Supplemental Results Appendix and PAP Report ("Supplement"):

Destructive Behavior, Judgment, and Economic Decision-making under Thermal Stress

Ingvild Almås, Maximilian Auffhammer, Tessa Bold, Ian Bolliger, Aluma Dembo, Solomon Hsiang, Shuhei Kitamura, Edward Miguel, and Robert Pickmans

Not for publication

Contents

A	ppen	dices	3
\mathbf{F}	Pre	-specified analyses	3
	F.1	Description	3
	F.2	Results with primary outcomes	5
	F.3	Results with additional outcomes	20
	F.4	Fairness, alternate specification	32
\mathbf{G}	Rob	oustness checks	33
	G.1	Description	33
	G.2	Risk outcome: alternative specifications	35
	G.3	Joy of Destruction: engagement in any destruction	38
	G.4	Joy of Destruction: share of ethnicities in room	39
	G.5	Selected outcomes: by ethnicity (Nairobi only)	40
	G.6	Primary outcomes: suspecting treatment	44
	G.7	Selected outcomes: accounting for share of male participants in room	48
	G.8	Selected outcomes: including session fixed effects	63
	G.9	Selected outcomes: accounting for outside weather	77

F Pre-specified analyses

F.1 Description

Adhering strictly to the pre-analysis plan, Supplement Section F.2 features the same specifications noted earlier, with covariates found to be unbalanced across treatment arms included in the regression specifications. To determine these covariates, we performed Student's t-test to check for balance across treatment arms on: 1) self-reported weight; 2) self-reported height; 3) age; 4) gender; 5) area of origin (Xlab) or ethnicity (Busara Center); 6) father's occupation status; 7) mother's occupation status; 8) combined parental income; 9) father's highest level of education; and 10) mother's highest level of education.¹. As shown in Appendix Table C.1, self-reported weight was found to be unbalanced at the .01 level in Nairobi. Thus, the heterogeneity specification and Nairobi specification include participant self-reported weight with imputed values from site sample means for missing values, as well as an indicator variable for whether weight data was not entered by the participant.

As pre-specified, for each specification within Supplement Section F.2, multiple hypothesis testing adjustments are performed on two sets of p-values: 1) the set associated with Heat, across primary outcomes; 2) within the heterogeneity specification, separately for each primary outcome, the set associated with the interaction between Heat and Male and the interaction between Heat and Nairobi.² Although the California and Nairobi specifications were not pre-specified, they have adjustments in an analogous fashion to the main specification. Exact p-values for treatment effects associated with primary outcomes and generated through 10,000 permutations, as pre-specified, are included, as are multiple testing adjusted FDR q-value significance levels based on those p-values. At the end of Supplement Section F.2 is a table (Table F.2.13) containing results from tests of overall significance on the 10 primary outcomes for which this is possible (thus, excluding the outcomes for Patience and Time Inconsistency), as well as p-values derived from randomization inference.³ Although the tests were only pre-specified for the set of coefficients associated with Heat in the main specification, the set of coefficients associated with the interaction between Male and Heat in the heterogeneity specification, and the set of coefficients associated with the interaction between Nairobi and Heat in the heterogeneity specification, this table also includes results for the set of coefficients associated with Heat in the heterogeneity specification as well as for the sets of coefficients associated with Heat from the site-specific specifications, which was not pre-specified.

¹To facilitate interpretation and to be able to conduct the balance check as intended, several of these variables were recast. Education for both the mother and father became indicator variables for having university education, occupation status for both the mother and father became indicator variables for taking on either self-employment or wage work, and combined parental income became an indicator for parents earning \$24,000 a year (PPP adjusted). Residency status and ethnicity were site-specific questions, with the former only asked in California and the latter in Nairobi.

²For the Charitable donation outcome, the latter set also includes the interaction between Heat and being matched with an ingroup charity. Additionally, although the pre-analysis plan specified that the risk measure outcome would be a categorical variable indicating coin choice from menu A, both interpretation and accounting for multiple hypothesis testing motivated the primary outcome for risk to be defined as the variance of the coin toss in menu A.

³Table F.2.14 contains results from test of overall significance, excluding the Joy of Destruction.

Supplement Section F.3 follows a similar format to Supplement Section F.2, but instead examines additional outcomes. As pre-specified, these outcomes do not feature any adjustments for multiple hypothesis testing. Moreover, no joint-tests of significance are calculated. In the pre-analysis plan, an alternative specification featuring additional covariates was also laid out for estimating the Fairness outcome, and was to be included if the alternative specification led to far more precise estimates. Supplement Section F.4 uses the same four preferred specifications as above but also includes an indicator for being part of the "high" (=1) or "low" (=0) group as well as the number of correct sliders.

F.2 Results with primary outcomes

Table F.2.1: Precision task

	(4)	(2)	(2)	(4)
	(1)	(2)	(3) California	(4)
	Pooled	Pooled	Camorma	Nairobi
Heat	0.516	0.700	0.590	0.367
	$(0.049)^*$	(0.106)	(0.083)	(0.346)
	[0.384]	[0.875]	[0.457]	[1.000]
	$\{0.051\}$	$\{0.109\}$	$\{0.080\}$	$\{0.355\}$
	$\langle 0.379 \rangle$	$\langle 0.836 \rangle$	$\langle 0.418 \rangle$	$\langle 1.000 \rangle$
Male	1.974	1.991	1.892	1.791
	$(0.000)^{**}$	$(0.000)^{**}$	$(0.000)^{**}$	$(0.000)^{**}$
$Male \times Heat$		-0.256		
		(0.593)		
		[1.000]		
		$\{0.596\}$		
		$\langle 1.000 \rangle$		
Nairobi	-11.19	-11.11		
	$(0.000)^{**}$	$(0.000)^{**}$		
Nairobi \times Heat		-0.104		
		(0.837)		
		[1.000]		
		$\{0.838\}$		
		$\langle 1.000 \rangle$		
Weight		0.0131		0.0517
O -		(0.262)		$(0.017)^*$
Weight originally missing		-0.298		-0.182
The state of the s		(0.485)		(0.853)
Outcome control mean	17.95	17.95	23.63	12.99
R-squared	0.549	0.550	0.0630	0.0347
Observations	1878	1878	874	1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Exact p-values are included in curly brackets, and Multiple testing adjusted FDR q-value significance levels based on those p-values are included in triangle brackets. "Weight" refers to self-reported weight (in kg) and "Weight originally missing" is an indicator variable for whether weight data was not entered by the participant. The precision task is also known as the slider task. The outcome in this table is the number of correct sliders made in three minutes. Final earnings from the precision task are based off either being weakly above (high) or below (low) the median within treatment cohort. The median pair is randomly assigned to high or low. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table F.2.2: Fairness

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	$ \begin{array}{c} -0.0167 \\ (0.170) \\ [0.618] \\ \{0.176\} \\ \langle 0.654 \rangle \end{array} $	-0.0200 (0.272) [0.875] {0.278} $\langle 0.836 \rangle$	$ \begin{array}{c} -0.0245 \\ (0.114) \\ [0.457] \\ \{0.114\} \\ \langle 0.459 \rangle \end{array} $	-0.00966 (0.597) [1.000] {0.599} \langle 1.000\rangle
Male	-0.0407 (0.001)**	-0.0300 (0.091)	-0.0783 (0.000)**	-0.00492 (0.783)
$Male \times Heat$		-0.0117 (0.611) $[1.000]$ $\{0.600\}$ $\langle 1.000 \rangle$		
Nairobi	0.0337 $(0.012)^*$	0.0224 (0.217)		
Nairobi × Heat		0.0185 (0.439) $[1.000]$ $\{0.444\}$ $\langle 1.000 \rangle$		
Weight		-0.000596 (0.282)		-0.000216 (0.825)
Weight originally missing		0.00288 (0.896)		0.0119 (0.795)
Outcome control mean R-squared Observations	0.318 0.0102 1878	0.318 0.0111 1878	0.309 0.0323 874	0.326 0.000637 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Exact p-values are included in curly brackets, and Multiple testing adjusted FDR q-value significance levels based on those p-values are included in triangle brackets. "Weight" refers to self-reported weight (in kg) and "Weight originally missing" is an indicator variable for whether weight data was not entered by the participant. Fairness here refers to the real effort dictator game, where the level of endowment is determined by the number of correct sliders made in the precision task. The outcome in this table is the share of joint earnings (2400 tokens in the high group, 1200 tokens in the low group) that each participant desires to give to the anonymous partner. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table F.2.3: Risk-taking

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-1.835 (0.929) [1.000] {0.881} $\langle 1.000 \rangle$	2.747 (0.926) $[0.876]$ $\{0.928\}$ $\langle 0.910 \rangle$	-5.553 (0.858) [0.850] {0.862} \langle 0.889\rangle	-0.768 (0.978) [1.000] {0.979} \langle 1.000 \rangle
Male	163.6 (0.000)**	156.6 (0.000)**	316.8 (0.000)**	13.32 (0.657)
$Male \times Heat$		-19.68 (0.659) $[1.000]$ $\{0.656\}$ $\langle 1.000 \rangle$		
Nairobi	-116.3 (0.000)**	-112.9 (0.001)**		
Nairobi × Heat		8.760 (0.848) $[1.000]$ $\{0.848\}$ $\langle 1.000 \rangle$		
Weight		2.068 (0.052)		1.824 (0.327)
Weight originally missing		-2.641 (0.948)		58.83 (0.483)
Outcome control mean R-squared Observations	366.3 0.0396 1878	366.3 0.0417 1878	409.0 0.112 874	329.1 0.00258 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Exact p-values are included in curly brackets, and Multiple testing adjusted FDR q-value significance levels based on those p-values are included in triangle brackets. "Weight" refers to self-reported weight (in kg) and "Weight originally missing" is an indicator variable for whether weight data was not entered by the participant. The outcome in this table is the variance of the coin toss from menu A, in tokens. Note that the expected value is not constant across each coin, so that the outcome does not capture the trade-off between expected value and variance. Note also that under this approach, Coin 7 will be as good as Coin 5, even though Coin 5 strictly dominates Coin 7 with expected utility. * p < .05, ** p < .01; + p < .05, ++ p < .05, ++

Table F.2.4: Rational choice violation I

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-0.00431 (0.561) [1.000] {0.568} $\langle 1.000 \rangle$	-0.00277 (0.818) [0.876] {0.826} $\langle 0.910 \rangle$	-0.00455 (0.687) [0.846] {0.679} ⟨0.740⟩	-0.00409 (0.678) [1.000] {0.693} \langle 1.000
Male	0.00268 (0.725)	0.00299 (0.809)	$0.00540 \\ (0.627)$	0.000123 (0.992)
$Male \times Heat$		$ \begin{array}{c} -0.00403 \\ (0.804) \\ [1.000] \\ \{0.813\} \\ \langle 1.000 \rangle \end{array} $		
Nairobi	0.0000607 (0.993)	0.00158 (0.890)		
Nairobi × Heat		0.000988 (0.950) $[1.000]$ $\{0.951\}$ $\langle 1.000 \rangle$		
Weight		0.000248 (0.545)		0.0000118 (0.987)
Weight originally missing		0.0181 (0.314)		0.00351 (0.904)
Outcome control mean R-squared Observations	0.0277 0.000259 1878	0.0277 0.00130 1878	0.0275 0.000499 874	0.0279 0.000182 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Exact p-values are included in curly brackets, and Multiple testing adjusted FDR q-value significance levels based on those p-values are included in triangle brackets. "Weight" refers to self-reported weight (in kg) and "Weight originally missing" is an indicator variable for whether weight data was not entered by the participant. The outcome in this table is an indicator of transitivity violation using both menus A & B. A transitivity violation comes from choosing two coins in the interior region of the intersection of both menus, where it is not the case that it can be said that one preferring coin A to coin B and then preferring coin B to coin C implies that one prefers coin A to coin C. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table F.2.5: Patience

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	$ \begin{array}{c} -0.00005823 \\ (0.854) \\ [1.000] \\ \{0.859\} \\ \langle 1.000 \rangle \end{array} $	$ \begin{array}{c} -0.00005823 \\ (0.854) \\ [0.876] \\ \{0.859\} \\ \langle 0.910 \rangle \end{array} $	$ \begin{array}{c} -0.00060946 \\ (0.093) \\ [0.457] \\ \{0.080\} \\ \langle 0.418 \rangle \end{array} $	0.00096101 (0.279) $[1.000]$ $\{0.291\}$ $\langle 1.000 \rangle$
Heat (Male)		$ \begin{array}{c} -0.0002442 \\ (0.702) \\ [0.541] \\ \{0.705\} \\ \langle 0.537 \rangle \end{array} $		
Heat (Nairobi)		0.00157046 (0.102) $[0.256]$ $\{0.104\}$ $\langle 0.264 \rangle$		
Outcome control mean Observations	$0.9938358 \\ 6612$	0.9938358 6612	$0.9937076 \\ 3200$	0.9939217 3412

Note: Standard errors clustered at the individual level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. For (1) and (2), "Heat" refers to the difference between the aggregate delta statistics for the treatment and control groups, divided by the square root of the sum of squared standard errors. For (2), "Heat (Male)" refers to the difference between the aggregate delta statistics for male treatment and control groups, subtracting the difference between the aggregate delta statistics for female treatment and control groups, and then dividing by the square root of the sum of squared standard errors. "Heat (Nairobi)" refers to the difference between the aggregate delta statistics for Nairobi treatment and control groups, subtracting the difference between the aggregate delta statistics for California treatment and control groups, and then dividing by the square root of the sum of squared standard errors. (3) and (4) carry out a similar estimation to "Heat" for (1) and (2) but for the California sample and Nairobi sample, respectively. Exact p-values are included in curly brackets, and Multiple testing adjusted FDR q-value significance levels based on those p-values are included in triangle brackets. Given that the non-linear least squares specification used to measure patience does not incorporate interaction terms, we instead use p-values from analogous differences in this table for multiple testing adjustments. Also note that the non-linear least squares specification does not allow for controls for self-reported weight, and thus the results (aside from the q-values) are similar to those in Appendix Table D.1.5. The outcome in this table is the aggregate δ statistic from the non-linear least squares specification featured in Andreoni et al. (2015), carried out at the individual-choice level. δ is the daily discount factor between two future days. For comparability with regression results, individuals who did not respond "Female" or "Male" to the gender survey question were dropped (2% of the sample). Before estimation of aggregate parameters, individuals who never altered their decision from a specific corner solution in all convex time budgets were dropped (as they provided insufficient variation for the calculation of utility parameters) as were individuals who exhibited generalized axiom of revealed preference (GARP) violations. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table F.2.6: Time inconsistency

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	$0.00048029 (0.961) [1.000] \{0.960\} \langle 1.000 \rangle$	0.00048029 (0.961) $[0.876]$ $\{0.960\}$ $\langle 0.910 \rangle$	$ \begin{array}{c} -0.00878209 \\ (0.489) \\ [0.850] \\ \{0.494\} \\ \langle 0.740 \rangle \end{array} $	0.0179143 (0.487) $[1.000]$ $\{0.479\}$ $\langle 1.000 \rangle$
Heat (Male)		$ \begin{array}{c} -0.00824147 \\ (0.673) \\ [1.000] \\ \{0.675\} \\ \langle 1.000 \rangle \end{array} $		
Heat (Nairobi)		0.02669638 (0.353) $[1.000]$ $\{0.348\}$ $\langle 1.000 \rangle$		
Outcome control mean Observations	1.001042 6612	1.001042 6612	$0.9886241 \\ 3200$	1.05313 3412

Note: Standard errors clustered at the individual level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. For (1) and (2), "Heat" refers to the difference between the aggregate beta statistics for the treatment and control groups, divided by the square root of the sum of squared standard errors. For (2), "Heat (Male)" refers to the difference between the aggregate beta statistics for male treatment and control groups, then subtracting the difference between the aggregate beta statistics for female treatment and control groups, and then dividing by the square root of the sum of squared standard errors. "Heat (Nairobi)" refers to the difference between the aggregate beta statistics for Nairobi treatment and control groups, subtracting the difference between the aggregate beta statistics for California treatment and control groups, and then dividing by the square root of the sum of squared standard errors. (3) and (4) carry out a similar estimation to "Heat" for (1) and (2) but for the California sample and Nairobi sample, respectively. Note that the effects presented above are multiplied by -1, so that a positive difference reflects more time inconsistency. Exact p-values are included in curly brackets, and Multiple testing adjusted FDR q-value significance levels based on those p-values are included in triangle brackets. Given that the non-linear least squares specification used to measure patience does not incorporate interaction terms, we instead use p-values from analogous differences in this table for multiple testing adjustments. Also note that the non-linear least squares specification does not allow for controls for self-reported weight, and thus the results (aside from the q-values) are similar to those in Appendix Table D.1.6. The outcome in this table is the aggregate β statistic from the non-linear least squares specification featured in Andreoni et al. (2015), carried out at the individual-choice level. β measures present bias, and values less than 1 denote time inconsistency. For comparability with regression results, individuals who did not respond "Female" or "Male" to the gender survey question were dropped (2\% of the sample). Before estimation of aggregate parameters, individuals who never altered their decision from a specific corner solution in all convex time budgets were dropped (as they provided insufficient variation for the calculation of utility parameters) as were individuals who exhibited generalized axiom of revealed preference (GARP) violations. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table F.2.7: Trust

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	0.00780 (0.617) $[1.000]$ $\{0.623\}$ $\langle 1.000 \rangle$	-0.0362 (0.147) $[0.875]$ $\{0.155\}$ $\langle 0.836 \rangle$	-0.0215 (0.377) $[0.759]$ $\{0.377\}$ $\langle 0.740 \rangle$	0.0332 (0.113) $[0.603]$ $\{0.112\}$ $\langle 0.594 \rangle$
Male	0.0699 (0.000)**	0.0537 $(0.020)^*$	0.0582 $(0.020)^*$	0.0812 (0.000)**
Male × Heat		0.0358 (0.224) $[0.289]$ $\{0.231\}$ $\langle 0.282 \rangle$		
Nairobi	-0.137 (0.000)**	-0.165 (0.000)**		
Nairobi × Heat		0.0464 (0.162) $[0.289]$ $\{0.166\}$ $\langle 0.282 \rangle$		
Weight		-0.000348 (0.667)		-0.000229 (0.851)
Weight originally missing		-0.0623 (0.018)*		-0.106 (0.045)*
Outcome control mean R-squared Observations	0.417 0.0465 1878	0.417 0.0514 1878	0.495 0.00804 874	0.348 0.0261 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Exact p-values are included in curly brackets, and Multiple testing adjusted FDR q-value significance levels based on those p-values are included in triangle brackets. "Weight" refers to self-reported weight (in kg) and "Weight originally missing" is an indicator variable for whether weight data was not entered by the participant. The outcome in this table is the share of endowed tokens (out of 600) entrusted to the other person in the first round of the trust game. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table F.2.8: Public contribution

