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12 Some Other Applications

To make sure that the model is widely applicable, I developed a behavioral version of a few other

important machines of dynamic economics.

12.1 Dynamic Portfolio Choice

I now study aMerton problemwith dynamic portfolio choice. The agent’s utility is: E
h

1
1−

R∞
0

−1− 
i
,

and his wealth  evolves according to:

 = (− + ) +  (+ )

where  is the equity premium and  the allocation to equities.

I start by describing the rational problem, and then the behavioral solution. I call  = 1

the

IES. Although for simplicity I use a CRRA utility function, I try to write the expressions in a way

that involves both  and , a way that would generalize correctly to Epstein-Zin utility, where the

two notions are disentangled.

12.1.1 Taylor expansions of the value function: rational case

We examine the problem in the rational case first, with a reminder of notions of portfolio choice. In

a deterministic context with interest rate , the SDF is simply  = −
 
0
. Next, suppose that

there is a stochastic opportunity set: set of assets with risk premium  and covariance matrix Σ.

In a static maximization, the optimal portfolio of the certainty equivalent is a return:  () = +

− 

2
Σ, so that the (static) optimal portfolio choice is  = argmax  (), i.e.  =

1

Σ−1 ,

and the certainty equivalent is finally:  = max  ()

 =  +
1

2
Λ (81)

where

Λ = 0Σ
−1
  (82)

the “squared Sharpe ratio” of the investment opportunity set. Suppose that the process is driven

by a Brownian motion  (which may be multidimensional) - if the price of risk is  (so that
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Λ = kk2), the stochastic discount factor can be represented as:

 = exp

∙
−
Z 

0

µµ
 +

Λ

2

¶
− 

¶¸
(83)

The value function is as follows.

Lemma 12.1 (Value function, traditional case) Suppose that the interest rate  and and the price

of risk  are deterministic, and that the agent is the traditional rational agent. The value function

derivative is

 ( ) = ()
−

and the optimal policy is to consume  =  ( is the MPC to consume out of wealth), where:

−1 = E

"Z ∞

0

−
µ
+



¶1−


#
= E

∙Z ∞

0

−
 

(+(1−))

¸
(84)

where

 =  +
1

2
Λ

is the certainty equivalent of expected portfolio returns (comprising stocks and bonds), with Λ =

kk2 is the square Sharpe ratio of the investment opportunity set.
When the opportunity set is constant, we have  = ∗ and  = ∗ with

∗ = + (1− )∗ (85)

When it is not constant, we have, up to second order terms:

 = + (1− ) (86)

where  = ∗ 
 is the average future portfolio returns, and  

 is the present value of future

portfolio returns.

 
 := E

∙Z ∞



−∗(−)

¸
(87)

Here  is the future average return of the portfolio (including stocks and bonds). Hence, the

marginal propensity to consume is a weighted average (with weights  and 1− ) of the pure rate

of time preference  and the average future return of the portfolio.

Lemma 12.1 summarizes and somewhat generalizes well-known notions, particularly from the

work of Campbell and Viceira (2002). It indicates that what matters is the risk-adjusted rate of

return of the portfolio, : it is the safe short-term rate , plus the square Sharpe ratio Λ, divided

by two times the risk aversion. The future average return  is key to capture the (leading order

of) the value function. Related ideas are found in Basak and Chabakauri (2010) and Malamud and
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Vilkov (2015).

To structure the problem, suppose that the vector of asset returns ̃ (where ̃ is the return

of asset ) :

̃ = ( + ∗ + ̂) + 

̂ =  0

where  is a vector of factors, following an AR(1):
74

 = −Φ+ 

and  is a matrix of weights. We call

Σ =  (̃  0
)  = 0.

the matrix of covariance, i.e. Σ

 =  (̃ ) . We define ∗ = 1


Σ−1∗ ∗ as the portfolio

choice in the model with constant variance and expected returns.

Then, the portfolio return is

 =
1

2
(∗ + ̂)

0
Σ−1 (∗ + ̂) =

1

2
∗Σ

−1
∗ ∗ + 0∗̂ +

¡kk2
¢

= ∗ + 0∗̂

= ∗ + 0∗
0 = ∗ + 0

i.e. the return is augmented by 0∗̂, with

 := ∗

Then, the present value of returns (87) is

 
 =

∗
∗
+ 0 (∗ + Φ)

−1
 (88)

where  is the identity matrix of the ’s dimension.

For instance, if  is one-dimensional, then  = ̂ :=  −∗, and  := ∗ +
∗

∗+Φ
̂.

 = ∗ + (1− )
∗

∗ + Φ
̂ (89)

Hence, we obtain a tractable representation of the value function to the leading order.

74Or  could be a linearity-generating twisted-AR(1), so that the derivations below can be exact (Gabaix 2009).

57



12.1.2 The hedging demand

We can calculate the hedging demand.

Lemma 12.2 (Hedging demand, rational) The stock demand is

 =
1


Σ−1 ( +) (90)

where  is the hedging demand premium, equal to (up to second order terms):

 = (1− ) 
¡
̃ 




¢
(91)

i.e.  is (1− ) times the covariance between asset ’s return (̃) and the present value of future

returns  
 (equation 87).

In the AR(1) framework above,

 = (1− )Σ (∗ + Φ0)−1  (92)

Suppose that returns mean-revert, i.e. 
³
̃ 



∗

´
 0. So, if   1, then investors load

more on stocks because of the hedging demand.

We next state the modification of the value function.

Lemma 12.3 (Value function with hedging demand, rational) In the hedging demand context, we

have:

 = + (1− ) ( + 0) (93)

where  = ∗ 
 is the expected present value of returns, and  is the hedging demand term; they

are explicit in (88) and (92).

The intuition for (90) is that  is a risk-adjusted risk premium of asset . This intuition

carries over to (93). Compared to (86), the expression for  () offers one more term, the term

(1− ) 0.

A tractable case The equity premium  =  + b has a variable part b, which follows
b = −b− 

1
 + 0

2


where the return is ̃ = ( + ) + 1 . The parameter  ≥ 0 indicates that equity returns
mean-revert: good returns today lead to lower returns tomorrow. That will create a hedging demand

term.

We call ∗ := 
2

the standard, myopic demand for stocks.
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12.1.3 The sparse agent’s investment and consumption

We can calculate the sparse agent’s demand. Recall that  = 1 is the IES. We state again the

proposition.

Proposition 12.4 (Behavioral dynamic portfolio choice) The fraction of wealth allocated to equities

is, with ∗ := 
2



 = ∗ + 

µ b
2

 

¶
+ 

µ


2
 

¶
while consumption is  =  with

 = ∗ + 

µ
(1− )

∗
∗ + Φ

∗b ¶+ 
¡
(1− ) ∗ 

¢
where  is the hedging demand term (94)

 = (1− ) 
¡
 




¢
= − (1− ) ∗

1

∗ + Φ
2

Proof We first calculate the rational values. In that case

 = ∗ +
Λ∗
2
+ ∗

∗
∗ + Φ

b
 = (1− ) 

µ
 

µ


∗

¶¶
= − (1− ) ∗

1

∗ + Φ
2 (94)

so that

 =
∗ + ̂ +

2

In addition

 = + (1− ) ( + 0∗) = ∗ + (1− )

µ
∗

∗
∗ + Φ

b + 0∗

¶
As in Proposition 3.9, with ex-post attention, the BR agent just truncates those terms.

