
Appendix A Data

This Appendix describes construction of the data used in the application of Section 8.

A.1 Veneto Workers History

Our data come from the Veneto Workers History (VWH) file, which provides social security based

earnings records on annual job spells for all workers employed in the Italian region of Veneto at

any point between the years 1975 and 2001. Each job-year spell in the VWH lists a start date,

an end date, the number of days worked that year, and the total wage compensation received by

the employee in that year. The earnings records are not top-coded. We also observe the gender of

each worker and several geographic variables indicating the location of each employer. See Card,

Devicienti, and Maida (2014) and Serafinelli (2019) for additional discussion and analysis of the

VWH.

We consider data from the years 1984–2001 as prior to that information on days worked tend

to be of low quality. To construct the person-year panel used in our analysis, we follow the sample

selection procedures described in Card, Heining, and Kline (2013). First, we drop employment spells

in which the worker’s age lies outside the range 18–64. The average worker in this sample has 1.21

jobs per year. To generate unique worker-firm assignments in each year, we restrict attention to

spells associated with “dominant jobs” where the worker earned the most in each corresponding

year. From this person-year file, we then exclude workers that (i) report a daily wage less than

5 real euros or have zero days worked (1.5% of remaining person-year observations) (ii) report a

log daily wage change one year to the next that is greater than 1 in absolute value (6%) (iii) are

employed in the public sector (10%) or (iv) have more than 10 jobs in any year or that have gender

missing (0.1%).
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Appendix B Computation

This Appendix describes the key computational aspects of the leave-out estimator θ̂, with an

emphasis on the application to two-way fixed effects models with two time periods discussed in

Example 4 and Section 8.

B.1 Leave-One-Out Connected Set

Existence of θ̂ requires Pii < 1 (see Lemma 1) and the following describes an algorithm which

prunes the data to ensure that Pii < 1. In the two-way fixed effects model of Section 8.2, this

condition requires that the bipartite network formed by worker-firm links remains connected when

any one worker is removed. This boils down to finding workers that constitute cut vertices or

articulation points in the corresponding bipartite network.

The algorithm below takes as input a connected bipartite network G where workers and firms

are vertices. Edges between two vertices correspond to the realization of a match between a worker

and a firm (see Jochmans and Weidner, 2016; Bonhomme, 2017, for discussion). In practice, one

typically starts with a G corresponding to the largest connected component of a given bipartite

network (see, e.g., Card et al., 2013). The output of the algorithm is a subset of G where removal

of any given worker does not break the connectivity of the associated graph.

The algorithm relies on existing functions that efficiently finds articulation points and largest

connected components. In MATLAB such functions are available in the Boost Graph Library and

in R they are available in the igraph package.

Algorithm 1 Leave-One-Out Connected Set

1: function PruningNetwork(G) . G ≡ Connected bipartite network of firms and
workers

2: Construct G1 from G by deleting all workers that are articulation points in G
3: Let G be the largest connected component of G1

4: Return G
5: end function

The algorithm typically completes in less than a minute for datasets of the size considered in

our application. Furthermore, the vast majority of firms removed using this algorithm are only

associated with one mover.

B.2 Leave-Two-Out Connected Set

We also introduced a leave-two-out connected set, which is a subset of the original data such that

removal of any two workers does not break the connectedness of the bipartite network formed by
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worker-firm links. The following algorithm proceeds by applying the idea in Algorithm 1 to each

of the networks constructed by dropping one worker. A crucial difference from Algorithm 1 is that

two workers who do not break connectedness in the input network may break connectedness when

other workers have been removed. For this reason, the algorithm runs in an iterative fashion until

it fails to remove any additional workers.

Algorithm 2 Leave-Two-Out Connected Set

1: function PruningNetwork2(G) . G ≡ Leave-one-out connected bipartite network
of firms and workers

2: a = 1
3: while a > 0 do
4: Gdel = ∅
5: for g = 1, . . . , N do
6: Construct G1 from G by deleting worker g
7: Add all workers that are articulation points in G1 to Gdel
8: end for
9: a = |Gdel|

10: if a > 0 then
11: Construct G1 from G by deleting all workers in Gdel
12: Let G2 be the largest connected component of G1

13: Let G be the output of applying Algorithm 1 to G2

14: end if
15: end while
16: Return G
17: end function

B.3 Computing θ̂

Our proposed leave-out estimator is a function of the 2n quadratic forms

Pii = x′iS
−1
xx xi Bii = x′iS

−1
xxAS

−1
xx xi for i = 1, ..., n.

The estimates reported in Section 8 of the paper rely on exact computation of these quantities. In

our application, k is on the order of hundreds of thousands, making it infeasible to compute S−1
xx

directly. To circumvent this obstacle, we instead compute the k-dimensional vector zi,exact = S−1
xx xi

separately for each i = 1, .., n. That is, we solve separately for each column of Zexact in the system

Sxx
k×k

Zexact
k×n

= X ′
k×n

.
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We then form Pii = x′izi,exact and Bii = z′i,exactAzi,exact. The solution zi,exact is computed via

MATLAB’s preconditioned conjugate gradient routine pcg. In computing this solution, we utilize

the preconditioner developed by Koutis et al. (2011), which is optimized for diagonally dominant

design matrices Sxx. These column-specific calculations are parallelized across different cores using

MATLAB’s parfor command.

B.3.1 Leaving a Cluster Out

Table 3 applies the leave-cluster-out estimator introduced in Remark 3 to estimate the variance of

firm effects with more than two time periods and potential serial correlation. The estimator takes

the form θ̂cluster =
∑n

i=1 yix̃
′
iβ̂−c(i) where β̂−c(i) is the OLS estimator obtained after leaving out

all observations in the cluster to which observation i belongs. A representation of θ̂cluster that is

useful for computation takes the observations in the c-th cluster and collect their outcomes in yc

and their regressors in Xc. The leave-cluster-out estimator is then

θ̂cluster = β̂′Aβ̂ −
C∑
c=1

y′cBc(I − Pc)
−1(yc −Xcβ̂),

where C denotes the total number of clusters, Pc = XcS
−1
xxX

′
c, and Bc = XcS

−1
xxAS

−1
xxX

′
c. Since

the entries of Pc and Bc are of the form Pi` = x′iS
−1
xx x` and Bi` = x′iS

−1
xxAS

−1
xx x`, computation can

proceed in a similar fashion as described earlier for the leave-one-out estimator.

When defining the cluster as a worker-firm match, Table 3 applies θ̂cluster to the two-way fixed

effects model in (6). When defining the cluster as a worker, the individual effects can not be

estimated after leaving a cluster out. Table 3 therefore applies θ̂cluster after demeaning at the

individual level. This transformation removes the individual effects so that the resulting model can

be estimated after leaving a cluster out.

B.3.2 Johnson-Lindenstrauss Approximation

When n is on the order of hundreds of millions and k is on the order of tens of millions, the exact

algorithm may no longer be tractable. The JLA simplifies computation of Pii considerably by only

requiring the solution of p systems of k linear equations. That is, one need only solve for the

columns of ZJLA in the system

Sxx
k×k

ZJLA
k×p

= (RPX)′

k×p
,

which reduces computation time dramatically when p is small relative to n.

To compute Bii, it is necessary to solve linear systems involving both A1 and A2, leading to 2p
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systems of equations when A1 6= A2. However, for variance decompositions like the ones considered

in Section 8.2, the same 2p systems can be reused for all three variance components, leading to a

total of 3p systems of equations for the full variance decomposition. This is so because the three

variance components use the matrices Aψ = A′fAf , Aα,ψ = 1
2(A′dAf + A′fAd), and Aα = A′dAd

where

A′f = 1√
n

 0 0 0

f1 − f̄ . . . fn − f̄
0 0 0

 and A′d = 1√
n

d1 − d̄ . . . dn − d̄
0 0 0

0 0 0

 .

Based on these insights, Algorithm 3 below takes as inputs X, Af , Ad, and p, and returns P̂ii and

three different B̂ii’s which are ultimately used to construct the corresponding variance component

θ̂JLA as defined in Section 1.2.

Algorithm 3 Johnson-Lindenstrauss Approximation for Two-Way Fixed Effects Models

1: function JLA(X,Af ,Ad,p)
2: Generate RB, RP ∈ Rp×n, where (RB, RP ) are composed of mutually independent

Rademacher entries
3: Compute (RPX)′, (RBAf )

′, (RBAd)
′ ∈ Rk×p

4: for κ = 1, . . . , p do
5: Let rκ,0, rκ,1, rκ,2 ∈ Rk be the κ-th columns of (RPX)′, (RBAf )

′, (RBAd)
′

6: Let zκ,` ∈ Rk be the solution to Sxxz = rκ,` for ` = 0, 1, 2
7: end for
8: Construct Z` = (z1,`, . . . , zp,`) ∈ Rk×p for ` = 0, 1, 2

9: Construct P̂ii = 1
p

∥∥Z ′0xi∥∥2
, B̂ii,ψ = 1

p

∥∥Z ′1xi∥∥2
, B̂ii,α = 1

p

∥∥Z ′2xi∥∥2
, B̂ii,αψ =

1
p
(Z ′1xi)

′(Z ′2xi) for i = 1, . . . , n

10: Return {P̂ii, B̂ii,ψ, B̂ii,α, B̂ii,αψ}ni=1

11: end function

B.3.3 Performance of the JLA

Figure B.1 evaluates the performance of the Johnson-Lindenstrauss approximation across 4 VWH

samples that correspond to different (overlapping) time intervals (2000–2001; 1999–2001; 1998–

2001; 1997–2001). The x-axis in Figure B.1 reports the total number of person and firm effects

associated with a particular sample.

Figure B.1 shows that the computation time for exact computation of (Bii, Pii) increases rapidly

as the number of parameters of the underlying AKM model grow; in the largest dataset considered

– which involves more than a million worker and firm effects – exact computation takes about 8

hours. Computation of JLA complete in markedly shorter time: in the largest dataset considered

computation time is less than 5 minutes when p = 500 and slightly over 6 minutes when p = 2500.
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Notably, the JLA delivers estimates of the variance of firm effects almost identical to those computed

via the exact method, with the quality of the approximation increasing for larger p. For instance,

in the largest dataset, the exact estimate of variance of firm effects is 0.028883. By comparison,

the JLA estimate equals 0.028765 when p = 500 and 0.0289022 when p = 2500.

In summary: for a sample with more than a million worker and firm effects, the JLA cuts

computation time by a factor of 100 while introducing an approximation error of roughly 10−4.

B.3.4 Scaling to Very Large Datasets

We now study how the JLA scales to much larger datasets of the dimension considered by Card

et al. (2013) who fit models involving tens of millions of worker and firm effects to German social

security records. To study the computational burden of a model of this scale, we rely on a synthetic

dataset constructed from our original leave-one-out sample analyzed in Column 1 of Table 2, i.e.,

the pooled Veneto sample comprised of wage observations from the years 1999 and 2001. We scale

the data by creating replicas of this base sample. To connect the replicas, we draw at random

10% of the movers and randomly exchange their period 1 firm assignments across replicas. By

construction, this permutation maintains each (replicated) firm’s size while ensuring leave-one-out

connectedness of the resulting network.

Wage observations are drawn from a variant of the DGP described in Section 8.7 adapted to

the levels formulation of the model. Specifically, each worker’s wage is the sum of a rescaled person

effect, a rescaled firm effect, and an error drawn independently in each period from a normal with

variance 1
2 exp(â0 + â1Bgg + â2Pgg + â3 lnLg2 + â4 lnLg1). As highlighted by Figure B.1, computing

the exact estimator in these datasets would be extremely costly. Drawing from a stable DGP allows

us to instead benchmark the JLA estimator against the true value of the variance of firm effects.

Figure B.2 displays the results. When setting p = 250, the JLA delivers a variance of firm

effects remarkably close to the true variance of firm effects defined by our DGP. As expected, the

distance between our approximation and the true variance component decreases with the sample

size for a fixed p. Remarkably, we are able to compute the AKM variance decomposition in a

dataset with approximately 15 million person and year effects in only 35 minutes. Increasing the

number of simulated draws in the JLA to p = 500 delivers estimates of the variance of firm effects

nearly indistinguishable from the true value. This is achieved in approximately one hour in the

largest simulated dataset considered. The results of this exercise strongly suggest the leave-out

estimator can be scaled to extremely large datasets involving the universe of administrative wage

records in large countries such as Germany or the United States.
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Figure B.1: Performance of the JLA Algorithm
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Note: Both panels consider 4 different samples of increasing length. The four samples contain data from

the years 2000–2001, 1999–2001, 1998–2001, and 1997–2001, respectively. The x-axis reports the number of

person and firm effects in each sample. Panel (a) shows the time to compute the KSS estimate when relying

on either exact computation of {Bii, Pii}
n
i=1 or the Johnson-Lindenstrauss approximation (JLA) of these

numbers using a p of either 500 or 2500. Panel (b) shows the resulting estimates and the plug-in estimate.

Computations performed on a 32 core machine with 256 GB of dedicated memory. Source: VWH dataset.



Figure B.2: Scaling to Very Large Datasets
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Note: Both panels consider synthetic datasets created from the pooled Veneto data in column 1 of Table 2

with T = 2. It considers {1, 5, 10, 15, 20} replicas of this sample while generating random links across replicas

such that firm size and T are kept fixed. Outcomes are generated from a DGP of the sort considered in

Table 6. The x-axis reports the number of person and firm effects in each sample. Panel (a) shows the time

to compute the Johnson-Lindenstrauss approximation θ̂JLA using a p of either 250 or 500. Panel (b) shows

the resulting estimates, the plug-in estimate, and the true value of the variance of firm effects for the DGP.

Computations performed on a 32 core machine with 256 GB of dedicated memory. Source: VWH dataset.



B.4 Split Sample Estimators

Sections 4.2 and 5.2 proposed standard error estimators predicated on being able to construct

independent split sample estimators x̂′iβ−i,1 and x̂′iβ−i,2. This section describes an algorithm for

construction of these split sample estimators in the two-way fixed effects model of Example 4. We

restrict attention to the case with Tg = 2 and consider the model in first differences: ∆yg = ∆f ′gψ+

∆εg for g = 1, . . . , N . When worker g moves from firm j to j′, we can estimate ∆f ′gψ = ψj′ − ψj
without bias using OLS on any sub-sample where firms j and j′ are connected, i.e., on any sample

where there exist a path between firm j and j′. To construct two disjoint sub-samples where

firms j and j′ are connected we therefore use an algorithm to find disjoint paths between these

firms and distribute them into two sub-samples which will be denoted S1 and S2. Because it can

be computationally prohibitive to characterize all possible paths, we use a version of Dijkstra’s

algorithm to find many short paths.10

Our algorithm is based on a network where firms are vertices and two firms are connected by

an edge if one or more workers moved between them. This view of the network is the same as the

one taken in Section 7, but different from the one used in Sections B.1 and B.2 where both firms

and workers were viewed as vertices. We use the adjacency matrix A to characterize the network

in this section. To build the sub-samples S1 and S2, the algorithm successively drops workers from

the network, so A−S will denote the adjacency matrix after dropping all workers in the set S.

Given a network characterized by A and two connected firms j and j′ in the network, we let

Ṗjj′(A) denote the shortest path between them.11 If j and j′ are not connected Ṗjj′(A) is empty.

Each edge in the path Ṗjj′(A) may have more than one worker associated with it. For each edge in

Ṗjj′(A) the first step of the algorithm picks at random a single worker associated with that edge

and places them in S1, while later steps place all workers associated with the shortest path in one

of S1 and S2. This special first step ensures that the algorithm finds two independent unbiased

estimators of ∆f ′gψ whenever the network A is leave-two-out connected.