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-8.923 (0.647) [1.000] {0.592} \langle 1.000\rangle	-37.37 (0.253) $[0.875]$ $\{0.251\}$ $\langle 0.836 \rangle$	-36.88 (0.213) $[0.520]$ $\{0.213\}$ $\langle 0.474 \rangle$	13.39 (0.610) $[1.000]$ $\{0.614\}$ $\langle 1.000 \rangle$
Male	38.11 (0.067)	$23.20 \\ (0.423)$	9.059 (0.762)	60.31 (0.045)*
$Male \times Heat$		2.465 (0.947) $[0.900]$ $\{0.950\}$ $\langle 0.902 \rangle$		
Nairobi	-170.5 (0.000)**	-198.0 (0.000)**		
Nairobi \times Heat		48.25 (0.223) $[0.807]$ $\{0.221\}$ $\langle 0.825 \rangle$		
Weight		1.372 (0.218)		0.707 (0.639)
Weight originally missing		-146.1 (0.000)**		-190.9 (0.000)**
Outcome control mean R-squared Observations	529.7 0.0383 1878	529.7 0.0471 1878	629.6 0.00184 874	442.5 0.0149 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Exact p-values are included in curly brackets, and Multiple testing adjusted FDR q-value significance levels based on those p-values are included in triangle brackets. "Weight" refers to self-reported weight (in kg) and "Weight originally missing" is an indicator variable for whether weight data was not entered by the participant. Public contribution here refers to the public goods game. The outcome in this table is the amount of tokens (out of 1200) put into the shared fund. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table F.2.9: Fluid intelligence

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	0.0150 (0.061) $[0.384]$ $\{0.056\}$ $\langle 0.379 \rangle$	-0.0102 (0.368) [0.875] {0.372} \langle 0.836	0.000858 (0.919) $[0.850]$ $\{0.969\}$ $\langle 0.939 \rangle$	0.0259 (0.045)* [0.332] {0.047}* $\langle 0.346 \rangle$
Male	0.0176 $(0.045)^*$	0.00575 (0.662)	0.0207 $(0.012)^*$	$0.01000 \\ (0.508)$
$Male \times Heat$		0.0272 (0.095) $[0.236]$ $\{0.091\}$ $\langle 0.241 \rangle$		
Nairobi	-0.127 (0.000)**	-0.138 (0.000)**		
Nairobi \times Heat		0.0201 (0.207) $[0.236]$ $\{0.216\}$ $\langle 0.241 \rangle$		
Weight		-0.000205 (0.622)		0.000950 (0.266)
Weight originally missing		0.00892 (0.508)		0.0275 (0.398)
Outcome control mean R-squared Observations	0.862 0.121 1878	0.862 0.124 1878	0.935 0.00787 874	0.799 0.00770 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Exact p-values are included in curly brackets, and Multiple testing adjusted FDR q-value significance levels based on those p-values are included in triangle brackets. "Weight" refers to self-reported weight (in kg) and "Weight originally missing" is an indicator variable for whether weight data was not entered by the participant. Fluid intelligence is measured through Raven's Progressive Matrices. The outcome in this table is the share of six matrices answered correctly. Each puzzle answered correctly yields an Airtime Voucher worth 50 KSh (or an Amazon Gift Card worth 1 dollar in the California sample), which provides the earnings to be used for the next module. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table F.2.10: Joy of Destruction

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	0.0234 (0.069) $[0.384]$ $\{0.069\}$ $\langle 0.379 \rangle$	-0.0203 (0.161) [0.875] {0.165} $\langle 0.836 \rangle$	-0.0409 $(0.004)^{**}$ $[0.053]$ $\{0.003\}^{**}$ $\langle 0.038 \rangle^{+}$	0.0801 $(0.000)^{**}$ $[0.001]^{++}$ $\{0.000\}^{**}$ $\langle 0.003 \rangle^{++}$
Male	0.0369 (0.001)**	0.0662 (0.000)**	0.0252 (0.106)	0.0506 (0.003)**
Male × Heat		-0.0517 $(0.016)^*$ $[0.009]^{++}$ $\{0.017\}^*$ $\langle 0.009 \rangle^{++}$		
Nairobi	0.113 (0.000)**	0.0436 (0.014)*		
Nairobi \times Heat		0.134 (0.000)** [0.001] ⁺⁺ {0.000}** (0.001) ⁺⁺		
Weight		-0.000469 (0.384)		-0.000701 (0.459)
Weight originally missing		-0.00764 (0.713)		-0.0429 (0.255)
Outcome control mean R-squared Observations	0.110 0.0643 1859	0.110 0.0809 1859	0.0771 0.0138 864	0.139 0.0279 995

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Exact p-values are included in curly brackets, and Multiple testing adjusted FDR q-value significance levels based on those p-values are included in triangle brackets. "Weight" refers to self-reported weight (in kg) and "Weight originally missing" is an indicator variable for whether weight data was not entered by the participant. The outcome in this table is the share of the anonymous partner's earned Airtime Vouchers (Amazon Gift Cards in the California sample) destroyed by the participant. The earned Airtime Vouchers and Amazon Gift Cards resulted from the number of Raven's Progressive Matrices answered correctly in the previous module, where one puzzle answered correctly yielded one Airtime Voucher or one Amazon Gift Card. Airtime Vouchers were worth 50 KSh each, while Amazon Gift Cards were worth 1 dollar each. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table F.2.11: Cognitive reflection

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-0.00228 (0.837) [1.000] {0.867} $\langle 1.000 \rangle$	-0.0271 (0.163) $[0.875]$ $\{0.169\}$ $\langle 0.836 \rangle$	-0.0228 (0.217) [0.520] {0.179} $\langle 0.474 \rangle$	0.0130 (0.320) [1.000] {0.310} \langle 1.000\rangle
Male	0.0845 (0.000)**	0.0852 (0.000)**	0.177 (0.000)**	-0.00963 (0.509)
$Male \times Heat$		0.00885 (0.720) $[0.563]$ $\{0.721\}$ $\langle 0.563 \rangle$		
Nairobi	-0.245 (0.000)**	-0.266 (0.000)**		
Nairobi \times Heat		0.0382 (0.117) $[0.306]$ $\{0.123\}$ $\langle 0.299 \rangle$		
Weight		-0.000632 (0.377)		0.00176 $(0.034)^*$
Weight originally missing		0.00461 (0.864)		-0.0141 (0.513)
Outcome control mean R-squared Observations	0.325 0.178 1878	0.325 0.180 1878	0.455 0.0773 874	0.212 0.00698 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Exact p-values are included in curly brackets, and Multiple testing adjusted FDR q-value significance levels based on those p-values are included in triangle brackets. "Weight" refers to self-reported weight (in kg) and "Weight originally missing" is an indicator variable for whether weight data was not entered by the participant. The outcome in this table is the share of questions (out of 5) from the Cognitive Reflection Test answered correctly. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table F.2.12: Charitable donation

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-4.443 (0.887) [1.000] {0.899} ⟨1.000⟩	-57.22 (0.194) [0.875] {0.190} (0.836)	-12.67 (0.679) [0.846] {0.641} $\langle 0.740 \rangle$	7.391 (0.892) [1.000] {0.892} $\langle 1.000 \rangle$
Male	7.254 (0.820)	23.74 (0.601)	-58.73 (0.104)	98.65 (0.058)
$\mathrm{Male} \times \mathrm{Heat}$		2.706 (0.964) $[1.000]$ $\{0.965\}$ $\langle 1.000 \rangle$		
Nairobi	323.8 (0.000)**	281.9 (0.000)**		
Nairobi \times Heat		47.98 (0.437) $[0.776]$ $\{0.435\}$ $\langle 0.782 \rangle$		
Matched with ingroup charity	-9.405 (0.771)	-71.45 (0.123)	31.79 (0.409)	-86.01 (0.136)
Matched with ingroup charity \times Heat		116.9 (0.101) $[0.434]$ $\{0.095\}$ $\langle 0.460 \rangle$		
Earnings in tokens	0.00356 (0.734)	0.00399 (0.703)	-0.0182 (0.117)	0.0303 (0.090)
Weight		-2.349 (0.090)		-5.168 (0.098)
Weight originally missing		-142.1 (0.000)**		-172.2 (0.062)
Outcome control mean R-squared Observations	410.4 0.0657 1806	410.4 0.0712 1806	245.0 0.00695 861	561.8 0.0122 945

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Exact p-values are included in curly brackets, and Multiple testing adjusted FDR q-value significance levels based on those p-values are included in triangle brackets. "Weight" refers to self-reported weight (in kg) and "Weight originally missing" is an indicator variable for whether weight data was not entered by the participant. The outcome in this table is the amount of tokens earned in the experiment that is donated to the randomly selected charity. In Nairobi, "Matched with ingroup charity" is an indicator taking on a value of one if a

participant is matched to a charity associated with her ethnicity, and 0 otherwise. In California, "Matched with ingroup charity" is an indicator taking on a value of one if a participant has resided in the San Francisco Bay Area for five years or more and is matched with a charity in the San Francisco Bay Area. "Earnings in tokens" captures the amount of tokens earned in the experiment. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table F.2.13: Tests of overall significance on 10 primary outcomes

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	14.14 (0.167) {0.224}	10.39 (0.407) {0.408}	$17.89 (0.057) \{0.139\}$	33.61 (0.000)** {0.004}
$Male \times Heat$		$ \begin{array}{c} 13.02 \\ (0.223) \\ \{0.296\} \end{array} $		
Nairobi \times Heat		44.95 (0.000)** {0.000}**		

Note: Standard errors clustered at the session level. Wald statistics are presented, as are p-values from the the Wald test for joint hypotheses in parentheses and exact p-values generated through 10,000 permutations, as pre-specified, in curly brackets. As prespecified, this table contains results from tests of overall significance on the 10 primary outcomes for which this is possible (thus, excluding the outcomes for Patience and Time Inconsistency). Although the tests were only prespecified for the set of coefficients associated with Heat in (1), the set of coefficients associated with the interaction between Male and Heat in (2), and the set of coefficients associated with the interaction between Nairobi and Heat in (2), this table also includes results for the set of coefficients associated with Heat in (2) as well as for the sets of coefficients associated with Heat from the site-specific specifications (3) and (4), which were not prespecified. * p < .05, ** p < .01

Table F.2.14: Tests of overall significance on 9 primary outcomes (also excluding Joy of Destruction)

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	,	$7.78 (0.556) \{0.540\}$	$ 8.13 \\ (0.521) \\ \{0.621\} $	10.20 (0.335) {0.426}
$\mathrm{Male} \times \mathrm{Heat}$		6.32 (0.708) {0.762}		
Nairobi × Heat		$7.10 \\ (0.627) \\ \{0.673\}$		

Note: Standard errors clustered at the session level. Wald statistics are presented, as are p-values from the the Wald test for joint hypotheses in parentheses and exact p-values generated through 10,000 permutations, as pre-specified, in curly brackets. This table contains results from tests of overall significance on the 9 primary outcomes, excluding the outcomes for the Joy of Destruction, Patience, and Time Inconsistency. Although the tests were only prespecified for the set of coefficients associated with Heat in (1), the set of coefficients associated with the interaction between Male and Heat in (2), and the set of coefficients associated with Heat in (2) as well as for the sets of coefficients associated with Heat from the site-specific specifications (3) and (4), which were not prespecified. * p < .05, ** p < .01

F.3 Results with additional outcomes

Table F.3.1: Rational choice violation II

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-0.0119 (0.313)	-0.0152 (0.461)	-0.00701 (0.660)	-0.0153 (0.375)
Male	0.000669 (0.955)	-0.0121 (0.527)	-0.0311 (0.055)	0.0337 (0.055)
$Male \times Heat$		0.0210 (0.401)		
Nairobi	0.0471 (0.000)**	0.0554 $(0.003)^{**}$		
Nairobi \times Heat		-0.0153 (0.503)		
Weight		0.000268 (0.662)		-0.000780 (0.478)
Weight originally missing		-0.00558 (0.838)		-0.0477 (0.413)
Outcome control mean R-squared Observations	0.0896 0.00771 1878	0.0896 0.00822 1878	0.0618 0.00446 874	0.1138 0.00409 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. "Weight" refers to self-reported weight (in kg) and "Weight originally missing" is an indicator variable for whether weight data was not entered by the participant. The outcome in this table is an indicator for having made a first order stochastic dominance (FOSD) violation by having selected coin 7 in menu A in the risk preference module. * p < .05, ** p < .01

Table F.3.2: Rational choice violation III

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	0.00628 (0.458)	-0.0126 (0.106)	-0.00000483 (0.999)	0.00921 (0.538)
Male	0.00603 (0.487)	-0.0135 (0.260)	-0.00106 (0.879)	0.00455 (0.766)
$Male \times Heat$		0.0322 $(0.035)^*$		
Nairobi	0.0491 (0.000)**	0.0513 (0.000)**		
Nairobi \times Heat		0.00269 (0.866)		
Weight		0.000479 (0.150)		0.00164 (0.055)
Weight originally missing		0.0290 (0.137)		0.0299 (0.539)
Outcome control mean R-squared Observations	0.0330 0.0188 1878	0.0330 0.0228 1878	0.0092 0.0000296 874	0.0539 0.00490 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. "Weight" refers to self-reported weight (in kg) and "Weight originally missing" is an indicator variable for whether weight data was not entered by the participant. The outcome in this table is an indicator for having made a violation of the Generalized Axiom of Revealed Preference (GARP) between menu A and B or between menu C and D in the time preference module. * p < .05, ** p < .01

Table F.3.3: Patience, non-parametric, menu A

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	0.0318 (0.673)	0.0477 (0.689)	0.0341 (0.744)	0.0439 (0.683)
Male	-0.113 (0.119)	-0.0571 (0.595)	-0.0553 (0.595)	-0.120 (0.248)
$Male \times Heat$		-0.0416 (0.794)		
Nairobi	-1.127 (0.000)**	-1.164 (0.000)**		
Nairobi \times Heat		0.0162 (0.916)		
Weight		-0.00467 (0.216)		-0.00939 (0.133)
Weight originally missing		-0.188 (0.277)		-0.285 (0.368)
Outcome control mean R-squared Observations	4.471 0.117 1878	4.471 0.118 1878	5.087 0.000398 874	3.934 0.00594 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. "Weight" refers to self-reported weight (in kg) and "Weight originally missing" is an indicator variable for whether weight data was not entered by the participant. The outcome in this table is the choice from Menu A, where choice 1 (with value 1) equals 840 tokens today and 0 tokens in 3 weeks, and choice 6 (with value 6) equals 0 tokens today and 1200 tokens in 3 weeks (the trade-off is fixed between 1 token today or 1.43 tokens in 3 weeks). * p < .05, ** p < .01

Table F.3.4: Patience, non-parametric, menu B

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-0.116	-0.165	-0.128	-0.0993
	(0.151)	(0.255)	(0.294)	(0.355)
Male	-0.411 (0.000)**	-0.437 (0.000)**	-0.456 (0.000)**	-0.353 (0.002)**
$Male \times Heat$		0.0891 (0.586)		
Nairobi	1.393 (0.000)**	1.377 (0.000)**		
Nairobi \times Heat		0.00540 (0.973)		
Weight		-0.00245 (0.519)		-0.00304 (0.660)
Weight originally missing		-0.0617 (0.717)		0.234 (0.503)
Outcome control mean	2.803	2.803	2.119	3.399
R-squared Observations	$0.131 \\ 1878$	$0.131 \\ 1878$	$0.0164 \\ 874$	$0.0125 \\ 1004$
	1010	1010	014	1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. "Weight" refers to self-reported weight (in kg) and "Weight originally missing" is an indicator variable for whether weight data was not entered by the participant. The outcome in this table is the choice from Menu B, where choice 1 (with value 1) equals 1020 tokens today and 0 tokens in 3 weeks, and choice 6 (with value 6) equals 0 tokens today and 1020 tokens in 3 weeks (the trade-off is fixed between 1 token today or 1 token in 3 weeks). * p < .05, ** p < .01

Table F.3.5: Patience, non-parametric, menu C

	(4)	(2)	(2)	(4)
	(1)	(2)	(3)	(4)
	Pooled	Pooled	California	Nairobi
Heat	-0.126	-0.0984	-0.176	-0.0784
	(0.120)	(0.483)	(0.172)	(0.442)
Male	-0.201	-0.0540	-0.0231	-0.352
	$(0.014)^*$	(0.665)	(0.835)	$(0.005)^{**}$
$Male \times Heat$		-0.205		
		(0.260)		
Nairobi	-1.305	-1.426		
	$(0.000)^{**}$	$(0.000)^{**}$		
Nairobi \times Heat		0.159		
		(0.357)		
Weight		-0.00611		-0.00284
		(0.150)		(0.639)
Weight originally missing		-0.311		-0.175
0 0 7		(0.089)		(0.623)
	4.200		* 000	2.625
Outcome control mean	4.290	4.290	5.039	3.637
R-squared	0.143	0.147	0.00256	0.0128
Observations	1878	1878	874	1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. "Weight" refers to self-reported weight (in kg) and "Weight originally missing" is an indicator variable for whether weight data was not entered by the participant. The outcome in this table is the choice from Menu C, where choice 1 (with value 1) equals 840 tokens in 3 weeks and 0 tokens in 7 weeks, and choice 6 (with value 6) equals 0 tokens in 3 weeks and 1200 tokens in 7 weeks (the trade-off is fixed between 1 token in 3 weeks or 1.43 tokens in 7 weeks). * p < .05, ** p < .01

Table F.3.6: Patience, non-parametric, menu D

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-0.0168 (0.818)	-0.127 (0.268)	-0.118 (0.230)	0.0860 (0.420)
Male	-0.196 (0.007)**	-0.160 (0.141)	-0.179 (0.063)	-0.164 (0.143)
$Male \times Heat$		0.0162 (0.911)		
Nairobi	1.492 (0.000)**	1.374 (0.000)**		
Nairobi \times Heat		0.196 (0.174)		
Weight		-0.00541 (0.142)		-0.00949 (0.128)
Weight originally missing		0.00635 (0.973)		-0.0406 (0.903)
Outcome control mean R-squared Observations	2.519 0.169 1878	2.519 0.171 1878	1.799 0.00468 874	3.148 0.00621 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. "Weight" refers to self-reported weight (in kg) and "Weight originally missing" is an indicator variable for whether weight data was not entered by the participant. The outcome in this table is the choice from Menu D, where choice 1 (with value 1) equals 1020 tokens in 3 weeks and 0 tokens in 7 weeks, and choice 6 (with value 6) equals 0 tokens in 3 weeks and 1020 tokens in 7 weeks (the trade-off is fixed between 1 token in 3 weeks or 1 token in 7 weeks). * p < .05, ** p < .01