¤
Proposition 12.4 predicts the choice of a sparse agent. When  = 0, it is the policy of a fully

rational agent, e.g. as in Campbell and Viceira (2002). When   0, it is the policy of a sparse

agent. When  is larger, portfolio choice becomes insensitive to the change in the equity premium,b, and the agent thinks less about the mean-reversion of asset, the  terms.
In addition, the agents’ consumption function pays little attention to the mean-reversion of

assets.
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12.1.4 Proofs for the Merton portfolio problem

Proof of Lemma 12.1 Here we present a proof sketch, in part because those notions are

well-known. We record the values with a time-discounting of , with  = − in the infinite

horizon, but  could be different to capture finite-time horizon effects. For instance, with a finite

horizon of  , and a terminal weight  on the last consumption, then  = −1≤ +  (−  ).

First, in the SDF approach, the problem is

maxE
Z ∞

0


1−
  s.t. E

Z ∞

0

 = 0

This leads to 
−
 = 0 and  = 


 

−
 for constant  0. The constant is determined by

the budget constraint , 0 = E
R∞
0

 = E
R∞
0



 

1−
 . This leads to a utility derivative

 = (00)
−
, with

−10 = E
∙Z ∞

0



 

1−
 

¸
(95)

When  follows (83), routine calculations show that

−10 = E
∙Z ∞

0



 
−(1−)  

0


¸
We next proceed to a Taylor expansion:

−10 = E
∙Z ∞

0



 
−(1−)  

0(∗+̂)

¸
= E

∙Z ∞

0



 
−(1−)∗

µ
1− (1− )

Z 

0

̂

¶


¸
With an infinite horizon,  = − and

−10 = E
∙Z ∞

0

−∗
µ
1− (1− )

Z 

0

̂

¶


¸
=
1

∗
− (1− )E

∙Z ∞

=0

−∗
Z 

0

̂

¸
=
1

∗
− (1− )E

∙Z 

0

µZ ∞

=

−∗
¶
̂

¸
=
1

∗
− (1− )E

∙Z 

0

1

∗
−∗̂

¸
=
1

∗
− (1− )

1

2∗
E
∙Z 

0

∗
−∗̂

¸
=
1

∗
− (1− )

1

2∗
(0 −∗) with 0 −∗ = E

∙Z 

0

∗
−∗̂

¸
=

1

∗ + (1− ) (0 −∗)
+ (0 −∗)

2
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so

0 = ∗ + (1− ) (0 −∗) = + (1− )∗ + (1− ) (0 −∗)

= + (1− )0

When the consumer has a finite horizon and only cares about date  consumption, then  =

 (−  ), and

−10 = E
∙Z ∞

0



 
−(1−)∗

µ
1− (1− )

Z 

0

̂

¶


¸
= −∗ − −∗ (1− )E

∙Z 

0

̂

¸
so the MPC is 0 but we have

−1 = −∗(−)
µ
1− (1− )E

∙Z 



̂

¸¶
(96)

so again  is related to the present value of future portfolio returns.

¤

Proof of Lemma 12.2 In semi-discrete notation the asset demand at time  comes from

max

E [ ( (1 + + ̃)  + )]

where, with  = ∗ +  0,

E [] = E [ ( (1 + + ̃)   + )−  ()]

=  ( + 0) +  h0̃ i+ 
20Σ+

1

2

¡
Σ


¢


= 
h
0 ( +)− 

2
0Σ

i
+

1

2

¡
Σ


¢


where

0 =



h̃ i

is the hedging demand premium term. This implies

 =
1


Σ−1 ( +)
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To calculate  more fully, recall that  =  ()
−

−, so that ln = − ()−  ln, and




= −

∗
= − (1− )



∗
= (1− )



∗
=: 0

with


∗
= 0 (∗ + Φ)

−1

Note that  =  + 1
2
0Σ

−1 with  = ∗ + ̂, so, with ∗ =  + 1
2
0∗Σ

−1∗

 = ∗ +
1


0∗Σ

−1̂ = ∗ + 0∗̂

 = ∗ + 0∗
0 (97)

hence

 =  (98)

Hence,

0 =



h̃ i =

X


 h̃ i = Σ

 

so that

 := Σ = (1− )Σ ̄0
∗

= (1− ) 

µ
̃ 



∗

¶
= (1− )Σ (∗ + Φ0)

−1


Proof of Lemma 12.3 Suppose

̃ = ( + ∗ + ) + 

and that agents have a constant MPC ∗ :





= ( − ∗) + 0̃ = ( − ∗ + ∗ + 0 0) + 

= (∗ + 0 0) + 





= (∗ + 0) + 

with  =  and

∗ :=  + ∗ − ∗
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We want to calculate (assuming the policy  = ∗, which leads only to second order losses)

 = E
∙

1

1− 

Z ∞

0

−1− 

¸
=

1−∗
1− 

E
∙Z ∞

0

−1− 

¸
Calling

 = −1−

We calculate





= −+ (1− )
³
∗ + 0 − 

2
kk2

´
+ (1− ) 0

= (−+ (1− ) 0) + (1− ) 0

 := − (1− )
³
∗ − 

2
kk2

´
= − (1− )

³
 + ∗ − ∗ − 

2
kk2

´
= − (1− ) (∗ − ∗)

= ∗

We calculate linearly generating (LG moments. We assume  = −Φ+  +
¡kk2

¢
:

E
∙




¸
 = −∗ + (1− ) 0

E
∙
 ()



¸
 = (−∗ + (1− ) 0) −Φ + (1− ) h0̃ i

= (1− ) 0 h̃ i+ (−∗ − Φ) +
¡kk2

¢
so the LG generator (Gabaix, 2009) is

 =

Ã
∗ − (1− ) 0

− (1− )Σ ∗ + Φ

!

Hence, the present value is  = (1 0)−1 · (1)

We use the formula for the inversion of the block matrix:Ã
 

 

!−1
=

Ã
(−−1)−1 − (−−1)−1−1

∗ ∗

!
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where ∗ are terms we will not use. We have

(1 0)−1 =
¡
  (1− ) 0 (∗ + Φ)

−1¢
 :=

¡
∗ − (1− )

2
0 (∗ + Φ)

−1
Σ

¢−1
so

 = 
¡
1 + (1− ) 0 (∗ + Φ)

−1


¢
(99)

The value function has the Taylor expansion:  () =  ()
1−
∗


1−


1−

 () =
1 + (1− ) 0 (∗ + Φ)

−1


∗∗
∗∗ = ∗ − (1− )

2
0 (∗ + Φ)

−1
Σ

= ∗ − (1− )
2³

1− 1


´ 0
 using (92),  =

µ
1− 1



¶
Σ (∗ + Φ0)−1 

= ∗ − (1− ) 0


Rewrite

 =  ()
1−
∗ =

1 +

∗ + 
1−∗ with

 = (1− ) 0 (∗ + Φ)
−1



 = − (1− ) 0


 = (∗ + )
−
= −∗

¡
1− −1∗ 

¢
= −∗

¡
1 + − −1∗ 

¢
Hence,

 − ∗ =  = −∗

 +

1


 = (1− ) 0∗ (∗ + Φ)

−1
 +

−1

(1− ) 0



= (1− ) 0∗ (∗ + Φ)
−1

 + (1− ) 0


 :=
1


 =

−1

(1− ) 0

 =

µ
1− 1



¶
 0



Intuition: the extra present value of returns is

 −∗
∗

=


(1− )∗
= 0 (∗ + Φ)

−1
 −  (1− )

1

∗
0 (∗ + Φ)

−1
Σ

= 0 (∗ + Φ)
−1
µ
 + (1− )

1

∗
Σ

¶
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12.2 Linear-Quadratic models

Many economic problems can be conveniently expressed as linear-quadratic (LQ) models (Ljungqvist

and Sargent 2012). We show here how to systematically derive a BR version of those models.