For a given worker g with firm assignments j = j(g, 1), j′ = j(g, 2) and a leave-two-out con-

nected network A the algorithm returns the {Pg`,1, Pg`,2}
N
`=1 introduced in Section 4.2. Specifically,

∆̂f ′gψ−g,1 =
∑N

`=1 Pg`,1∆y` and ∆̂f ′gψ−g,2 =
∑N

`=1 Pg`,2∆y` are independent unbiased estimators of

10The algorithm presented below keeps running until it cannot find any additional paths. In our empirical
implementation we stop the algorithm when it fails to find any new paths or as soon as one of the two
sub-samples reach a size of at least 100 workers. We found that increasing this cap on the sub-sample
size has virtually no effect on the estimated confidence intervals, but tends to increase computation time
substantially.

11Many statistical software packages provide functions that can find shortest paths. In R
they are available in the igraph package while in MATLAB a package that builds on the
work of Yen (1971) is available at https://www.mathworks.com/matlabcentral/fileexchange/

35397-k-shortest-paths-in-a-graph-represented-by-a-sparse-matrix-yen-s-algorithm?

focused=3779015&tab=function.
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∆f ′gψ that are also independent of ∆yg. If A is only leave-one-out connected then the algorithm

may only find one path connecting j and j′. When this happens the algorithm sets Pg`,2 = 0 for all

` as required in the formulation of the conservative standard errors proposed in Appendix C.5.1.

Algorithm 4 Split Sample Estimator for Inference

1: function splitsampleestimator(g, j, j′,A) . A ≡ Leave-one-out connected network

2: Let S1 = ∅ and S2 = ∅
3: For each edge in Ṗjj′(A−g), pick at random one worker from A−g who is associated

with that edge and add that worker to S1

4: Add to S2 all workers from A−{g,S1} who are associated with an edge in Ṗjj′(A−{g,S1})
5: Add to S1 all workers from A−{g,S1,S2} who are associated with an edge in Ṗjj′(A−g)
6: Let stop = 1{Ṗjj′(A−{g,S1,S2}) = ∅} and s = 1

7: while stop < 1 do

8: Add to Ss all workers from A−{g,S1,S2} who are associated with an edge in

Ṗjj′(A−{g,S1,S2})
9: Let stop = 1{Ṗjj′(A−{g,S1,S2}) = ∅} and update s to 1 + 1{s = 1}

10: end while

11: For s = 1, 2 and ` = 1, . . . , N , let Pg`,s = 1{` ∈ Ss}∆f ′`(
∑

m∈Ss ∆fm∆f ′m)†∆fg

12: Return {Pg`,1, Pg`,2}N`=1

13: end function

In line 5, all workers associated with the shortest path in line 3 are added to S1 if they were not

added to S2 in line 4. This step ensures that all workers associated with Ṗjj′(A−g) are used in the

predictions. In line 11, Pg`,s is constructed as the weight observation ` receives in the prediction

∆f ′gψ̂s where ψ̂s is the OLS estimator of ψ based on the sub-sample Ss.

B.5 Test of Equal Firm Effects

This section describes computation and interpretation of the test of the hypothesis that firm effects

for “younger” workers are equal to firm effects for the “older” workers which applies Remark 6 of

the main text.

The hypothesis of interest corresponds to a restricted and unrestricted model which when

written in matrix notation are

∆y = ∆Fψ + ∆ε (9)

∆y = ∆FOψ
O + ∆FY ψ

Y + ∆F3ψ3 + ∆ε = Xβ + ∆ε (10)
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where ∆y and ∆F collects the first differences ∆yg and ∆fg across g. ∆FO represents ∆F for

“doubly connected” firms present in each age group’s leave-one-out connected set interacted with a

dummy for whether the worker is “old”; ∆FY represents ∆F for doubly connected firms interacted

with a dummy for young; ∆F3 represents ∆F for firms that are associated with either younger

movers or older movers but not both. Finally, we let X = (∆FO,∆FY ,∆F3), β = (ψO′, ψY ′, ψ′3)′,

and ψ = (ψO′, ψ′3)′.

The hypothesis in question is ψO − ψY = 0 or equivalently Rβ = 0 for R = [Ir,−Ir, 0] and

r = |J | = dim(ψO). Thus we can create the numerator of our test statistic by applying Remark 6

to (10) yielding

θ̂ = β̂′Aβ̂ −
N∑
g=1

Bggσ̂
2
g (11)

where A = 1
rR
′(RS−1

xxR
′)−1R; Bgg and σ̂2

g are defined as in Section 1.

Two insights help to simplify computation. First, since ∆F ′O∆FY = 0, ∆F ′O∆F3 = 0 and

∆F ′Y ∆F3 = 0, we can estimate equation (10) via two separate regressions, one on the leave-one-

out connected set for younger workers and the other on the leave-one-out connected set for older

workers. We normalize the firm effects so that the same firm is dropped in both leave-one-out

samples.

Second, we note that β̂′Aβ̂ = y′By where

B = XS−1
xxAS

−1
xxX

′ =
PX − P∆F

r
, (12)

PX = XS−1
xxX

′, and P∆F = ∆F (∆F ′∆F )−1∆F ′. Equation (12) therefore implies that Bii in

(11) is simply a scaled difference between two statistical leverages: the first one obtained in the

unrestricted model (10), say PX,gg, and the other on the restricted model of (9), say P∆F,gg. Section

B.3 describes how to efficiently compute these statistical leverages. To conduct inference on the

quadratic form in (11) we apply the routine described in Section 4.2.
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Appendix C Proofs

This Appendix contains all technical details and proofs that where left out of the paper. The

material is primarily presented in the order it appears in the paper and under the same headings.

C.1 Unbiased Estimation of Variance Components

C.1.1 Estimator

Lemma C.1. It follows from the Sherman-Morrison-Woodbury formula that the two representa-

tions of θ̂ given in (1) and (2) are numerically identical, i.e., that β̂′Aβ̂−
∑n

i=1Biiσ̂
2
i =

∑n
i=1 yix̃

′
iβ̂−i

whenever Sxx has full rank and maxi Pii < 1.

Proof. The Sherman-Morrison-Woodbury formula states that if Sxx has full rank and Pii < 1, then

S−1
xx +

S−1
xx xix

′
iS
−1
xx

1− x′iS
−1
xx xi

=
(
Sxx − xix

′
i

)−1
.

Furthermore, we have that x̃′iS
−1
xx xi = xiS

−1
xxAS

−1
xx xi = Bii so

yix̃
′
iβ̂−i = yix̃

′
i

(
Sxx − xix

′
i

)−1∑
6̀=i
x`y` = yix̃

′
iS
−1
xx

∑
`6=i

x`y` +
yix̃
′
iS
−1
xx xix

′
iS
−1
xx

1− x′iS
−1
xx xi

∑
`6=i

x`y`

= yix̃
′
iβ̂ −Biiy

2
i + yiBii x

′
i

S−1
xx

1− x′iS
−1
xx xi

∑
`6=i

x`y`︸ ︷︷ ︸
=x
′
iβ̂−i

= yix̃
′
iβ̂ −Biiyi(yi − x

′
iβ̂−i)

where the last expression equals yix̃
′
iβ̂ − Biiσ̂

2
i . This finishes the proof since β̂′Aβ̂ =

∑n
i=1 yix̃

′
iβ̂.

In the above the Sherman-Morrison-Woodbury formula was also used to establish that

x′iβ̂−i = x′i
(
Sxx − xix

′
i

)−1∑
` 6=i

x`y` = x′i
S−1
xx

1− x′iS
−1
xx xi

∑
`6=i

x`y`,

and from this it follows that yi − x
′
iβ̂−i =

yi − x
′
iβ̂

1− Pii
as claimed in the paper.

C.1.2 Large Scale Computation

All discussions of the computational aspects are collected in Appendix B.

C.1.3 Relation To Existing Approaches

Next we verify that the bias of θ̂HO is a function of the covariation between σ2
i and (Bii, Pii).
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Lemma C.2. The bias of θ̂HO is σ
nBii,σ

2
i

+ SB
n

n−kσPii,σ
2
i

where

σ
nBii,σ

2
i

=
n∑
i=1

Bii(σ
2
i − σ̄

2), σ̄2 =
1

n

n∑
i=1

σ2
i , SB =

n∑
i=1

Bii, σ
Pii,σ

2
i

=
1

n

n∑
i=1

Pii(σ
2
i − σ̄

2).

Proof. Since σ̂2 = 1
n−k

∑n
i=1(yi − x

′
iβ̂)2 = 1

n−k
∑n

i=1

∑n
`=1Mi`εiε` we get that

E[θ̂HO]− θ =

n∑
i=1

Biiσ
2
i −

(
n∑
i=1

Bii

)
1

n− k

n∑
i=1

Miiσ
2
i

=

n∑
i=1

Bii(σ
2
i − σ̄

2)− SB
1

n− k

n∑
i=1

Mii(σ
2
i − σ̄

2)

= σ
nBii,σ

2
i

+ SB
n

n− k
σ
Pii,σ

2
i
.

Comparison to Jackknife Estimators

This subsection compares the leave-out estimator θ̂ to estimators predicated on jackknife bias

corrections. We start by introducing some of the high-level assumptions that are typically used to

motivate jackknife estimators. We then consider some variants of Examples 2 and 3 where these

high-level conditions fail to hold and establish that the jackknife estimators have first order biases

while the leave-out estimator retains consistency.

High-level Conditions Jackknife bias corrections are typically motivated by the high-level as-

sumption that the bias of a plug-in estimator θ̂PI shrinks with the sample size in a known way and

that the bias of 1
n

∑n
i=1 θ̂PI,−i depends on sample size in an identical way, i.e.,

E[θ̂PI] = θ +
D1

n
+

D2

n2 , E

[
1

n

n∑
i=1

θ̂PI,−i

]
= θ +

D1

n− 1
+

D2

(n− 1)2 for some D1,D2. (13)

Under (13), the jackknife estimator θ̂JK = nθ̂PI − n−1
n

∑n
i=1 θ̂PI,−i has a bias of − D2

n(n−1) .

For some long panel settings the bias in θ̂PI is shrinking in the number of time periods T such

that

E[θ̂PI] = θ +
Ḋ1

T
+

Ḋ2

T 2 for some Ḋ1, Ḋ2.

In such settings, it may be that the biases of 1
T

∑T
t=1 θ̂PI,−t and 1

2(θ̂PI,1 + θ̂PI,2) depend on T in an

identical way, i.e.,

E

[
1

T

T∑
t=1

θ̂PI,−t

]
= θ +

Ḋ1

T − 1
+

Ḋ2

(T − 1)2 and E
[

1

2
(θ̂PI,1 + θ̂PI,2)

]
= θ +

2Ḋ1

T
+

4Ḋ2

T 2 .

67



From here it follows that the panel jackknife estimator θ̂PJK = T θ̂PI − T−1
T

∑T
t=1 θ̂PI,−t has a bias

of − Ḋ2
T (T−1) and that the split panel jackknife estimator θ̂SPJK = 2θ̂PI − 1

2(θ̂PI,1 + θ̂PI,2) has a bias

of −2Ḋ2

T
2 , both of which shrink faster to zero than Ḋ1

T if T → ∞. Typical sufficient conditions for

bias-representations of this kind to hold (to second order) are that (i) T → ∞, (ii) the design is

stationary over time, and (iii) that θ̂PI is asymptotically linear (see, e.g., Hahn and Newey, 2004;

Dhaene and Jochmans, 2015). Below we illustrate that jackknife corrections can be inconsistent in

Examples 2 and 3 when (i) and/or (ii) do not hold. Finally we note that θ̂PI (a quadratic function)

need not be asymptotically linear as is evident from the non-normal asymptotic distribution of θ̂

derived in Theorem 3 of this paper.

Examples of Jackknife Failure

Example 2 (Special case). Consider the model

ygt = αg + εgt (g = 1, . . . , N, t = 1, . . . , T ≥ 2),

where σ2
gt = σ2 and suppose the parameter of interest is θ = 1

N

∑N
g=1 α

2
g. For T even, we have the

following bias calculations:

E[θ̂PI] = θ +
σ2

T
, E

[
1

n

n∑
i=1

θ̂PI,−i

]
= θ +

σ2

T
+

σ2

n(T − 1)
,

E

[
1

T

T∑
t=1

θ̂PI,−t

]
= θ +

σ2

T − 1
, E

[
1

2
(θ̂PI,1 + θ̂PI,2)

]
= θ +

2σ2

T
.

The jackknife estimator θ̂JK has a first order bias of − σ
2

T (T−1) , which when T = 2 is as large as

that of θ̂PI but of opposite sign. By contrast, both of the panel jackknife estimators, θ̂PJK and the

leave-out estimator are exactly unbiased and consistent as n→∞ when T is fixed.

This example shows that the jackknife estimator can fail when applied to a setting where the

number of regressors is large relative to sample size. Here the number of regressors is N and the

sample size is NT , yielding a ratio of 1/T and we see that 1/T → 0 is necessary for consistency of

θ̂JK. While the panel jackknife corrections appear to handle the presence of many regressors, this

property disappears in the next example which adds the “random coefficients” of Example 3.

Example 3 (Special case). Consider the model

ygt = αg + xgtδg + εgt (g = 1, . . . , N, t = 1, . . . , T ≥ 3)

where σ2
gt = σ2 and θ = 1

N

∑N
g=1 δ

2
g .
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An analytically convenient example arises when the regressor design is “balanced” across groups

as follows:

(xg1, xg2, . . . , xgT ) = (x1, x2, . . . , xT ),

where x1, x2, x3 take distinct values and
∑T

t=1 xt = 0. The leave-out estimator is unbiased and

consistent for any T ≥ 3, whereas for even T ≥ 4 we have the following bias calculations:

E[θ̂PI] = θ +
σ2∑T
t=1 x

2
t

,

E

[
1

T

T∑
t=1

θ̂PI,−t

]
= θ +

σ2

T

T∑
t=1

1∑
s 6=t(xs − x̄−t)

2 ,

E
[

1

2
(θ̂PI,1 + θ̂PI,2)

]
= θ +

σ2

2
∑T/2

t=1(xt − x̄1)2
+

σ2

2
∑T

t=T/2+1(xt − x̄2)2
,

where x̄−t = 1
T−1

∑
s 6=t xs, x̄1 = 2

T

∑T/2
t=1 xt, and x̄2 = 2

T

∑T
t=T/2+1 xt.

The calculations above reveal that non-stationarity in either the level or variability of xt over

time can lead to a negative bias in panel jackknife approaches, e.g.,

E
[
θ̂SPJK

]
− θ ≤ 2σ2∑T

t=1 x
2
t

− σ2

2
∑T/2

t=1 x
2
t

− σ2

2
∑T

t=T/2+1 x
2
t

≤ 0

where the first inequality is strict if x̄1 6= x̄2 and the second if
∑T/2

t=1 x
2
t 6=

∑T
t=T/2+1 x

2
t . In fact, the

following example

(x1, x2, . . . , xT ) = (−1, 2, 0, . . . , 0,−1)

renders the panel jackknife corrections inconsistent for small or large T :

E[θ̂PJK] = θ − 7/5

6
σ2 +O

(
1

T

)
and E[θ̂SPJK] = θ − 8/5

6
σ2 +O

(
1

T

)
.

Inconsistency results here from biases of first order that are negative and larger in magnitude than

the original bias of θ̂PI (which is σ
2

6 ).