Table F.3.7: Trustworthiness

(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
0.00855 (0.407)	0.0290 (0.058)	0.00878 (0.507)	0.00619 (0.697)
-0.0258 (0.022)*	-0.000542 (0.973)	-0.0336 (0.039)*	-0.0218 (0.156)
	-0.0468 (0.034)*		
0.100 (0.000)**	0.0949 (0.000)**		
	0.00900 (0.671)		
	-0.000258 (0.651)		-0.000194 (0.830)
	-0.00365 (0.867)		0.00558 (0.881)
0.115 (0.000)**	0.115 (0.000)**	0.201 (0.000)**	0.00875 (0.782)
0.271 (0.000)**	0.272 (0.000)**	0.188 (0.000)**	0.383 (0.000)**
0.245	0.245	0.227	0.262
$0.150 \\ 1580$	$0.152 \\ 1580$	$0.155 \\ 731$	$0.176 \\ 849$
	0.00855 (0.407) -0.0258 (0.022)* 0.100 (0.000)** 0.115 (0.000)** 0.271 (0.000)**	Pooled Pooled 0.00855	Pooled Pooled California 0.00855

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. "Weight" refers to self-reported weight (in kg) and "Weight originally missing" is an indicator variable for whether weight data was not entered by the participant. The outcome in this table is the share of tokens (received and multiplied by 3) given back to the anonymous partner in the trust game. sharesentto captures the share of 600 tokens that the recipient received from the anonymous partner in the first round. sharesent captures how much the share of 600 tokens sent that the individual sent to her anonymous partner in the first round. * p < .05, ** p < .01

Table F.3.8: Trust measure

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(1)	(2)	(2)	(4)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		` '	` /	` '	` /
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Pooled	Pooled	California	Nairobi
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Heat	-0.0288	0.0900	0.105	-0.192
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.819)	(0.629)	(0.534)	(0.298)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Male	-0.142	-0.253	-0.504	0.0609
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.280)	(0.197)	$(0.005)^{**}$	(0.772)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Male \times Heat$		0.0500		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(0.830)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Nairobi	0.388	0.526		
		$(0.004)^{**}$	$(0.006)^{**}$		
	Nairobi \times Heat		-0.287		
Weight originally missing $ \begin{array}{c} (0.190) & (0.028)^* \\ -0.683 & -1.087 \\ (0.007)^{**} & (0.040)^* \\ \hline \\ \text{Outcome control mean} & 6.220 & 6.220 & 5.963 & 6.443 \\ \text{R-squared} & 0.00475 & 0.00988 & 0.00971 & 0.0114 \\ \hline \end{array} $					
Weight originally missing $ \begin{array}{c} (0.190) & (0.028)^* \\ -0.683 & -1.087 \\ (0.007)^{**} & (0.040)^* \\ \hline \\ \text{Outcome control mean} & 6.220 & 6.220 & 5.963 & 6.443 \\ \text{R-squared} & 0.00475 & 0.00988 & 0.00971 & 0.0114 \\ \hline \end{array} $	Weight		0.00922		0.0254
					$(0.028)^*$
	Weight originally missing		-0.683		-1.087
Outcome control mean 6.220 6.220 5.963 6.443 R-squared 0.00475 0.00988 0.00971 0.0114					
R-squared 0.00475 0.00988 0.00971 0.0114					
1	Outcome control mean				
Observations 1878 1878 874 1004	R-squared	0.00475	0.00988	0.00971	0.0114
	Observations	1878	1878	874	1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. "Weight" refers to self-reported weight (in kg) and "Weight originally missing" is an indicator variable for whether weight data was not entered by the participant. The outcome in this table is the number chosen from a 0-to-10 scale that asked how well does the following statement described one as a person: as long as I am not convinced otherwise, I assume that people have only the best intentions (where 0 means does not describe one at all, and a 10 means describes one perfectly). * p < .05, ** p < .01

Table F.3.9: Correct beliefs about others' contributions

	(1)	(2)	(3)	(4)
	Pooled	Pooled	California	Nairobi
Heat	-0.000439	-0.0300	0.00687	-0.00329
	(0.982)	(0.376)	(0.822)	(0.902)
Male	0.00693	-0.0414	0.00145	0.0234
	(0.687)	(0.117)	(0.952)	(0.366)
$Male \times Heat$		0.0922		
		$(0.011)^*$		
Nairobi	0.00303	0.0238		
	(0.884)	(0.422)		
Nairobi \times Heat		-0.0374		
		(0.367)		
Weight		0.000309		-0.00237
		(0.737)		(0.118)
Weight originally missing		0.0166		-0.0687
		(0.648)		(0.271)
Outcome control mean	0.212	0.212	0.206	0.218
R-squared	0.000101	0.00330	0.0000742	0.00337
Observations	1878	1878	874	1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. "Weight" refers to self-reported weight (in kg) and "Weight originally missing" is an indicator variable for whether weight data was not entered by the participant. The outcome in this table is an indicator for having guessed correctly about one other person's contribution in the group towards the fund in the public goods module. p < .05, ** p < .01

Table F.3.10: Time spent on Cognitive Reflection Test

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	1.188 (0.338)	1.816 (0.421)	2.043 (0.354)	0.414 (0.751)
Male	-2.885 $(0.017)^*$	-2.816 (0.099)	-7.421 (0.000)**	1.252 (0.373)
$Male \times Heat$		0.540 (0.816)		
Nairobi	8.389 (0.000)**	8.843 (0.000)**		
Nairobi \times Heat		-1.678 (0.538)		
Weight		-0.0481 (0.471)		-0.00741 (0.919)
Weight originally missing		-3.442 (0.114)		-6.697 (0.081)
Outcome control mean R-squared Observations	167.8 0.0287 1866	167.8 0.0305 1866	163.3 0.0172 862	171.8 0.00531 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. "Weight" refers to self-reported weight (in kg) and "Weight originally missing" is an indicator variable for whether weight data was not entered by the participant. The outcome in this table is the total amount of time spent on the Cognitive Reflection Test, where participants were allowed 3 minutes in total to complete 5 questions. * p < .05, ** p < .01

Table F.3.11: Happiness

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-0.0791 (0.208)	0.0415 (0.668)	0.0490 (0.579)	-0.180 (0.042)*
Male	0.174 (0.005)**	0.149 (0.129)	0.208 $(0.025)^*$	0.179 (0.040)*
$Male \times Heat$		0.0188 (0.886)		
Nairobi	1.127 (0.000)**	1.242 (0.000)**		
Nairobi \times Heat		-0.248 (0.071)		
Weight		0.00150 (0.698)		-0.00764 (0.071)
Weight originally missing		-0.246 (0.067)		-0.451 (0.050)*
Outcome control mean R-squared Observations	5.313 0.180 1878	5.313 0.184 1878	4.625 0.00618 874	5.914 0.0168 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. "Weight" refers to self-reported weight (in kg) and "Weight originally missing" is an indicator variable for whether weight data was not entered by the participant. The outcome in this table is the number chosen from a 1-7 scale that asked how one felt towards the end of the experiment, with 1 being sad and 7 being happy. * p < .05, ** p < .01

Table F.3.12: Alertness

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-0.420 (0.000)**	-0.579 (0.000)**	-0.530 (0.000)**	-0.308 (0.002)**
Male	0.389 (0.000)**	0.332 (0.003)**	0.729 (0.000)**	0.120 (0.248)
$Male \times Heat$		0.115 (0.436)		
Nairobi	1.817 (0.000)**	1.710 (0.000)**		
Nairobi \times Heat		0.181 (0.230)		
Weight		-0.000564 (0.892)		-0.00947 (0.099)
Weight originally missing		-0.235 (0.122)		-0.296 (0.324)
Outcome control mean R-squared Observations	5.247 0.303 1878	5.247 0.306 1878	4.281 0.0739 874	6.090 0.0175 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. "Weight" refers to self-reported weight (in kg) and "Weight originally missing" is an indicator variable for whether weight data was not entered by the participant. The outcome in this table is the number chosen from a 1-7 scale that asked how one felt towards the end of the experiment, with 1 being tired and 7 being alert. * p < .05, ** p < .01

F.4 Fairness, alternate specification

Table F.4.1: Fairness (alternate specification)

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi	
Heat	-0.0168 (0.169)			-0.0102 (0.579)	
Male	-0.0371 (0.006)**	-0.0308 (0.084)	-0.0710 (0.000)**	-0.00722 (0.690)	
$Male \times Heat$		-0.0121 (0.599)			
Nairobi	0.0458 $(0.034)^*$	0.0364 (0.144)			
Nairobi \times Heat		0.0189 (0.427)			
Weight	-0.000577 (0.300)	-0.000601 (0.277)	-0.000348 (0.605)	-0.000280 (0.773)	
Weight originally missing	0.00318 (0.886)	0.00339 (0.878)	-0.00388 (0.873)	0.0118 (0.798)	
High	-0.0123 (0.341)	-0.0126 (0.330)	-0.0259 (0.126)	0.00628 (0.742)	
Number of correct sliders	0.00131 (0.359)	0.00133 (0.352)	0.000309 (0.900)	0.000986 (0.583)	
Outcome control mean	0.318	0.318	0.309	0.326	
R-squared Observations	0.0114 1878	0.0118 1878	0.0356 874	0.00161 1004	

Standard errors clustered at the session level. Per-comparison p-values in parentheses. Fairness here refers to the real effort dictator game, where the level of endowment is affected by the number of correct sliders made in the precision task. The outcome in this table is the share of joint earnings (2400 tokens in the high group, 1200 tokens in the low group) that each participant desires to give to the anonymous partner. These specifications follow the robustness check mentioned in the pre-analysis plan, including in the regressions whether an indicator for being in the high precision group ("High", as opposed to being "Low"), which yielded different endowments for the real effort dictator game. The number of sliders correctly chosen in the precision task ("Number of correct sliders") was also included, as any effect from being in the high or low group may be due to precision, and not stakes per se. * p < .05, ** p < .01

G Robustness checks

G.1 Description

Although the pre-analysis plan specified that the risk measure outcome would be a categorical variable indicating coin choice from menu A, both interpretation and accounting for multiple hypothesis testing motivated the primary outcome for risk to be defined as the variance of the coin toss in menu A. In Supplement Section G.2 we investigate the effect of the temperature treatment on risk where 1) we assume a mean-variance utility function, and then use the backed out lambda parameter as the outcome variable with OLS, and 2) use a categorical indicator of choice with an ordered logit and ordered probit estimation. However, *Heat* is not statistically significant at conventional levels in any of the tables presented.

The Joy of Destruction outcome presented throughout the analysis is the share of vouchers or gift cards destroyed. However, observing whether there is an effect of *any* voucher or gift card destruction is also interesting and may be more comparable to other studies. Supplement Table G.3.1 repeats the analysis with the dependent variable as whether the participant engaged in any destruction. The results mirror that of the original Joy of Destruction outcome definition, with participants 17 percentage points more likely to engage in any destruction as a result of treatment.

Given the strong results in Nairobi along ethnic lines, one might consider whether the share of ethnicities within a room affects one's performance in the Joy of Destruction. Supplement Table G.4.1 examines how the ethnic composition of others in the room relative to oneself may affect the Joy of Destruction result, by ethnic group (ethnic Luo, ethnic Other, ethnic Kikuyu). Each specification is carried out over a different reference ethnic group. The coefficient on the treatment effect is large (14 percentage points) for the ethnic Luo subsample, but it is not statistically significant, likely due to low power. The average treatment effect of heat for the ethnic Other group (11 percentage points) is statistically significant.

Given the history of ethnic-based politics in Kenya and the fact that the experiment took place during a heavily-contested election period (see Appendix Section A.1 for details), Supplement Section G.5 includes indicators for ethnicity (ethnic Kikuyu or ethnic Other) and their interactions for all selected outcomes, with ethnic Luos as the reference group. Here it is clear that ethnicity does not differentially change the treatment effect for any primary outcomes examined except for the Joy of Destruction. Ethnic Kikuyus also report being less alert by the end of the experiment as a result of the treatment.

In order to gauge whether there may have been a general experimenter demand effect in California, we include within our specifications an indicator for whether the participant noted temperature as an object of study within the post-experiment survey, as well as its interaction with the heat treatment. We carry out this analysis for the pooled sample as well as the California and Nairobi samples. As mentioned in the main text, there is no systematic interaction between awareness of the underlying temperature treatment and the treatment effect for the primary outcomes of interest (see Supplement Section G.6), suggesting that the effect of heat is unlikely to be due to a general experimenter demand effect.

Additionally, we study whether gender composition in the lab affect responses to heat exposure. The majority of participants in Nairobi were male, while the majority of participants in California were female (details shown Appendix Table C.1). and a relevant question

is weather this may explain some of the differences observed between the Nairobi and the California site. We test this hypothesis by including in the main and heterogeneity specification the share of other participants in the room who are male, as well as its interaction with treatment (shown in Supplement Section G.7). In the main specification, an increase in the share of others being male increases destruction in the treatment rooms, but with the introduction of interactions in the heterogeneity model, the effect is no longer statistically significant. Within the California sample, an increase in the share of others being male reduces the share of tokens given to the partner in the treatment room by 19 percentage points. Finally, an increase in the share of others being male lowers self-reported happiness in the treatment room.

Supplement Section G.8 includes session-fixed effects in order to account for the importance of unobserved heterogeneity. In the bottom part of the tables we include the F-statistic from the joint F-test on the fixed effects in a certain specification. We find that the results of the analysis do not substantively change compared to the results in the Appendix Section D.

Supplement Section G.9 includes variables for outdoor weather. "Outside temperature (pooled)" captures the demeaned (relative to the pooled sample) average outside temperature in Celsius for the day of the session. "Outside relative humidity (pooled)" captures the demeaned (relative to the pooled sample) average outside relative humidity in percentage for the day of the session. "Outside temperature (site)" captures the demeaned (relative to the site sample) average site-specific outside temperature in Celsius for the day of the session. Finally, "Outside relative humidity (site)" captures the demeaned (relative to the site sample outside relative humidity) average site-specific outside relative humidity in percentage for the day of the session. Our specifiations also include the above variables interacted with treatment status. The treatment effects observed are similar to those in Appendix Section D, with outside weather seeming to explain little of the variation. This may be due to adaptation mechanisms available to students (i.e., they may be in air-conditioned buildings before heading over to the laboratories). The only instances in which there is a significant interaction effect is in Charitable donation, where the temperature treatment lowers the amount of tokens donated at higher daily mean outdoor temperatures in the heterogeneity specification and lowers the amount of tokens donated at higher daily mean outdoor relative humidities in the Nairobi specification. The temperature treatment also lowers alertness in Nairobi at higher daily mean outdoor temperatures.

G.2 Risk outcome: alternative specifications

Table G.2.1: Risk, lambda

	(1) Pooled
Heat	-0.000100 (0.653)
Male	-0.000633 (0.006)**
Nairobi	0.000778 (0.000)**
Outcome control mean R-squared Observations	0.00387 0.0113 1721

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. The risk outcome in this table is backed out lambda parameter coming from a mean-variance utility function using risk menu A, where coins 1, 2, 3, 4, 5, and 6 are associated with lambda parameters of 0.0002314814815, 0.0003086419753, 0.000462962963, 0.0009259259259, 0.001851851852, and 0.01, respectively. Note that this approach results in linearity of the outcome variable across coin 1 through coin 6. Choosing coin 7 is first-order stochastically dominated and so participants choosing coin 7 in risk menu A are dropped from this calculation. * p < .05, ** p < .01

Table G.2.2: Risk, ordered logit model

		Marginal effects						
	(1) Risk	(2) Coin 1	(3) Coin 2	(4) Coin 3	(5) Coin 4	(6) Coin 5	(7) Coin 6	(8) Coin 7
Heat	-0.0748 (0.367)	0.00624 (0.366)	0.00296 (0.368)	0.00327 (0.369)	0.00547 (0.369)	-0.000683 (0.425)	-0.0117 (0.366)	-0.00555 (0.369)
Male	-0.462 (0.000)**	0.038 (0.000)**	0.0181 (0.000)**	0.0200 (0.000)**	0.0337 (0.000)**	-0.00330 (0.162)	-0.0717 (0.000)**	-0.0349 (0.000)
Nairobi	0.549 (0.000)**	-0.047 (0.000)**	-0.0219 (0.000)**	-0.0238 (0.000)**	-0.0389 (0.000)**	0.00604 (0.041)*	0.0850 (0.000)**	0.0404 (0.000)**
Outcome control mean Pseudo R-squared Observations	4.613 0.0085 1878							

Note: Standard errors generated via bootstrap (with 1000 replications). Per-comparison p-values in parentheses. This table features results from both the ordered logit model on the coin toss chosen (from a set of seven) in risk menu A in (1), as well as the marginal effects for each coin toss in risk menu A in (2) through (8). * p < .05, ** p < .01

Table G.2.3: Risk, ordered probit model

				Ma	arginal effec	cts		
	(1) Risk	(2) Coin 1	(3) Coin 2	(4) Coin 3	(5) Coin 4	(6) Coin 5	(7) Coin 6	(8) Coin 7
Heat	-0.0339 (0.475)	0.00552 (0.474)	0.00212 (0.476)	0.00215 (0.478)	0.00328 (0.477)	-0.00037 (0.505)	-0.00763 (0.475)	-0.00507 (0.476)
Male	-0.277 (0.000)**	0.0448 (0.000)**	0.0172 (0.000)**	0.0175 (0.000)**	0.0270 (0.000)**	-0.00237 (0.189)	-0.0619 (0.000)**	-0.0422 (0.000)**
Nairobi	0.328 (0.000)**	-0.0545 (0.000)**	-0.0204 (0.000)**	-0.0205 (0.000)**	-0.0309 (0.000)**	0.00438 $(0.047)^*$	0.0735 (0.000)**	0.0485 (0.000)**
Outcome control mean Pseudo R-squared Observations	4.613 0.0090 1878							

Note: Standard errors generated via bootstrap (with 1000 replications). Per-comparison p-values in parentheses. This table features results from both the ordered probit model on the coin toss chosen (from a set of seven) in risk menu A in (1), as well as the marginal effects for each coin toss in risk menu A in (2) through (8). * p < .05, ** p < .01

G.3 Joy of Destruction: engagement in any destruction

Table G.3.1: Joy of Destruction (any destruction)