We again write  = ( ), where  is the set of variables known under the default model, and

 is the set of variables that are not considered in the default model. Utility is:

 ( ) :=
1

2

Ã




!0Ã
 

 

!Ã




!

and the law of motion is:

0 =   ( ) := Γ + Γ

where  and Γ are constant matrices. The rational value function is also LQ

 () = −1
2
0 =

−1
2
(0 + 2

0+ 0)

Under the default model  is known, and

 () = 

for  a constant. Our goal is to find , which affects the value function. To do so, we apply

from (329).

Lemma 12.5 In the linear-quadratic problem, the cross-partial derivative of the value function is

 =  =
h
1−  (

0) · Γ0
i−1

[ +  + Γ (
0)] 

where 
0 = Γ + Γ. The impact on the action is  =  + , where  is the default

value, and

 = −Ψ−1 Ψ (100)

where

Ψ =  + Γ Γ



Ψ =  + Γ



This illustrates that the value function can be written:

 () = −1
2
0 =

−1
2
0 + 0+

¡kk2¢
with matrix  as expressed in closed form above.
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Hence, the BR value function is simply:

  () = −1
2
0 =

−1
2
0 + 0 ()+

¡kk2¢
for the diagonal attention matrix  () =  ().

Proposition 12.6 (Behavioral version of linear-quadratic problems) In a linear-quadratic problem,

the optimal attention is

 = A
¡
Ψ

2
 
¢

(101)

and the optimal sparse action is

 =  +

where  =  (). Here we use the notations of Lemma 12.5.

12.3 Precautionary saving

The consumer may save more when the future is uncertain, a phenomenon known as “precautionary

savings.” This is easy to obtain in this BR model. Suppose that the income process is ̂+1 =

̂ + +1, for  a mean-0 variable. Then, the rational value function does not obtain in closed

form, unless we assume very specific functional forms (CARA utility, Gaussian noise). What to do

then?

Let us first derive the rational policy.75

Lemma 12.7 (Rational policy with precautionary saving) With stochastic income shocks, the ra-

tional value function is


¡
 ̂ 

2


¢
=




E

Ã
̄


 + ̄ +

̄



X


̂

−

!
+ 

¡
2
¢

=





Ã
̄


 + ̄ +

̄


E

"X


̂

−

#
− Γ

2

³ ̄


´2


ÃX


̂

−

!!
+ 

¡
2
¢

where Γ = −00()
0()

¡
 = ̄


 + ̄

¢
is the coefficient of absolute risk aversion. For instance, with

an AR(1) process:

̂ =
̄



̂

− 
− Γ

2

³ ̄


´2  ¡+1¢
(− )

2
(102)

Then, the agent may, or may not, take the noise into account.

75See Wang, Wang and Yang (2013) and Achdou et al. (2015) for recent analytical progress on this issue.
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Proof First, observe that he two RHS are identical, up to  (2) terms.

To see the second statement, let us take more successively more complex problems. First, for

small noise, we have, as in Arrow-Prat:

E [ ()] = 

µ
E []− Γ

2
 ()

¶
+  ( ())

with Γ = −00(0)
0(0) .

Second, suppose that ̂+1 = ̂+

+1. We are looking for an expansion of the type 

¡
 ̂ 2

¢
=

 ( + ̂ 0) =  
³
 ++ ̂

−

´
, for some . We have

  ( + ̂) = max


 () + E
£
 
¡
 ( − ) +  +E [̂+1] + 


+1

¢¤
so, taking the Taylor expansion of b+1 around Eb+1

 
 =  

+
1

2
 


¡


+1

¢
so, using  = 1



 =
1

2



1− 

 


 



¡


+1

¢
= −1

2

̄


Γ

0 1

(− )
2


¡


+1

¢
and as Γ

0

= ̄

Γ,

 = −
³ ̄


´2 Γ
2

1

(− )
2


¡


+1

¢


Next, for a more general process with state vector , we have, by the same reasoning,

 =
1

2

̄



E
£





¤
 


Now, it is not trivial to get . Indeed, we have  ( ) =   ( +  · ) +  (2), but that

expression gives only part of . The “certainty equivalent” approach works well for income shocks,

but not for uncertainty about interest rates, say.¤
A sparse agent will, in contrast, do

̂ = 

̄



̂

− 
−2

Γ

2

³ ̄


´2  ¡+1¢
(− )

2

with some inattention to risk 2
. Hence, he will create a too small buffer of savings, compared to
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a rational agent.

Proposition 12.8 A sparse agent saves too little against idiosyncratic shocks, compared to a ra-

tional agent.

12.4 Investment Problems

Suppose that the agent needs to solve:

 (0) = max


Z
− ( ()− ())  s.t. ̇ = − + 

where  () is the profit rate,  () =  +  () is the cost of investment, inclusive of adjustment

cost . Capital depreciates at a rate .

How will the agent proceed? We apply the generalized  procedure of section 15.8, using

( ) := ( ). As  ( ) =  ()−  () we have

̄ ( ) =  () +  () ( −)−  ()

and ̄ ( ) = − + , so that

̇ = − + 

Hence, the agent simply solves a model with linear profitability of capital:

 (0 0) = max


Z
− ( ()  − ())  s.t. ̇ = − + 

Hence, optimal investment satisfies

0 (0) =  (00) = E
Z ∞

0

−(+) () 

i.e. on the RHS with have the subjective expectation of marginal profits.

At the steady state, with  = ∗, the optimum is characterized by 0 (∗) =  (∗) (+ )

with ∗ = ∗ — as in the traditional model. As in the general procedure, I assume that the agent

perceives a linear mean-reversion of the state variable: ̇ = −Φ, for some perceived speed Φ.

Outside the steady state,

̂0 =

R∞
0

−(+) (∗) b

00 (∗)
= −

Z ∞

0

−(+)−Φ b0 = − 

+  + Φ
̂0 =

1

00 (∗)

c |=0
+  + Φ

68



with  :=
−(∗)
00(∗)

≥ 0 and c = ̂. Here,

̂0 =
1

00 (∗)

c |=0
+  + Φ

means that the agent’s investment reacts to current (marginal) profitability c |=0, with a damp-
ening indexed by Φ, which needs not be the “rational” amount of dampening. For instance, if Φ

is low, the agent will overreact to current profitability. This shows, I hope, that the procedure is

reasonable psychologically.