Computations For this special case of example 2 we have that A = IN
N and Sxx = TIN so that

Ã = IN
NT and trace(Ã2) = 1

NT
2 = o(1) which implies consistency of θ̂. Similarly we have that the
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bias of θ̃ is

1

n

N∑
g=1

TgV[α̂g] =
1

n

N∑
g=1

σ2 =
σ2

T
where α̂g =

1

Tg

Tg∑
t=1

ygt.

The same types of calculations lead to the other biases reported in the paper.

For this special case of example 3 we have that A =

[
0 0

0 IN
N

]
and Sxx =

[
TIN 0

0 IN
∑T

t=1 x
2
t

]
which implies that trace(Ã2) = 1

N
(∑T

t=1 x
2
t

)2 = o(1) and therefore consistency of θ̂. Similarly we

have that the bias of θ̃ is

1

n

N∑
g=1

TgV[δ̂g] =
σ2∑T
t=1 x

2
t

where δ̂g =

∑Tg
t=1 xtygt∑T
t=1 x

2
t

.

The same types of calculations lead to the other biases reported above. Now for the numerical

example (x1, x2, . . . , xT ) = (−1, 2, 0, . . . , 0,−1) we have
∑T

t=1 x
2
t = 6,

∑T
t=T/2+1(xt − x̄2)2 = 1− 2

T ,∑T/2
t=1(xt − x̄1)2 = 2

∑T/2
t=1 x

2
t − T x̄

2
1 = 5− 2

T , and

∑
s 6=t

(xs − x̄−t)
2 =


2− 4

T−1 if t = 2,

5− 1
T−1 if t ∈ {1, T},

6 otherwise,

Thus

E[θ̂PJK]− θ =
Tσ2∑T
t=1 x

2
t

− σ2 (T − 1)

T

T∑
t=1

1∑
s 6=t(xs − x̄−t)

2

= σ2T

6
− σ2T − 1

T

(
2

5− 1
T−1

+
1

2− 4
T−1

+
T − 3

6

)

= σ2

(
2

3
− 4

6T
− T − 1

T

2

5− 1
T−1

− T − 1

T

1

2− 4
T−1

)
= − 7

30
σ2 +O

(
1

T

)
and E[θ̂SPJK]− θ =

2σ2∑T
t=1 x

2
t

− σ2

2
∑T/2

t=1(xt − x̄1)2
+

σ2

2
∑T

t=T/2+1(xt − x̄2)2

= σ2

(
1

3
− 1

10− 4
T

− 1

2− 4
T

)
= − 8

30
σ2 +O

(
1

T

)
.
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C.1.4 Finite Sample Properties

Here we provide a restatement and proof of Lemmas 1 and 2 together with a characterization of

the finite sample distribution of θ̂ which was excluded from the main text.

Lemma C.3. Recall that θ∗ = β̂′Aβ̂ −
∑n

i=1Biiσ
2
i .

1. If maxi Pii < 1, then E[θ̂] = θ.

2. Unbiased estimators of θ = β′Aβ exist for all A if and only if maxi Pii < 1.

3. If εi ∼ N (0, σ2
i ), then θ∗ =

∑r
`=1 λ`

(
b̂2` − V[b̂`]

)
and b̂ ∼ N

(
b,V[b̂]

)
.

4. If maxi Pii < 1 and εi ∼ N (0, σ2
i ), then θ̂ =

∑rC
`=1 λ` (C)

(
ŷ2
` − V``

)
where ŷ ∼ N (µ, V ),

µ = Q′CXβ, V = Q′CΣQC , C = (Ci`)i,`, Σ = diag(σ2
1, . . . , σ

2
n), and C = QCDCQ

′
C is a

spectral decomposition of C such that DC = diag(λ1(C), . . . , λrC (C) and rC is the rank of C.

Proof. First note that β̂′Aβ̂ =
∑n

i=1

∑n
`=1Bi`yiy` and σ̂2

i = yi(yi−x
′
iβ̂−i) = yiM

−1
ii

∑n
`=1Mi`y`, so

θ̂ =

n∑
i=1

n∑
`=1

Bi`yiy` −BiiM
−1
ii Mi`yiy`

=

n∑
i=1

n∑
`=1

(
Bi` − 2−1Mi`

(
BiiM

−1
ii +B``M

−1
``

))
yiy` =

n∑
i=1

∑
` 6=i

Ci`yiy`.

The errors are mean zero and uncorrelated across observations, so

E[θ̂] =

n∑
i=1

∑
6̀=i
Ci`x

′
iβx
′
`β =

n∑
i=1

n∑
`=1

Bi`x
′
iβx
′
`β −BiiM

−1
ii Mi`x

′
iβx
′
`β = θ,

since
∑n

i=1

∑n
`=1Bi`xix

′
` = A and

∑n
`=1Mi`x` = 0. This shows the first claim of the lemma.

It suffices to show that no unbiased estimator of β′Sxxβ exist when maxi Pii = 1. Any potential

unbiased estimator must have the representation y′Dy + U where E[U ] = 0 and D = (Di`)i,`

satisfies (i) Dii = 0 for all i and (ii) X ′DX = Sxx for X = (x1, . . . , xn)′. (ii) implies that D must

be D = I + PD̃M +MD̃P +MD̃M for some D̃ where P = (Pi`)i,` and M = (Mi`)i,`. If the exist

a i with Pii = 1, then
∑n

`=1 P
2
i` = Pii yields Mi` = 0 for all ` which implies that Dii must equal 1

to satisfy (ii). However, this makes it impossible to satisfy (i). This shows the second claim.

Recall the spectral decomposition Ã = QDQ′ and definition of b̂ = Q′S1/2
xx β̂ which satisfies that

b̂ ∼ N (b,V[b̂]) when εi ∼ N (0, σ2
i ). We have that θ∗ =

∑r
`=1 λ`

(
b̂2` − V[b̂`]

)
since

β̂′Aβ̂ = β̂′S1/2
xx ÃS

1/2
xx β̂ = b̂′Db̂ =

r∑
`=1

λ`b̂
2
` ,
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and
n∑
i=1

Biiσ
2
i = trace(BΣ) = trace(AV[β̂]) = trace(DV[b̂]) =

r∑
`=1

λ`V[b̂`].

where B = (Bi`)i,`. This shows the third claim.

The matrix C is is well-defined as maxi Pii < 1. Define ŷ = Q′C(y1, . . . , yn)′ which satisfies that

ŷ ∼ N (µ, V ) when εi ∼ N (0, σ2
i ). Furthermore,

θ̂ = y′Cy = ŷ′DC ŷ =

rC∑
`=1

λ`(C)ŷ2
` ,

and Cii = 0 for all i, so that
∑

` λ` (C)V`` = trace(CΣ) = 0. This shows the last claim.

C.1.5 Consistency

The next result provides a restatement and proof of Lemma 3.

Lemma C.4. If Assumption 1 and one of the following conditions hold, then θ̂ − θ p→ 0.

(i) A is positive semi-definite, θ = β′Aβ = O(1), and trace(Ã2) =
∑r

`=1 λ
2
` = o(1).

(ii) A = 1
2(A′1A2 +A′2A1) where θ1 = β′A′1A1β, θ2 = β′A′2A2β satisfy (i).

Proof. Suppose that A is positive semi-definite. The difference between θ̂ and θ is

θ̂ − θ = 2
n∑
i=1

n∑
`=1

Bi`x
′
`βεi +

n∑
i=1

∑
`6=i

Bi`εiε` +
n∑
i=1

Bii(ε
2
i − σ̂

2
i ),

and each term has mean zero so we show that their variances are small in large samples. The

variance of the first term is

4

n∑
i=1

(
n∑
`=1

Bi`x
′
`β

)2

σ2
i ≤ 4 max

i
σ2
i β
′X ′B2Xβ = 4 max

i
σ2
i β
′AS−1

xxAβ ≤ 4 max
i
σ2
i θλ1 = o(1)

where B = (Bi`)i,`, the last inequality follows from positive semi-definiteness of A, and the last

equality follows from θ = O(1) and λ1 ≤ trace(Ã2)1/2 = o(1). The variance of the second term is

2

n∑
i=1

∑
` 6=i

B2
i`σ

2
i σ

2
` ≤ 2 max

i
σ4
i

n∑
i=1

n∑
`=1

B2
i` = 2 max

i
σ4
i trace(Ã2) = o(1).
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Finally, the variance of the third term is

n∑
i=1

(
n∑
`=1

M−1
ll B``Mi`x

′
`β

)2

σ2
i + 2

n∑
i=1

∑
`6=i

M−2
ii B

2
iiM

2
i`σ

2
i σ

2
`

≤ 1

c2 max
i
σ2
i max

i
(x′iβ)2

n∑
i=1

B2
ii +

2

c
max
i
σ4
i

n∑
i=1

B2
ii = o(1)

where miniMii ≥ c > 0 and
∑n

i=1B
2
ii ≤ trace(Ã2) = o(1). This shows the first claim of the lemma.

When A is non-definite, we write A = 1
2

(
A′1A2 +A′2A1

)
and note that

β′AS−1
xxAβ ≤

1

2

(
Θ1λmax(Ã2) +Θ2λmax(Ã1)

)
and trace(Ã2) ≤ trace(Ã2

1)1/2trace(Ã2
2)1/2

where Ã` = S−1/2
xx A′kAkS

−1/2
xx for ` = 1, 2 and λmax(Ã2) is the largest eigenvalue of Ã2. Thus

consistency of θ̂ follows from Θ1 = O(1), Θ2 = O(1), trace(Ã2
1) = o(1), and trace(Ã2

2) = o(1).

The next result provides a restatement and proof of Lemma 4.

Lemma C.5. If Assumption 1, n/p4 = o(1), V[θ̂]−1 = O(n), and one of the following conditions

hold, then V[θ̂]−1/2(θ̂JLA − θ̂ − Bp) = op(1) where |Bp| ≤ 1
p

∑n
i=1 P

2
ii|Bii|σ

2
i .

(i) A is positive semi-definite and E[β̂′Aβ̂]− θ = O(1).

(ii) A = 1
2(A′1A2 +A′2A1) where θ1 = β′A′1A1β, θ2 = β′A′2A2β satisfy (i) and V[θ̂1]V[θ̂2]

nV[θ̂]
2 = O(1).

Proof. Define Bp = 1
p

∑n
i=1Biiσ

2
i

2
∑n
6̀=i P

4
i`−P

2
ii(1−Pii)

2

(1−Pii)
2 . Letting (θ̂JLA − θ̂)2 be a second order ap-

proximation of θ̂JLA − θ̂, we first show that E
[
(θ̂JLA − θ̂)2

]
= Bp and V[(θ̂JLA−θ̂)2]

V[θ̂]
= O(1

p).

Then we finish the proof of the first claim by showing that the approximation error is ignor-

able. The bias bound follows immediately from the equality
∑n

`6=i P
2
i` = Pii(1−Pii) which leads to

0 ≤
∑n
6̀=i P

4
i` ≤ P

2
ii(1− Pii)

2.

We have θ̂JLA − θ̂ = (θ̂JLA − θ̂)2 +AE2 where

(θ̂JLA − θ̂)2 =

n∑
i=1

σ̂2
i

(
Bii − B̂ii − B̂iiâi − B̂ii

(
â2
i −

1

p

3P 3
ii + P 2

ii

1− Pii

))

for âi = P̂ii−Pii
1−Pii

and approximation error

AE2 =
n∑
i=1

σ̂2
i B̂ii

(
1

p

3P̂ 2
ii + P̂ 2

ii − (3P 2
ii + P 2

ii)(1 + âi)
2

(1 + âi)
2(1− Pii)

− â3
i

1 + âi

)
.
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For the mean calculation involving (θ̂JLA − θ̂)2 we use independence between B̂ii, P̂ii, and σ̂2
i ,

unbiasedness of B̂ii, P̂ii, and σ̂2
i , and the variance formula

V[âi] =
2

p

P 2
ii −

∑n
`=1 P

4
i`

(1− Pii)
2 =

1

p

3P 3
ii + P 2

ii

1− Pii
+
P 2
ii(1− Pii)

2 − 2
∑n

` 6=i P
4
i`

p(1− Pii)
2 .

Taken together this implies that

E
[
(θ̂JLA − θ̂)2

]
= −

n∑
i=1

Biiσ
2
i

(
V[α̂i]−

1

p

3P 3
ii + P 2

ii

1− Pii

)
= Bp.

For the variance calculation we proceed term by term. We have for y = (yi, . . . , yn)′ that

V

[
n∑
i=1

σ̂2
i (Bii − B̂ii)

]
= E

[
V

[
n∑
i=1

σ̂2
i B̂ii | y

]]
≤ 2

p

n∑
i=1

n∑
`=1

B2
i`E
[
σ̂2
i σ̂

2
`

]
= O

(
trace(Ã2)

p

)
,

V

[
n∑
i=1

σ̂2
i B̂iiâi

]
= E

[
V

[
n∑
i=1

σ̂2
i B̂iiâi | y,RB

]]
≤ 2

p

n∑
i=1

n∑
`=1

P 2
i`

E[B̂iiB̂``]E[σ̂2
i σ̂

2
` ]

(1−Pii)(1−P``)

= O

(
trace(Ã2)

p
+

trace(Ã2
1)1/2trace(Ã2

2)1/2

p2

)
where Ã` = S−1/2

xx A′`A`S
−1/2
xx for ` = 1, 2,

V

[
n∑
i=1

σ̂2
i B̂ii

(
â2
i − V[âi]

)]
=

n∑
i=1

n∑
`=1

E
[
B̂iiB̂``

]
E
[
σ̂2
i σ̂

2
`

]
Cov

(
â2
i , â

2
`

)
= O

(
trace(Ã2)

p2 +
trace(Ã2

1)1/2trace(Ã2
2)1/2

p3

)

V
[ n∑
i=1

σ̂2
i

(
B̂ii −Bii

)2
∑n
` 6=i P

4
i` − P

2
ii(1− Pii)

2

p(1− Pii)
2

]
= O

(
trace(Ã2)

p3

)

V
[ n∑
i=1

Bii

(
σ̂2
i − σ

2
i

)2
∑n
` 6=i P

4
i` − P

2
ii(1− Pii)

2

p(1− Pii)
2

]
= O

(
V[θ̂]

p2

)

From this it follows that V[θ̂]−1/2
(

(θ̂JLA − θ̂)2 − Bp

)
= op(1) since trace(Ã2) = O(V[θ̂]) and

V[Θ̂1]V[Θ̂2]

p
4V[θ̂]

2 = o(1).

We now treat the approximation error while utilizing that E[â3
i ] = O

(
1

p
2

)
, E[â4

i ] = O
(

1

p
2

)
,

and maxi|âi| = op(log(n)/
√
p) which follows from (Achlioptas, 2003, Theorem 1.1 and its proof).
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Proceeding term by term, we list the conclusions

n∑
i=1

σ̂2
i B̂iiâ

3
i +

n∑
i=1

σ̂2
i B̂iiâ

4
i = Op

(
E[Θ̂1,PI −Θ1] + E[Θ̂2,PI −Θ2]

p2

)
n∑
i=1

σ̂2
i B̂ii

â5
i

1 + âi
= Op

(
log(n)
√
p

E[Θ̂1,PI −Θ1] + E[Θ̂2,PI −Θ2]

p2

)
1

p

n∑
i=1

σ̂2
i B̂ii

3P̂ 2
ii + P̂ 2

ii − (3P 2
ii + P 2

ii)(1 + âi)
2

(1 + âi)
2(1− Pii)

= Op

((
1 +

log(n)
√
p

)
E[Θ̂1,PI −Θ1] + E[Θ̂2,PI −Θ2]

p2

)

which finishes the proof.

