−1

E[h(Z, δ∗)h(Z, δ∗)′]

(

E

[

∂h

∂δ
(Z, δ∗)

])−1

,

estimated by averaging at the estimated values. This is the GMM analogue of the White

(1982) covariance matrix for the maximum likelihood estimator under misspecification.

3.2 Efficiency

Chamberlain (1987) demonstrated that Hansen’s (1982) estimator is efficient, not just in

the class of estimators based on minimizing the quadratic form QN,C(θ), but in the larger

class of semiparametric estimators exploiting the full set of moment conditions. What is par-

ticularly interesting about this argument is the relation to the subsequent empirical likelihood

literature. Many semiparametric efficiency bound arguments (e.g., Newey, 1991; Hahn, 1994)

implicitly build fully parametric models that include the semiparametric one and then search

for the least favorable parametrization. Chamberlain’s argument is qualitatively different.
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He proposes a specific parametric model that can be made arbitrarily flexible, and thus

arbitrarily close to the model that generated the data, but does not typically include that

model. The advantage of the model Chamberlain proposes is that it is in some cases very

convenient to work with in the sense that its variance bound can be calculated in a straight-

forward manner. The specific model assumes that the data are discrete with finite support

{λ1, . . . , λL}, and unknown probabilities π1, . . . , πL. The parameters of interest are then

implicitly defined as functions of these points of support and probabilities. With only the

probabilities unknown, the variance bound on the parameters of the approximating model

are conceptually straightforward to calculate. It then sufficies to translate that into a vari-

ance bound on the parameters of interest. If the original model is over-identified, one has

restrictions on the probabilities. These are again easy to evaluate in terms of their effect on

the variance bound.

Given the discrete model it is straightforward to obtain the variance bound for the prob-

abilities, and thus for any function of them. The remarkable point is that one can rewrite

these bounds in a way that does not involve the support points. This variance turns out to

be identical to the variance of the two-step GMM estimator, thus proving its efficiency.

4. Empirical Likelihood

4.1 Background

To focus ideas, consider a random sample Z1, Z2, . . . , ZN , of size N from some unknown

distribution. If we wish to estimate the common distribution of these random variables, the

natural choice is the empirical distribution, that puts weight 1/N on each of the N sample

points. However, in a GMM setting this is not necessarily an appropriate estimate. Suppose

the moment function is

ψ(z, θ) = z,

implying that the expected value of Z is zero. Note that in this simple example this moment

function does not depend on any unknown parameter. The empirical distribution function

with weights 1/N does not satisfy the restriction EF [Z] = 0 as EF̂emp
[Z] =

∑

zi/N 6= 0.
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The idea behind empirical likelihood is to modify the weights to ensure that the estimated

distribution F̂ does satisfy the restriction. In other words, the approach is to look for

the distribution function closest to F̂emp, within the set of distribution functions satisfying

EF [Z] = 0. Empirical likelihood provides an operationalization of the concept of closeness

here. The empirical likelihood is

L(π1, . . . , πN) =
N
∏

i=1

πi,

for 0 ≤ πi ≤ 1,
∑N

i=1
πi = 1. This is not a likelihood function in the standard sense, and thus

does not have all the properties of likelihood functions. The empirical likelihood estimator

for the distribution function is

max
π

N
∑

i=1

πi subject to
N
∑

i=1

πi = 1, and
N
∑

i=1

πizi = 0.

Without the second restriction the π’s would be estimated to be 1/N , but the second restric-

tion forces them slightly away from 1/N in a way that ensures the restriction is satisfied. In

this example the solution for the Lagrange multiplier is the solution to the equation

N
∑

i=1

zi
1 + t · zi

= 0,

and the solution for πi is:

π̂i = 1/(1 + t · zi).

More generally, in the over-identified case a major focus is on obtaining point estimates

through the following estimator for θ:

max
θ,π

N
∑

i=1

lnπ, subject to
N
∑

i=1

πi = 1,
N
∑

i=1

πi · ψ(zi, θ) = 0. (5)

Qin and Lawless (1994) and Imbens (1997) show that this estimator is equivalent, to order

Op(N
−1/2), to the two-step GMM estimator. This simple discussion illustrates that for some,

and in fact many, purposes the empirical likelihood has the same properties as a parametric

likelihood function. This idea, first proposed by Owen (1988), turns out to be very powerful
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with many applications. Owen (1988) shows how one can construct confidence intervals and

hypothesis tests based on this notion.