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	0.0721 (0.000)**	-0.00100 (0.967)	-0.0366 (0.075)	0.166 (0.000)**
Male	0.0422 (0.033)*	0.0858 (0.002)**	0.00364 (0.862)	0.0770 (0.016)*
$Male \times Heat$		-0.0881 (0.020)*		
Nairobi	0.287 (0.000)**	0.174 (0.000)**		
Nairobi × Heat		0.225 (0.000)**		
Outcome control mean	0.215	0.215	0.111	0.306
R-squared	0.126	0.142	0.00403	0.0348
Observations	1859	1859	864	995

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. The outcome in this table is an indicator variable for any destruction of the anonymous partner's earned Airtime Vouchers (Amazon Gift Cards in the California sample) destroyed by the participant. The earned Airtime Vouchers and Amazon Gift Cards resulted from the number of Raven's Progressive Matrices answered correctly in the previous module, where one puzzle answered correctly yielded one Airtime Voucher or one Amazon Gift Card. Airtime Vouchers were worth 50 KSh each, while Amazon Gift Cards were worth 1 dollar each. * p < .05, ** p < .01

G.4 Joy of Destruction: share of ethnicities in room

Table G.4.1: Joy of Destruction, by ethnicity

	(1)	(2)	(3)
	Luo	Other	Kikuyu
Heat	0.138	0.112	0.00501
	(0.394)	$(0.016)^*$	(0.975)
Male	0.0443	0.0481	0.0818
	(0.293)	(0.058)	$(0.034)^*$
Share Kikuyu	0.238	-0.0104	
	(0.155)	(0.899)	
Share Kikuyu \times Heat	-0.121	0.00376	
	(0.666)	(0.979)	
Share Other	-0.0182		0.125
	(0.830)		(0.200)
Share Other \times Heat	0.0726		-0.107
	(0.727)		(0.627)
Share Luo		0.0355	-0.0522
		(0.734)	(0.676)
Share Luo \times Heat		-0.149	0.131
		(0.275)	(0.533)
Outcome control mean	0.119	0.155	0.135
R-squared	0.0813	0.0287	0.0436
Observations	195	549	193

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. The outcome in this table is the share of the anonymous partner's earned Airtime Vouchers (Amazon Gift Cards in the California sample) destroyed by the participant. The earned Airtime Vouchers and Amazon Gift Cards resulted from the number of Raven's Progressive Matrices answered correctly in the previous module, where one puzzle answered correctly yielded one Airtime Voucher or one Amazon Gift Card. Airtime Vouchers were worth 50 KSh each, while Amazon Gift Cards were worth 1 dollar each. "Share Kikuyu" captures the share of participants in the room, excluding the participant herself or himself, who identify as Kikuyu, out of those who identify with an ethnicity. "Share Other" captures the share of participants in the room, excluding the participant herself or himself, who identify as an ethnicity that is neither Kikuyu nor Luo, out of those who identify with an ethnicity. "Share Luo" captures the share of participants in the room, excluding the participant herself or himself, who identify as Luo, out of those who identify with an ethnicity. Note that (1) conditions on the Luo sample, (2) conditions on the non-Luo and non-Kikuyu sample, and (3) conditions on the Kikuyu sample. * p < .05, ** p < .01

G.5 Selected outcomes: by ethnicity (Nairobi only)

Table G.5.1: Outcomes, by ethnicity (Nairobi sample only)

	(1) Precision	(2) Fairness	(3) Risk-taking	(4) RCV I	(5) Trust	(6) PC	(7) FI	(8) JoD	(9) CR	(10) Charity	(11) Happiness	(12) Alertness
Heat	-0.569 (0.438) [1.000]	-0.00899 (0.839) [1.000]	-36.34 (0.450) [1.000]	-0.0245 (0.256) [0.887]	0.0564 (0.186) [0.887]	33.48 (0.489) [1.000]	0.0133 (0.615) [1.000]	0.147 (0.002)** [0.031]+	0.0327 (0.234) [0.887]	-173.1 (0.135) [0.887]	-0.0672 (0.725)	0.0316 (0.877)
Male	2.111 (0.000)**	-0.00845 (0.633)	37.36 (0.170)	-0.00152 (0.893)	0.0852 (0.000)**	64.73 $(0.037)^*$	0.0176 (0.248)	0.0531 (0.002)**	0.00631 (0.676)	72.55 (0.164)	0.124 (0.151)	0.102 (0.302)
Matched										-117.0 (0.089)		
Earnings										0.0268 (0.138)		
Other eth	-0.914 (0.167)	-0.0357 (0.276)	-45.70 (0.324)	-0.00808 (0.715)	0.0111 (0.769)	-7.040 (0.868)	-0.0366 (0.130)	$0.0360 \\ (0.257)$	0.0387 (0.130)	-160.6 (0.060)	0.0966 (0.562)	0.230 (0.218)
Other eth \times Heat	1.013 (0.261)	0.0250 (0.625)	83.89 (0.171)	0.0307 (0.242)	0.0000848 (0.999)	4.846 (0.933)	0.0218 (0.482)	-0.0637 (0.190)	-0.0225 (0.498)	209.6 (0.073)	-0.0979 (0.630)	-0.368 (0.101)
Kikuyu	0.828 (0.323)	0.00871 (0.829)	-15.48 (0.776)	0.00227 (0.930)	0.0369 (0.424)	-12.30 (0.827)	0.0357 (0.234)	0.0294 (0.417)	0.0722 (0.016)*	-119.1 (0.253)	0.166 (0.372)	0.329 (0.089)
Kikuyu \times Heat	1.268 (0.253)	-0.0153 (0.799)	6.279 (0.935)	-0.0116 (0.671)	-0.0508 (0.335)	-21.06 (0.768)	0.0142 (0.716)	-0.172 (0.003)**	0.00336 (0.933)	246.9 (0.115)	-0.258 (0.301)	-0.696 (0.021)*
Outcome control mean R-squared Observations	13.11 0.0427 945	0.319 0.00372 945	321.5 0.00427 945	0.0297 0.00490 945	0.342 0.0263 945	433.5 0.00870 945	0.799 0.0224 945	0.144 0.0425 937	0.212 0.0166 945	561.8 0.0120 945	5.907 0.00906 945	6.091 0.0202 945

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat for each primary outcome variable in Supplement Tables G.5.1 and G.5.2. "Precision" refers to the precision task, Fairness refers to Fairness, "Risk-taking" refers to Risk-taking, "RCV I" refers to Rational choice violation I, "Trust" refers to Trust, "PC" refers to Public contribution, "FI" refers to Fluid intelligence, "JoD" refers to Joy of Destruction, "CR" refers to Cognitive reflection, "Charity" refers to Charitable donation, "Happiness" refers to Happiness, and "Alertness" refers to Alertness. In Nairobi, "Matched" is an indicator taking on a value of one if a participant is matched to a charity associated with her ethnicity, and 0 otherwise. In California, "Matched" is an indicator taking on a value of one if a participant has resided in the San Francisco Bay Area for five years or more and is matched with a charity in the San Francisco Bay Area. "Earnings" is earnings in tokens from the experiment. "Other eth" is an indicator variable for the individual self-identifying as an ethnicity that is not Kikuyu or Luo. "Kikuyu" is an indicator variable for the individual self-identifying as Kikuyu. Thus, the treatment effect on Heat is for the Luo population. * p < .05, ** p < .01; p < .05, ** p < .01; p < .05, ** p < .01;

Table G.5.2: Time preference parameters (Nairobi sample only)

	(1) Patience	(2) Time inconsistency
Heat	0.0011791 (0.203) [0.887]	0.00237012 (0.929) [1.000]
Outcome control mean Observations	$0.9941125 \\ 3220$	1.045024 3220

Note: Standard errors in parentheses, clustered at the individual level. Per comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. "Heat" refers to the difference between the aggregate beta or delta statistics for treatment and control individuals, divided by the square root of the sum of squared standard errors. Multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat for each primary outcome variable in this table and in Supplement Table G.5.1. Note that the effect for time inconsistency is multiplied by -1, so that a positive difference reflects more time inconsistency. Also note that the non-linear least squares specification does not allow one to control for ethnicity, and thus the results (aside from the q-values) are similar in construction to those in Appendix Tables D.1.5 and D.1.6. The outcomes in this table are the aggregate δ (Patience) and β (Time inconsistency) statistics from the non-linear least squares specification featured in Andreoni et al. (2015), carried out at the individual-choice level. β measures present bias, and values less than 1 denote time inconsistency. δ is the daily discount factor between two future days. For comparability with regression results, individuals who did not respond "Female" or "Male" to the gender survey question were dropped (2% of the sample) as well as those who did not self-identify with a listed ethnicity in the demographic survey. Before estimation of aggregate parameters, individuals who never altered their decision from a specific corner solution in all convex time budgets were dropped (as they provided insufficient variation for the calculation of utility parameters) as were individuals who exhibited generalized axiom of revealed preference (GARP) violations. * p < .05, ** p < .01; + q < .05, ++ q < .01

G.6 Primary outcomes: suspecting treatment

Table G.6.1: Outcomes, controlling for suspecting temperature and its interaction with treatment

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	Precision	Altruism	Risk-taking	RCV I	Trust	PC	FI	JoD	CR	Charity
Heat	0.640 (0.094)	-0.0224 (0.335)	12.88 (0.668)	-0.00963 (0.458)	0.00611 (0.790)	1.044 (0.974)	0.0220 (0.119)	0.0540 $(0.016)^*$	0.000104 (0.995)	48.17 (0.391)
Male	2.257 (0.000)**	-0.0410 (0.042)*	156.2 (0.000)**	0.0157 (0.184)	0.0627 (0.003)**	$27.42 \\ (0.354)$	0.0423 (0.004)**	0.0182 (0.277)	0.0532 $(0.013)^*$	-36.78 (0.446)
Nairobi	-11.42 (0.000)**	0.0266 (0.234)	-139.0 (0.000)**	-0.00412 (0.746)	-0.175 (0.000)**	-167.3 (0.001)**	-0.124 (0.000)**	0.141 (0.000)**	-0.245 (0.000)**	330.5 (0.000)**
Matched										-38.79 (0.447)
Earnings										0.0181 (0.246)
Suspect	0.401 (0.552)	-0.0809 (0.130)	16.69 (0.810)	$0.0150 \\ (0.678)$	-0.128 (0.003)**	$25.85 \\ (0.741)$	0.0158 (0.552)	0.0781 (0.122)	-0.0135 (0.694)	-68.33 (0.502)
Suspect \times Heat	-0.794 (0.377)	0.0740 (0.224)	-92.69 (0.254)	-0.0315 (0.417)	0.105 $(0.042)^*$	-50.35 (0.586)	-0.00220 (0.941)	-0.0880 (0.140)	0.0353 (0.425)	$ \begin{array}{c} 108.2 \\ (0.414) \end{array} $
R-squared Observations	0.534 896	0.0113 896	0.0403 896	0.00528 896	0.0732 896	0.0350 896	0.115 896	0.0770 892	0.187 896	0.0598 864

Note: Standard errors clustered at the session level. Per-comparison p values in parentheses. "Precision" refers to the precision task, "Fairness" refers to Fairness, "Risk-taking" refers to Risk-taking, "RCV I" refers to Rational choice violation I, "Trust" refers to Trust, "PC" refers to Public contribution, "FI" refers to Fluid intelligence, "JoD" refers to Joy of Destruction, "CR" refers to Cognitive reflection, and "Charity" refers to Charitable donation. In Nairobi, "Matched" is an indicator taking on a value of one if a participant is matched to a charity associated with her ethnicity, and 0 otherwise. In California, "Matched" is an indicator taking on a value of one if a participant has resided in the San Francisco Bay Area for five years or more and is matched with a charity in the San Francisco Bay Area. "Earnings" is earnings in tokens from the experiment. "Suspect" is an indicator for whether the participant indicated temperature in the debriefing survey as something the experiment was studying. * p < .05, ** p < .01

Table G.6.2: Outcomes, controlling for suspecting temperature and its interaction with treatment, California

	(1) Precision	(2) Altruism	(3) Risk-taking	(4) RCV I	(5) Trust	(6) PC	(7) FI	(8) JoD	(9) CR	(10) Charity
Heat	-0.164 (0.791)	-0.0391 (0.171)	67.82 (0.138)	-0.0210 (0.411)	-0.0683 (0.101)	-31.10 (0.600)	-0.0150 (0.288)	-0.0308 (0.240)	-0.0362 (0.377)	177.2 (0.018)*
Male	2.256 (0.000)**	-0.109 (0.000)**	358.3 (0.000)**	0.0342 (0.076)	0.0750 $(0.048)^*$	7.401 (0.871)	0.0214 (0.161)	0.0185 (0.471)	0.176 (0.000)**	-136.9 (0.023)*
Matched										4.026 (0.943)
Earnings										-0.0334 (0.056)
Suspect	-0.521 (0.517)	-0.0229 (0.708)	136.3 (0.307)	-0.0423 (0.040)*	-0.153 (0.015)*	48.20 (0.690)	0.0196 (0.472)	0.0593 (0.549)	-0.00276 (0.969)	281.2 (0.097)
Suspect \times Heat	1.098 (0.273)	0.0210 (0.760)	-208.9 (0.144)	0.0353 (0.203)	0.193 (0.007)**	-99.86 (0.459)	0.00434 (0.884)	-0.0748 (0.450)	$0.0490 \\ (0.481)$	-417.7 (0.028)*
R-squared Observations	0.0808 329	$0.0640 \\ 329$	0.147 329	0.0183 329	0.0255 329	0.00715 329	0.0158 329	0.0186 327	0.0825 329	0.0537 326

Note: Standard errors clustered at the session level. Per-comparison p values in parentheses. "Precision" refers to the precision task, "Fairness" refers to Fairness, "Risk-taking" refers to Risk-taking, "RCV I" refers to Rational choice violation I, "Trust" refers to Trust, "PC" refers to Public contribution, "FI" refers to Fluid intelligence, "JoD" refers to Joy of Destruction, "CR" refers to Cognitive reflection, and "Charity" refers to Charitable donation. In California, "Matched" is an indicator taking on a value of one if a participant has resided in the San Francisco Bay Area for five years or more and is matched with a charity in the San Francisco Bay Area. "Earnings" is earnings in tokens from the experiment. "Suspect" is an indicator for whether the participant indicated temperature in the debriefing survey as something the experiment was studying. * p < .05, ** p < .01

Table G.6.3: Outcomes, controlling for suspecting temperature and its interaction with treatment, Nairobi

	(1) Precision	(2) Altruism	(3) Risk-taking	(4) RCV I	(5) Trust	(6) PC	(7) FI	(8) JoD	(9) CR	(10) Charity
Heat	0.975 (0.044)*	-0.0141 (0.649)	-18.01 (0.630)	-0.00467 (0.762)	0.0376 (0.171)	17.40 (0.655)	0.0391 (0.044)*	0.0938 (0.002)**	0.0131 (0.502)	-6.038 (0.935)
Male	2.303 (0.000)**	0.00376 (0.888)	22.00 (0.542)	0.00408 (0.791)	0.0566 $(0.027)^*$	38.40 (0.336)	0.0560 $(0.011)^*$	0.0157 (0.472)	-0.0283 (0.125)	27.32 (0.709)
Matched										-85.01 (0.337)
Earnings										0.0557 $(0.017)^*$
Suspect	0.947 (0.326)	-0.114 (0.121)	-60.60 (0.444)	0.0485 (0.389)	-0.115 (0.052)	12.08 (0.905)	0.0136 (0.724)	0.0873 (0.126)	-0.0247 (0.446)	-261.5 (0.011)*
Suspect \times Heat	-2.603 (0.099)	$0.109 \\ (0.213)$	-34.44 (0.736)	-0.0757 (0.206)	0.0404 (0.550)	54.75 (0.666)	0.0157 (0.738)	0.00433 (0.961)	0.0575 (0.315)	546.8 (0.003)**
R-squared Observations	0.0434 567	0.00653 567	0.00450 567	0.00575 567	0.0222 567	0.00450 567	0.0288 567	0.0347 565	0.00836 567	0.0283 538

Note: Standard errors clustered at the session level. Per-comparison p values in parentheses. "Precision" refers to the precision task, "Fairness" refers to Fairness, "Risk-taking" refers to Risk-taking, "RCV I" refers to Rational choice violation I, "Trust" refers to Trust, "PC" refers to Public contribution, "FI" refers to Fluid intelligence, "JoD" refers to Joy of Destruction, "CR" refers to Cognitive reflection, and "Charity" refers to Charitable donation. In Nairobi, "Matched" is an indicator taking on a value of one if a participant is matched to a charity associated with her ethnicity, and 0 otherwise. "Earnings" is earnings in tokens from the experiment. "Suspect" is an indicator for whether the participant indicated temperature in the debriefing survey as something the experiment was studying. * p < .05, ** p < .01

G.7 Selected outcomes: accounting for share of male participants in room

Table G.7.1: Precision task

	(1)	(2)	(3)	(4)
	Pooled	Pooled	California	Nairobi
Heat	-0.110 (0.851) [1.000]	0.0788 (0.900) [1.000]	0.0484 (0.946) [1.000]	-0.699 (0.531) [1.000]
Male	1.947 (0.000)**	2.175 (0.000)**	1.842 (0.000)**	2.063 (0.000)**
$Male \times Heat$		-0.458 (0.316) [1.000]		
Nairobi	-11.24 (0.000)**	-11.01 (0.000)**		
Nairobi \times Heat		-0.458 (0.420) [0.496]		
Share of male participants	-0.378 (0.587)	-0.657 (0.354)	0.00950 (0.992)	-1.097 (0.288)
Share of male participants \times Heat	1.168 (0.220)	1.730 (0.089)	$ \begin{array}{c} 1.352 \\ (0.311) \end{array} $	1.762 (0.257)
Outcome control mean R-squared Observations	17.95 0.550 1878	17.95 0.550 1878	23.63 0.0670 874	12.99 0.0312 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Within Supplement Section G.7, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes. Additionally, within Supplement Section G.7, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. The precision task is also known as the slider task. The outcome in this table is the number of correct sliders made in three minutes. Final earnings from the production task are based off either being weakly above (high) or below (low) the median within treatment cohort. The median pair is randomly assigned to high or low. "Share of male participants" captures the share of participants in the room, excluding the participant herself or himself, who identify as male, out of those who identify as either male or female. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table G.7.2: Fairness