The investment policy ̂ =  1
++Φ

̂ implies that the true law of motion of capital is

̂ = −̂ + ̂ = −
µ
 +



 +  + Φ

¶


so that the true speed of mean-reversion is

Φ =  +


 +  + Φ


Under rational expectations, Φ = Φ, so that a fixed point needs to be solved for. In the more

general model here, the agent perceives a speed of mean-reversion of profitability Φ, and reacts

accordingly. De facto, he sets 00 · ̂0 = E
R
−c, with c = ̂, i.e. sets investment

according to the perceived changes in future profitability of capital.

12.5 The Becker-Murphy model of Rational Addiction

The Becker-Murphy (1988) model of rational addiction is a peak of the use of rationality in eco-

nomics. We will give a behavioral version of it. We shall see that the qualitative evidence in favor

of the model (the fact that future increase in prices lower consumption today) are also consistent

with this BR version - it shows that agent are at least partially rational (as in the present model),

not that they are fully rational (as assumed by Becker-Murphy). This distinction is important: if

people are BR enough, they’d be better off under a high tax, or a ban, of the addictive substance

— while the optimal tax is 0 in the Becker-Murphy model. This analysis is in the spirit of Gruber

and Kőszegi (2001), who study a hyperbolic discounting addict, rather than a boundedly rational

one in the sense of this paper.

We call  the consumption and  the level of addition. Utility function is

 ( ) = −1
2
(− −)

2 −

Addition  evolves as

+1 =  + 
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The BR agent has in mind the model

+1 =  + 

We posit that in the default model the agent does not perceive any addiction dynamics: he

perceives addition as being constant.

 = 1  = 0

When the agent has partial attention  to inattention dynamics, we have

+1 = (1−) + ( + )

so

 = (1−) +  = 

Let us now study the BR dynamics.

Warm-up: 2 period model As before, it is helpful to study a 2-period model, with  = 1 2.

Behavior at the last period,  = 2. The agent should and does consume his optimal consumption

 () = argmax


 ( ) = +

We define the resulting utility as ̄ ()

̄ () := max


 ( ) = 
¡
 ()  

¢
= −

To, the time-1 value function is

 1 () = ̄ ()  (103)

Behavior at period 1,  = 1. Given perceived dynamics, the problem is

smax
;

 ( )

 ( ) :=  ( ) +  ( ()+  () )

which gives:

0 =  +  0 (+ )

= −+ +− 

 = +−  (104)
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An interesting variant is to impose  ≥ 0. Then, first period consumption is  0 iff −  0.

So, if    ≤ , then the rational agent consumes 0, while the very behavioral agent consumes

a positive amount and becomes addicted.

The optimal attention is  = A (2) = A (−22).

Infinite horizon model The value function satisfies

 () = smax
;

 ( ) +  ( ()+  () )

The FOC is

 ( ) +  0 ( ()+  () ) () = 0

i.e. the agent takes into account only part of the addiction costs, as  () ≤ . As a result, the

agent is more addicted in the steady state. The greater the myopia, the greater the optimal tax.

Proposition 12.9 In the Becker-Murphy model with boundedly rational agents, the consumption 

given the stock of addiction  is

 () = ++  ()

using  =
¡


¢
; the value function is

 () =  () +  ()

where  () = − 
1−(1+ (+−1)) and  () is in the proof. When using the plain (as opposed to

iterated) sparse max,  = 0 and attention to addition is  = A
µ
1


³


1−

´2¶
.

Proof of Proposition 12.9 We’re looking for a solution of the form:  () = + , for  

to be determined. The FOC is:  + 
 = 0, i.e. − (− −) +  = 0 and

 = ++ 

 ( ()  ) = −1
2
()

2 −

The self-consistency condition is

 () =  ( ()  ) +  (+ )

i.e.

+  =
−1
2
()

2 −+  [+  (+  (++ ))]
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This gives

 =
−
1− ̄

 = 
+  − 1

2
 ()

2

1− 

When the agent perceives 0 = 1− +  and 0 =   when forming the value function, we

have the same expressions,

 () =
−

1−  (0 + 0)
=

−
1−  (1 + (+ − 1))

 () = 
+  () − 1

2
 ( ())

2

1− 

To determine optimal attention , observe that in the 1-step smax, at the beginning,  = 0,

so the perceived value function is


¡
 = 0

¢
=  ( ()  ) + 

¡
 = 0

¢
so


¡
 = 0

¢
=

 ( ()  )

1− 
=
−1
2
()

2 −

1− 

This implies:  = − 
1− , and

 = ++ 
¡
 = 0

¢


= +− 

1− 


so that the impact of thinking more about , while keeping the future value function constant is




= 

¡
 = 0

¢
 = − 

1− 

Hence, optimal attention is:

 = A
Ã
1



µ




¶2


!
= A

Ã
1



µ


1− 

¶2!

12.6 Ricardian Equivalence: Reaction to taxes over time

For simplicity, I use continuous time. The interest rate is  = − ln. The government needs to
collect a present value of . This could be done by taxing the population (of size normalized to
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1) by  =  , starting at a period  .76 Hence, the path of taxes is 0 for    , and  for  ≥  .

What is a consumer’s response at time   ? If the consumer is perfectly attentive, then he

should start saving at time 0. However, a sparse agent might not pay attention to those future

taxes increases and start cutting on consumption only later, perhaps, just when the tax cuts are

enacted.

Let us analyze this more in detail. At  , the tax  is enacted, so that for  ≥  , the agent is

aware of it. This yields consumption deviation from the default value: b =  b −.

Before the enactment of taxes (   ), will the consumer think of the tax ? That tax lowers

the present value of his income by −(−), so the consumer’s response is

b =  b − 
¡
−(−) 

¢
Hence, the consumer will not think about the tax increase  when −(−) ≤ . Call  ∈ [0  )
the first moment when he thinks about them (if it exists, i.e. if   ), otherwise we set  =  .

The next Proposition details the dynamics.

Proposition 12.10 (Myopic behavior and failure of Ricardian equivalence) Suppose that taxes

will go up at time  . While a rational agent would cut consumption at time 0, a sparse agent cuts

consumption later, at a time  = max
¡
0min

¡
 1


ln 

−
¢¢
. His consumption path is

b =
⎧⎪⎨⎪⎩
0 for   

−−(−) +  (1−  (− )) for  ≤   

 b − for  ≥ 

with b =



¡
1− −(−)

¢−  ( − ) 

Let us take an example illustrated in Figure 6, with  = 5%,  = 2%,  = 10 years. This

figure plots the change in consumption and wealth for the rational actor  = 0 (black, solid)

and progressively less rational agents:  = 001 (blue, dotted),  = 0025 (red, dashed-dotted),

 = 01 (green, dashed). The traditional Ricardian consumer ( = 0) immediately decreases his

consumption by 2%, which leads to wealth accumulation until time  . In contrast, the BR consumer

( = 01) doesn’t react at all until  = 10 (hence he doesn’t accumulated any wealth), and then

cuts a lot of consumption. The value  = 001 and  = 0025 display an intermediary behavior.