Related ideas have shown up in a number of places. Cosslett’s (1981) work on choice-

based sampling can be interpreted as maximizing a likelihood function that is the product

of a parametric part coming from the specification of the conditional choice probabilities,

and an empirical likelihood function coming from the distribution of the covariates. See

Imbens (1992) for a connection between Cosslett’s work and two-step GMM estimation. As

mentioned before, Chamberlain’s (1987) efficiency proof essentially consists of calculating

the distribution of the empirical likelihood estimator and showing its equivalence to the

distribution of the two-step GMM estimator. See Back and Brown (1990) and Kitamura

and Stutzer (1997) for a discussion of the dependent case.

4.2 Cressie-Read Discrepancy Statistics and Generalized Empirical Likeli-

hood

In this section we consider a generalization of the empirical likelihood estimators based

on modifications of the objective function. Corcoran (1998) (see also Imbens, Spady and

Johnson, 1998), focus on the Cressie-Read discrepancy statistic, for fixed λ, as a function of

two vectors p and q of dimension N (Cressie and Read 1984):

Iλ(p, q) =
1

λ · (1 + λ)

N
∑

i=1

pi

[

(

pi
qi

)λ

− 1

]

.

The Cressie-Read minimum discrepancy estimators are based on minimizing this difference

between the empirical distribution, that is, the N -dimensional vector with all elements equal

to 1/N , and the estimated probabilities, subject to all the restrictions being satisfied.

min
π,θ

Iλ(ι/N, π) subject to
N
∑

i=1

πi = 1, and
N
∑

i=1

πi · ψ(zi, θ) = 0.

If there are no binding restrictions, because the dimension of ψ(·) and θ agree (the just-

identified case), the solution for π is the empirical distribution it self, and πi = 1/N . More

generally, if there are over-identifying restrictions, there is no solution for θ to
∑

i ψ(zi, θ)/N =

0, and so the solution for πi is as close as possible to 1/N in a way that ensures there is
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an exact solution to
∑

i πiψ(zi, θ) = 0. The precise way in which the notion “as close as

possible” is implemented is reflected in the choice of metric through λ.

Three special cases of this class have received most attention. First, the empirical like-

lihood estimator itself, which can be interpreted as the case with λ → 0. This has the nice

interpretation that it is the exact maximum likelihood estimator if Z has a discrete distri-

bution. It does not rely on the discreteness for its general properties, but this interpretation

does suggest that it may have attractive large sample properties.

The second case is the exponential tilting estimator with λ → −1 (Imbens, Spady and

Johnson, 1998), whose objective function is equal to the empirical likelihood objective funtion

with the role of π and ι/N reversed. It can also be written as

min
π,θ

N
∑

i=1

πi lnπi subject to
N
∑

i=1

πi = 1, and
N
∑

i=1

πiψ(zi, θ) = 0.

Third, the case with λ = −2. This case was originally proposed by Hansen, Heaton and

Yaron (1996) as the solution to

min
θ

1

N

[ N
∑

i=1

ψ(zi, θ)

]′

·
[

1

N

N
∑

i=1

ψ(zi, θ)ψ(zi, θ)
′

]−1

·
[ N
∑

i=1

ψ(zi, θ)

]

,

where the GMM objective function is minimized over the θ in the weight matrix as well as the

θ in the average moments. Hansen, Heaton and Yaron (1996) labeled this the continuously

updating estimator. Newey and Smith (2004) pointed out that this estimator fits in the

Cressie-Read class.

Smith (1997) considers a more general class of estimators, which he labels generalized

empirical likelihood estimators, starting from a different perspective. For a given function

g(·), normalized so that it satisfied g(0) = 1, g′(0) = 1, consider the saddle point problem

max
θ

min
t

N
∑

i=1

g(t′ψ(zi, θ)).