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	0.00877 (0.738) [1.000]	0.00513 (0.842) [1.000]	-0.0188 (0.494) [1.000]	0.0718 (0.179) [1.000]
Male	-0.0383 (0.002)**	-0.0365 (0.042)*	-0.0745 (0.000)**	-0.00442 (0.786)
$Male \times Heat$		-0.00355 (0.883) [1.000]		
Nairobi	0.0382 $(0.011)^*$	0.0218 (0.247)		
Nairobi \times Heat		0.0327 (0.223) [0.496]		
Share of male participants	0.00373 (0.917)	0.0149 (0.690)	-0.0388 (0.385)	0.0594 (0.277)
Share of male participants \times Heat	-0.0476 (0.291)	-0.0699 (0.187)	-0.0147 (0.796)	-0.126 (0.106)
Outcome control mean R-squared Observations	0.318 0.0115 1878	0.318 0.0124 1878	0.309 0.0351 874	0.326 0.00490 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Within Supplement Section G.7, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes. Additionally, within Supplement Section G.7, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. Fairness here refers to the real effort dictator game, where the level of endowment is determined by the number of correct sliders made in the precision task. The outcome in this table is the share of joint earnings (2400 tokens in the high group, 1200 tokens in the low group) that each participant desires to give to the anonymous partner. "Share of male participants" captures the share of participants in the room, excluding the participant herself or himself, who identify as male, out of those who identify as either male or female. * p < .05, ** p < .01; + q < .05, ++ p < .01

Table G.7.3: Risk-taking

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-9.822 (0.826) [1.000]	-5.218 (0.905) [1.000]	50.93 (0.348) [1.000]	-105.1 (0.172) [1.000]
Male	166.5 (0.000)**	177.3 (0.000)**	311.5 (0.000)**	30.83 (0.282)
$Male \times Heat$		-21.67 (0.635) [1.000]		
Nairobi	-110.4 (0.000)**	-114.9 (0.002)**		
Nairobi \times Heat		9.068 (0.853) [0.620]		
Share of male participants	-34.11 (0.559)	-35.98 (0.568)	125.4 (0.120)	-155.1 (0.042)*
Share of male participants \times Heat	$14.79 \\ (0.827)$	18.83 (0.812)	-139.7 (0.189)	164.0 (0.115)
Outcome control mean R-squared Observations	366.3 0.0399 1878	366.3 0.0400 1878	409.0 0.115 874	329.1 0.00534 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Within Supplement Section G.7, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes. Additionally, within Supplement Section G.7, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. The outcome in this table is the variance of the coin toss from menu A, in tokens. Note that the expected value is not constant across each coin, so that the outcome does not capture the trade-off between expected value and variance. Note also that under this approach, Coin 7 will be as good as Coin 5, even though Coin 5 strictly dominates Coin 7 with expected utility. "Share of male participants" captures the share of participants in the room, excluding the participant herself or himself, who identify as male, out of those who identify as either male or female. " p < .05, "* p < .01; p < .0

Table G.7.4: Rational choice violation I

	(1)	(2)	(3)	(4)
TI	Pooled	Pooled	California	Nairobi
Heat	-0.000763 (0.960) [1.000]	-0.000362 (0.981) [1.000]	-0.00402 (0.847) [1.000]	$0.00575 \\ (0.799) \\ [1.000]$
Male	0.00184 (0.818)	0.00336 (0.784)	0.00577 (0.609)	-0.00231 (0.841)
$Male \times Heat$		-0.00305 (0.856) [1.000]		
Nairobi	-0.00162 (0.816)	-0.00314 (0.784)		
Nairobi \times Heat		0.00304 (0.854) [0.620]		
Share of male participants	0.0109 (0.560)	0.0113 (0.557)	-0.00391 (0.886)	0.0261 (0.329)
Share of male participants \times Heat	-0.00658 (0.789)	-0.00730 (0.792)	-0.00137 (0.975)	-0.0151 (0.646)
Outcome control mean	0.0277	0.0277	0.0275	0.0279
R-squared Observations	0.000448 1878	0.000482 1878	0.000556 874	0.00122 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Within Supplement Section G.7, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes. Additionally, within Supplement Section G.7, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. The outcome in this table is an indicator of transitivity violation using both menus A & B. A transitivity violation comes from choosing two coins in the interior region of the intersection of both menus, where it is not the case that it can be said that one preferring coin A to coin B and then preferring coin B to coin C implies that one prefers coin A to coin C. "Share of male participants" captures the share of participants in the room, excluding the participant herself or himself, who identify as male, out of those who identify as either male or female. * p < .05, ** p < .01; + q < .05, ++ q < .05

Table G.7.5: Patience

	(1)	(2)	(3)	(4)
	Pooled	Pooled	California	Nairobi
Heat	-0.00005823	-0.00005823	-0.00060946	0.00096101
	(0.854)	(0.854)	(0.093)	(0.279)
	[1.000]	[1.000]	[1.000]	[1.000]
Heat (Male)		-0.0002442 (0.702) [1.000]		
Heat (Nairobi)		$0.00157046 \\ (0.102) \\ [0.437]$		
Outcome control mean	0.9938358	0.9938358	0.9937076	0.9939217
Observations	6612	6612	3200	3412

Note: Standard errors clustered at the individual level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. For (1) and (2), "Heat" refers to the difference between the aggregate delta statistics for the treatment and control groups, divided by the square root of the sum of squared standard errors. For (2), "Heat (Male)" refers to the difference between the aggregate delta statistics for male treatment and control groups, subtracting the difference between the aggregate delta statistics for female treatment and control groups, and then dividing by the square root of the sum of squared standard errors. "Heat (Nairobi)" refers to the difference between the aggregate delta statistics for Nairobi treatment and control groups, subtracting the difference between the aggregate delta statistics for California treatment and control groups, and then dividing by the square root of the sum of squared standard errors. (3) and (4) carry out a similar estimation to "Heat" for (1) and (2) but for the California sample and Nairobi sample, respectively. Within Supplement Section G.7, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes. Additionally, within Supplement Section G.7, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. Given that the non-linear least squares specification used to measure patience does not incorporate interaction terms, we instead use p-values from analogous differences in this table for multiple testing adjustments. Also note that the non-linear least squares specification does not allow one to control for share of male participants, and thus the results (aside from the q-values) are similar to that in Appendix Table D.1.5. The outcome in this table is the aggregate δ statistic from the non-linear least squares specification featured in Andreoni et al. (2015), carried out at the individual-choice level. δ is the daily discount factor between two future days. For comparability with regression results, individuals who did not respond "Female" or "Male" to the gender survey question were dropped (2% of the sample). Before estimation of aggregate parameters, individuals who never altered their decision from a specific corner solution in all convex time budgets were dropped (as they provided insufficient variation for the calculation of utility parameters) as were individuals who exhibited generalized axiom of revealed preference (GARP) violations. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table G.7.6: Time inconsistency

	(1)	(2)	(3)	(4)
	Pooled	Pooled	California	Nairobi
Heat	0.00048029	0.00048029	-0.00878209	0.0179143
	(0.961)	(0.961)	(0.489)	(0.487)
	[1.000]	[1.000]	[1.000]	[1.000]
Heat (Male)		-0.00824147 (0.673) [1.000]		
Heat (Nairobi)		0.02669638 (0.353) [0.496]		
Outcome control mean	1.001042	1.001042	0.9886241	1.05313
Observations	6612	6612	3200	3412

Note: Standard errors clustered at the individual level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. For (1) and (2), "Heat" refers to the difference between the aggregate beta statistics for the treatment and control groups, divided by the square root of the sum of squared standard errors. For (2), "Heat (Male)" refers to the difference between the aggregate beta statistics for male treatment and control groups, then subtracting the difference between the aggregate beta statistics for female treatment and control groups, and then dividing by the square root of the sum of squared standard errors. "Heat (Nairobi)" refers to the difference between the aggregate beta statistics for Nairobi treatment and control groups, subtracting the difference between the aggregate beta statistics for California treatment and control groups, and then dividing by the square root of the sum of squared standard errors. (3) and (4) carry out a similar estimation to "Heat" for (1) and (2) but for the California sample and Nairobi sample, respectively. Note that the effects presented above are multiplied by -1, so that a positive difference reflects more time inconsistency. Within Supplement Section G.7, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of pvalues associated with Heat, across primary outcomes. Additionally, within Supplement Section G.7, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. Given that the non-linear least squares specification used to measure patience does not incorporate interaction terms, we instead use p-values from analogous differences in this table for multiple testing adjustments. Also note that the non-linear least squares specification does not allow one to control for share of male participants, and thus the results (aside from the q-values) are similar to that in Appendix Table D.1.6. The outcome in this table is the aggregate β statistic from the non-linear least squares specification featured in Andreoni et al. (2015), carried out at the individual-choice level. β measures present bias, and values less than 1 denote time inconsistency. For comparability with regression results, individuals who did not respond "Female" or "Male" to the gender survey question were dropped (2% of the sample). Before estimation of aggregate parameters, individuals who never altered their decision from a specific corner solution in all convex time budgets were dropped (as they provided insufficient variation for the calculation of utility parameters) as were individuals who exhibited generalized axiom of revealed preference (GARP) violations. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table G.7.7: Trust

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	0.0232 (0.465) [1.000]	0.000859 (0.979) [1.000]	0.0541 (0.162) [1.000]	0.0383 (0.517) [1.000]
Male	0.0705 (0.000)**	0.0473 $(0.030)^*$	0.0619 $(0.013)^*$	0.0758 (0.000)**
$Male \times Heat$		0.0466 (0.117) [0.698]		
Nairobi	-0.136 (0.000)**	-0.170 (0.000)**		
Nairobi \times Heat		0.0686 (0.068) [0.437]		
Share of male participants	0.00999 (0.796)	0.0465 (0.260)	0.0383 (0.571)	0.0379 (0.454)
Share of male participants \times Heat	-0.0287 (0.565)	-0.102 (0.084)	-0.188 (0.030)*	-0.00761 (0.923)
Outcome control mean R-squared Observations	0.417 0.0467 1878	0.417 0.0508 1878	0.495 0.0147 874	0.348 0.0225 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Within Supplement Section G.7, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes. Additionally, within Supplement Section G.7, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. The outcome in this table is the share of endowed tokens (out of 600) entrusted to the other person in the first round of the trust game. "Share of male participants" captures the share of participants in the room, excluding the participant herself or himself, who identify as male, out of those who identify as either male or female. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table G.7.8: Public contribution

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-8.765 (0.842) [1.000]	-19.27 (0.671) [1.000]	-11.14 (0.844) [1.000]	43.69 (0.555) [1.000]
Male	37.79 (0.056)	34.85 (0.173)	13.18 (0.662)	58.94 (0.020)*
$Male \times Heat$		5.992 (0.873) [1.000]		
Nairobi	-171.1 (0.000)**	-202.5 (0.000)**		
Nairobi \times Heat		62.87 (0.137) [0.437]		
Share of male participants	2.983 (0.962)	27.61 (0.659)	-21.25 (0.795)	$66.51 \\ (0.471)$
Share of male participants \times Heat	-0.283 (0.997)	-49.37 (0.534)	-64.48 (0.563)	-43.45 (0.692)
Outcome control mean R-squared Observations	529.7 0.0383 1878	529.7 0.0395 1878	629.6 0.00311 874	442.5 0.00782 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Within Supplement Section G.7, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes. Additionally, within Supplement Section G.7, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. Public contribution here refers to the public goods game. The outcome in this table is the amount of tokens (out of 1200) put into the shared fund. "Share of male participants" captures the share of participants in the room, excluding the participant herself or himself, who identify as male, out of those who identify as either male or female. * p < .05, ** p < .01; + q < .05, ++ q < .05

Table G.7.9: Fluid intelligence

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	0.00932 (0.564) [1.000]	-0.00222 (0.893) [1.000]	0.00249 (0.885) [1.000]	0.0384 (0.277) [1.000]
Male	0.0171 $(0.045)^*$	0.00225 (0.856)	0.0214 (0.009)**	0.0125 (0.396)
$Male \times Heat$		0.0298 (0.068) [0.605]		
Nairobi	-0.128 (0.000)**	-0.140 (0.000)**		
Nairobi \times Heat		0.0245 (0.166) [0.437]		
Share of male participants	-0.00121 (0.958)	0.0150 (0.539)	-0.00667 (0.809)	0.0243 (0.538)
Share of male participants \times Heat	0.0106 (0.707)	-0.0221 (0.485)	-0.00414 (0.907)	-0.0170 (0.730)
Outcome control mean R-squared Observations	0.862 0.121 1878	0.862 0.124 1878	0.935 0.00826 874	0.799 0.00618 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Within Supplement Section G.7, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes. Additionally, within Supplement Section G.7, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. Fluid intelligence is measured through Raven's Progressive Matrices. The outcome in this table is the share of six matrices answered correctly. Each puzzle answered correctly yields an Airtime Voucher worth 50 KSh (or an Amazon Gift Card worth 1 dollar in the California sample), which provides the earnings to be used for the next module. "Share of male participants" captures the share of participants in the room, excluding the participant herself or himself, who identify as male, out of those who identify as either male or female. * p < .05, ** p < .01; + q < .05, ++ p < .01

Table G.7.10: Joy of Destruction

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-0.0482 (0.032)* [0.632]	-0.0479 (0.026)* [0.462]	-0.0699 (0.008)** [0.105]	0.0550 (0.164) [1.000]
Male	0.0332 (0.004)**	0.0635 (0.000)**	0.0252 (0.118)	0.0398 (0.016)*
$Male \times Heat$		-0.0610 (0.006)** [0.080]		
Nairobi	0.106 (0.000)**	0.0481 (0.008)**		
Nairobi \times Heat		0.116 (0.000)** [0.001] ⁺⁺		
Share of male participants	-0.0363 (0.241)	-0.00818 (0.795)	-0.0314 (0.507)	0.0328 (0.405)
Share of male participants \times Heat	0.133 (0.001)**	0.0783 (0.053)	0.0717 (0.138)	0.0372 (0.520)
Outcome control mean R-squared Observations	0.110 0.0710 1859	0.110 0.0831 1859	0.0771 0.0159 864	0.139 0.0293 995

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Within Supplement Section G.7, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes. Additionally, within Supplement Section G.7, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. The outcome in this table is the share of the anonymous partner's earned Airtime Vouchers (Amazon Gift Cards in the California sample) destroyed by the participant. The earned Airtime Vouchers and Amazon Gift Cards resulted from the number of Raven's Progressive Matrices answered correctly in the previous module, where one puzzle answered correctly yielded one Airtime Voucher or one Amazon Gift Card. Airtime Vouchers were worth 50 KSh each, while Amazon Gift Cards were worth 1 dollar each. "Share of male participants" captures the share of participants in the room, excluding the participant herself or himself, who identify as male, out of those who identify as either male or female. * p < .05, ** p < .01; + q < .05, ++ q < .05, ++ q < .05

Table G.7.11: Cognitive reflection

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-0.0151 (0.533) [1.000]	-0.0234 (0.343) [1.000]	0.0140 (0.706) [1.000]	-0.0346 (0.300) [1.000]
Male	0.0857 (0.000)**	0.0807 (0.000)**	0.177 (0.000)**	-0.00158 (0.907)
$Male \times Heat$		0.0102 (0.689) [1.000]		
Nairobi	-0.242 (0.000)**	-0.262 (0.000)**		
Nairobi \times Heat		0.0390 (0.142) [0.437]		
Share of male participants	-0.0234 (0.462)	-0.00655 (0.854)	0.0369 (0.492)	-0.0384 (0.364)
Share of male participants \times Heat	0.0239 (0.541)	-0.00979 (0.831)	-0.0913 (0.266)	0.0774 (0.089)
Outcome control mean R-squared Observations	0.325 0.178 1878	0.325 0.180 1878	0.455 0.0787 874	0.212 0.00438 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Within Supplement Section G.7, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes. Additionally, within Supplement Section G.7, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. The outcome in this table is the share of questions (out of 5) from the Cognitive Reflection Test answered correctly. "Share of male participants" captures the share of participants in the room, excluding the participant herself or himself, who identify as male, out of those who identify as either male or female. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table G.7.12: Charitable donation

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	8.274 (0.891) [1.000]	-38.82 (0.555) [1.000]	18.73 (0.763) [1.000]	36.40 (0.769) [1.000]
Male	2.601 (0.931)	2.250 (0.957)	-46.37 (0.185)	46.44 (0.330)
$Male \times Heat$		3.134 (0.957) [1.000]		
Nairobi	314.6 (0.000)**	289.6 (0.000)**		
Nairobi \times Heat		53.23 (0.397) [0.496]		
Matched with ingroup charity	-8.524 (0.791)	-64.52 (0.158)	29.57 (0.436)	-74.01 (0.193)
Matched with ingroup charity \times Heat		118.6 (0.096)		
Earnings in tokens	0.00330 (0.752)	0.00349 (0.738)	-0.0184 (0.114)	0.0272 (0.129)
Share of male participants	53.90 (0.548)	59.26 (0.501)	-112.6 (0.254)	221.1 (0.116)
Share of male participants \times Heat	-23.65 (0.852)	-41.30 (0.745)	-79.84 (0.555)	-54.65 (0.794)
Outcome control mean R-squared Observations	410.4 0.0660 1806	410.4 0.0675 1806	245.0 0.0130 861	561.8 0.0121 945

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Within Supplement Section G.7, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes. Additionally, within Supplement Section G.7, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. The outcome in this table is the amount of tokens earned in the experiment that is donated to the randomly selected charity. In Nairobi, "Matched with ingroup charity" is an indicator taking on a value of one if a participant is matched to a charity associated with her ethnicity, and 0 otherwise. In California, "Matched with ingroup charity" is an indicator taking on a value of one if a participant has resided in the San Francisco Bay Area for five years

or more and is matched with a charity in the San Francisco Bay Area. "Earnings in tokens" captures the amount of tokens earned in the experiment. "Share of male participants" captures the share of participants in the room, excluding the participant herself or himself, who identify as male, out of those who identify as either male or female. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table G.7.13: Happiness

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
	Pooled	Pooled	Camorina	Nairobi
Heat	0.215	0.215	0.300	0.0304
	(0.092)	(0.095)	(0.067)	(0.903)
Male	0.174	0.139	0.221	0.119
	$(0.005)^{**}$	(0.142)	$(0.017)^*$	(0.161)
$Male \times Heat$		0.0698		
		(0.590)		
Nairobi	1.123	1.191		
	$(0.000)^{**}$	$(0.000)^{**}$		
Nairobi \times Heat		-0.136		
		(0.383)		
Share of male participants	0.291	0.257	0.112	0.369
	(0.052)	(0.116)	(0.687)	$(0.045)^*$
Share of male participants \times Heat	-0.548	-0.483	-0.625	-0.338
	$(0.009)^{**}$	(0.056)	(0.109)	(0.309)
Outcome control mean	5.313	5.313	4.625	5.914
R-squared	0.183	0.184	0.0112	0.0126
Observations	1878	1878	874	1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. The outcome in this table is the number chosen from a 1-7 scale that asked how one felt towards the end of the experiment, with 1 being sad and 7 being happy. "Share of male participants" captures the share of participants in the room, excluding the participant herself or himself, who identify as male, out of those who identify as either male or female. * p < .05, ** p < .01