For  = 0025, the consumer initially doesn’t pay attention to the future tax. However, at a time

 = 45 years (i.e., when there are 3.6 years remaining until the taxes are effective), he starts paying

attention and starts savings for the future taxes. As the tax looms larger, the agent saves more.

As the agent delayed his savings, he ends up cutting down on consumption more drastically when

taxes are in effect.

76If taxes are collected later, then to guarantee the same present value, they need to be larger by a factor  .
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Figure 6: Reaction of consumption and wealth to an increase of future taxes, for different level of

. Notes. At time 0, it is announced that taxes will be paid start at time  = 10. This Figure

plots the change in consumption and wealth. The solid line is the prediction of the rational model

(i.e. = 0), the other lines the reaction for different value of  ( = 001 (blue, dotted),  = 0025

(red, dashed-dotted),  = 1 (green, dashed)). The very BR agents does not react at first, but

starts reacting when he is closer to  . He reacts even more when taxes are in effect. As he delayed

his savings, he needs to cut more on consumption when taxes start. Units are percentage points of

previous steady state consumption. The amount is  = 2% of permanent income.

Smaller taxes generate a more delayed reaction. Controlling for the PV of taxes, consumers are

better off with early rather than delayed taxes (as this allows them to smooth more).

Proof of Proposition 12.10 Taxes lower the present value of his income by −(−), so

the consumer’s response is: b =  b − 
¡
−(−) 

¢
so wealth accumulation is: 


b =  b−b = 

¡
−(−) 

¢
. The consumer starts thinking about

it at a time  s.t. −(−) =  (assuming that the solution is in (0  )), i.e.

 = max

µ
0min

µ

1


ln



−

¶¶
(105)

First, consider the case    .

Then, for  ∈ [  ),




b = 

¡
−(−) 

¢
= −(−) − 

b =

Z 



³
−(−

0) − 
´
0

=



−

¡
 − 

¢−  (− )
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b =  b − 
¡
−(−) 

¢
= 

µ



−

¡
 − 

¢−  (− )

¶
− ¡−(−) − 

¢
b = −−(−) +  (1−  (− )) (106)

So at  =  b =




¡
1− −(−)

¢−  ( − )

At  , the tax  is enacted, so that for  ≥  , the agent is aware of it. This yields

b =  b −




b =  b − − b = investment income - taxes - consumption change
= 0

hence for    , b = b , and b =  b −.

We conclude that consumption is

b =
⎧⎪⎨⎪⎩
0 for   

−−(−) +  (1−  (− )) for  ≤   

 b − for  ≥ 

and wealth is

b =

⎧⎪⎨⎪⎩
0 for   


− ( − )−  (− ) for  ≤  ≤ 




¡
1− −(−)

¢−  ( − ) = b for  ≥ 

12.7 Active decision: Consumption or Savings?

Here we assume that the active decision was one of consumption. One could imagine that it would

be in savings. Does this matter? First, for many variables, it does not matter: the impact of

interest rates, future taxes, future income shocks etc. are the same whether a sparse agent uses

the consumption frame or saving frame. However, the frame does matter for one variable: current

income. Indeed, take the permanent-income setup. 77

77Recall that b = 
+

b, so b = 

 + 
b under the consumption frame

However, if the consumer choose savings, , and then consumes  = −, the rational amount is b = b−b , i.e.b = 
+

b. Hence, the savings of a sparse agent is b = 
+

b, and the deviation of consumption is: b = b− b ,
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Which frame does the agent use? One might posit that the agent takes the frame that yields

the higher expected utility. To analyze this, we note the following result.

Proposition 12.11 (Welfare under the consumption vs savings frame) The consumption frame

yields greater utility than the savings frame if and only if   , i.e. if income shocks mean-revert

faster than the interest rate.

When    (which is probably the relevant case), the “consumption” frame is indeed better

for the agent. The reason is that consumption should be smooth, while savings could be bumpy

as they absorb transitory income shocks. When the agent chooses consumption in an inattentive

manner, it makes consumption automatically rather smooth. However, if the agent chooses savings

inattentively, he makes savings smooth, but consumption needs to absorb the shocks, hence is quite

volatile. Therefore, generally, to keep consumption smooth, choosing consumption inattentively

is better than choosing savings inattentively. However, when income shocks are a random walk

( = 0), the savings frame is better. An inattentive agent will keep a constant savings and let

consumption react one for one to income shock, which is the normatively correct behavior when

income shocks are completely persistent.

Proof of Proposition 12.11 We use the content78 and notations of Proposition 15.5. We set

 = b. We have  (  ) =  +  −  and   ( ) = −.
Under the consumption frame,  = , and 

 = 0, so by Proposition 15.5, noting
£
 


¤
the

value of  
 ( 0) under the consumption frame:

£
 


¤
=

00 ()
 + 2

¡
 − 

¢2
(107)

and as  =  with  =


+
,

£
 


¤
=

00 ()
 + 2

(1−)
2

µ


 + 

¶2
and the expected losses are (with 2 = E [b2 ])

 =
−1
2

£
 


¤
2 =

−1
2

00 ()2
 + 2

(1−)
2

µ


 + 

¶2
=  (1−)

2
2

i.e. b = µ1− 

 + 

¶ b under the savings frame
which is generally not the same as b under the consumption frame.
78We could also draw on the results in Cochrane (1989), with a variety of adjustments. Proposition 15.5 extend

Cochrane’s results (derived for consumption) to general dynamic problems.
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Under the savings frame,  is savings, so 
 = , and  =  +  − . Hence:

£
 


¤
=

00 ()
 + 2

¡

 − 



¢2
and as 

 = 
 , with 

 = 1−  =


+
,

£
 


¤
=

00 ()
 + 2

(1−)
2

µ


 + 

¶2
and expected losses are

 =
−1
2

£
 


¤
2 =  (1−)

2
2

The consumption frame yields greater utility than the savings frame if and only if   .

Losses from a general variable x . Using the same reasoning, the losses from not paying attention

to a variable  is

 =
−00 ()
 + 2

2
¡
 − 

¢2
=
−00 ()
 + 2

2
2
 (1−)

2

We parametrize the losses by the “equivalent permanent tax”  such that

 = E
Z ∞

0

− [ ()−  ( (1− ))] 

Hence, using a Taylor expansions,  = 
0() . This gives

 =
1

2

− 00()
0()

 + 2
2

2
 (1−)

2

i.e., using  =
−00()
0() ,

 =
1

2



 + 2

h

(1−)

i2
(108)

Proposition 12.12 The losses from paying only attention  to variable , expressed in terms of

an “equivalent proportional losses in consumption”,  are

 =
1

2



 + 2

h

(1−)

i2
(109)

where  is the standard deviation of , and  =


.