This representation is more attractive from a computational perspective, as it reduces the

dimension of the optimization problem to M + K rather than a constrained optimization
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problem of dimension K + N with M + 1 restrictions. There is a direct link between the

t parameter in the GEL representation and the Lagrange multipliers in the Cressie-Read

representation. Newey and Smith (2004) how to choose g(·) for a given λ so that the

corresponding GEL and Cressie-Read estimators agree.

In general the differences between the estimators within this class is relatively small

compared to the differences between them and the two-step GMM estimators. In practice

the choice between them is largely driven by computational issues, which will be discussed in

more detail in Section 5. The empirical likelihood estimator does have the advantage of its

exact likelihood interpretation and the resulting optimality properties for its bias-corrected

version (Newey and Smith, 2004). On the other hand, Imbens, Spady and Johnson (1998)

argue in favor of the exponential tilting estimator as its influence function stays bounded

where as denominator in the probabilities in the empirical likelihood estimator can get large.

In simulations researcher have encountered more convergence problems with the continuously

updating estimator (e.g., Hansen, Heaton and Yaron, 1996; Imbens, Johnson and Spady,

1998).

4.3 Testing

Associated with the empirical likelihood estimators are three tests for over-identiyfing

restrictions, similar to the classical trinity of tests, the likelihood ratio, the Wald, and the

Lagrange multiplier tests. Here we briefly review the implementation of the three tests in

the empirical likelihood context. The leading terms of all three tests are identical to that of

the test developed by Hansen (1982) based on the quadratic form in the average moments.

The first test is based on the value of the empirical likelihood function. The test statistic

compares the value of the empirical likelihood function at the restricted estimates, the π̂i

with that at the unrestricted values, πi = 1/N :

LR = 2 · (L(ι/N) − L(π̂)), where L(π) =
N
∑

i=1

lnπi.

As in the parametric case, the difference between the restricted and unrestricted likelihood

function is multiplied by two to obtain, under regularity conditions, e.g., Newey and Smith
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(2004), a chi-squared distribution with degrees of freedom equal to the number of over-

identifying restrictions for the test statistic under the null hypothesis.

The second test, similar to Wald tests, is based on the difference between the average

moments and their probability limit under the null hypothesis, zero. As in the standard

GMM test for overidentifying restrictions (Hansen, 1982), the average moments are weighted

by the inverse of their covariance matrix:

Wald =
1

N

[

N
∑

i=1

ψ(zi, θ̂)

]′

∆̂−1

[

N
∑

i=1

ψ(zi, θ̂)

]

,

where ∆̂ is an estimate of the covariance matrix

∆ = E[ψ(Z, θ∗)ψ(Z, θ)′],

typically based on a sample average at some consistent estimator for θ∗:

∆̂ =
1

N

N
∑

i=1

ψ(zi, θ̂)ψ(zi, θ̂)
′,

or sometimes a fully efficient estimator for the covariance matrix,

∆̂ =
1

N

N
∑

i=1

π̂iψ(zi, θ̂)ψ(zi, θ̂)
′,

The standard GMM test uses an initial estimate of θ∗ in the estimation of ∆, but with

the empirical likelihood estimators it is more natural to substitute the empirical likelihood

estimator itself. The precise properties of the estimator for ∆ do not affect the large sample

properties of the test, and like the likelihood ratio test, the test statistic has in large samples

a chi-squared distribution with degrees of freedom equal to the number of over-identifying

restrictions.

The third test is based on the Lagrange multipliers t. In large samples their variance is

Vt = ∆−1 −∆−1Γ(Γ′∆−1Γ)−1Γ′∆−1.

This matrix is singular, with rank equal to M −K. One option is therefore to compare the

Lagrange multipliers to zero using a generalized inverse of their covariance matrix:

LM1 = t′
(

∆−1 − ∆−1Γ(Γ′∆−1Γ)−1Γ′∆−1
)−g

t.



Imbens/Wooldridge, Lecture Notes 15, Summer ’07 14

This is not very attractive, as it requires the choice of a generalized inverse. An alternative

is to use the inverse of ∆−1 itself, leading to the test statistic

LM2 = t′∆t.