Table G.7.14: Alertness

	(1)	(2)	(3)	(4)
	Pooled	Pooled	California	Nairobi
Heat	-0.396 (0.018)*	-0.471 (0.007)**	-0.380 (0.079)	-0.266 (0.347)
Male	0.390 (0.000)**	0.318 (0.003)**	0.730 (0.000)**	0.0659 (0.497)
$Male \times Heat$		0.145 (0.331)		
Nairobi	1.820 (0.000)**	1.696 (0.000)**		
Nairobi \times Heat		0.247 (0.133)		
Share of male participants	0.00842 (0.964)	0.134 (0.465)	0.147 (0.630)	0.109 (0.608)
Share of male participants \times Heat	-0.0432 (0.860)	-0.296 (0.283)	-0.373 (0.344)	-0.0859 (0.813)
Outcome control mean R-squared	5.247 0.304	5.247 0.305	4.281 0.0748	6.090 0.0134
Observations	1878	1878	874	1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. The outcome in this table is the number chosen from a 1-7 scale that asked how one felt towards the end of the experiment, with 1 being tired and 7 being alert. "Share of male participants" captures the share of participants in the room, excluding the participant herself or himself, who identify as male, out of those who identify as either male or female. * p < .05, ** p < .01

G.8 Selected outcomes: including session fixed effects

Table G.8.1: Precision task

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	0.610 (0.028)* [0.512]	0.881 (0.047)* [1.000]	0.684 (0.057) $[0.454]$	0.544 (0.191) [0.872]
Male	1.979 (0.000)**	2.219 (0.000)**	1.684 (0.000)**	2.267 (0.000)**
$Male \times Heat$		-0.479 (0.335) [1.000]		
Nairobi	-7.833 (0.000)**	-7.833 (0.000)**		
Nairobi × Heat		-0.0238 (0.965) [1.000]		
Outcome control mean	17.95	17.95	23.63	12.99
R-squared	0.638	0.638	0.348	0.181
F-statistic on F.E.	71.17	61.14	124.64	77.12
Observations	1878	1878	874	1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Within Supplement Section G.8, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes. Additionally, within Supplement Section G.8, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. The precision task is also known as the slider task. The outcome in this table is the number of correct sliders made in three minutes. Final earnings from the precision task are based off either being weakly above (high) or below (low) the median within treatment cohort. The median pair is randomly assigned to high or low. In comparison to the specifications in Section A, these specifications feature session fixed effects, with the F-statistic from the joint F-test on the fixed effects included at the bottom of the table. * p < .05, ** p < .01; + q < .05, ++ q < .05

Table G.8.2: Fairness

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-0.0167 (0.200) [0.861]	-0.0203 (0.302) [1.000]	-0.0240 (0.151) [0.590]	-0.0107 (0.583) [1.000]
Male	-0.0300 (0.024)*	-0.0261 (0.181)	-0.0600 (0.002)**	-0.00103 (0.954)
$Male \times Heat$		-0.00786 (0.762) [1.000]		
Nairobi	-0.0139 (0.000)**	-0.0139 (0.000)**		
Nairobi \times Heat		$0.0147 \\ (0.571) \\ [1.000]$		
Outcome control mean R-squared F-statistic on F.E.	0.318 0.129 1072.42	0.318 0.129 88.72	0.309 0.106 370.23	0.326 0.147 19.13
Observations	1878	1878	874	1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Within Supplement Section G.8, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes. Additionally, within Supplement Section G.8, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. Fairness here refers to the real effort dictator game, where the level of endowment is determined by the number of correct sliders made in the precision task. The outcome in this table is the share of joint earnings (2400 tokens in the high group, 1200 tokens in the low group) that each participant desires to give to the anonymous partner. In comparison to the specifications in Section A, these specifications feature session fixed effects, with the F-statistic from the joint F-test on the fixed effects included at the bottom of the table. * p < .05, ** p < .01; + q < .05, ++ p < .01

Table G.8.3: Risk-taking

(1)	(2)	(3)	(4)
Pooled	Pooled	California	Nairobi
0.128	0.153	-5.093	5.918
(0.995)	(0.996)	(0.879)	(0.840)
[1.000]	[1.000]	[1.000]	[1.000]
163.4	172.6	290.6	40.01 (0.226)
(0.000)**	(0.000)**	(0.000)**	
	-18.53 (0.704) [1.000]		
150.0 (0.000)**	150.0 (0.000)**		
	18.47 (0.704) [1.000]		
366.3	366.3	409.0	329.1
0.137	0.137	0.194	0.0931
1201.15	105.40	78.88	69.15
1878	1878	874	1004
	Pooled 0.128 (0.995) [1.000] 163.4 (0.000)** 150.0 (0.000)**	Pooled Pooled 0.128	Pooled Pooled California 0.128 0.153 -5.093 (0.995) (0.996) (0.879) [1.000] [1.000] [1.000] 163.4 172.6 290.6 (0.000)** (0.000)** (0.000)** -18.53 (0.704) [1.000] 150.0 (0.000)** (0.000)** 18.47 (0.704) [1.000] 366.3 366.3 409.0 0.137 0.137 0.194 1201.15 105.40 78.88

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Within Supplement Section G.8, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes. Additionally, within Supplement Section G.8, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. The outcome in this table is the variance of the coin toss from menu A, in tokens. Note that the expected value is not constant across each coin, so that the outcome does not capture the trade-off between expected value and variance. Note also that under this approach, Coin 7 will be as good as Coin 5, even though Coin 5 strictly dominates Coin 7 with expected utility. In comparison to the specifications in Section A, these specifications feature session fixed effects, with the F-statistic from the joint F-test on the fixed effects included at the bottom of the table. * p < .05, ** p < .01; + q < .05, ++ q < .05

Table G.8.4: Rational choice violation I

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-0.00408 (0.602) [1.000]	-0.000709 (0.955) [1.000]	-0.00433 (0.718) [1.000]	-0.00386 (0.711) [1.000]
Male	-0.000612 (0.946)	0.00392 (0.770)	0.000622 (0.955)	-0.00181 (0.899)
$Male \times Heat$		-0.00910 (0.623) [1.000]		
Nairobi	-4.10e-14 (0.189)	-3.84e-14 (0.203)		
Nairobi × Heat		0.00284 (0.869) [1.000]		
Outcome control mean R-squared	0.0277 0.0684	0.0277 0.0686	0.0275 0.0705	0.0279 0.0666
F-statistic on F.E. Observations	0.14 1878	89.00 1878	0.07 874	0.07 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Within Supplement Section G.8, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes. Additionally, within Supplement Section G.8, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. The outcome in this table is an indicator of transitivity violation using both menus A & B. A transitivity violation comes from choosing two coins in the interior region of the intersection of both menus, where it is not the case that it can be said that one preferring coin A to coin B and then preferring coin B to coin C implies that one prefers coin A to coin C. In comparison to the specifications in Section A, these specifications feature session fixed effects, with the F-statistic from the joint F-test on the fixed effects included at the bottom of the table. * p < .05, ** p < .01; + q < .05, ++ q < .05, ++ q < .01

Table G.8.5: Patience

	(1)	(2)	(3)	(4)
	Pooled	Pooled	California	Nairobi
Heat	-0.00005823	-0.00005823	-0.00060946	0.00096101
	(0.854)	(0.854)	(0.093)	(0.279)
	[1.000]	[1.000]	[0.516]	[0.872]
Heat (Male)		-0.0002442 (0.702) [1.000]		
Heat (Nairobi)		0.00157046 (0.102) [1.000]		
Outcome control mean	0.9938358	0.9938358	0.9937076	0.9939217
Observations	6612	6612	3200	3412

Note: Standard errors in parentheses, clustered at the individual level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. For (1) and (2), "Heat" refers to the difference between the aggregate delta statistics for the treatment and control groups, divided by the square root of the sum of squared standard errors. For (2), "Heat (Male)" refers to the difference between the aggregate delta statistics for male treatment and control groups, subtracting the difference between the aggregate delta statistics for female treatment and control groups, and then dividing by the square root of the sum of squared standard errors. "Heat (Nairobi)" refers to the difference between the aggregate delta statistics for Nairobi treatment and control groups, subtracting the difference between the aggregate delta statistics for California treatment and control groups, and then dividing by the square root of the sum of squared standard errors. (3) and (4) carry out a similar estimation to "Heat" for (1) and (2) but for the California sample and Nairobi sample, respectively. Within Supplement Section G.8, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes. Additionally, within Supplement Section G.8, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. Given that the non-linear least squares specification used to measure patience does not incorporate interaction terms, we instead use p-values from analogous differences in this table for multiple testing adjustments. Also note that the non-linear least squares specification does not allow for fixed effects, and thus the results (aside from the q-values) are similar to that in Appendix Table D.1.5. The outcome in this table is the aggregate δ statistic from the non-linear least squares specification featured in Andreoni et al. (2015), carried out at the individual-choice level. δ is the daily discount factor between two future days. For comparability with regression results, individuals who did not respond "Female" or "Male" to the gender survey question were dropped (2% of the sample). Before estimation of aggregate parameters, individuals who never altered their decision from a specific corner solution in all convex time budgets were dropped (as they provided insufficient variation for the calculation of utility parameters) as were individuals who exhibited generalized axiom of revealed preference (GARP) violations. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table G.8.6: Time inconsistency

	(1)	(2)	(3)	(4)
	Pooled	Pooled	California	Nairobi
Heat	0.00048029	0.00048029	-0.00878209	0.0179143
	(0.961)	(0.961)	(0.489)	(0.487)
	[1.000]	[1.000]	[1.000]	[1.000]
Heat (Male)		-0.00824147 (0.673) [1.000]		
Heat (Nairobi)		0.02669638 (0.353) [1.000]		
Outcome control mean	1.001042	1.001042	0.9886241	1.05313
Observations	6612	6612	3200	3412

Note: Standard errors in parentheses, clustered at the individual level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. For (1) and (2), "Heat" refers to the difference between the aggregate beta statistics for the treatment and control groups, divided by the square root of the sum of squared standard errors. For (2), "Heat (Male)" refers to the difference between the aggregate beta statistics for male treatment and control groups, then subtracting the difference between the aggregate beta statistics for female treatment and control groups, and then dividing by the square root of the sum of squared standard errors. "Heat (Nairobi)" refers to the difference between the aggregate beta statistics for Nairobi treatment and control groups, subtracting the difference between the aggregate beta statistics for California treatment and control groups, and then dividing by the square root of the sum of squared standard errors. (3) and (4) carry out a similar estimation to "Heat" for (1) and (2) but for the California sample and Nairobi sample, respectively. Note that the effects presented above are multiplied by -1, so that a positive difference reflects more time inconsistency. Within Supplement Section G.8, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes. Additionally, within Supplement Section G.8, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. Given that the non-linear least squares specification used to measure patience does not incorporate interaction terms, we instead use p-values from analogous differences in this table for multiple testing adjustments. Also note that the non-linear least squares specification does not allow for fixed effects, and thus the results (aside from the q-values) are similar to that in Appendix Table D.1.6. The outcome in this table is the aggregate β statistic from the non-linear least squares specification featured in Andreoni et al. (2015), carried out at the individual-choice level. β measures present bias, and values less than 1 denote time inconsistency. For comparability with regression results, individuals who did not respond "Female" or "Male" to the gender survey question were dropped (2% of the sample). Before estimation of aggregate parameters, individuals who never altered their decision from a specific corner solution in all convex time budgets were dropped (as they provided insufficient variation for the calculation of utility parameters) as were individuals who exhibited generalized axiom of revealed preference (GARP) violations. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table G.8.7: Trust

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	0.00755 (0.648) [1.000]	-0.0335 (0.222) [1.000]	-0.0177 (0.501) [1.000]	0.0292 (0.164) [0.872]
Male	0.0764 (0.000)**	0.0566 $(0.019)^*$	0.0806 (0.006)**	0.0719 (0.001)**
$Male \times Heat$		0.0392 (0.217) [1.000]		
Nairobi	-0.341 (0.000)**	-0.341 (0.000)**		
Nairobi × Heat		0.0368 (0.294) [1.000]		
Outcome control mean	0.417	0.417	0.495	0.348
R-squared	0.160	0.163	0.106	0.163
F-statistic on F.E.	386.53	82.91	12.40	66.77
Observations	1878	1878	874	1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Within Supplement Section G.8, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes. Additionally, within Supplement Section G.8, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. The outcome in this table is the share of endowed tokens (out of 600) entrusted to the other person in the first round of the trust game. In comparison to the specifications in Section A, these specifications feature session fixed effects, with the F-statistic from the joint F-test on the fixed effects included at the bottom of the table. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table G.8.8: Public contribution

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-11.07 (0.591) [1.000]	-41.33 (0.239) [1.000]	-35.60 (0.263) [0.669]	9.816 (0.716) [1.000]
Male	45.37 (0.037)*	37.88 (0.168)	37.98 (0.290)	52.15 (0.041)*
$Male \times Heat$		14.64 (0.709) [1.000]		
Nairobi	-308.3 (0.000)**	-308.3 (0.000)**		
Nairobi × Heat		41.49 (0.328) [1.000]		
Outcome control mean R-squared F-statistic on F.E. Observations	529.7 0.188 760.98 1878	529.7 0.189 104.20 1878	629.6 0.126 213.72 874	442.5 0.195 112.52 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Within Supplement Section G.8, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes. Additionally, within Supplement Section G.8, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. Public contribution here refers to the public goods game. The outcome in this table is the amount of tokens (out of 1200) put into the shared fund. In comparison to the specifications in Section A, these specifications feature session fixed effects, with the F-statistic from the joint F-test on the fixed effects included at the bottom of the table. * p < .05, ** p < .01; + p < .05, ++ p < .

Table G.8.9: Fluid intelligence

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	0.0159 (0.061) [0.512]	-0.00707 (0.567) [1.000]	0.00252 (0.782) [1.000]	0.0274 (0.045)* [0.334]
Male	0.0143 (0.120)	0.00237 (0.856)	$0.0190 \\ (0.019)^*$	0.00959 (0.559)
$Male \times Heat$		0.0238 (0.177) $[1.000]$		
Nairobi	-0.111 (0.000)**	-0.111 (0.000)**		
Nairobi × Heat		0.0189 (0.265) [1.000]		
Outcome control mean R-squared F-statistic on F.E. Observations	0.862 0.203 100.27 1878	0.862 0.205 24.18 1878	0.935 0.111 1616.39 874	0.799 0.0957 96.67 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Within Supplement Section G.8, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes. Additionally, within Supplement Section G.8, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. Fluid intelligence is measured through Raven's Progressive Matrices. The outcome in this table is the share of six matrices answered correctly. Each puzzle answered correctly yields an Airtime Voucher worth 50 KSh (or an Amazon Gift Card worth 1 dollar in the California sample), which provides the earnings to be used for the next module. In comparison to the specifications in Section A, these specifications feature session fixed effects, with the F-statistic from the joint F-test on the fixed effects included at the bottom of the table. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table G.8.10: Joy of Destruction

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	0.0218 (0.116) [0.628]	-0.0241 (0.128) [1.000]	-0.0428 (0.006)** [0.075]	0.0767 (0.000)** [0.004] ⁺⁺
Male	0.0295 $(0.023)^*$	0.0520 (0.005)**	0.0264 (0.159)	0.0312 (0.078)
$Male \times Heat$		-0.0466 (0.048)* [1.000]		
Nairobi	0.0667 (0.000)**	0.0667 (0.000)**		
Nairobi × Heat		0.131 (0.000)** [0.001] ⁺⁺		
Outcome control mean R-squared F-statistic on F.E. Observations	0.110 0.153 167.45 1859	0.110 0.168 26.82 1859	0.0771 0.0885 25.55 864	0.139 0.128 8.45 995

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Within Supplement Section G.8, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes. Additionally, within Supplement Section G.8, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. The outcome in this table is the share of the anonymous partner's earned Airtime Vouchers (Amazon Gift Cards in the California sample) destroyed by the participant. The earned Airtime Vouchers and Amazon Gift Cards resulted from the number of Raven's Progressive Matrices answered correctly in the previous module, where one puzzle answered correctly yielded one Airtime Voucher or one Amazon Gift Card. Airtime Vouchers were worth 50 KSh each, while Amazon Gift Cards were worth 1 dollar each. In comparison to the specifications in Section A, these specifications feature session fixed effects, with the F-statistic from the joint F-test on the fixed effects included at the bottom of the table. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table G.8.11: Cognitive reflection

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-0.00253 (0.832) [1.000]	-0.0306 (0.149) [1.000]	-0.0222 (0.267) [0.669]	0.0153 (0.265) $[0.872]$
Male	0.0849 (0.000)**	0.0762 (0.000)**	0.175 (0.000)**	-0.00286 (0.857)
$Male \times Heat$		0.0171 (0.518) $[1.000]$		
Nairobi	-0.167 (0.000)**	-0.167 (0.000)**		
Nairobi × Heat		0.0350 (0.179) $[1.000]$		
Outcome control mean	0.325	0.325	0.455	0.212
R-squared	0.274	0.276	0.164	0.160
F-statistic on F.E.	13.45	343.11	94.96	15.96
Observations	1878	1878	874	1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Within Supplement Section G.8, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes. Additionally, within Supplement Section G.8, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. The outcome in this table is the share of questions (out of 5) from the Cognitive Reflection Test answered correctly. In comparison to the specifications in Section A, these specifications feature session fixed effects, with the F-statistic from the joint F-test on the fixed effects included at the bottom of the table. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table G.8.12: Charitable donation

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-6.906 (0.838) [1.000]	-48.66 (0.305) [1.000]	-14.82 (0.653) [1.000]	-0.802 (0.989) [1.000]
Male	3.056 (0.922)	8.704 (0.842)	-18.94 (0.605)	27.39 (0.590)
$Male \times Heat$		-8.804 (0.891) [1.000]		
Nairobi	248.4 (0.000)**	126.8 (0.067)		
Nairobi \times Heat		41.75 (0.527) [1.000]		
Matched with ingroup charity	-13.64 (0.705)	-64.06 (0.204)	10.67 (0.806)	-53.30 (0.408)
Matched with ingroup charity \times Heat		106.5 (0.175)		
Earnings in tokens	-0.0127 (0.234)	-0.0122 (0.251)	-0.0229 (0.057)	-0.000982 (0.958)
Outcome control mean	410.4	410.4	245.0	561.8
R-squared	0.195	0.196	0.0964	0.161
F-statistic on F.E. Observations	97.44 1806	118.89 1806	54.90 861	188.86 945