The calibration gives

 = (1−)
2 × 003%  = (1−)

2 × 30% (110)

It may be useful to see the effect in a simpler context. Take a 3 period model with  =  = 1, and
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an income shock with persistence : b = −1 for  = 0 1 2, with  a mean-0 shock. Normatively,

that should induce the change b = (b)=012 = (1 1 1) 1++23
 (indeed, the total value of income

has increased by (1 + + 2) ). Let us now consider a BR agent with  = 0. However, under the

consumption frame, b = ¡
0 1

2
 1
2
+ + 2

¢
 (as there is no reaction of 0, so that time-1 wealth

increases by b1 = , of which half is consumed at time 1, so b1 = 
2
). Under the savings frame,

we get b = (1  2)  (savings doesn’t change, consumption absorbs all the shocks). It is easy to
verify that for  small, the utility is higher under the consumption frame, while the opposite for

large .79 Indeed, when  = 0, b = ¡0 1
2
 1
2

¢
 and b = (1 0 0) , so there is more smoothing under

the consumption frame. Other the other hand, with  = 1, b = ¡0 1
2
 5
2

¢
 and b = (1 1 1) , and

there is more smoothing under the savings frame.

12.8 Intertemporal elasticity of substitution: controversies about its

value

For many finance applications (e.g., Bansal and Yaron 2004, Barro 2009, Gabaix 2012), a high

intertemporal elasticity of substitution (IES, denoted  = 1) is important (  1). However,

micro studies point to an IES of less than 1 (e.g., Hall 1988). I show how this may be due to the way

econometricians proceed, by fitting the Euler equation, which yields ln +1− ln  = 

+ constant,

where b is the measured IES.
I apply the infinite-horizon framework of Section 4.2. If the consumer “under-reacts to the

interest rate,” the measured IES will be biased towards 0. Using the above model, we can more

precisely calculate that if consumers are boundedly rational (in the sense laid out above), then

the estimated IES will be: b = 
¡



 − 1

¢−  (− ). This is a point prediction that goes

beyond Chetty (2012)’s prediction of an interval bound. Hence we obtain:

Proposition 12.13 An econometrician fitting an Euler equation will estimate a downwardly-biased

IES (intertemporal elasticity of substitution) if the agent is sparse:

b =  − (− ) (

 − )  

where b is the estimated IES,  the true IES and −  is the difference between the sparse agent’s

and the traditional agent’s interest-rate sensitivity of consumption.

The above calibration yields Figure 7, which plots the measured IES b if the consumer is sparse
with sparsity cost . If  = 0, the consumer is the traditional, frictionless rational agent. We see

that as  increases, the IES becomes more and more biased. Hence, inattention may explain why

while macro-finance studies require a high IES, microeconomic studies find a low IES.80

79To the leading order, b = 1
2
00
¡

¢

P

 b2 , so b = 1
2
00
¡

¢
2

³
1
4
+
¡
1
2
+ + 2

¢2´
and b =

1
2
00
¡

¢
2
¡
1 + 2 + 4

¢
. This yields b ≥ b iff   ∗ ' 032.

80This is in the spirit of Gabaix and Laibson (2002)’s analysis of the biases in the estimation of the coefficient of
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Figure 7: Measured intertemporal elasticitiy of substitution (IES), b, if the consumer is sparse with
cost , while the econometrician assumes he is fully rational. The true IES is  = 1.

12.9 Source-dependent Marginal Propensity to Consume

The agent has initial wealth  and future income , can consume  at time 1, and invest the

savings at a rate . Hence, the problem is as follows: given an initial wealth , solve max  =

 () + E [ ( + ( − ))], where income is  = ∗ +
P

=1  - there are  sources of income 

with mean 0. Let us study the solution of this problem with the algorithm. The agent observes

the income sources sparsely: he uses the model  () = ∗ +
P

=1, with  to be determined.

Applying this model, we obtain (assuming exponential utility with absolute risk aversion  for

simplicity)

Proposition 12.14 Time-1 consumption is  = 1
1+

( +  − 22 + ∗ +
P

),  =

(1
2


). The marginal propensity to consume (MPC) at time 1 out of income source  is


 =

 · (111)

where 
 = ()


is the MPC under the sparse model, and 

 = ()

is the MPC

under the traditional rational-actor model. Hence, in the sparse model, unlike in the traditional

model, the marginal propensity to consume is source-dependent.

Different income sources have different marginal propensities to consume — reminiscent of Thaler

(1985)’s mental accounts. Equation (111) makes another prediction: consumers pay more attention

to sources of income that usually have large consequences, i.e. have a high . Slightly extending

the model, it is plausible that a shock to the stock market does not affect the agent’s disposable

risk aversion with inattentive agents, in a different context and a more tractable model. See also Fuster, Laibson and

Mendel (2010) for a model where agents’ use of simplified models leads to departures from the standard aggregate

model.
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income much — hence, there will be little sensitivity to it. The MPC out of wage income will be

higher than the MPC to consume out of portfolio income.

This model shares similarities with models of inattention based on a fixed cost of observing

information. Those models are rich and relatively complex (they necessitate many periods, or either

many agents or complex, non-linear boundaries for the multidimensional   rules, or signal extrac-

tion as in Sims 2003), whereas the present model is simpler and can be applied with one or several

periods. As a result, the present model, with an equation like (111), lends itself more directly to

empirical evaluation.

12.10 Cognitive Discounting of Future News

Suppose that the agent is told that he may receive $7 in 3 periods, but that those $7 may disappear,

with a survival probability of  per period. Then, the $7 should count at 
3
7. However, a sparse

agent could replace  by  (0) = 0 + (1−0) 

. If  (0)  , he’s thinking “Let me

not bother with those potential future things”, or “I’ll believe it when I see it”, or something akin

to “a bird in the hand is worth two in the bush”.

The framework easily accommodates that behavior of “cognitive discounting”. Call 

 the vector

of future flows, whose −th component will arrive in  periods.81 In the rational model, with no

decay,



+1 =  + 



+1

where  is the left-shift operator  (1 2 3 ) = (2 3 ). An innovation 

+1 codifies an-

nouncement. For instance, in the initial example 


 = (0 0 7 0 0 ). When there is cognitive

discounting, operator  is replaced by 0 ().

To come back to our consumption problem, the problem is, under the subjective model (with

 = (  

  


 )):

 () = (+̂) ( − ) + ̄ +̂

+1 = 

 + +1 ̂ = 1 ·  for  = ̂ ̂

Here, the value of  “dampens” the appreciation of future movements in variable . Intuitively,

because the future is harder to predict, its simulations are dampened.

Proposition 12.15 In the cognitive discounting specification, the behavioral policy is:

̂ = E

"X
≥

1

−+1
¡


−
0  () ̂ +

−
0 ̂

¢#
 (112)

All those expressions hold up to second order terms.

81More generaelly,  [+] = (

 ) =  · , with  = (0  0 1 0 0 ) the vector selecting the −th component.

80



Formulation (112) encapsulates two different forms of inattention. First, the agent may not

think about interest rate at all if  = 0. Second, he may discount future news, if 0  1.

Indeed, he discounts future news arriving in  periods by a factor 
0. In addition, this discounting

is source-specific: if news about future interest rates are less important than news about future

income (something we will compute soon), they are (cognitively) discounted more.82

12.11 Extension of the basic 3-period example

Using the simplification function The value (39) is a bit complicated. This is where

the simplification operator  (defined in Definition 15.2) intervenes. Applying it (with the same

notations as in the motivating example before and after Definition 15.2), we obtain  1 :=  ( 1),

i.e.