Because

√
N · t = Vt

1√
N

N
∑

i=1

ψ(zi, θ
∗) + op(1),

and Vt∆Vt = VtV
−g
t Vt = Vt, it follows that

LM2 = LM1 + op(1).

Imbens, Johnson and Spady (1998) find in their simulations that tests based on LM2 perform

better than those based on LM1. In large samples both have a chi-squared distribution with

degrees of freedom equal to the number of over-identifying restrictions. Again we can use

this test with any efficient estimator for t, and with the Lagrange multipliers based on any

of the discrepancy measures.

Imbens, Spady and Johnson (1998), and Bond, Bowsher and Windmeijer (2001) inves-

tigate through simulations the small sample properties of various of these tests. It appears

that the Lagrange multiplier tests are often more attractive than the tests based on the

average moments, although there is so far only limited evidence in specific models. One can

use the same ideas for constructing confidence intervals that do not directly use the nor-

mal approximation to the sampling distribution of the estimator. See for discussions Smith

(1998) and Imbens and Spady (2002).

6. Computational Issues

The two-step GMM estimator requires two minimizations over a K-dimensional space.

The empirical likelihood estimator in its original likelihood form (5) requires maximization

over a space of dimension K (for the parameter θ) plus N (for the N probabilities), subject

to M+1 restrictions (on the M moments and the adding up restriction for the probabilities).

This is in general a much more formidable computational problem than two optimizations
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in a K-dimensional space. A number of approaches have been attempted to simplify this

problem. Here we disuss three of them in the context of the exponential tilting estimator,

although most of them directly carry over to other members of the Cressie-Read or GEL

classes.

6.1 Solving the First Order Conditions

The first approach we discuss is focuses on the first order conditions and then concentrates

out the probabilities π. This reduces the problem to one of dimension K + M , K for the

parameters of interest and M for the Lagrange multipliers for the restrictions, which is is

clearly a huge improvement, as the dimension of the problem no longer increases with the

sample size. Let µ and t be the Lagrange multipliers for the restrictions
∑

πi = 1 and
∑

πiψ(zi, θ) = 0. The first order conditions for the π’s and θ and the Lagrange multipliers

are

0 = lnπi − 1 − µ+ t′ψ(zi, θ),

0 =
N
∑

i=1

πi
∂ψ

∂θ′
(zi, θ),

0 = exp(µ − 1)
N
∑

i=1

exp (t′ψ(zi, θ) ,

0 = exp(µ − 1)
N
∑

i=1

ψ(zi, θ) · exp (t′ψ(zi, θ)) .

The solution for π is

πi = exp(µ− 1 + t′ψ(zi, θ)).

To determine the Lagrange multipliers t and the parameter of interest θ we only need πi up

to a constant of proportionality, so we can solve

0 =

N
∑

i=1

ψ(zi, θ) exp(t′ψ(zi, θ)), (6)

and

0 =
N
∑

i=1

t′
∂ψ

∂θ
(zi, θ) exp(t′ψ(zi, θ)) (7)
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Solving the system of equations (6) and (7) is not straightforward. Because the probability

limit of the solution for t is zero, the derivative with respect to θ of both first order conditions

converges zero. Hence the matrix of derivatives of the first order conditions converges to

a singular matrix. As a result standard approaches to solving systems of equations can

behave erratically, and this approach to calculating θ̂ has been found to have poor operating

characteristics.

6.2 Penalty Function Approaches

Imbens, Spady and Johnson (1998) characterize the solution for θ and t as

max
θ,t

K(t, θ) subject to Kt(t, θ) = 0, (8)

where K(t, θ) is the empirical analogue of the cumulant generating function:

K(t, θ) = ln

[

1

N

N
∑

i=1

exp(t′ψ(zi, θ)

]

.

They suggest solving this optimization problem by maximizing the unconstrained objective

function with a penalty term that consists of a quadratic form in the restriction:

max
θ,t

K(t, θ) − 0.5 · A ·Kt(t, θ)
′W−1Kt(t, θ), (9)

for some positive definite M × M matrix W , and a positive constant A. The first order

conditions for this problem are

0 = Kθ(t, θ) −A ·Ktθ(t, θ)W
−1Kt(t, θ),

0 = Kt(t, θ) − A ·Ktt(t, θ)W
−1Kt(t, θ).