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Within Supplement Section G.8, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes. Additionally, within Supplement Section G.8, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes. The outcome in this table is the amount of tokens earned in the experiment that is donated to the randomly selected charity. In Nairobi, matched with ingroup charity is an indicator taking on a value of one if a participant is matched to a charity associated with her ethnicity, and 0 otherwise. In California, "Matched with ingroup charity" is an indicator taking on a value of one if a participant has resided in the San Francisco Bay Area for five years or more and is matched with a charity in the San Francisco Bay Area. "Earnings in tokens" captures the amount of tokens earned in the experiment. In comparison to the specifications in Section A, these specifications feature session fixed effects, with the F-statistic from the joint F-test on the fixed effects included at the bottom of the table. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table G.8.13: Happiness

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-0.0707 (0.285)	0.0107 (0.918)	0.0557 (0.551)	-0.178 (0.055)
Male	0.172 (0.015)*	0.119 (0.268)	0.277 (0.008)**	0.0722 (0.448)
$Male \times Heat$		0.108 (0.438)		
Nairobi	1.333 (0.000)**	1.333 (0.000)**		
Nairobi × Heat		-0.259 (0.070)		
Outcome control mean	5.313	5.313	4.625	5.914
R-squared	0.263	0.265	0.112	0.106
F-statistic on F.E.	2128.30	132.59	13.68	301.03
Observations	1878	1878	874	1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. The outcome in this table is the number chosen from a 1-7 scale that asked how one felt towards the end of the experiment, with 1 being sad and 7 being happy. In comparison to the specifications in Section A, these specifications feature session fixed effects, with the F-statistic from the joint F-test on the fixed effects included at the bottom of the table. * p < .05, ** p < .01

Table G.8.14: Alertness

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-0.412 (0.000)**	-0.597 (0.000)**	-0.524 (0.000)**	-0.313 (0.003)**
Male	0.385 (0.000)**	0.302 $(0.013)^*$	0.768 (0.000)**	0.0127 (0.913)
$Male \times Heat$		0.166 (0.310)		
Nairobi	2.667 (0.000)**	2.667 (0.000)**		
Nairobi \times Heat		0.177 (0.278)		
Outcome control mean	5.247	5.247	4.281	6.090
R-squared	0.371	0.372	0.156	0.121
F-statistic on F.E.	1035.96	25.71	31.37	6.36
Observations	1878	1878	874	1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. The outcome in this table is the number chosen from a 1-7 scale that asked how one felt towards the end of the experiment, with 1 being tired and 7 being alert. In comparison to the specifications in Section A, these specifications feature session fixed effects, with the F-statistic from the joint F-test on the fixed effects included at the bottom of the table. * p < .05, ** p < .01

G.9 Selected outcomes: accounting for outside weather

Table G.9.1: Precision task

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	0.518 (0.048)* [0.339]	0.931 (0.064) [0.538]	0.598 (0.075) [0.495]	0.450 (0.250) [0.722]
Male	1.921 (0.000)**	2.016 (0.000)**	1.845 (0.000)**	2.360 (0.000)**
$Male \times Heat$		-0.194 (0.687) [1.000]		
Nairobi	-10.53 (0.000)**	-10.24 (0.000)**		
Nairobi × Heat		-0.581 (0.414) [0.950]		
Outside temperature (pooled)	-0.116 (0.237)	-0.150 (0.146)		
Outside temperature (pooled) \times Heat	0.00612 (0.934)	0.0756 (0.450)		
Outside relative humidity (pooled)	-0.0345 (0.048)*	-0.0392 (0.032)*		
Outside relative humidity (pooled) \times Heat	0.0153 (0.445)	0.0247 (0.262)		
Outside temperature (site)			-0.170 (0.129)	0.470 (0.138)
Outside temperature (site) \times Heat			0.0735 (0.473)	0.507 (0.271)
Outside relative humidity (site)			-0.0331 (0.121)	-0.0356 (0.275)
Outside relative humidity (site) \times Heat			0.0355 (0.133)	0.0168 (0.710)
Outcome control mean R-squared Observations	17.95 0.551 1878	17.95 0.552 1878	23.63 0.0779 874	12.99 0.0492 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Within Supplement Section G.9, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes, aside from Supplement Table G.9.11. Additionally, within Supplement Section G.9, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes, aside from Supplement Table G.9.11. The precision task is the slider task. The outcome is the number of correct sliders in 3 minutes. Earnings are based off either being weakly above (high) or below (low) the median within treatment cohort (median pair is randomly assigned to high or low). "Outside temperature (pooled)" captures the demeaned (relative to the pooled sample) average outside temperature in Celsius for the day of the session. "Outside relative humidity (pooled)" captures the demeaned (relative to the pooled sample) average outside relative humidity in percentage for the day of the session. "Outside temperature (site)" captures the demeaned (relative to the site sample) average site-specific outside temperature in Celsius for the day of the session. "Outside relative humidity (site)" captures the demeaned (relative to the site sample) average site-specific outside relative humidity in percentage for the day of the session. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table G.9.2: Fairness

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-0.0167 (0.171) [0.627]	-0.0276 (0.231) [1.000]	-0.0241 (0.120) [0.495]	-0.0105 (0.559) [1.000]
Male	-0.0427 (0.001)**	-0.0366 (0.038)*	-0.0811 (0.000)**	-0.00895 (0.597)
$Male \times Heat$		-0.0119 (0.607) [1.000]		
Nairobi	0.0670 (0.000)**	0.0506 $(0.042)^*$		
Nairobi \times Heat		0.0324 (0.373) [0.950]		
Outside temperature (pooled)	-0.00651 $(0.031)^*$	-0.00484 (0.153)		
Outside temperature (pooled) \times Heat	0.000474 (0.874)	-0.00288 (0.501)		
Outside relative humidity (pooled)	-0.000907 (0.196)	-0.000658 (0.386)		
Outside relative humidity (pooled) \times Heat	-0.0000836 (0.922)	-0.000566 (0.606)		
Outside temperature (site)			-0.00584 (0.079)	-0.00645 (0.723)
Outside temperature (site) \times Heat			0.00130 (0.759)	-0.0227 (0.358)
Outside relative humidity (site)			-0.00134 (0.085)	0.000337 (0.843)
Outside relative humidity (site) \times Heat			0.000998 (0.384)	-0.00441 (0.088)
Outcome control mean R-squared Observations	0.318 0.0136 1878	0.318 0.0141 1878	0.309 0.0383 874	0.326 0.00963 1004

ment Section G.9, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes, aside from Supplement Table G.9.11. Additionally, within Supplement Section G.9, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes, aside from Supplement Table G.9.11. Fairness here refers to the real effort dictator game, where the endowment is determined by the number of correct sliders made in the precision task. The outcome is the share of joint earnings (2400 tokens for high, 1200 tokens for low) that each participant desires to give to the anonymous partner. "Outside temperature (pooled)" captures the demeaned (relative to pooled) average outside temperature (pooled) average outside relative humidity (pooled)" captures the demeaned (relative to pooled) average outside relative humidity (%) for the session day. "Outside temperature (site)" and "outside relative humidity (site)" are site-specific variants. * p < .05, ** p < .01; + p < .05, ++ p < .05, ++

Table G.9.3: Risk-taking

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-1.551 (0.940) [1.000]	20.84 (0.601) [1.000]	-5.037 (0.870) [0.891]	1.411 (0.958) [1.000]
Male	159.8 (0.000)**	166.8 (0.000)**	312.2 (0.000)**	26.93 (0.344)
$Male \times Heat$		-14.13 (0.750) [1.000]		
Nairobi	-95.17 (0.005)**	-81.27 (0.064)		
Nairobi × Heat		-27.91 (0.680) [1.000]		
Outside temperature (pooled)	-2.759 (0.673)	-4.451 (0.526)		
Outside temperature (pooled) \times Heat	2.410 (0.693)	5.864 (0.525)		
Outside relative humidity (pooled)	-3.141 (0.031)*	-3.368 (0.030)*		
Outside relative humidity (pooled) \times Heat	1.720 (0.314)	$2.179 \\ (0.273)$		
Outside temperature (site)			-4.236 (0.549)	26.57 (0.282)
Outside temperature (site) \times Heat			8.381 (0.404)	-49.64 (0.087)
Outside relative humidity (site)			-1.852 (0.291)	-4.214 (0.086)
Outside relative humidity (site) \times Heat			$ \begin{array}{c} 1.753 \\ (0.484) \end{array} $	$1.957 \\ (0.571)$
Outcome control mean R-squared Observations	366.3 0.0445 1878	366.3 0.0447 1878	409.0 0.114 874	329.1 0.0107 1004

Section G.9, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes, aside from Supplement Table G.9.11. Additionally, within Supplement Section G.9, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes, aside from Supplement Table G.9.11. The outcome is the variance of the coin toss from menu A, in tokens. Note that the expected value is not constant across each coin, so that the outcome does not capture the trade-off between expected value and variance, and that Coin 7 will be as good as Coin 5, even though Coin 5 strictly dominates Coin 7 with expected utility. "Outside temperature (pooled)" captures the demeaned (relative to the pooled sample) average outside relative humidity (pooled)" captures the demeaned (relative to the pooled sample) average outside relative humidity in percentage for the day of the session. "Outside temperature in Celsius for the day of the session. "Outside relative humidity (site)" captures the demeaned (relative to the site sample) average site-specific outside relative humidity in percentage for the day of the session. "Outside relative humidity in percentage for the day of the session. "Outside relative humidity in percentage for the day of the session. "Outside relative humidity in percentage for the day of the session. "Outside relative humidity in percentage for the day of the session. "Outside relative humidity in percentage for the day of the session. "Outside relative humidity in percentage for the day of the session. "Outside relative humidity in percentage for the day of the session. "Outside relative humidity in percentage for the day of the session. "Outside relative humidity in percentage for the day of the session. "Outside relative humidity in percentage for the

Table G.9.4: Rational choice violation I

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-0.00433 (0.559) [1.000]	0.00505 (0.745) [1.000]	-0.00440 (0.695) [0.787]	-0.00422 (0.668) [1.000]
Male	0.00192 (0.795)	0.00323 (0.773)	0.00341 (0.749)	-0.00347 (0.747)
$Male \times Heat$		-0.00272 (0.861) [1.000]		
Nairobi	0.0107 (0.279)	0.0182 (0.241)		
Nairobi \times Heat		-0.0149 (0.499) [0.950]		
Outside temperature (pooled)	-0.00264 (0.258)	-0.00350 (0.221)		
Outside temperature (pooled) \times Heat	0.00153 (0.536)	0.00326 (0.385)		
Outside relative humidity (pooled)	-0.000410 (0.398)	-0.000529 (0.338)		
Outside relative humidity (pooled) \times Heat	0.0000446 (0.948)	0.000281 (0.729)		
Outside temperature (site)			-0.00318 (0.333)	-0.00809 (0.266)
Outside temperature (site) \times Heat			0.00287 (0.504)	-0.00377 (0.738)
Outside relative humidity (site)			-0.000462 (0.516)	-0.000828 (0.314)
Outside relative humidity (site) \times Heat			-0.000137 (0.892)	0.000990 (0.481)
Outcome control mean R-squared Observations	0.0277 0.00144 1878	0.0277 0.00172 1878	0.0275 0.00421 874	0.0279 0.00365 1004

Section G.9, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes, aside from Supplement Table G.9.11. Within Supplement Section G.9, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes, aside from Supplement Table G.9.11. The outcome in this table is an indicator of transitivity violation using both menus A & B. A transitivity violation comes from choosing two coins in the interior region of the intersection of both menus, where it cannot be said that one preferring coin A to coin B and also preferring coin B to coin C implies that one prefers coin A to coin C. "Outside temperature (pooled)" captures the demeaned (relative to the pooled sample) average outside relative humidity (pooled)" captures the demeaned (relative to the pooled sample) average outside relative humidity in percentage for the day of the session. "Outside temperature (site)" captures the demeaned (relative to the site sample) average site-specific outside relative humidity (site)" captures the demeaned (relative to the site sample) average site-specific outside relative humidity in percentage for the day of the session. "Outside relative to the site sample) average site-specific outside relative humidity in percentage for the day of the session. * p < .05, ** p < .01; + q < .05, ++ q < .05,

Table G.9.5: Patience

	(1)	(2)	(3)	(4)
	Pooled	Pooled	California	Nairobi
Heat	-0.00005823	-0.00005823	-0.00060946	0.00096101
	(0.854)	(0.854)	(0.093)	(0.279)
	[1.000]	[1.000]	[0.495]	[0.722]
Heat (Male)		-0.0002442 (0.702) [1.000]		
Heat (Nairobi)		$0.00157046 \\ (0.102) \\ [0.513]$		
Outcome control mean	0.9938358	0.9938358	0.9937076 3200	0.9939217
Observations	6612	6612		3412

Note: Standard errors clustered at the individual level. Per-comparison p-values in parentheses. Percomparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. For (1) and (2), "Heat" refers to the difference between the aggregate delta statistics for the treatment and control groups, divided by the square root of the sum of squared standard errors. For (2), "Heat (Male)" refers to the difference between the aggregate delta statistics for male treatment and control groups, subtracting the difference between the aggregate delta statistics for female treatment and control groups, and then dividing by the square root of the sum of squared standard errors. "Heat (Nairobi)" refers to the difference between the aggregate delta statistics for Nairobi treatment and control groups, subtracting the difference between the aggregate delta statistics for California treatment and control groups, and then dividing by the square root of the sum of squared standard errors. (3) and (4) carry out a similar estimation to "Heat" for (1) and (2) but for the California sample and Nairobi sample, respectively. Within Supplement Section G.9, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes, aside from Supplement Table G.9.11. Additionally, within Supplement Section G.9, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes, aside from Supplement Table G.9.11. Given that the non-linear least squares specification used to measure patience does not incorporate interaction terms, we instead use p-values from analogous differences in this table for multiple testing adjustments. Also note that the non-linear least squares specification does not allow one to control for parental education status, and thus the results (aside from the q-values) are similar to that in Appendix Table D.1.5. The outcome in this table is the aggregate δ statistic from the non-linear least squares specification featured in Andreoni et al. (2015), carried out at the individual-choice level. δ is the daily discount factor between two future days. For comparability with regression results, individuals who did not respond "Female" or "Male" to the gender survey question were dropped (2% of the sample). Before estimation of aggregate parameters, individuals who never altered their decision from a specific corner solution in all convex time budgets were dropped (as they provided insufficient variation for the calculation of utility parameters) as were individuals who exhibited generalized axiom of revealed preference (GARP) violations. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table G.9.6: Time inconsistency

	(1)	(2)	(3)	(4)
	Pooled	Pooled	California	Nairobi
Heat	0.00048029	0.00048029	-0.00878209	0.0179143
	(0.961)	(0.961)	(0.489)	(0.487)
	[1.000]	[1.000]	[0.787]	[1.000]
Heat (Male)		-0.00824147 (0.673) [1.000]		
Heat (Nairobi)		$0.02669638 \\ (0.353) \\ [0.950]$		
Outcome control mean	1.001042	1.001042	0.9886241	1.05313
Observations	6612	6612	3200	3412

Note: Standard errors clustered at the individual level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. For (1) and (2), "Heat" refers to the difference between the aggregate beta statistics for the treatment and control groups, divided by the square root of the sum of squared standard errors. For (2), "Heat (Male)" refers to the difference between the aggregate beta statistics for male treatment and control groups, then subtracting the difference between the aggregate beta statistics for female treatment and control groups, and then dividing by the square root of the sum of squared standard errors. "Heat (Nairobi)" refers to the difference between the aggregate beta statistics for Nairobi treatment and control groups, subtracting the difference between the aggregate beta statistics for California treatment and control groups, and then dividing by the square root of the sum of squared standard errors. (3) and (4) carry out a similar estimation to "Heat" for (1) and (2) but for the California sample and Nairobi sample, respectively. Note that the effects presented above are multiplied by -1, so that a positive difference reflects more time inconsistency. Within Supplement Section G.9, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes, aside from Supplement Table G.9.11. Additionally, within Supplement Section G.9, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes, aside from Supplement Table G.9.11. Given that the non-linear least squares specification used to measure patience does not incorporate interaction terms, we instead use p-values from analogous differences in this table for multiple testing adjustments. Also note that the non-linear least squares specification does not allow one to control for parental education status, and thus the results (aside from the q-values) are similar to that in Appendix Table D.1.6. The outcome in this table is the aggregate β statistic from the non-linear least squares specification featured in Andreoni et al. (2015), carried out at the individual-choice level. β measures present bias, and values less than 1 denote time inconsistency. For comparability with regression results, individuals who did not respond "Female" or "Male" to the gender survey question were dropped (2% of the sample). Before estimation of aggregate parameters, individuals who never altered their decision from a specific corner solution in all convex time budgets were dropped (as they provided insufficient variation for the calculation of utility parameters) as were individuals who exhibited generalized axiom of revealed preference (GARP) violations. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table G.9.7: Trust

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	0.00762 (0.622) [1.000]	-0.0324 (0.377) [1.000]	-0.0210 (0.385) [0.787]	0.0333 (0.090) [0.428]
Male	0.0679 (0.000)**	0.0496 (0.021)*	0.0546 $(0.029)^*$	0.0773 (0.000)**
$Male \times Heat$		0.0367 (0.206) [1.000]		
Nairobi	-0.0994 (0.000)**	-0.118 (0.001)**		
Nairobi \times Heat		0.0383 (0.505) [0.950]		
Outside temperature (pooled)	-0.0105 (0.018)*	-0.00799 (0.147)		
Outside temperature (pooled) \times Heat	0.00576 (0.246)	0.000613 (0.945)		
Outside relative humidity (pooled)	-0.00132 (0.206)	-0.00100 (0.351)		
Outside relative humidity (pooled) \times Heat	0.00141 (0.226)	0.000745 (0.597)		
Outside temperature (site)			-0.0108 (0.075)	0.00977 (0.620)
Outside temperature (site) \times Heat			0.00494 (0.608)	-0.0400 (0.125)
Outside relative humidity (site)			-0.00213 (0.113)	0.00224 (0.183)
Outside relative humidity (site) \times Heat			0.00201 (0.254)	-0.00373 (0.098)
Outcome control mean R-squared Observations	0.417 0.0506 1878	0.417 0.0521 1878	0.495 0.0151 874	0.348 0.0266 1004

Section G.9, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes, aside from Supplement Table G.9.11. Additionally, within Supplement Section G.9, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes, aside from Supplement Table G.9.11. The outcome in this table is the share of endowed tokens (out of 600) entrusted to the other person in the first round of the trust game. "Outside temperature (pooled)" captures the demeaned (relative to the pooled sample) average outside temperature in Celsius for the day of the session. "Outside relative humidity (pooled)" captures the demeaned (relative to the pooled sample) average site-specific outside temperature in Celsius for the day of the session. "Outside relative humidity (site)" captures the demeaned (relative to the site sample) average site-specific outside relative humidity (site)" captures the demeaned (relative to the site sample) average site-specific outside relative humidity in percentage for the day of the session. * p < .05, ** p < .05; ** p < .05