 1 ( ) = 2

µ
1 + 

2

¶
(113)

The value is the same as  1, up to  (2) terms:  1 (1 ) =  1 ( ) + (2). The attention-

augmented value function at time 1 is

 1
¡
 

¢
=   1 ( ) +

¡
1−

¢
 1 ( )

At time 0, the agent does smax0; 0 (0 0), with 0 =
¡

0 


¢
and

0 (0 0 0) :=  (0) +  1
¡
0 − 0


0


¢

(114)

The FOC is 00 = 0 with

00 = 0 (0)−  1


¡
0 − 0


0


¢


We have  1
 = 0 at the default 


0 = (0 0), so

0
 |=0

= 0 and the optimal attention is

 = 0: the agent uses the proxy value function, not the exactly rational one (we will see soon

that attention  can be non-zero using the 2-step smax, but it is still likely to be 0 if  is not too

small).

We note that if   0, the FOC is more complex. The FOC is

0 (0) =
¡
1−

¢
0
µ
1 +0

2

¶
+ 1

2

∙
0
µ
1 +1

2

¶
+ 0

µ
1 + (2−1)

2

¶¸
Still, to the first order, the decision is the same (as per Proposition 3.9). Making the problem

simpler at every period, via the  = 0 device, makes the problem more tractable for both the

82Psychologically, why the decay? This may be because often “promises are not kept”, or “something intervenes”

(so that the agent anchors on a decay   1), or simply because things far in the future are generally less easy to

perceive.
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agent and the economist examining him. We next study this, using the 2-step sparse max.

Using the 2-step sparse max We have so far used the plain sparse max. This led to = 0,

the exclusive reliance on the simplified value function. We now calculate what happens when using

the twice-iterated sparse max of Definition 15.1.

To endogenize , we use the twice-iterated smax: smax2; 0 (0 0 ) with =
¡

0 


¢
.

At the first round, 00
= 0, so 

0 (1) = 0, and, as before, 

0 (1) = A

¡
1
6
00
¡
0
3

¢
2
¢
.

At the second round, now = (
0 (1)  0). The easy part is the attention to , which is slightly

different than at step 1:


0 (1) = A

µ
1

6
00
µ
0 +

0 (0)

3

¶
2

¶
The more novel part is to calculate  . We have, with 1 = 0 − 0 and calling 

 := 
0

0

¡
0 0 


0 


¢
= 

£
 1 (0 − 0 

)−  1
¡
0 − 0 

 = 0
¢¤

= −1
2
0
µ
1 +1



2

¶
− 1
2
0
µ
1 + (2−1)



2

¶
+ 0

µ
1 + 

2

¶
Doing a Taylor expansion of the consumptions 1+1



2
and

1+(2−1)


2
around their mean

 =
1 + 

2
=

1 +
0

2

we obtain

0
= −1

2
0
µ
 + (1 − 1) 



2

¶
− 1
2
0
µ
 − (1 − 1) 



2

¶
+ 0

¡

¢

= −1
2
000
¡

¢
(1 − 1)2

µ


2

¶2
× 2 + 

¡
2
¢

= −1
4
000
¡

¢
(1 − 1)2 (

0)
2
+ 

¡
2
¢

Likewise, 0
|=

0(1)
= 3

2
00
¡

¢
. So, the impact of  is

0



= −
0


0
= −1

6

000
¡

¢

00 ()
(1 − 1)2 (

0)
2
+ 

¡
2
¢

Hence, for a small , the attention  to the difference between the difference between the true
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and proxy value functions (i.e.,  1
¡
1 


¢
for  = 1 vs  = 0) is:


0 = 

Ã
1


E

"µ
0



¶2
0

#!

= 

⎛⎝1

E

⎡⎣Ã1
6

000
¡

¢

00 ()
(1 − 1)2 (

0)
2
2

!2⎤⎦ 3
2
00
¡

¢⎞⎠

= 

⎛⎝ 1

24

Ã
000
¡

¢

00 ()

!2
(1 − 1)4 (

0)
4 E
£
4
¤
00
¡

¢⎞⎠ (115)

It is instructive to take the limit of small  using a sparsity-inducing cost function (0 (0)  0).

To have 
0  0, we need

2

large enough, so  º 12. To have 

0  0, we need
4

large enough,

i.e.  º 14, which is a much higher hurdle (
14

12
→∞) for small . We formalize this.

Proposition 12.16 (Attention to a variable, vs attention to the fine properties of how the value

function depends on that variable) Suppose a succession of problems (indexed by  going to 0) such

that there are positive constants , 0,  such that for  small enough: 12− ≤  () ≤ 014+.

Then, the agent will have 
0  0 and 

0 = 0 when  is small enough. This is, the agent pays

attention to the disturbance , but not to the subtle difference between the true and proxy value

functions (i.e.,  1
¡
1 


¢
for  = 1 vs  = 0).

In plain terms: because thinking about the nuances  in 
¡


¢
, one needs to think about

 at all. Hence, in many situations, we have  = 0 and   0. Indeed, we cannot have, with

just one state, variable  = 0 and   0.

In particular, for our 3-period problem for  small enough but not too small,  = 0 and


0  0 - the agent uses the simplified value function, but still pays attention to , like in the basic

smax case. This is one reason it is useful to use the basic smax: it gets to the essence of the more

complex patterns that can later be refined using the iterated smax.

13 Complements to the life-cycle model

Here I record variants on the life-cycle models of Section 2. What happens with various attention

functions, in discrete and continuous time, etc. This is useful to get a “feel” for the model in a

concrete, substantial setting.

13.1 Derivation in continuous time

It is instructive to do the proof in continuous time, using the notations of Section 2. The budget

constraint is ̇ :=


=  − , where a dot denotes a time-derivative.
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If the agent is rational, his value function is

  ( b ) = ( − ) 

µ
̄ +

 + 

 − 

¶
Indeed, the optimal policy is to smooth consumption over the time [  ], exhausting final resources,

which are + ( − ) ̄+ , so that  =
+(−)̄+

− , and the value function is   = ( − ) ().

I take   =   for the proxy value function.

Hence, at time , the Bellman equation is

smax
;

 ( b ) with  ( b ) :=  () +   ( − b ) 
The f.o.c. is:

 = 0 () −  
 ( − b )  = [0 ()−  

 (b )] +
¡
2
¢

 = 00 () +  
 ( − b ) ()2 = 00 () +

¡
2
¢

Hence, the optimal policy is given by  = 0, i.e. 
0 () =  

 (b ) = 0
¡
̄ + +

−
¢
, so

 = ̄ +
 +

 − 
=  +,

where

 :=


 − 

is the normative sensitivity response to b.
Next, for the allocation of attention, we form

max


−1
2
|=0

µ




¶2
( − 1)2 −  () 

i.e. the attention is

∗
 = A

Ã¯̄
00
¡

¢¯̄
2



!