C.2 Examples

All mathematical discussions of the examples are collected in Appendix C.7.

C.3 Quadratic Forms of Fixed Rank

The next result provides a restatement and proof of Theorem 1.

Theorem C.1. If Assumption 1 holds, r is fixed, and maxiw
′
iwi = o(1), then

1. V[b̂]−1/2(b̂− b) d−→ N (0, Ir) where b = Q′S1/2
xx β,

2. V[b̂]−1V̂[b̂]
p−→ Ir,

3. θ̂ =
∑r

`=1 λ`

(
b̂2` − V[b̂`]

)
+ op(V[θ̂]1/2),

Proof. The proof has two steps: First, we write θ̂ as
∑r

`=1 λ`

(
b̂2` − V[b̂`]

)
plus an approximation

error which is of smaller order than V[θ̂]. This argument establishes the last two claims of the

lemma. Second, we use Lyapounov’s CLT to show that b̂ ∈ Rr is jointly asymptotically normal.

Decomposition and Approximation From the proof of Lemma 2 it follows that

θ̂ =
r∑
`=1

λ`

(
b̂2` − V[b̂`]

)
+

n∑
i=1

Bii(σ
2
i − σ̂

2
i )

where we now show that the mean zero random variable
∑n

i=1Bii(σ
2
i − σ̂

2
i ) is op(V[θ̂]1/2).

We have

n∑
i=1

Bii(σ̂
2
i − σ

2
i ) =

n∑
i=1

Bii

n∑
`=1

M−1
ii x

′
iβMi`ε` +

n∑
i=1

Bii(ε
2
i − σ

2
i ) +

n∑
i=1

Bii
∑
`6=i

M−1
ii Mi`εiε`.
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The variances of these three terms are

n∑
`=1

σ2
`

(
n∑
i=1

Mi`BiiM
−1
ii x

′
iβ

)2

≤ max
i
σ2
i

n∑
i=1

B2
iiM

−2
ii (x′iβ)2 ≤ max

i
σ2
i max

i
(x′iβ)2M−2

ii ×
n∑
i=1

B2
ii,

n∑
i=1

B2
iiV[ε2

i ] ≤ max
i

E[ε4
i ]×

n∑
i=1

B2
ii,

n∑
i=1

∑
` 6=i

(
B2
iiM

−2
ii +BiiM

−1
ii B``M

−1
``

)
M2
i`σ

2
i σ

2
` ≤ 2 max

i
σ4
iM
−2
ii ×

n∑
i=1

B2
ii.

Furthermore, we have that

V[θ̂]−1
n∑
i=1

B2
ii ≤ max

i
w′iwiV[θ̂]−1

r∑
l=1

λ2
l (Ã) ≤ max

i
w′iwi max

i
σ−4
i = o(1),

so each of the three variances are of smaller order than V[θ̂].

For the second claim it suffices to show that δ(v) := V̂[v
′
b̂]−V[v

′
b̂]

V[v
′
b̂]

= op(1) for all nonrandom

v ∈ Rr with v′v = 1. Let v ∈ Rr be nonrandom with v′v = 1. As above we have that δ(v) =∑n
i=1wi(v)(σ̂2

i − σ
2
i ) is a mean zero variable which is op(1) if

∑n
i=1wi(v)4 = o(1) where wi(v) =

(v
′
wi)

2∑n
i=1 σ

2
i (v
′
wi)

2 . But this follows from

n∑
i=1

wi(v)4 ≤ max
i
σ−4
i max

i
w′iwi = o(1)

where the inequality is implied by maxiw
′
iwi = o(1), v′v = 1, and

∑n
i=1wiw

′
i = Ir.

Asymptotic Normality Next we show that all linear combinations of b̂ are asymptotically normal.

Let v ∈ Rr be a non-random vector with v′v = 1. Lyapunov’s CLT implies that V[v′b̂]−1/2v′(b̂−b) d−→
N(0, 1) if

V[v′b̂]−2
n∑
i=1

E[ε4
i ](v

′Q′S−1/2
xx xi)

4 = V[v′β̃]−2
n∑
i=1

E[ε4
i ](v

′wi)
4 = o(1). (14)

We have that maxiw
′
iwi = o(1) implies (14) since maxi(v

′wi)
2 ≤ maxiw

′
iwi and

n∑
i=1

(v′wi)
2 = 1, V[v′β̃]−1 ≤ max

i
σ−2
i = O(1), max

i
E[ε4

i ] = O(1),

by definition of wi and Assumption 1.
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C.4 Quadratic Forms of Growing Rank

This appendix provides restatements and proofs of Theorems 2 and 3. The proofs relies on an

auxiliary lemma which extends a central limit theorem given in Sølvsten (2019).

C.4.1 A Central Limit Theorem

The proofs of Theorem 2 and Theorem 3 is based on the following lemma. Let {vn,i}i,n be a

triangular array of row-wise independent random variables with E[vn,i] = 0 and V[vn,i] = σ2
n,i, let

{ẇn,i}i,n be a triangular array of non-random weights that satisfy
∑n

i=1 ẇ
2
n,iσ

2
n,i = 1 for all n, and

let (Wn)n be a sequence of symmetric non-random matrices in Rn×n with zeroes on the diagonal

that satisfy 2
∑n

i=1

∑
6̀=iW

2
n,i`σ

2
n,iσ

2
n,` = 1. For simplicity, we drop the subscript n on vn,i, σ

2
n,i,

ẇn,i and Wn. Define

Sn =

n∑
i=1

ẇivi and Un =

n∑
i=1

∑
`6=i

Wi`viv`.

Lemma C.6. If maxi E[v4
i ] + σ−2

i = O(1),

(i) max
i
ẇ2
i = o(1), (ii) λmax(W 2) = o(1),

then (Sn,Un)′
d−→ N (0, I2).

This lemma extends the main result of Appendix A2 in Sølvsten (2019) to allow for {vi}i to

be an array of non-identically distributed variables and presents the conclusion in a way that is

tailored to the application in this paper. The proof requires no substantially new ideas compared

to Sølvsten (2019), but we give it at the end of the next section for completeness.

C.4.2 Limit Distributions

Theorem C.2. If

(i) V[θ̂]−1 max
i

(
(x̃′iβ)2 + (x̌′iβ)2

)
= o(1), (ii)

λ2
1∑r

`=1 λ
2
`

= o(1),

and Assumption 1 holds, then V[θ̂]−1/2(θ̂ − θ) d−→ N (0, 1).

Proof. The proof involves two steps: First, we decompose θ̂ into a weighted sum of two terms of

the type described in Lemma C.6. Second, we use Lemma C.6 to show joint asymptotic normality

of the two terms. The conclusion that θ̂ is asymptotically normal is immediate from there.
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Decomposition The difference between θ̂ and θ is

θ̂ − θ =
n∑
i=1

(
2x̃′iβ − x̌

′
iβ
)
εi +

n∑
i=1

∑
`6=i

Ci`εiε`,

where these two terms are uncorrelated and have variances

VS =
n∑
i=1

(2x̃′iβ − x̌
′
iβ)2σ2

i and VU = 2
n∑
i=1

∑
` 6=i

C2
i`σ

2
i σ

2
` .

Thus we write V[θ̂]−1/2(θ̂ − θ) = ω1Sn + ω2Un where

Sn = V
−1/2
S

n∑
i=1

(
2x̃′iβ − x̌

′
iβ
)
εi, Un = V

−1/2
U

n∑
i=1

∑
`6=i

Ci`εiε`,

ω1 =

√
VS/V[θ̂], ω2 =

√
VU/V[θ̂].

Asymptotic Normality We will argue along converging subsequences. Move to a subsequence

where ω1 converges. If the limit is zero, then V[θ̂]−1/2(θ̂− θ) = ω2Un + op(1) and so it follows from

Result C.2 below and Theorem 2(ii) that θ̂ is asymptotically normal. Thus we consider the case

where the limit of ω1 is nonzero.

In the notation of Lemma C.6 we have

ẇi =

(
2x̃′iβ − x̌

′
iβ
)

V
1/2
S

and Wi` =
Ci`

V
1/2
U

.

For Lemma C.6(i) we have

max
i
ẇ2
i ≤ 4ω−1

1 max
i

(x̃′iβ)2 + (x̌′iβ)2

V[θ̂]
= o(1),

where the last equality follows from Theorem 2(i) and the nonzero limit of ω1.

For Lemma C.6(ii) we show instead that trace(W 4) = o(1). It can be shown that for all n,

trace(C4) ≤ cU · trace(B4) = cU · trace(Ã4) ≤ cUλ
2
1 · trace(Ã2) and VU ≥ cL mini σ

4
i · trace(Ã), where

the finite and nonzero constants cU and cL do not depend on n (but depend on miniMii which is

bounded away from zero). Thus, Assumption 1 implies that

trace(W 4) ≤ cUλ
2
1 · trace(Ã2)

(cL mini σ
4
i · trace(Ã2))2 = O

(
λ2

1

trace(Ã2)

)
= o(1)

where the last equality follows from Theorem 2(ii).
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Theorem C.3. If maxi w
′
iqwiq = o(1), V[θ̂q]

−1 maxi

(
(x̃′iqβ)2 + (x̌′iqβ)2

)
= o(1), and Assumptions

1 and 2 holds, then

1. V[(b̂′q, θ̂q)
′]−1/2

(
(b̂′q, θ̂q)

′ − E[(b̂′q, θ̂q)
′]
)

d−→ N
(
0, Iq+1

)
2. θ̂ =

∑q
`=1 λ`

(
b̂2` − V[b̂`]

)
+ θ̂q + op(V[θ̂]1/2)

for

V[(b̂′q, θ̂q)
′] =

n∑
i=1

 wiqw
′
iqσ

2
i 2wiq

(∑
`6=iCi`qx

′
`β
)
σ2
i

2w′iq

(∑
6̀=iCi`qx

′
`β
)
σ2
i 4

(∑
`6=iCi`qx

′
`β
)2
σ2
i + 2

∑
`6=iC

2
i`qσ

2
i σ

2
`

 ,
Ci`q = Bi`q − 2−1Mi`

(
M−1
ii Biiq +M−1

`` B``q

)
, Bi`q = x′iS

−1/2
xx ÃqS

−1/2
xx x`, Ãq =

∑r
`=q+1 λ`q`q

′
`,

x̃iq =
∑n

`=1Bi`qx`, and x̌iq =
∑n

`=1Mi`M
−1
`` B``qx`.

Proof. The proof involves two steps: First, we write θ̂ as the sum of (1a) a quadratic function

applied to b̂q, (1b) an approximation error which is of smaller order than V[θ̂], and (2) a weighted

sum of two terms, Sn and Un, of the type described in Lemma C.6. Second, we use Lemma C.6 to

show that (b̂′q,Sn,Un)′ ∈ Rq+2 is jointly asymptotically normal.

Decomposition and Approximation We have that

θ̂ =

q∑
`=1

λ`(b̂
2
` − V[b̂`]) + θ̂q + op(V[θ̂]1/2) for θ̂q =

n∑
i=1

∑
` 6=i

Ci`qyiy`

since

β̂′Aβ̂ =

q∑
`=1

λ`b̂
2
` +

n∑
i=1

n∑
`=1

Bi`qyiy`

and
n∑
i=1

Biiσ̂
2
i =

n∑
i=1

Bii1σ
2
i +

n∑
i=1

Biiqσ̂
2
i +

n∑
i=1

Bii,−q(σ̂
2
i − σ

2
i )

=

q∑
`=1

λ`V[b̂`] +

n∑
i=1

Biiqσ̂
2
i + op(V[θ̂]1/2)

where Bii,−q = Bii − Biiq and it follows from maxi w
′
iqwiq = o(1) and the calculations in the proof

of Theorem 1 that the mean zero random variable
∑n

i=1Bii,−q(σ̂
2
i − σ

2
i ) is op(V[θ̂]1/2).

We will further center and rescale θ̂q by writing

V[θ̂q]
−1/2

(
θ̂q − E[θ̂q]

)
= ω1Sn + ω2Un
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where

Sn = V
−1/2
S

n∑
i=1

(
2x̃′iqβ − x̌

′
iqβ
)
εi, Un = V

−1/2
U

n∑
i=1

∑
`6=i

Ci`qεiε`,

VS =
n∑
i=1

(
2x̃′iqβ − x̌

′
iqβ
)2
σ2
i , VU = 2

n∑
i=1

∑
` 6=i

C2
i`qσ

2
i σ

2
` ,

ω1 =

√
VS/V[θ̂q], ω2 =

√
VU/V[θ̂q],

and Un is uncorrelated with both Sn and b̂q.

Asymptotic Normality As in the proof of Theorem 2, we will argue along converging subse-

quences and therefore move to a subsequence where ω1 converges. If the limit is zero, then the

conclusion of the theorem follows from Lemma C.6 applied to (V[v′b̂q]
−1/2(v′b̂q − E[v′b̂q]),Un)′ for

v ∈ Rq with v′v = 1. Thus we consider the case where the limit of ω1 is nonzero.

Next we use Lemma C.6 to show that(
v′b̂q − E[v′b̂q] + uSn

V[b̂q + uSn]1/2
,Un

)′
d−→ N (0, I2)

for any non-random (v′, u)′ ∈ Rq+1 with v′v + u2 = 1. In the notation of Lemma C.6 we have

ẇi =
v′wiq + uV

−1/2
S

(
2x̃′iqβ − x̌

′
iqβ
)

V[b̂q + uSn]1/2
and Wi` =

Ci`q

V
1/2
U

.

A simple calculation shows that V[v′b̂q + uSn] ≥ mini σ
2
i � 0, so maxi ẇ

2
i = o(1) follows from

Theorem 3(i), Theorem 3(ii), and ω1 being bounded away from zero.

Similarly, we have as in the proof of Theorem 2 that

trace(C4
q ) ≤ ctrace(B4

q ) ≤ cλ2
q+1

r∑
`=q+1

λ2
` and V 2

U ≥ ω
−4
2 min

i
σ8
i trace(Ã2)2

for Cq = (Ci`q)i,` and Bq = (Bi`q)i,`, so Assumptions 1 and 2 yield trace(W 4) = o(1).

C.4.3 Proof of a Central Limit Theorem

The proof of Lemma C.6 uses the notation and verifies the conditions of Lemmas A2.1 and A2.2 in

Sølvsten (2019) referred to as SS2.1 and SS2.2, respectively. First, we show marginal convergence

in distribution of Sn and Un. Then, we show joint convergence in distribution of Sn and Un. Let

Vn = (v1, . . . , vn) where {vi}i are as in the setup of Lemma C.6.

Before starting we note that maxi σ
−2
i = O(1) and 2

∑n
i=1

∑
` 6=iW

2
i`σ

2
i σ

2
` = 1 implies that
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trace(W 2) =
∑n

i=1

∑
6̀=iW

2
i` = O(1) and therefore that

λmax(W 2) = o(1)⇔ trace(W 4) = o(1).

Marginal Distributions

Result C.1. maxi E[v4
i ] + σ−2

i = O(1),
∑n

i=1 ẇ
2
i σ

2
i = 1, and Lemma C.6(i) implies that Sn

d−→
N (0, 1).