Table G.9.8: Public contribution

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-9.000 (0.643) [1.000]	-30.70 (0.480) [1.000]	-36.56 (0.220) [0.566]	14.30 (0.580) [1.000]
Male	36.18 (0.087)	35.51 (0.189)	5.571 (0.855)	55.07 (0.042)*
$Male \times Heat$		1.587 (0.966) [1.000]		
Nairobi	-159.7 (0.000)**	-179.4 (0.001)**		
Nairobi \times Heat		39.27 (0.541) [0.950]		
Outside temperature (pooled)	-4.394 (0.543)	-2.204 (0.780)		
Outside temperature (pooled) \times Heat	7.287 (0.176)	2.858 (0.734)		
Outside relative humidity (pooled)	-1.440 (0.295)	-1.130 (0.430)		
Outside relative humidity (pooled) \times Heat	0.450 (0.714)	-0.163 (0.914)		
Outside temperature (site)			0.0000295 (1.000)	-34.24 (0.333)
Outside temperature (site) \times Heat			5.395 (0.538)	-14.90 (0.662)
Outside relative humidity (site)			-0.941 (0.522)	-2.919 (0.426)
Outside relative humidity (site) \times Heat			0.599 (0.722)	-2.128 (0.539)
Outcome control mean R-squared Observations	529.7 0.0404 1878	529.7 0.0406 1878	629.6 0.00393 874	442.5 0.0158 1004

Section G.9, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes, aside from Supplement Table G.9.11. Within Supplement Section G.9, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes, aside from Supplement Table G.9.11. Public contribution here refers to the public goods game. The outcome is the amount of tokens (out of 1200) put into the shared fund. "Outside temperature (pooled)" captures the demeaned (relative to the pooled sample) average outside relative humidity (pooled)" captures the demeaned (relative to the pooled sample) average outside relative humidity in percentage for the day of the session. "Outside temperature (site)" captures the demeaned (relative to the site sample) average site-specific outside relative humidity (site)" captures the demeaned (relative to the site sample) average site-specific outside relative humidity in percentage for the day of the session. p < .05, p < .01; p < .02; p < .03; p <

Table G.9.9: Fluid intelligence

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	0.0149 (0.062) [0.339]	-0.0123 (0.332) [1.000]	0.000612 (0.942) [0.891]	0.0273 (0.037)* [0.255]
Male	0.0181 (0.041)*	0.00482 (0.704)	0.0229 (0.006)**	0.0159 (0.300)
$Male \times Heat$		0.0266 (0.104) [1.000]		
Nairobi	-0.136 (0.000)**	-0.148 (0.000)**		
Nairobi \times Heat		0.0243 (0.229) [0.950]		
Outside temperature (pooled)	0.000256 (0.883)	0.00188 (0.314)		
Outside temperature (pooled) \times Heat	0.00266 (0.210)	-0.000692 (0.786)		
Outside relative humidity (pooled)	0.000204 (0.637)	0.000410 (0.368)		
Outside relative humidity (pooled) \times Heat	0.000200 (0.725)	-0.000227 (0.719)		
Outside temperature (site)			0.00211 (0.228)	0.00202 (0.852)
Outside temperature (site) \times Heat			0.0000503 (0.983)	-0.00107 (0.943)
Outside relative humidity (site)			0.000486 (0.225)	0.000468 (0.704)
Outside relative humidity (site) \times Heat			0.000238 (0.686)	-0.00143 (0.348)
Outcome control mean R-squared Observations	0.862 0.122 1878	0.862 0.124 1878	0.935 0.0135 874	0.799 0.00695 1004

Section G.9, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes, aside from Supplement Table G.9.11. Additionally, within Supplement Section G.9, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes, aside from Supplement Table G.9.11. Fluid intelligence is measured through Raven's Progressive Matrices. The outcome is the correct share of 6 matrices. Each correct puzzle yields a 50 KSh Airtime Voucher (\$1 Amazon Gift Card in California), providing the earnings for the next module. "Outside temperature (pooled)" captures the demeaned (relative to the pooled sample) average outside temperature in Celsius for the day of the session. "Outside relative humidity (pooled)" captures the demeaned (relative to the pooled sample) average site-specific outside temperature in Celsius for the day of the session. "Outside relative humidity (site)" captures the demeaned (relative to the site sample) average site-specific outside relative to the site sample) average site-specific outside relative humidity in percentage for the day of the session. p < .05, ** p < .05, ** p < .01; p < .05, ** p < .0

Table G.9.10: Joy of Destruction

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	0.0229 (0.063) [0.339]	-0.0236 (0.231) [1.000]	-0.0411 (0.004)** [0.051]	0.0792 (0.000)** [0.001] ⁺⁺
Male	0.0366 (0.001)**	0.0637 (0.000)**	0.0259 (0.107)	0.0464 $(0.007)^{**}$
$Male \times Heat$		-0.0531 (0.015)* [0.222]		
Nairobi	0.110 (0.000)**	0.0383 (0.130)		
Nairobi \times Heat		0.141 (0.000)** [0.002] ⁺⁺		
Outside temperature (pooled)	-0.00633 (0.016)*	0.000978 (0.742)		
Outside temperature (pooled) \times Heat	0.0137 (0.000)**	-0.000839 (0.840)		
Outside relative humidity (pooled)	-0.000512 (0.468)	0.000566 (0.464)		
Outside relative humidity (pooled) \times Heat	0.00142 (0.113)	-0.000660 (0.514)		
Outside temperature (site)			0.00114 (0.709)	-0.000951 (0.943)
Outside temperature (site) \times Heat			-0.00119 (0.771)	-0.00136 (0.945)
Outside relative humidity (site)			0.000717 (0.432)	-0.000320 (0.833)
Outside relative humidity (site) \times Heat			-0.00109 (0.295)	0.000761 (0.731)
Outcome control mean R-squared Observations	0.110 0.0722 1859	0.110 0.0809 1859	0.0771 0.0156 864	0.139 0.0269 995

Section G.9, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes, aside from Supplement Table G.9.11. Additionally, within Supplement Section G.9, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes, aside from Supplement Table G.9.11. The outcome in this table is the share of the anonymous partner's earned Airtime Vouchers (Amazon Gift Cards in the California sample) destroyed by the participant. The earned Airtime Vouchers and Amazon Gift Cards resulted from the number of Raven's Progressive Matrices answered correctly in the previous module, where one puzzle answered correctly yielded one Airtime Voucher or one Amazon Gift Card. Airtime Vouchers were worth 50 KSh each, while Amazon Gift Cards were worth 1 dollar each. "Outside temperature (pooled)" captures the demeaned (relative to the pooled sample) average outside temperature in Celsius for the day of the session. "Outside relative humidity (pooled)" captures the demeaned (relative to the pooled sample) average outside relative humidity in percentage for the day of the session. "Outside temperature (site)" captures the demeaned (relative to the site sample) average sitespecific outside temperature in Celsius for the day of the session. "Outside relative humidity (site)" captures the demeaned (relative to the site sample) average site-specific outside relative humidity in percentage for the day of the session. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table G.9.11: Joy of Destruction (only outside temperature)

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	0.0230 (0.064)	-0.0176 (0.290)	-0.0410 (0.004)**	0.0792 (0.000)**
Male	0.0366 (0.001)**	0.0625 (0.000)**	0.0251 (0.109)	0.0466 (0.006)**
$Male \times Heat$		-0.0517 (0.016)*		
Nairobi	0.113 (0.000)**	0.0491 (0.009)**		
Nairobi \times Heat		0.128 (0.000)**		
Outside temperature (pooled)	-0.00607 (0.021)*	-0.000645 (0.815)		
Outside temperature (pooled) \times Heat	0.0120 (0.000)**	0.00105 (0.775)		
Outside temperature (site)			-0.000780 (0.783)	0.000823 (0.946)
Outside temperature (site) \times Heat			0.00174 (0.631)	-0.00563 (0.777)
Outcome control mean R-squared Observations	0.110 0.0707 1859	0.110 0.0806 1859	0.0771 0.0141 864	0.139 0.0268 995

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Results from this table are excluded from the multiple hypotheses testing adjustments. The outcome in this table is the share of the anonymous partner's earned Airtime Vouchers (Amazon Gift Cards in the California sample) destroyed by the participant. The earned Airtime Vouchers and Amazon Gift Cards resulted from the number of Raven's Progressive Matrices answered correctly in the previous module, where one puzzle answered correctly yielded one Airtime Voucher or one Amazon Gift Card. Airtime Vouchers were worth 50 KSh each, while Amazon Gift Cards were worth 1 dollar each. "Outside temperature (pooled)" captures the demeaned (relative to the pooled sample) average outside temperature in Celsius for the day of the session. "Outside temperature (site)" captures the demeaned (relative to the site sample) average site-specific outside temperature in Celsius for the day of the session. "p < .05, ** p < .01; + p < .05, ++ p

Table G.9.12: Cognitive reflection

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-0.00243 (0.822) [1.000]	-0.0119 (0.599) [1.000]	-0.0232 (0.203) [0.566]	0.0158 (0.208) [0.722]
Male	0.0839 (0.000)**	0.0776 (0.000)**	0.181 (0.000)**	0.00139 (0.919)
$Male \times Heat$		0.0126 (0.616) [1.000]		
Nairobi	-0.237 (0.000)**	-0.240 (0.000)**		
Nairobi \times Heat		0.00526 (0.894) [1.000]		
Outside temperature (pooled)	-0.00426 (0.277)	-0.00384 (0.387)		
Outside temperature (pooled) \times Heat	0.00487 (0.197)	0.00399 (0.495)		
Outside relative humidity (pooled)	-0.00111 (0.214)	-0.00106 (0.284)		
Outside relative humidity (pooled) \times Heat	0.00244 (0.007)**	0.00233 (0.058)		
Outside temperature (site)			-0.00357 (0.405)	0.0136 (0.397)
Outside temperature (site) \times Heat			0.00550 (0.402)	-0.0184 (0.299)
Outside relative humidity (site)			-0.000152 (0.883)	-0.00140 (0.484)
Outside relative humidity (site) \times Heat			0.00247 (0.117)	0.00152 (0.335)
Outcome control mean R-squared Observations	0.325 0.182 1878	0.325 0.182 1878	0.455 0.0843 874	0.212 0.00808 1004

Section G.9, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes, aside from Supplement Table G.9.11. Additionally, within Supplement Section G.9, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes, aside from Supplement Table G.9.11. The outcome in this table is the share of questions (out of 5) from the Cognitive Reflection Test answered correctly. "Outside temperature (pooled)" captures the demeaned (relative to the pooled sample) average outside temperature in Celsius for the day of the session. "Outside relative humidity (pooled)" captures the demeaned (relative to the pooled sample) average outside relative humidity in percentage for the day of the session. "Outside temperature (site)" captures the demeaned (relative to the site sample) average site-specific outside relative humidity (site)" captures the demeaned (relative to the site sample) average site-specific outside relative humidity in percentage for the day of the session. "Outside relative humidity in percentage for the day of the session. p < .05, p < .01; p < .02; p < .03; p

Table G.9.13: Charitable donation

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-4.963 (0.874) [1.000]	-136.5 (0.006)** [0.080]	-12.73 (0.663) [0.787]	-0.896 (0.986) [1.000]
Male	8.366 (0.793)	15.05 (0.733)	-56.54 (0.111)	71.31 (0.135)
$Male \times Heat$		-10.36 (0.864) [1.000]		
Nairobi	325.5 (0.000)**	221.9 (0.002)**		
Nairobi × Heat		207.0 (0.018)* [0.108]		
Matched with ingroup charity	-9.866 (0.761)	-69.02 (0.132)	34.89 (0.363)	-68.84 (0.232)
Matched with ingroup charity \times Heat		123.5 (0.085)		
Earnings in tokens	0.00419 (0.688)	0.00426 (0.684)	-0.0169 (0.150)	0.0279 (0.110)
Outside temperature (pooled)	3.899 (0.655)	13.85 (0.161)		
Outside temperature (pooled) \times Heat	-10.87 (0.167)	-30.85 (0.005)**		
Outside relative humidity (pooled)	1.642 (0.383)	3.120 (0.136)		
Outside relative humidity (pooled) \times Heat	-1.576 (0.499)	-4.331 (0.145)		
Outside temperature (site)			7.435 (0.429)	41.62 (0.394)
Outside temperature (site) \times Heat			-15.87 (0.086)	-114.0 (0.094)
Outside relative humidity (site)			0.0764 (0.969)	9.951 (0.034)*
Outside relative humidity (site) \times Heat			0.965 (0.708)	-18.34 (0.007)**
Outcome control mean R-squared Observations	410.4 0.0670 1806	410.4 0.0707 1806	245.0 0.0119 861	561.8 0.0184 945

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. Multiple testing adjusted False Discovery Rate (FDR) q-value significance level in square brackets. Within Supplement Section G.9, for each specification (1)-(4), multiple hypothesis testing adjustments are performed on the set of p-values associated with Heat, across primary outcomes, aside from Supplement Table G.9.11. Additionally, within Supplement Section G.9, in (2) multiple hypothesis testing adjustments are performed on the set of p-values associated with the interaction between Heat and Male, across primary outcomes, as well as on the set of p-values associated with the interaction between Heat and Nairobi, across primary outcomes, aside from Supplement Table G.9.11. The outcome in this table is the amount of tokens earned in the experiment that is donated to the randomly selected charity. In Nairobi, "Matched with ingroup" charity is an indicator taking on a value of one if a participant is matched to a charity associated with her ethnicity, and 0 otherwise. In California, "Matched with ingroup charity" is an indicator taking on a value of one if a participant has resided in the San Francisco Bay Area for five years or more and is matched with a charity in the San Francisco Bay Area. "Earnings in tokens" captures the amount of tokens earned in the experiment. "Outside temperature (pooled)" captures the demeaned (relative to the pooled sample) average outside temperature in Celsius for the day of the session. "Outside relative humidity (pooled)" captures the demeaned (relative to the pooled sample) average outside relative humidity in percentage for the day of the session. "Outside temperature (site)" captures the demeaned (relative to the site sample) average site-specific outside temperature in Celsius for the day of the session. "Outside relative humidity (site)" captures the demeaned (relative to the site sample) average site-specific outside relative humidity in percentage for the day of the session. * p < .05, ** p < .01; + q < .05, ++ q < .01

Table G.9.14: Happiness

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-0.0788 (0.207)	0.0925 (0.484)	0.0481 (0.587)	-0.190 (0.029)*
Male	0.178 (0.004)**	$0.165 \\ (0.078)$	0.214 $(0.019)^*$	0.115 (0.173)
$Male \times Heat$		0.0221 (0.868)		
Nairobi	1.141 (0.000)**	1.314 (0.000)**		
Nairobi \times Heat		-0.345 (0.143)		
Outside temperature (pooled)	0.00371 (0.851)	-0.0152 (0.541)		
Outside temperature (pooled) \times Heat	-0.0215 (0.301)	0.0166 (0.637)		
Outside relative humidity (pooled)	0.00282 (0.471)	0.000118 (0.978)		
Outside relative humidity (pooled) \times Heat	-0.000101 (0.984)	0.00521 (0.429)		
Outside temperature (site)			-0.0122 (0.648)	-0.0369 (0.614)
Outside temperature (site) \times Heat			0.00666 (0.859)	-0.00804 (0.949)
Outside relative humidity (site)			0.00124 (0.818)	-0.00258 (0.694)
Outside relative humidity (site) \times Heat			-0.000553 (0.942)	0.0164 (0.139)
Outcome control mean	5.313	5.313	4.625	5.914
R-squared Observations	0.182 1878	0.184 1878	0.00745 874	0.0182 1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. The outcome in this table is the number chosen from a 1-7 scale that asked how one felt towards the end of the experiment, with 1 being sad and 7 being happy. "Outside temperature (pooled)" captures the demeaned (relative to the pooled sample) average outside temperature in Celsius for the day of the session. "Outside relative humidity (pooled)" captures the demeaned (relative to the pooled sample) average outside relative humidity in percentage for the day of the session. "Outside temperature (site)" captures the demeaned (relative to the

site sample) average site-specific outside temperature in Celsius for the day of the session. "Outside relative humidity (site)" captures the demeaned (relative to the site sample) average site-specific outside relative humidity in percentage for the day of the session. * p < .05, ** p < .01

Table G.9.15: Alertness

	(1) Pooled	(2) Pooled	(3) California	(4) Nairobi
Heat	-0.420 (0.000)**	-0.667 (0.000)**	-0.531 (0.000)**	-0.324 (0.001)**
Male	0.386 (0.000)**	0.337 (0.002)**	0.734 (0.000)**	0.00881 (0.928)
$Male \times Heat$		0.101 (0.500)		
Nairobi	1.883 (0.000)**	1.701 (0.000)**		
Nairobi \times Heat		0.364 (0.137)		
Outside temperature (pooled)	-0.0186 (0.407)	0.00258 (0.928)		
Outside temperature (pooled) \times Heat	0.00911 (0.685)	-0.0340 (0.346)		
Outside relative humidity (pooled)	-0.000881 (0.868)	0.00204 (0.720)		
Outside relative humidity (pooled) \times Heat	0.000249 (0.967)	-0.00558 (0.418)		
Outside temperature (site)			0.00865 (0.778)	-0.0427 (0.589)
Outside temperature (site) \times Heat			-0.0256 (0.492)	-0.306 (0.015)*
Outside relative humidity (site)			0.00511 (0.471)	-0.00184 (0.810)
Outside relative humidity (site) \times Heat			-0.00898 (0.285)	-0.00644 (0.510)
Outcome control mean R-squared	5.247 0.304	5.247 0.305	4.281 0.0755	6.090 0.0316
Observations	1878	1878	874	1004

Note: Standard errors clustered at the session level. Per-comparison p-values in parentheses. The outcome in this table is the number chosen from a 1-7 scale that asked how one felt towards the end of the experiment, with 1 being tired and 7 being alert. "Outside temperature (pooled)" captures the demeaned (relative to the pooled sample) average outside temperature in Celsius for the day of the session. "Outside relative humidity (pooled)" captures the demeaned (relative to the pooled sample) average outside relative humidity in percentage for the day of the session. "Outside temperature (site)" captures the demeaned (relative to the

site sample) average site-specific outside temperature in Celsius for the day of the session. "Outside relative humidity (site)" captures the demeaned (relative to the site sample) average site-specific outside relative humidity in percentage for the day of the session. * p < .05, ** p < .01

References

Andreoni, J., M. A. Kuhn, and C. Sprenger (2015). Measuring time preferences: A comparison of experimental methods. Journal of Economic Behavior & Organization 116, 451–464.