For A large enough the solution to this unconstrained maximization problem is identical to

the solution to the constrained maximization problem (8). This follows from the fact that the

constraint is in fact the first order condition for K(t, θ). Thus, in contrast to many penalty

function approaches, one does not have to let the penalty term go to infinity to obtain the

solution to the constrained optimization problem, one only needs to let the penalty term
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increase sufficiently to make the problem locally convex. Imbens, Spady and Johnson (1998)

suggest choosing

W = Ktt(t, θ) +Kt(t, θ)Kt(t, θ)
′,

for some initial values for t and θ as the weight matrix, and report that estimates are generally

not sensitive to the choices of t and θ.

6.3 Concentrating out the Lagrange Multipliers

Mittelhammer, Judge and Schoenberg (2001) suggest concentrating out both probabilities

and Lagrange multipliers and then maximizing over θ without any constraints. As shown

above, concentrating out the probabilities πi can be done analytically. Although it is not

in general possible to solve for the Lagrange multipliers t analytically, other than in the

continuously updating case, for given θ it is easy to numerically solve for t. This involves

solving, in the exponential tilting case,

min
t

N
∑

i=1

exp(t′ψ(zi, θ)).

This function is strictly convex as a function of t, with the easy to calculate first and second

derivatives equal to

N
∑

i=1

ψ(zi, θ) exp(t′ψ(zi, θ)),

and

N
∑

i=1

ψ(zi, θ)ψ(zi, θ)
′ exp(t′ψ(zi, θ)),

respectively. Therefore concentrating out the Lagrange multipliers is computationally fast

using a Newton-Raphson algorithm. The resulting function t(θ) has derivatives with respect

to θ equal to:

∂t

∂θ′
(θ) = −

(

1

N

N
∑

i=1

ψ(zi, θ)ψ(zi, θ)
′ exp(t(θ)′ψ(zi, θ)

)−1



Imbens/Wooldridge, Lecture Notes 15, Summer ’07 18

·
(

1

N

N
∑

i=1

∂ψ

∂θ′
(zi, θ) exp(t(θ)′ψ(zi, θ) + ψ(zi, θ)t(θ)

′∂ψ

∂θ′
(zi, θ) exp(t(θ)′ψ(zi, θ))

)

After solving for t(θ), one can solve

max
θ

N
∑

i=1

exp(t(θ)′ψ(zi, θ)). (10)

Mittelhammer, Judge, and Schoenberg (2001) use methods that do not require first deriva-

tives to solve (10). This is not essential. Calculating first derivatives of the concentrated

objective function only requires first derivatives of the moment functions, both directly and

indirectly through the derivatives of t(θ) with respect to θ. In general these are straightfor-

ward to calculate and likely to improve the performance of the algorithm.

In this method in the end the researcher only has to solve one optimization in a K-

dimensional space, with the provision that for each evaluation of the objective function one

needs to numerically evaluate the function t(θ) by solving a convex maximization problem.

The latter is fast, especially in the exponential tilting case, so that although the resulting op-

timization problem is arguably still more difficult than the standard two-step GMM problem,

in practice it is not much slower. In the simulations below I use this method for calculating

the estimates. After concentrating out the Lagrange multipliers using a Newton-Rahpson

algorithm that uses both first and second derivatives, I use a Davidon-Fletcher-Powell algo-

rithm to maximize over θ, using analytic first derivatives. Given a direction I used a line

search algoritm based on repeated quadratic approximations.

7. A Dynamic Panel Data Model

To get a sense of the finite sample properties of the empirical likelihood estimators we

compare some of the GMM methods in the context of the panel data model briefly discussed

in Section 2, using some simulation results from Imbens. The model is

Yit = ηi + θ · Yit−1 + εit,

where εit has mean zero given {Yit−1, Yit−2, . . .}. We have observations Yit for t = 1, . . . , T

and i = 1, . . . , N , with N large relative to T . This is a stylized version of the type of panel



Imbens/Wooldridge, Lecture Notes 15, Summer ’07 19

data models extensively studied in the literature. Bond, Bowsher and Windmeijer (2001)

study this and similar models to evaluate the performance of test statistics based on different

GMM and gel estimators. We use the moments

ψ1t(Yi1, . . . , YiT , θ) =











Yit−2

Yit−3

...
Yi1











·
(

(Yit − Yit−1 − θ · (Yit−1 − Yit−2)
)

.