In the notation of SS2.1 we have,

∆0
iSn = ẇivi and E[Tn |Vn] = 1 + 1

2

n∑
i=1

ẇ2
i (v

2
i − σ

2
i ),

and it follows from maxi E[v4
i ] + σ−2

i = O(1),
∑n

i=1 ẇ
2
i σ

2
i = 1, and Lemma C.6(i) that

E[Tn |Vn]
L1−→ 1,

n∑
i=1

E[(∆0
iSn)2] = 1,

n∑
i=1

E[(∆0
iSn)4] ≤ max

i

E[v4
i ]

σ2
i

ẇ2
i = o(1),

so Result C.1 follows from SS2.1.

Result C.2. maxi E[v4
i ] + σ−2

i = O(1), 2
∑n

i=1

∑
` 6=iW

2
n,i`σ

2
n,iσ

2
n,` = 1, and Lemma C.6(ii) implies

that Un
d−→ N (0, 1).

In the notation of SS2.1 we have,

∆0
iUn = 2vi

∑
6̀=i
Wi`v` and E[Tn |Vn] =

n∑
i=1

∑
`6=i

∑
k 6=i

(vi + σ2
i )Wi`Wikv`vk,

and

n∑
i=1

E[(∆0
iUn)2] = 2,

n∑
i=1

E[(∆0
iUn)4] ≤ 25 max

i
E[v4

i ]
2 max

i
σ−4
i max

i

∑
`6=i

W 2
i`,
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where maxi
∑
6̀=iW

2
i` ≤

√
trace(W 4) = o(1). Now, split E[Tn |Vn]− 1 into three terms

an =
n∑
i=1

∑
` 6=i

σ2
iW

2
i`(v` + v2

` − σ
2
` )

bn = 2

n∑
i=1

∑
6̀=i

∑
k 6=i,`

σ2
kW`kWikviv` +

n∑
i=1

∑
`6=i

W 2
i`vi(v

2
` − σ

2
` )

cn =
n∑
i=1

∑
` 6=i

∑
k 6=i,`

Wi`Wik(v
2
i − σ

2
i )v`vk.

Interlude: Convergence in L1

an, bn, and cn are a linear sum, a quadratic sum, and a cubic sum. We will need to treat similar sums

later, so we record some simple sufficient conditions for their convergence. For brevity, let
∑n

i 6=` =∑n
i=1

∑
6̀=i, and

∑n
i 6= 6̀=k =

∑n
i=1

∑
` 6=i
∑

k 6=i,`, etc. We use the notation ui = (vi1, vi2, vi3, vi4) ∈ R4

to denote independent random vectors in order that the result applies to combinations of vi and

v2
i − σ

2
i as in an, bn, and cn above. For the inferential results we will also treat quartic sums, so we

provide the sufficient conditions here.

Result C.3. Let Sn1 =
∑n

i=1 ωivi1, Sn2 =
∑n

i 6=` ωi`vi1v`2, Sn3 =
∑n

i 6=` 6=k ωi`kvi1v`2vk3, and Sn4 =∑n
i 6= 6̀=k 6=m ωi`kmvi1v`2vk3vm4 where the weights ωi, ωi`, ωi`k, and ωi`km are non-random. Suppose

that E[ui] = 0, maxi E[u′iui] = O(1).

1. If
∑n

i=1 ω
2
i = o(1), then Sn1

L1−→ 0.

2. If
∑n

i 6=` ω
2
i` = o(1), then Sn2

L1−→ 0.

3. If
∑n

i 6= 6̀=k ω
2
i`k = o(1), then Sn3

L1−→ 0.

4. If
∑n

i 6= 6̀=k 6=m ω
2
i`km = o(1), then Sn4

L1−→ 0.

Consider Sn3, the other results follows from the same line of reasoning. In the notation of SS2.2

we have,

∆0
iSn3 = vi1

∑
6̀=i

∑
k 6=i,`

ωi`kv`2vk3 + vi2
∑
` 6=i

∑
k 6=i,`

ω`ikv`1vk3 + vi3
∑
`6=i

∑
k 6=i,`

ω`kiv`1vk2.
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Focusing on the first term we have,

n∑
i=1

E

vi1∑
6̀=i

∑
k 6=i,`

ωi`kv`2vk3

2 ≤ max
i

E[u′iui]
3

n∑
i 6=`6=k

(
ω2
i`k + ωi`kωik`

)

≤ 2 max
i

E[u′iui]
3

n∑
i 6=` 6=k

ω2
i`k,

so the results follows from SS2.2,
∑n

i 6= 6̀=k ω
2
i`k = o(1), and the observation that the last bound also

applies to the other two terms in ∆0
iSn3.

Marginal Distributions, Continued

To see how an
L1−→ 0, bn

L1−→ 0 and cn
L1−→ 0 follows from Result C.3, let W̄i` =

∑n
k=1WikWk` and

note that trace(W 4) =
∑n

i=1

∑n
`=1 W̄

2
i`. We have

n∑
i=1

∑
` 6=i

σ2
`W

2
i`

2

≤ max
i
σ4
i

n∑
i=1

W̄ 2
ii.

n∑
i=1

∑
6̀=i

∑
k 6=i,`

σ2
kW`kWik

2

≤ max
i
σ4
i

n∑
i=1

n∑
`=1

W̄ 2
i`

n∑
i=1

∑
`6=i

W 4
i` = O

(
max
i,`

W 2
i`

)
n∑
i=1

∑
6̀=i

∑
k 6=i,`

W 2
i`W

2
ik = O

max
i

∑
` 6=i

W 2
i`

 ,

all of which are o(1) as trace(W 4) = o(1).

Joint Distribution

Let (u1, u2)′ ∈ R2 be given and non-random with u2
1 + u2

2 = 1. Define Wn = u1Sn + u2Un.

Lemma C.6 follows if we show that Wn
d−→ N (0, 1). In the notation of SS2.1 we have,

∆0
iWn = u1ẇivi + u22vi

∑
` 6=i

Wi`v`
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and

E[Tn |Vn] = u2
1

(
1 + 1

2

n∑
i=1

ẇ2
i (v

2
i − σ

2
i )

)
+ u2

2

n∑
i=1

∑
`6=i

∑
k 6=i

(vi + σ2
i )Wi`Wikv`vk

+ u1u23
n∑
i=1

∑
6̀=i

(v2
i + σ2

i )ẇiWi`vj .

The proofs of Result C.1 and Result C.2 showed that

n∑
i=1

E[(∆0
iWn)2] = O(1),

n∑
i=1

E[(∆0
iWn)4] = o(1)

and that the first two terms of E[Tn |Vn] converge to u2
1 + u2

2 = 1. Thus the lemma follows if we

show that the “conditional covariance”

3
n∑
i=1

∑
`6=i

(v2
i + σ2

i )ẇiWi`vj

converges to 0 in L1. This conditional covariance involves a linear and a quadratic sum so

n∑
i=1

∑
6̀=i
σ2
`w`Wi`

2

≤ max
i
σ4
i max

`
λ2
` (W )

n∑
i=1

ẇ2
i = O(max

`
λ2
` (W ))

n∑
i=1

∑
6̀=i
ẇ2
iW

2
i` ≤

n∑
i=1

∑
`6=i

W 2
i` max

i
ẇ2
i = O(max

i
ẇ2
i )

ends the proof.

C.5 Asymptotic Variance Estimation

This appendix provides restatements and proofs of Lemmas 5 and 6 which establish consistency

of the proposes standard error estimators that rely on sample splitting. Furthermore, it gives ad-

justments to those standard errors that guarantee existence whenever two independent unbiased

estimators of x′iβ cannot be formed. However, these adjustments may provide a somewhat con-

servative assessment of the uncertainty in θ̂ as further investigated in the simulations of Section

8.7.

Lemma C.7. For s = 1, 2, suppose that x̂′iβ−i,s =
∑n

` 6=i Pi`,sy` satisfies
∑n

` 6=i Pi`,sx
′
`β = x′iβ,

Pi`,1Pi`,2 = 0 for all `, and λmax(PsP
′
s) = O(1).

1. If the conditions of Theorem 2 hold and |B| = O(1), then θ̂−θ
V̂[θ̂]

1/2

d−→ N (0, 1).
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2. If the conditions of Theorem 2 hold, then lim infn→∞ P
(
θ ∈

[
θ̂ ± zαV̂[θ̂]1/2

])
≥ 1− α.

Proof. The proof continues in two steps: First, we show that V̂[θ̂] has a positive bias which is of

smaller order than V[θ̂] when |B| = O(1). Second, we show that V̂[θ̂] − E[V̂[θ̂]] = op(V[θ̂]). When

combined with Theorem 2, these conclusions imply the two claims of the lemma.

Bias of V̂[θ̂] For the first term in V̂[θ̂], a simple calculation shows that

E

4
n∑
i=1

∑
6̀=i
Ci`y`

2

σ̃2
i

 = 4
n∑
i=1

∑
`6=i

Ci`x
′
`β

2

σ2
i + 4

n∑
i=1

∑
`6=i

C2
i`σ

2
i σ

2
`

+ 4
n∑
i=1

∑
` 6=i

n∑
m=1

CmiCm`(Pmi,1Pm`,2 + Pmi,2Pm`,1)σ2
i σ

2
`

= V[θ̂] + 2

n∑
i=1

∑
`6=i

C̃i`σ
2
i σ

2
` .

For the second term in V̂[θ̂], we note that if Pik,−`P`k,−i = 0 for all k, then independence between

error terms yield E[σ̂2
i σ

2
` ] = E[σ̂2

i,−`]E[σ̂2
`,−i] = σ2

i σ
2
` . Otherwise if Pi`,1 + Pi`,2 = 0, then

E
[
σ̂2
i σ

2
`

]
= E

εi −∑
j 6=i

Pij,1εj

εi −∑
k 6=i

Pik,2εk

(x′`β + ε`
)ε` −∑

m 6=`
P`m,−iεm


= σ2

i σ
2
` + x′`βE

εi −∑
j 6=i

Pij,1εj

εi −∑
k 6=i

Pik,2εk

∑
m 6=`

P`m,−iεm


where the second term is zero since P`i,−i = 0 and Pij,1Pij,2 = 0 for all j. The same argument

applies with the roles of i and ` reversed when P`i,1 + P`i,2 = 0.

Finally, when (i, `) ∈ B we have

E
[
σ̂2
i σ

2
`

]
=

(
σ2
i

(
σ2
` + ((x` − x̄)′β)2

)
+O

(
1

n

))
1{C̃i`<0}

where the remainder is uniform in (i, `) and stems from the use of ȳ as an estimator of x̄′β. Thus

for sufficiently large n, E[C̃i`σ̂
2
i σ

2
` ] is smaller than C̃i`σ

2
i σ

2
` leading to a positive bias in V̂[θ̂]. This

bias is ∑
(i,`)∈B

C̃i`σ
2
i

(
σ2
` 1{C̃i`>0} + ((x` − x̄)′β)21{C̃i`<0}

)
+O

(
1

n
V[θ̂]

)

which is ignorable when |B| = O(1).

Variability of V̂[θ̂] Now, V̂[θ̂]−E[V̂[θ̂]] involves a number of terms all of which are linear, quadratic,
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cubic, or quartic sums. Result C.3 provides sufficient conditions for their convergence in L1 and

therefore in probability. We have already treated versions of linear, quadratic, and cubic terms

carefully in the proof of Lemma C.6. Thus, we report here the calculations for the quartic terms

(details for the remaining terms can be provided upon request) as they also highlight the role of

the high-level condition λmax(PsP
′
s) = O(1) for s = 1, 2.

The quartic term in 4
∑n

i=1

(∑
6̀=iCi`y`

)2
σ̃2
i is

∑n
i 6=` 6=m 6=k ωi`mkεiε`εmεk where

ωi`mk =

n∑
j=1

CjiCj`Mjm,1Mjk,2 and Mi`,s =

1, if i = `,

−Pi`,s, if i 6= `.

Letting � denote Hadamard (element-wise) product and Ms = In − Ps, we have

n∑
i 6= 6̀=m6=k

ω2
i`mk ≤

n∑
i,`,m,k

ω2
i`mk =

∑
j,j
′

(C2)2
jj
′(M1M

′
1)jj′(M2M

′
2)jj′

= trace
(

(C2 � C2)(M1M
′
1 �M2M

′
2)
)

≤ λmax

(
M1M

′
1 �M2M

′
2

)
trace

(
C2 � C2

)
= O

(
trace

(
C4
))

= o
(
V[θ̂]2

)
where λmax

(
M1M

′
1 �M2M

′
2

)
= O(1) follows from λmax(PsP

′
s) = O(1) and we established the

last equality in the proof of Theorem 2. The quartic term involved in 2
∑n

i=1

∑
`6=i C̃i`σ̂

2
i σ

2
` has

variability of the same order as
∑n

i 6=` 6=m 6=k ωi`mkεiε`εmεk where

ωi`mk = C̃i`Mim,1Mlk,1 +

n∑
j=1

C̃ijMim,1Mjk,1Mj`,2.

Letting C̃ = (C̃i`)i,`, we find that

n∑
i 6=` 6=m 6=k

ω2
i`mk ≤ 2

n∑
i,`

C̃2
i`(M1M

′
1)ii(M2M

′
2)`` + 2

∑
j,j
′

n∑
i

C̃ijC̃ij′(M1M
′
1)ii(M1M

′
1)jj′(M2M

′
2)jj′

= O

 n∑
i,`

C̃2
i` + trace

(
(C̃2 �M1M

′
1)(M1M

′
1 �M2M

′
2)
)

= O
(

trace
(
C̃2
))

.

We have C̃ = C � C + 2(C � P1)′(C � P2) + 2(C � P2)′(C � P1), from which we obtain that

trace(C̃2) = O

((
max
i,`

C2
i` + λmax(C2)

)
trace(C2)

)
= o

(
V[θ̂]2

)

86



where we established the last equality in the proof of Theorem 2.

Section 5.2 proposed standard errors for the case of q > 0, but left a few details to the appendix

since the definitions were completely analogous to the previous lemma. Those definitions are

C̃i`q = C2
i`q + 2

∑n
m=1CmiqCm`q(Pmi,1Pm`,2 + Pmi,2Pm`,1) where Ci`q was introduced in the proof

of Theorem 3 and is of the form Ci`q = Bi`q − 2−1Mi`

(
M−1
ii Biiq +M−1

`` B``q

)
for Bi`q = Bi` −∑q

s=1 λswisw`s.

Furthermore, the proposed standard error estimator relies on

σ̃2
i σ

2
` =



σ̂2
i,−` · σ̂

2
`,−i, if Pik,−`P`k,−i = 0 for all k,

σ̃2
i · σ̂

2
`,−i, else if Pi`,1 + Pi`,2 = 0,

σ̂2
i,−` · σ̃

2
` , else if P`i,1 + P`i,2 = 0,

σ̂2
i,−` · (y` − ȳ)2 · 1{C̃i`q<0}, otherwise.

Lemma C.8. For s = 1, 2, suppose that x̂′iβ−i,s satisfies
∑n

`6=i Pi`,sx
′
`β = x′iβ, Pi`,1Pi`,2 = 0 for all

`, and λmax(PsP
′
s) = O(1) where Ps = (Pi`,s)i,`.

1. If the conditions of Theorem 3 hold and |B| = O(1), then Σ−1
q Σ̂q

p−→ Iq+1.

2. If the conditions of Theorem 3 hold, then lim infn→∞ P
(
θ ∈ Ĉθα,q

)
≥ 1− α.

The following provides a proof of the first claim of this lemma, while we postpone a proof of

the second claim to the end of Appendix C.6.

Proof. The statements V[b̂q]
−1V̂[b̂q]

p−→ Iq and V[θ̂q]
−1V̂[θ̂q]

p−→ 1 follow by applying the arguments

in Theorem C.1 and Lemma C.7. Thus we focus on the remaining claim that

δ(v) :=
Ĉ[v′b̂q, θ̂q]− C[v

′b̂q, θ̂q]

V[v′b̂q]
1/2V[θ̂q]

1/2

p−→ 0 where Ĉ[v′b̂q, θ̂q] = 2
n∑
i=1

v′wiq

∑
`6=i

Ci`qy`

 σ̃2
i

for all non-random v ∈ Rq with v′v = 1.

Unbiasedness of Ĉ[v′b̂q, θ̂q] Since σ̃2
i is unbiased for σ2

i , it follows that

E
[
Ĉ[v′b̂q, θ̂q]

]
= 2

n∑
i=1

v′wiq

∑
6̀=i
Ci`qx

′
`β

σ2
i + 2

n∑
i=1

v′wiq

∑
`6=i

Ci`qE[ε`σ̃
2
i ]

 = C[v′b̂q, θ̂q]

as split sampling ensures that E[ε`σ̃
2
i ] for ` 6= i.
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Variability of Ĉ[v′b̂q, θ̂q] Now, Ĉ[v′b̂q, θ̂q]−C[v
′b̂q, θ̂q] is composed of the following linear, quadratic,

and quartic sums:

n∑
i=1

v′wiq

(ε2
i − σ

2
i

)∑
6̀=i
Ci`qx

′
`β + σ2

i

∑
`6=i

Ci`qε` +
∑
`6=i

Ci`qσ
2
`

∑
k 6=`

(
Mi`,1Mik,2 +Mi`,2Mik,1

)
εk


n∑
i=1

v′wiq

[∑
6̀=i
Ci`qx

′
`β
∑
m

∑
k 6=m

Mim,1Mik,2εmεk +
∑
` 6=i

Ci`qε`

(
ε2
i − σ

2
i

)

+
∑
6̀=i
Ci`q

∑
k 6=`

(
Mi`,1Mik,2 +Mi`,2Mik,1

)
εk

(
ε2
` − σ

2
`

)]
n∑
i=1

v′wiq
∑
` 6=i

Ci`q
∑
m 6=`

∑
k 6=m,`

Mim,1Mik,2ε`εmεk

These seven terms are op(V[v′b̂q]
1/2V[θ̂q]

1/2) by Result C.3 as outlined in the following.

n∑
i=1

(v′wiq)
2

∑
6̀=i
Ci`qx

′
`β

2

= O(max
i

w′iqwiqV[θ̂q]) = o(V[v′b̂q]V[θ̂q])

n∑
`=1

(
n∑
i=1

v′wiqCi`q

)2

= O(λmax(C2
q )V[v′b̂q]) = O(λ2

q+1V[v′b̂q]) = o(V[v′b̂q]V[θ̂q])

n∑
k=1

(
n∑
i=1

v′wiq
∑
`

Ci`qMi`,1Mik,2

)2

= O(max
i

w′iqwiqtrace(CqM1 � CqM1)) = o(V[v′b̂q]V[θ̂q])

n∑
m=1

n∑
k=1

 n∑
i=1

v′wiq
∑
` 6=i

Ci`qx
′
`βMim,1Mik,2

2

= O

 n∑
i=1

(v′wiq)
2

∑
`6=i

Ci`qx
′
`β

2
n∑
i=1

∑
6̀=i
C2
i`q(v

′wiq)
2 = O(max

i
w′iqwiqV[θ̂q])

n∑
k=1

n∑
`=1

(
n∑
i=1

v′wiqCi`qMi`,1Mik,2

)2

= O
(
V[v′b̂q]λmax((Cq �M1)(Cq �M1)′)

)
= o(V[v′b̂q]V[θ̂q])

n∑
`=1

n∑
m=1

n∑
k=1

(
n∑
i=1

v′wiqCi`qMim,1Mik,2

)2

= O
(
V[v′b̂q]λmax(C2

q )
)

C.5.1 Conservative Variance Estimation

The standard error estimators considered in the preceding two lemmas relied on existence of the

independent and unbiased estimators x̂′iβ−i,1 and x̂′iβ−i,2. This part of the appendix creates an

adjustment for observations where these estimators do not exist. The adjustment ensures that one
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can obtain valid inference as stated in the lemma at the end of the subsection.

For observations where it is not possible to create x̂′iβ−i,1 and x̂′iβ−i,2, we construct x̂′iβ−i,1 to

satisfy the requirements in Lemma 6 and set Pi`,2 = 0 for all ` so that x̂′iβ−i,2 = 0. Then we define

Qi = 1{max` P
2
i`,2=0} as an indicator that x̂′iβ−i,2 could not be constructed as an unbiased estimator.

Based on this we let

V̂2[θ̂] = 4
n∑
i=1

∑
`6=i

Ci`y`

2

σ̃2
i,2 − 2

n∑
i=1

∑
`6=i

C̃i`σ̂
2
i σ

2
` 2

where σ̃2
i,2 = (1−Qi)σ̃

2
i +Qi(yi − ȳ)2 and

σ̂2
i σ

2
` 2 =



σ̂2
i,−` · σ̂

2
`,−i, if Pik,−`P`k,−i = 0 for all k and Qi` = Q`i = 0

σ̃2
i · σ̂

2
`,−i, else if Pi`,1 + Pi`,2 = 0 and Qi = Q`i = 0,

σ̂2
i,−` · σ̃

2
` , else if P`i,1 + P`i,2 = 0 and Q` = Qi` = 0,

σ̂2
i,−` · (y` − ȳ)2 · 1{C̃i`<0}, else if Qi` = 0,

(yi − ȳ)2 · σ̂2
`,−i · 1{C̃i`<0}, else if Q`i = 0,

(yi − ȳ)2 · (y` − ȳ)2 · 1{C̃i`<0}, otherwise

where we let Qi` = 1{Pi`,1 6=06=Qi}. The defintion of V̂2[θ̂] is such that V̂2[θ̂] = V̂[θ̂] when two

independent unbiased estimators of x′iβ can be formed for all observations, i.e., when Qi = 0 for

all i.

Similarly, we let

Σ̂q,2 =

n∑
i=1

 wiqw
′
iqσ̂

2
i,2 2wiq

(∑
`6=iCi`qy`

)
σ̃2
i,2

2w′iq

(∑
6̀=iCi`qy`

)
σ̃2
i,2 4

(∑
`6=iCi`qy`

)2
σ̃2
i − 2

∑
` 6=i C̃

2
i`qσ̃

2
i σ

2
` 2


where σ̂2

i,2 = (1−Qi)σ̂
2
i +Qi(yi − ȳ)2 and σ̃2

i σ
2
` 2 is defined as σ̂2

i σ
2
` 2 but using C̃i`q instead of C̃i`.

The following lemma shows that these estimators of the asymptotic variance leads to valid

inference when coupled with the confidence intervals proposed in Sections 4 and 6.

Lemma C.9. Suppose that
∑n
6̀=i Pi`,1x

′
`β = x′iβ, either

∑n
`6=i Pi`,2x

′
`β = x′iβ or max` P

2
i`,2 = 0,

Pi`,1Pi`,2 = 0 for all `, and λmax(PsP
′
s) = O(1) where Ps = (Pi`,s)i,`.

1. If the conditions of Theorem 2 hold, then lim infn→∞ P
(
θ ∈

[
θ̂ ± zαV̂2[θ̂]1/2

])
≥ 1− α.

2. If the conditions of Theorem 3 hold, then lim infn→∞ P
(
θ ∈ Cθα(Σ̂q,2)

)
≥ 1− α.
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The following provides a proof of the first claim of this lemma, while we postpone a proof of

the second claim to the end of Appendix C.6.

Proof. As in the proof of Lemma 5 it suffices to show that V̂2[θ̂] has a positive bias in large samples

and that V̂2[θ̂]− E[V̂2[θ̂]] is op(V[θ̂]). The second claim involves no new arguments relative to the

proof of Lemma 5 and is therefore omitted. Thus we briefly report the positive bias in V̂2[θ̂].

We have that

E
[
V̂2[θ̂]

]
= V[θ̂] + 4

∑
i:Qi=1

∑
` 6=i

Ci`x
′
`β

2

((xi − x̄)′β)2

+ 2
∑

(i,`)∈B1

C̃i`σ
2
i

(
σ2
` 1{C̃i`>0} + ((x` − x̄)′β)21{C̃i`<0}

)
+ 2

∑
(i,`)∈B2

C̃i`σ
2
`

(
σ2
i 1{C̃i`>0} + ((xi − x̄)′β)21{C̃i`<0}

)
+ 2

∑
(i,`)∈B3

C̃i`

(
σ2
i σ

2
` 1{C̃i`>0} +

(
2σ2

i ((x` − x̄)′β)2 + ((xi − x̄)′β(x` − x̄)′β)2
)

1{C̃i`<0}

)
+O

(
1

n
V[θ̂]

)
where the remainder stems from estimation of ȳ and B1, B2, B3 refers to pairs of observations that

fall in each of the three last cases in the definition of σ̂2
i σ

2
` 2.

C.6 Inference with Nuisance Parameters

This Appendix starts by defining curvature and accompanying critical value for a given curvature as

introduced in Section 6. Then it derives the closed form representation of Cθα(Σ̃1) for any variance

matrix Σ̃1 ∈ R2×2 where for general q we have

Cθα(Σ̃q) =

[
min

(ḃ1,...,ḃq ,θ̇q)
′∈Eα(Σ̃q)

q∑
`=1

λ`ḃ
2
` + θ̇q, max

(ḃ1,...,ḃq ,θ̇q)
′∈Eα(Σ̃q)

q∑
`=1

λ`ḃ
2
` + θ̇q

]
and

Eα(Σ̃q) =

{
(b′q, θq)

′ ∈ Rq+1 :

(
b̂q − bq

θ̂q − θq

)′
Σ̃−1
q

(
b̂q − bq

θ̂q − θq

)
≤ z2

α,κ(Σ̃q)

}
.

Finally, it proofs validity of Ĉθα,q = Cθα(Σ̂q) and Cθα(Σ̂q,2) for any fixed q. As for Σ̂q and Σ̂q,2,

we partition Σ̃q into Σ̃q =

[
Ṽ[b̂q] C̃[b̂q, θ̂q]

′

C̃[b̂q, θ̂q] Ṽ[θ̂q]

]
with Ṽ[θ̂q] ∈ R. In Section 6, Ĉθα,q = Cθα(Σ̂q),

Êα,q = Eα(Σ̂q), and κ̂q = κ(Σ̂q).
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C.6.1 Preliminaries

Critical value function For a given curvature κ > 0 and confidence level 1−α, the critical value

function zα,κ is the (1− α)’th quantile of

ρ
(
χq, χ1, κ

)
=

√
χ2
q +

(
χ1 +

1

κ

)2

− 1

κ

where χ2
q and χ2

1 are independently distributed variates from the χ-squared distribution with q and

1 degrees of freedom, respectively. ρ
(
χq, χ1, κ

)
is the Euclidean distance from (χq, χ1) to the circle

with center (0,− 1
κ) and radius 1

κ . The critical value function at κ = 0 is the limit of zα,κ as κ ↓ 0,

which is the (1 − α)’th quantile of a central χ2
1 random variable. See Andrews and Mikusheva

(2016) for additional details.

Curvature The confidence interval Cθα(Σ̃q) inverts hypotheses of the type H0 : θ = c versus

H1 : θ 6= c based on the value of the test statistic

min
bq ,θq :g(bq ,θq ,c)=0

(
b̂q − bq

θ̂q − θq

)′
Σ̃−1
q

(
b̂q − bq

θ̂q − θq

)

where g(bq, θq, c) =
∑q

`=1 λ`ḃ
2
` + θq − c and bq = (ḃ1, . . . , ḃq)

′. This testing problem depends

on the manifold S = {x = Σ̃−1/2
q (bq, θq)

′ : g(bq, θq, c) = 0} for which we need an upper bound

on the maximal curvature. We derive this upper bound using the parameterization x(ẏ) =

Σ̃−1/2
q (ẏ1, . . . , ẏq, c−

∑q
`=1 λ`ẏ

2
` )
′ which maps from Rq to S, is a homeomorphism, and has a Jacobian

of full rank:

dx(ẏ) = Σ̃−1/2
q

[
diag(1, . . . , 1)

−2λ1ẏ1, . . . ,−2λqẏq

]

The maximal curvature of S, κ(Σ̃q), is then given as κ(Σ̃q) = maxẏ∈Rq κẏ where

κẏ = sup
u∈Rq

‖(I − Pẏ)V (u� u)‖
‖dx(ẏ)u‖2

, V = Σ̃−1/2
q

[
0

−2λ1, . . . ,−2λq

]
,

and Pẏ = dx(ẏ)(dx(ẏ)′dx(ẏ))−1dx(ẏ)′. See Andrews and Mikusheva (2016) for additional details.

Curvature when q = 1 In this case the maximization over u drops out and we have

κ(Σ̃1) = max
ẏ∈R

√
V ′V − (v

′
V )

2

v
′
v

v′v
where v = Σ̃

−1/2
1 (1,−2λ1ẏ)′

91



and V = Σ̃
−1/2
1 (0,−2λ1). The value ẏ∗ = − ρ̃Ṽ[θ̂q ]

2λ1Ṽ[b̂1]
for ρ̃ =

C̃[b̂1,θ̂q ]

Ṽ[b̂1]
1/2Ṽ[θ̂q ]

1/2 is both a minimizer of

v′v and (v′V )2, so we obtain that κ(Σ̃1) = 2|λ1|Ṽ[b̂1]

Ṽ[θ̂q ]
1/2

(1−ρ̃2)
1/2 .

Curvature when q > 1 In this case we first maximize over ẏ and then over u. For a fixed u we

want to find

max
ẏ∈Rq

√
V ′uVu − V

′
uPẏVu

v′u,ẏvu,ẏ
, where Vu = Σ̃−1/2

q (0,−2

q∑
`=1

λ`u
2
` ), vu,ẏ = Σ̃−1/2

q (u′,−2u′Dqẏ)′,

and Dq = diag(λ1, . . . , λq). The value for ẏ that solves −2Dqẏ = Ṽ[b̂q]
−1C̃[b̂q, θ̂q] sets PẏVu = 0

and minimizes v′u,ẏvu,ẏ. Thus we obtain

κ(Σ̃q) =
2 maxu∈Rq

|u′Dqu|
u
′Ṽ[b̂q ]

−1
u(

Ṽ[θ̂q]− C̃[b̂q, θ̂q]
′Ṽ[b̂q]

−1C̃[b̂q, θ̂q]
)1/2

=
2| ˙̇λ1(Ṽ[b̂q]

1/2DqṼ[b̂q]
1/2)|(

Ṽ[θ̂q]− C̃[b̂q, θ̂q]
′Ṽ[b̂q]

−1C̃[b̂q, θ̂q]
)1/2

where
˙̇
λ1(·) is the eigenvalue of largest magnitude. This formula simplifies to the one derived above

when q = 1.

C.6.2 Closed Form Representation of Cθ
α(Σ̃1)

An implicit representation of Cθα(Σ̃1) is

Cθα(Σ̃1) =
[
λ1b

2
1,− + θ1,−, λ1b

2
1,+ + θ1,+

]
where b1,± and θ1,± are solutions to

b1,± = b̂1 ± zα,κ(Σ̃1)

(
Ṽ[b̂1](1− ã(b1,±))

)1/2
, (15)

θ1,± = θ̂1 − ρ̃
Ṽ[θ̂1]1/2

Ṽ[b̂1]1/2
(b̂1 − b1,±)± zα,κ(Σ̃1)

(
Ṽ[θ̂1](1− ρ̃2)ã(b1,±)

)1/2
(16)

for ã(ḃ1) =

(
1 +

(
sgn(λ1)κ(Σ̃1)ḃ1

Ṽ[b̂1]
1/2 + ρ̃√

1−ρ̃2

)2
)−1

.