This leads to t − 2 moment functions for each value of t = 3, . . . , T , leading to a total of

(T − 1) · (T − 2)/2 moments. In addition, under the assumption that the initial condition

is drawn from the stationary long-run distribution, the following additional T − 2 moments

are valid:

ψ2t(Yi1, . . . , YiT , θ) = (Yit−1 − Yit−2) · (Yit − θ · Yit−1).

It is important to note, given the results discussed in Section 4, that the derivatives of these

moments are stochastic and potentially correlated with the moments themselves. As a result

there is potentially a substantial difference between the different estimators, especially when

the degree of overidentification is high.

We report some simulations for a data generating process with parameter values estimated

on data from Abowd and Card (1989) taken from the PSID. See also Card (1994). This data

set contains earnings data for 1434 individuals for 11 years. The individuals are selected

on having positive earnings in each of the eleven years, and we model their earnings in

logarithms. We focus on estimation of the autoregressive coefficient θ.

We then generate artificial data sets to investigate the repeated sampling properties of

these estimators. Two questions are of most interest. First, how do the median bias and

median-absolute-error deteriorate as a function of the degree of over-identification? Here,

unlike in the theoretical discussion in Section 4, the additional moments, as we increase

the number of years in the panel, do contain information, so they may in fact increase

precision, but at the same time one would expect based on the theoretical calculations that

the accuracy of the asymptotic approximations for a fixed sample size deteriorates with the
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number of years. Second, we are interested in the performance of the confidence intervals for

the parameter of interest. In two-stage-least-squares settings it was found that with many

weak instruments the performance of standard confidence intervals varied widely between

liml and two-stage-least-squares estimators. Given the analogy drawn by Hansen, Heaton

and Yaron (1996) between the continuously updating estimator and liml, the question arises

how the confidence intervals differ between two-step GMM and the various Cressie-Read and

GEL estimators.

Using the Abowd-Card data we estimate θ and the variance of the fixed effect and the

idiosyncratic error term. The latter two are estimated to be around 0.3. We then consider

data generating processes where the individual effect ηi has mean zero and standard deviation

equal to 0.3, and the error term has mean zero and standard deviation 0.3. We θ = 0.9 in

the simulations. This is larger than the value in estimated from the Abowd-Card data. We

compare the standard Two-Step GMM estimator and the Exponential Tilting Estimator.

Table 1 contains the results. With the high autoregressive coefficient, θ = 0.9, the two-

step GMM estimator has substantial bias and poor coverage rates.The exponential tilting

estimator does much better with the high autoregressive coefficient. The bias is small, on

the order of 10% of the standard error, and the coverage rate is much closer to the nominal

one.
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Table 1: Simulations, θ = 0.9

Number of time periods
3 4 5 6 7 8 9 10 11

Two-Step GMM
median bias -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
relative median bias -0.02 0.08 0.03 0.08 0.03 0.11 0.08 0.13 0.11
median absolute error 0.04 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01
coverage rate 90% ci 0.88 0.85 0.82 0.80 0.80 0.79 0.78 0.79 0.76
covarage rate 95% ci 0.92 0.91 0.89 0.87 0.85 0.86 0.86 0.88 0.84

Exponential Tilting
median bias 0.00 0.00 0.00 -0.00 0.00 0.00 -0.00 0.00 0.00
relative median bias 0.04 0.09 0.02 -0.00 0.01 0.01 -0.02 0.08 0.13
median absolute error 0.05 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.01
coverage rate 90% ci 0.87 0.86 0.84 0.86 0.88 0.86 0.87 0.88 0.87
covarage rate 95% ci 0.91 0.90 0.90 0.91 0.93 0.92 0.91 0.93 0.93

The relative median bias reports the bias divided by the large sample standard error. All results based on

10,000 replications.
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