This construction is fairly intuitive. When ρ̂ = 0, the interval has endpoints that combine

λ1

(
b̂1 ± zα,κ(Σ̃1)

(
Ṽ[b̂1](1− ã(b1,±))

)1/2
)2

and θ̂q ± zα,κ(Σ̃1)

(
Ṽ[θ̂q]a(b1,±)

)1/2

where a(ḃ1) estimates the fraction of V[θ̂] that stems from θ̂1 when E[b̂1] = ḃ1. When ρ̂ is non-zero,

Cθα(Σ̃1) involves an additional rotation of (b̂1, θ̂1)′. This representation of Cθα(Σ̃1) is however not
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unique as (15),(16) can have multiple solutions. Thus we derive the representation above together

with an additional side condition that ensures uniqueness and represents b1,± and θ1,± as solutions

to a fourth order polynomial.

Derivation The upper end of Cθα(Σ̃1) is found by noting that maximization over a linear function

in θ1 implies that the constraint must bind at the maximum. Thus we can reformulate the bivariate

problem as a univariate problem

max
(ḃ1,θ̇1)∈Eα(Σ̃1)

λ1ḃ
2
1 + θ̇1 = max

ḃ1

λ1ḃ
2
1 + θ̂1 − ρ̃

Ṽ[θ̂1]
1/2

Ṽ[b̂1]
1/2 (b̂1 − ḃ1) +

√
Ṽ[θ̂1](1− ρ̃2)

(
z2
α,κ(Σ̃1) −

(b̂1−ḃ1)
2

Ṽ[b̂1]

)

where we are implicitly enforcing the constraint on ḃ1 that the term under the square-root is non-

negative. Thus we will find a global maximum in ḃ1 and note that it satisfies this constraint. The

first order condition for a maximum is

2λ1ḃ1 + ρ̃ Ṽ[θ̂1]
1/2

Ṽ[b̂1]
1/2 + b̂1−ḃ1

Ṽ[b̂1]

√
Ṽ[θ̂1](1−ρ̂2)

z
2
α,κ(Σ̃1)

− (b̂1−ḃ1)
2

Ṽ[b̂1]

= 0

which after a rearrangement and squaring of both sides yields (b̂1−ḃ1)
2

Ṽ[b̂1]
= (1 − a(ḃ))z2

α,κ(Σ̃1). This

in turn leads to the representation of b1,± given in (15). All solutions to this equation satisfies the

implicit non-negativity constraint since any solution ḃ satisfies

z2
α,κ(Σ̃1) −

(b̂1 − ḃ1)2

Ṽ[b̂1]
= a(ḃ1)z2

α,κ(Σ̃1) > 0.

A slightly different arrangement of the first order condition reveals the equivalent quartic condition

(b̂1−ḃ1)
2

Ṽ[b̂1]

(
1 +

(
sgn(λ1)κ(Σ̃1)ḃ1

Ṽ[b̂1]
1/2 + ρ̃√

1−ρ̃2

)2
)

=

(
sgn(λ1)κ(Σ̃1)ḃ1

Ṽ[b̂1]1/2
+ ρ̃√

1−ρ̃2

)2

z2
α,κ(Σ̃1) (17)

which has at most four solutions that are given on closed form. Thus the solution b1,+ can be found

as the maximizer of

λ1ḃ
2
1 + θ̂1 − ρ̃

Ṽ[θ̂1]
1/2

Ṽ[b̂1]
1/2 (b̂1 − ḃ1) + zα,κ(Σ̃1)

(
Ṽ[θ̂q]a(ḃ1)

)1/2

among the at most four solutions to (17). More importantly, the maximum is the upper end of
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Cθα(Σ̃1). Now, for the minimization problem we instead have

min
(ḃ1,θ̇1)∈Eα(Σ̃1)

λ1ḃ
2
1 + θ̇1 = min

ḃ1

λ1ḃ
2
1 + θ̂1 − ρ̃

Ṽ[θ̂1]
1/2

Ṽ[b̂1]
1/2 (b̂1 − ḃ1)−

√
Ṽ[θ̂1](1− ρ̃2)

(
z2
α,κ(Σ̃1) −

(b̂1−ḃ1)
2

Ṽ[b̂1]

)

which when rearranging and squaring the first order condition again leads to (17) as a necessary

condition for a minimum. Thus b1,− and the lower end of Cθα(Σ̃1) can be found by minimizing

λ1ḃ
2
1 + θ̂1 − ρ̃

Ṽ[θ̂1]
1/2

Ṽ[b̂1]
1/2 (b̂1 − ḃ1)− zα,κ(Σ̃1)

(
Ṽ[θ̂q]a(ḃ1)

)1/2

over the at most four solutions to (17).

C.6.3 Asymptotic Validity

Lemma C.10. If Σ−1
q Σ̂q

p−→ Iq+1 and the conditions of Theorem 3 hold, then

lim inf
n→∞

P
(
θ ∈ Ĉθα,q

)
≥ 1− α.

Proof. The following two conditions are the inputs to the proof of Theorem 2 in Andrews and

Mikusheva (2016), from which it follows that

lim inf
n→∞

P
(
θ ∈ Ĉθα,q

)
= lim inf

n→∞
P

(
min

(b
′
q ,θq)

′
:g(bq ,θq ,θ)=0

(
b̂q − bq

θ̂q − θq

)′
Σ̂−1
q

(
b̂q − bq

θ̂q − θq

)
≤ z2

α,κ̂q

)
≥ 1− α

where g(bq, θq, θ) =
∑q

`=1 λ`ḃ
2
` + θq − θ and bq = (ḃ1, . . . , ḃq)

′.

Condition (i) requires that Σ̂−1/2
q

(
(b̂′q, θ̂q)

′ − E[(b̂′q, θ̂q)
′]
)

d−→ N
(
0, Iq+1

)
, which follows from

Theorem 3 and Σ−1
q Σ̂q

p−→ Iq+1.

Condition (ii) is satisfied if the conditions of Lemma 1 in Andrews and Mikusheva (2016) are

satisfied. To verify this, take the manifold

S̃ =
{
ẋ ∈ Rq+1 : g̃(ẋ) = 0

}
for

g̃(ẋ) = ẋ′Σ̂1/2
q

[
Dq 0

0 0

]
Σ̂1/2
q ẋ+ (2E[b̂q]

′, 1)

[
Dq 0

0 1

]
Σ̂1/2
q ẋ.

The curvature of S̃ is κ̂, g̃(0) = 0, and g̃ is continuously differentiable with a Jacobian of rank 1.

These are the conditions of Lemma 1 in Andrews and Mikusheva (2016).

Proof of the second claims in Lemmas C.8 and C.9. The proof contains two main parts. One part
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is to establish that the biases of Σ̂q and Σ̂q,2 are positive semidefinite in large samples, and that

E[Σ̂q]
−1Σ̂q − Iq+1 and E[Σ̂q,2]−1Σ̂q,2 − Iq+1 are op(1). These arguments are analogues to those

presented in the proofs of Lemmas C.8 and C.9 and are therefore only sketched. The other part is

to show that this positive semidefinite asymptotic bias in the variance estimator does not alter the

validity of the confidence interval based on it. We only cover Σ̂q,2 as that estimator simplifies to

Σ̂q when the design is sufficiently well-behaved.

Validity First, we let QDQ′ be the spectral decomposition of E[Σ̂q,2]−1/2ΣqE[Σ̂q,2]−1/2. Here,

QQ′ = Q′Q = Iq+1 and all diagonal entries in the diagonal matrix D belongs to (0, 1] in large

samples. Now,

P
(
θ ∈ Cθα(Σ̂q,2)

)
= P

(
min

(b
′
q ,θq)

′
:g(bq ,θq ,θ)=0

(
b̂q − bq

θ̂q − θq

)′
E[Σ̂q,2]−1

(
b̂q − bq

θ̂q − θq

)
≤ z2

α,κ(E[Σ̂q,2])

)
+ o(1)

where the minimum distance statistic above satisfies

min
(b
′
q ,θq)

′
:g(bq ,θq ,θ)=0

(
b̂q − bq

θ̂q − θq

)′
E[Σ̂q,2]−1

(
b̂q − bq

θ̂q − θq

)
= min

x∈S2

(ξ − x)′(ξ − x)

where S2 = {x : x = Q′E[Σ̂q,2]−1/2
(

(b′q, θq)
′ − E[(b̂′q, θ̂q)

′]
)
, g(bq, θq, θ) = 0} and the random vector

ξ = Q′E[Σ̂q,2]−1/2
(

(b̂′q, θ̂q)
′ − E[(b̂′q, θ̂q)

′]
)

has the property that D−1/2ξ
d−→ N (0, Iq+1). From the

geometric consideration in Andrews and Mikusheva (2016) it follows that S2 has curvature of

κ(E[Σ̂q,2]) since curvature is invariant to rotations. Furthermore,

min
x∈S2

(ξ − x)′(ξ − x) ≤ ρ2
(
‖ξ−1‖, |ξ1|, κ(E[Σ̂q,2])

)
≤ ρ2

(
‖(D−1/2ξ)−1‖, |(D

−1/2ξ)1|, κ(E[Σ̂q,2])
)

where ξ = (ξ1, ξ
′
−1)′ and D−1/2ξ = ((D−1/2ξ)1, (D

−1/2ξ)′−1) and the first inequality follows from the

proof of Theorem 1 in Andrews and Mikusheva (2016). Thus

lim inf
n→∞

P
(
θ ∈ Cθα(Σ̂q,2)

)
= lim inf

n→∞
P
(

min
x∈S2

(ξ − x)′(ξ − x) ≤ z2
α,κ(E[Σ̂q,2])

)
≥ lim inf

n→∞
P
(
ρ2
(
χq, χ1, κ(E[Σ̂q,2])

)
≤ z2

α,κ(E[Σ̂q,2])

)
= 1− α

since (‖ξ−1‖, |ξ1|)
d−→ (χq, χ1).

Bias and variability in Σ̂q,2 We finish by reporting the positive semidefinite bias in Σ̂q,2. We
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have that

E
[
Σ̂q,2

]
= Σq +

∑
i:Qi=1

σ2
i

(
wiq

2
∑
6̀=iCi`x

′
`β

)(
wiq

2
∑

`6=iCi`x
′
`β

)′
+

[
0 0

0 B

]
+O

(
1

n
V[θ̂]

)

where

B = 2
∑

(i,`)∈B1

C̃i`qσ
2
i

(
σ2
` 1{C̃i`q>0} + ((x` − x̄)′β)21{C̃i`q<0}

)
+ 2

∑
(i,`)∈B2

C̃i`qσ
2
`

(
σ2
i 1{C̃i`q>0} + ((xi − x̄)′β)21{C̃i`q<0}

)
+ 2

∑
(i,`)∈B3

C̃i`q

(
σ2
i σ

2
` 1{C̃i`q>0} +

(
2σ2

i ((x` − x̄)′β)2 + ((xi − x̄)′β(x` − x̄)′β)2
)

1{C̃i`q<0}

)

for B1, B2, B3 referring to pairs of observations that fall in each of the three last cases in the

definition of σ̃2
i σ

2
` 2.

C.7 Verifying Conditions

Example 1. The only non-immediate conclusions are that:

V[θ̂]−1 max
i

(x̃′iβ)2 = O

(
maxi(x

′
iβ)2/n2

mini σ
2
i trace(Ã2)

)
= O

(
maxi(x

′
iβ)2

r

)

V[θ̂]−1 max
i

(x̌′iβ)2 = O

(
maxi,jM

−2
jj

(
Pjj − 1

n

)2
(x′jβ)2 (

∑n
`=1|Mi`|)

2
/n2

mini σ
2
i trace(Ã2)

)

= O

(
maxi,j(x

′
jβ)2 (

∑n
`=1|Mi`|)

2

r

)
.

Example 2. We first derive the representations of σ̂2
α given in section 2. When there are no

common regressors, the representation in (5) follows from Bii = 1
nTg(i)

(
1− Tg(i)

n

)
and

σ̂2
g =

1

Tg

Tg∑
t=1

ygt

ygt − 1

Tg − 1

∑
s 6=t

ygs

 =
1

Tg

∑
i:g(i)=g

σ̂2
i

which yields that

n∑
i=1

Biiσ̂
2
i =

1

n

N∑
g=1

(
1−

Tg
n

)
σ̂2
g .
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With common regressors, it follows from the formula for block inversion of matrices that

X̃ ′ = AS−1
xx

[
D′

X ′

]
=

1

n

(D′ − d̄1′n) (I −X (X ′(I − PD)X ′
)−1

X ′(I − PD)
)

0


=

1

n

[
D′ − d̄1′n − Γ̂

′X ′(I − PD)

0

]

where D = (d1, . . . , dn)′, X = (xg(1)t(1), . . . , xg(n)t(n))
′, PD = DS−1

dd D
′, 1n = (1, . . . , 1)′, and Sdd =

D′D. Thus it follows that

x̃i =
1

n

(
di − d̄− Γ̂

′(xg(i)t(i) − x̄g(i))
0

)
.

The no common regressors claims are immediate. With common regressors we have

Pi` = T−1
g(i)1{g(i)=g(`)} + n−1(xg(i)t(i) − x̄g(i))

′W−1(xg(`)t(`) − x̄g(`)) = T−1
g(i)1{i=`} +O(n−1)

where W = 1
n

∑N
g=1

∑T
t=1(xgt − x̄g)(xgt − x̄g)

′ so Pii ≤ C < 1 in large samples. The eigenvalues of

Ã are equal to the eigenvalues of

1

n

(
IN − nS

−1/2
dd d̄d̄′S

−1/2
dd

)(
IN +

1

n
S

1/2
dd D

′XW−1X ′DS
−1/2
dd

)
which in turn satisfies that c1

n ≤ λ` ≤
c2
n for ` = 1, . . . , N − 1 and c2 ≥ c1 > 0 not depending on n.

w′iwi = O(Pii) so Theorem 1 applies when N is fixed and ming Tg →∞. Finally,

max
i

V[θ̂]−1(x̃′iβ)2 = O

(
maxg,t α

2
g + ‖xgt‖

2 1
n

∑n
i=1‖xg(i)t(i)‖

2σ2
α

N

)

max
i

V[θ̂]−1(x̌′iβ)2 = O

(
maxi,j(x

′
jβ)2 (

∑n
`=1|Mi`|)

2

N

)

and
∑n

`=1|Mi`| = O(1) so Theorem 2 applies when N →∞.

We finish this example with a setup where an unbalanced panel leads to a bias and inconsistency

in θ̂HO. Consider

ygt = αg + εgt (g = 1, . . . , N, t = 1, . . . , Tg)

where N is even, (Tg = 2,E[ε2
gt] = 2σ2) for g ≤ N/2 and (Tg = 3,E[ε2

gt] = σ2) for g > N/2, and the
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estimand is,

θ =
1

n

N∑
g=1

Tgα
2
g where n =

N∑
g=1

Tg =
5N

2
.

Here we have that Ã = IN/n and trace(Ã2) = N/n2 = o(1) as n → ∞ so the leave-out estimator

is consistent. Furthermore,

nBii = Pii =

1
2 , if i ≤ N,
1
3 , otherwise,

σ2
i =

2σ2, if i ≤ N,

σ2, otherwise,

so

E[θ̃]− θ =

n∑
i=1

Biiσ
2
i =

σ2

n

(
N +

N

2

)
=

3σ2

5
,

E[θ̂HO]− θ = σ
nBii,σ

2
i

+ SB
n

n−N
σ
Pii,σ

2
i

=
2σ2

50
+

2

3
× 2σ2

50
=
σ2

15
.

Example 3. Ã is diagonal with N diagonal entries of 1
n

Tg
Szz,g

, so λg = 1
n

Tg
Szz,g

for g = 1, . . . , N .

trace(Ã2) ≤ λ1
ming Szz,g

1
n

∑N
g=1 Tg = O(λ1). maxiw

′
iwi = maxg,t

(zgt−z̄g)
2

Szz,g
= o(1) when ming Szz,g →

∞. Furthermore, V[θ̂]−1 = O(n
2

N ), so

V[θ̂]−1 max
i

(x̃′iβ)2 = O

(
max
g,t

z2
gtδ

2
g

NSzz,g

)
= o(1),

and Mi` = 0 if g(i) 6= g(`) so

V[θ̂]−1 max
i

(x̌′iβ)2 = O

max
g

(
n
∑

i:g(i)=g Bii√
N

)2
 = O

max
g

(
Tg√
NSxx,g

)2
 = o(1)

both under the condition that N →∞ and
√
NSxx,1
T1

→∞. Used above:

Pi` = T−1
g(i)1{g(i)=g(`)} +

(zg(i)t(i) − z̄g(i))(zg(i)t(`) − z̄g(i))
Szz,g(i)

1{g(i)=g(`)}

Bii =
1

n

zg(i)t(i) − z̄g(i)
Szz,g(i)

Tg(i)

Szz,g(i)
.
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Finally,

max
i

w′iqwiq = max
t

(z1t − z̄1)2

Szz,1
= o(1)

V[θ̂q]
−1 max

i
(x̃′iqβ)2 = O

(
max
g≥2,t

z2
gtδ

2
g

NSzz,g

)
= o(1),

V[θ̂q]
−1 max

i
(x̌′iqβ)2 = O

max
g≥2

(
Tg√
NSxx,g

)2
 = o(1)

under the conditions that
√
N
T2
Szz,2 →∞ and Szz,1 →∞. Thus, Theorem 3 applies when

√
N
T1
Szz,1 =

O(1).

Example 4. Let ḟi = (1{j(g,t)=0}, f
′
i)
′ = (1{j(g,t)=0},1{j(g,t)=1}, . . . ,1{j(g,t)=J})

′ and define the

following partial design matrices with and without dropping ψ0 from the model:

Sff =

n∑
i=1

fif
′
i , Sḟ ḟ =

n∑
i=1

ḟiḟ
′
i , S∆f∆f =

N∑
g=1

∆fg∆f
′
g, S∆ḟ∆ḟ =

N∑
g=1

∆ḟg∆ḟ
′
g,

where ∆ḟg = ḟi(g,2) − ḟi(g,1). Letting Ḋ be a diagonal matrix that holds the diagonal of S∆ḟ∆ḟ we

have that

E = ḊS−1

ḟ ḟ
and L = Ḋ−1/2S∆ḟ∆ḟ Ḋ

−1/2.

S∆ḟ∆ḟ is rank deficient with S∆ḟ∆ḟ1J+1 = 0 from which it follows that the non-zero eigenval-

ues of E1/2LE1/2 (which are the non-zero eigenvalues of S−1

ḟ ḟ
S∆ḟ∆ḟ ) are also the eigenvalues of

S∆f∆f (S−1
ff + 1J1

′
J

Sḟ ḟ ,11
). Finally, from the Woodbury formula we have that Aff is invertible with

A−1
ff = n(Sff − nf̄ f̄

′)−1 = n

(
S−1
ff + n

S−1
ff f̄ f̄

′S−1
ff

1− nf̄ ′S−1
ff f̄

)
= n

(
S−1
ff +

1J1
′
J

Sḟ ḟ ,11

)
,

so

λ` = λ`(AffS
−1
∆f∆f ) =

1

λJ+1−`(S∆f∆fA
−1
ff )

=
1

nλJ+1−`(E
1/2LE1/2)

.

With Ejj = 1 for all j, we have that

λ2
1∑J

`=1 λ
2
`

=
λ̇−2
J∑J

`=1 λ̇
−2
`

≤ 4

(
√
Jλ̇J)2
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since λ̇` ≤ 2 (Chung, 1997, Lemma 1.7). An algebraic definition of Cheeger’s constant C is

C = min
X⊆{0,...,J}:

∑
j∈X Ḋjj≤ 1

2

∑J
j=0 Ḋjj

−
∑

j∈X
∑

k/∈X S∆ḟ∆ḟ ,jk∑
j∈X Ḋjj

and it follows from the Cheeger inequality λ̇J ≥ 1 −
√

1− C2 (Chung, 1997, Theorem 2.3) that
√
Jλ̇J →∞ if

√
JC → ∞.

For the stochastic block model we consider J odd and order the firms so that the first (J+1)/2

firms belongs to the first block, and the remaining firms belong to the second block. We assume

that ∆ḟg is generated i.i.d. across g according to

∆ḟ = W(1−D) + BD

where (W,B,D) are mutually independent, P (D = 1) = 1−P (D = 0) = pb ≤ 1
2 , W is uniformly dis-

tributed on {v ∈ RJ+1 : v′1J+1 = 0, v′v = 2,maxj vj = 1, v′c = 0}, and B is uniformly distributed

on {v ∈ RJ+1 : v′1J+1 = 0, v′v = 2,maxj vj = 1, (v′c)2 = 4} for c = (1′(J+1)/2,−1
′
(J+1)/2)′. In this

model Ejj = 1 for all j. The following lemma characterizes the large sample behavior of S∆ḟ∆ḟ

and L. Based on this lemma it is relatively straightforward (but tedious) to verify the high-level

conditions imposed in the paper.

Lemma C.11. Suppose that log(J)
npb

+ J log(J)
n → 0 as n→∞ and J →∞. Then∥∥∥∥L† J+1

n S∆ḟ∆ḟ − IJ+1 +
1J+11

′
J+1

J+1

∥∥∥∥ = op (1) and

∥∥∥∥L†L − IJ+1 +
1J+11

′
J+1

J+1

∥∥∥∥ = op (1)

where L = IJ+1−
1J+11

′
J+1

J+1 −(1−2pb)
cc
′

J+1 and ‖·‖ returns the largest singular value of its argument.

Additionally, max` λ̇
−1
`

∣∣∣λ̇` − λ̇`∣∣∣ = op(1) where λ̇1 ≥ · · · ≥ λ̇J are the non-zero eigenvalues of L†.

Proof. First note that

J+1
n E[S∆ḟ∆ḟ ]− L = 2+2pb

J−1

(
IJ+1 −

1J+11
′
J+1

J+1 − cc
′

J+1

)
+ 4pb

J−1
cc
′

J+1 ,

and L† = IJ+1 −
1J+11

′
J+1

J+1 −
(

1− 1
2pb

)
cc
′

J+1 , so

∥∥∥∥L† J+1
n E[S∆ḟ∆ḟ ]− IJ+1 +

1J+11
′
J+1

J+1

∥∥∥∥ =

∥∥∥∥2+2pb
J−1

(
IJ+1 −

1J+11
′
J+1

J+1 − cc
′

J+1

)
+ 2

J−1
cc
′

J+1

∥∥∥∥
= 2+2pb

J−1

100



Therefore, we can instead show that ‖S‖ = op(1) for the zero mean random matrix

S = (L†)1/2 J+1
n

(
S∆ḟ∆ḟ − E[S∆ḟ∆ḟ ]

)
(L†)1/2 =

N∑
g=1

sgs
′
g − E[sgs

′
g]

where sg =
√

J+1
n ∆ḟg −

√
2pb−1√
2pbn

∆ḟ ′gc
c√
J+1

. Now since

s′gsg = O

(
J

n
+

1

npb

)
and

∥∥∥∥∥∥
N∑
g=1

E[sgs
′
gsgs

′
g]

∥∥∥∥∥∥ = O

(
J

n
+

1

npb

)

it follows from (Oliveira, 2009, Corollary 7.1) that P(‖S‖ ≥ t) ≤ 2(J + 1)e
−
t
2
(Jn+ 1

npb
)

c(8+4t) for some

constant c not depending on n. Letting t ∝
√

log(J/δn)
npb

+ J log(J/δn)
n for δn that approaches zero

slowly enough that log(J/δn)
npb

+ J log(J/δn)
n → 0 yields the conclusion that ‖S‖ = op(1).

Since L = Ḋ−1/2S∆ḟ∆ḟ Ḋ
−1/2 the second conclusion follows from the first if ‖J+1

n Ḋ − IJ+1‖ =

op(1). We have J+1
n E[Ḋ] = IJ+1 and J+1

n Ḋjj = J+1
n

∑N
g=1(∆ḟ ′gej)

2 where ej is the j-th basis vector

in RJ+1 and P((∆ḟ ′gej)
2 = 1) = 1−P((∆ḟ ′gej)

2 = 0) = 2
J+1 . Thus it follows from V(J+1

n Ḋjj) ≤ 2J+1
n

and standard exponential inequalities that ‖J+1
n Ḋ − IJ+1‖ = maxj |J+1

n Ḋjj − 1| = op(1) since
J log(J)

n → 0.

Finally, we note that

∥∥∥∥L†L − IJ+1 +
1J+11

′
J+1

J+1

∥∥∥∥ ≤ ε implies

v′Lv(1− ε) ≤ v′Lv ≤ v′Lv(1 + ε)

which together with the Courant-Fischer min-max principle yields (1− ε) ≤ λ̇j
λ̇j
≤ (1 + ε).

Next, we will verify the high-level conditions of the paper in a model that uses n
J+1L in place

of S∆ḟ∆ḟ and 1
nL
† in place of Ã and n

J+1IJ+1 in place of Ḋ. Using an underscore to denote objects

from this model we have

max
g
P gg = max

g

J+1
n ∆ḟ ′gL

†∆ḟg = 2J+1
n + 2 (1−2pb)

npb
= o(1),

trace(Ã
2
) =

trace((L†)2)

n2 =
J − 1

n2 +
1

4(npb)
2 = o(1),

λ2
1∑J

`=1 λ
2
`

=
1

λ̇
2
Jtrace((L†)2)

=
1

(J − 1)4p2
b + 1
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which is o(1) if and only if
√
Jpb →∞, and

λ
2
2∑J

`=1 λ
2
`

≤ 1
J . Furthermore,

max
g

w2
g1 = max

g

(
c′(L†)1/2∆ḟg√

n

)2

=

(
2√

2pbn

)2

=
2

npn
= o(1),

max
g

(x̃′gβ)2 = max
g

(
1

n
ψ′L†∆ḟg

)2

≤ 2

n2

[
max
g

(∆ḟ ′gψ)2 +

(
1− 1

2pb

)2

(ψ̄cl,1 − ψ̄cl,2)2

]

= O

(
1

n2 +
1

(npb)
2

)

which is o
(
V[θ̂]

)
if
√
Jpb →∞ as trace(Ã

2
) = O(V[θ̂]) and

max
g

(x̃′g1β)2 = max
g

(
1

n
ψ′∆ḟg

)2

= O

(
1

n2

)
= o

(
V[θ̂]

)
.

Finally,

max
g

(x̌′gβ)2 = O

 N∑
g=1

B2
gg

 = O

(
max
g
Bggtrace(Ã)

)
where

max
g
Bgg = max

g
∆ḟ ′g

J + 1

n2 (L†)2∆ḟg = 2
J + 1

n2 +
1− 4p2

b

(npb)
2 = O

(
trace(Ã2)

)
trace(Ã) =

J − 1

n
+

1

2pbn
= o(1)

so maxg Bggtrace(Ã) = O(trace(Ã2))o(1).

Finally, we use the previous lemma to transfer the above results to their relevant sample ana-

logues.

max
g
|Pgg − P gg| = max

g
|∆ḟ ′g(S

†
∆ḟ∆ḟ

− J+1
n L

†)∆ḟg|

= J+1
n max

g

∣∣∣∆ḟ ′g(L†)1/2
(
L1/2 n

J+1S
†
∆ḟ∆ḟ

L1/2 − IJ+1 +
1J+11

′
J+1

J+1

)
(L†)1/2∆ḟg

∣∣∣
= O

(∥∥∥L† J+1
n S∆ḟ∆ḟ − IJ+1 +

1J+11
′
J+1

J+1

∥∥∥)max
g

P gg = o

(
max
g

P gg

)
∣∣∣trace(Ã2 − Ã2

)
∣∣∣ =

∣∣∣∣∣
J∑
`=1

1

n2λ̇2
`

− 1

n2λ̇
2

`

∣∣∣∣∣ = trace(Ã
2
)O

(
max
`

∣∣∣∣∣ λ̇` − λ̇`λ̇`

∣∣∣∣∣
)

= op

(
trace(Ã

2
)
)

∣∣∣∣∣ λ2
1∑J

`=1 λ
2
`

− λ2
1∑J

`=1 λ
2
`

∣∣∣∣∣ =
λ2

1∑J
`=1 λ

2
`

O

 |λ̇J − λ̇J |
λ̇J

+

∣∣∣trace(Ã
2 − Ã2)

∣∣∣
trace(Ã

2
)

 = op(1)
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with a similar argument applying to λ
2
2∑J

`=1 λ
2
`

− λ
2
2∑J

`=1 λ
2
`

. Furthermore,

max
g

w2
g1 = max

g

(
∆ḟg(

J+1
n L

†)1/2(L n
J+1S

†
∆ḟ∆ḟ

)1/2q1

)2

≤ ‖(L n
J+1S

†
∆ḟ∆ḟ

)1/2‖max
g

P gg = op(1)

and maxg|(x̃
′
gβ)2 − (x̃′gβ)2| = op(trace(Ã2)) since

max
g

(x̃′gβ − x̃
′
gβ)2 = J+1

n
2 max

g

(
∆ḟ ′gL

†
(
LS∆ḟ∆ḟ Ḋ − IJ+1 +

1J+11
′
J+1

J+1

)
ψ√
J+1

)2

≤
∥∥∥LS∆ḟ∆ḟ Ḋ − IJ+1 +

1J+11
′
J+1

J+1

∥∥∥max
g

Bgg
‖ψ‖2

J + 1

= op(trace(Ã2))

and this also handles maxi|(x̃
′
g1β)2 − (x̃′g1β)2| = op(1) as the previous result does not depend on

the behavior of
√
Jpb. Finally,

max
g
|Bgg −Bgg| =

J + 1

n2 max
g

∣∣∣∆ḟ ′gL† ( n
J+1LS

†
∆ḟ∆ḟ

ḊS†
∆ḟ∆ḟ

L − IJ+1 +
1J+11

′
J+1

J+1

)
L†∆ḟg

∣∣∣
≤
∥∥∥ n
J+1LS

†
∆ḟ∆ḟ

J+1
n Ḋ n

J+1S
†
∆ḟ∆ḟ

L − IJ+1 +
1J+11

′
J+1

J+1

∥∥∥max
g

Bgg

= op(max
g

Bgg)∣∣∣trace(Ã− Ã)
∣∣∣ =

∣∣∣∣∣
J∑
`=1

1

nλ̇`
− 1

nλ̇`

∣∣∣∣∣ = trace(Ã)O

(
max
`

∣∣∣∣∣ λ̇` − λ̇`λ̇`

∣∣∣∣∣
)

= op

(
trace(Ã)

)
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