Using the definition of the truncation function  ( ) := A
³
2

2

´
(equation 12) the response is

 −  = ∗
  = 

Ã


r
¯̄

00
¡

¢¯̄! (116)
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13.2 Calculation of the consumption path

The basic result (Proposition 2.1) gives the consumption policy, which is enough to simulate the

consumption path, say with a computer. Here I explore specifications to obtain an analytic rep-

resentation. As always, continuous time is much simpler to derive and cleaner than discrete time.

Still, because it is more elementary, I start with discrete time.

13.2.1 Consumption Path in Discrete Time

We will see that the path is as follows. Consider

 () :=
−
 − 

+
̄2


( − − 1) (117)

which is related to marginal net benefit of thinking.

Proposition 13.1 (Basic life-cycle: consumption path in discrete time) Call  the first time at

which the agent thinks about retirement,  = inf { ∈ [0 ] :  () ≥ 0}. Hence, the agent can think
of retirement at time  = 0 (this is the case if  (0) ≥ 0), at time a later time before retirement
(this is the case if  (0)  0   (), and  is the solution of  () = 0 if that is an integer). Or

he may never think about it until actual retirement,  = 

Before he thinks of retirement (  ), consumption is  = ̄ + 0

and  =

¡
1− 



¢
0. After

the agent thinks of retirement ( ∈ [ )):

 =
0


+ ̄ +

22


(− )− ()

and wealth is  =
¡
1− 



¢
0 − 2


(− ) (− − 1) + () (− ) for  ∈ [ ].

Consumption after retirement (for  ∈ [  )) is constant, at  = 
− + ̄ + ̂.

We next derive this. We follow Section 2, which gives:

 =
 +

 − 
+ 

We suppose the scaling:  = ̄200
¡

¢
, given 00 = 00

¡
1 + 1

−−1
¢
,

 = A
µ


2




¶
= A

µ
00

00
2
̄2

¶
= A

Ãµ
1 +

1

 − − 1
¶µ



 − 

¶2!

= A
µ

1

( − − 1) ( − )

2

̄2

¶
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Using A () = max
³
1− 1

||  0
´
,





 − 
=



 − 

µ
1− ̄2 ( − − 1) ( − )

2

¶
=



 − 
− ̄2 ( − − 1)



= − ()

where  () was defined in (117). Note that  () is increasing for    .

To concentrate on the key difficulty, I take the case 0 = 0.

If the solution is interior ( ∈ (0  )), the agent thinks about retirement for  such that

 () = 0 (118)

Hence, when attention is positive, we have:

 =  +
 + 

 − 
− 2 ( − − 1)


(119)

We need to calculate the case where the agent saves before retirement. We look for a solution

of the type, for  ∈ [ ):
 =  + (− ) + 

for some constants  . At  = , (119) implies  = − (). For time  ∈ [ ), we have:

 = −
−1X
0=

(0 − ) = −
2
(− ) (− − 1) + () (− )

We want to verify (119), which we will express:  () = 0 with

 () := ( − )

µ
 −  −  + 

 − 
+

2 ( − − 1)


¶
= ( − ) ( − )−  − + ( − ) ( − − 1) 

2



= ( − ) ( (− )− ()) +


2
(− ) (− − 1) + () (− )− + ( − ) ( − − 1) 

2


(120)

This is a polynomial in . The coefficient of 2 must be 0, so −
2
+ 2


= 0, and

 =
22
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To make sure that  () = 0, we check first  () = 0. But

 () = − ( − ) ()− +
̄2 ( − ) ( − − 1)


= 0

because of (117). Finally,

 ( ) =
2


( − ) ( − − 1)− () ( − )−  = 0

again. Given  is a polynomial of degree at most 1, with  () =  ( ) = 0,  is identically 0.

13.2.2 Consumption Path in Continous Time

Using the scaling  = ̄2
¯̄
00
¡

¢¯̄
 I set:  = ̄2

¯̄
00
¡

¢¯̄
. The consumption policy before

retirement is

 =


 − 
+ 

µ


 − 
 

¶
+ 

The agent will not think about the change in income when − 
−  . Call  ∈ [0 ) the first

moment when he thinks about it. If the solution is interior, 
− = , i.e.  =  + 


. In general, we

need to windsorize at 0 and  :

 := max
³
0min

³
  +





´´
(121)

Note that this is for ̂ ≤ 0. For ̂  0, we have  := max ¡0min ¡  − 


¢¢
.

For  ≤ , define the deviations from the policy that doesn’t pay attention to retirement :

̂ =  − 0


− 

̂ =

Z 

0

−̂  =  −  − 


0

We plug ̂ and ̂ into the optimal consumption policy to get

̂ =
̂

 − 
+ 

µ


 − 
 

¶

First case, using truncation function 1 ( ) = max
³
1− 2

2
 0
´
. I first assume that   .

For  ∈ [ ) the agent’s response is

̂ =
̂

 − 
+ 

µ


 − 
 

¶
=

̂

 − 
+



 − 

Ã
1− 2¡


−
¢2
!

=
̂ + 

 − 
+

2


( − )

87



Take derivative with respect to , this yields, using ̂

= −̂,

̂


=
−̂
 − 

+
̂ + 

( − )
2
− 2



=
−̂
 − 

+
̂ − 2


( − )

( − )
− 2



=
−22


with boundary condition that ̂ = 0. Solving for ̂, for  ∈ [ ]

̂ =
−22


(− )

The wealth at time  is

̂ =

Z 



−̂0 0 = 2


(− )

2

Second case. Now use truncation function 1 ( ) =  ()max (||− ||  0).
After time , the agent’s response is

̂ =
̂

 − 
+ 

µ


 − 
 

¶
=

R 

−̂ 
 − 

−
µ
− 

 − 
− 

¶
Taking derivative with respect to  yields

̂


=
−̂
 − 

+
̂

( − )
2
+



( − )
2

=
−̂
 − 

+
̂ − 

− − 

( − )
+



( − )
2

=
−
 − 

with boundary condition that ̂ = 0. Can solve ̂ as,

̂ =  ln

µ
 − 

 − 

¶
The wealth at time  ≤  will be

̂ =

Z 



−̂  =  ( − )

µ
 − 

 − 
ln

 − 

 − 
−  − 

 − 
+ 1

¶
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Case 1: With 1 ( ) =  max
³
1− 2

2
 0
´
, his consumption path is

 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0

+  for   

0

+  − 22


−
− for  ≤   


− +  + ̂ for  ≥ 

with  = ̂ +


0 = 

(−)2
− + 


0.

Case 2: With 1 ( ) =  ()max (||− ||  0), his consumption path is

 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0

+  for   

 ln
¡
−
−
¢
+ 0


+  for  ≤   


− +  + ̂ for  ≥ 

with  = ̂ +


0 =  ( − )

¡


− ln


− − 
− + 1

¢
+ 


0.

Using a different scaling,  = ̄2
¯̄̄¡

¢2
00
¡

¢¯̄̄

Here I explore a different scaling  =

̄2
¯̄̄¡

¢2
00
¡

¢¯̄̄
, with  = ̄ + 

− . This renders ̄ dimensionless and potentially portable from

one situation to the next. Then (116) gives:

 −  = 

Ã


r
¯̄

00
¡

¢¯̄! = 

¡
 ̄




¢
The agent is all set — he just follows that policy. Now let’s turn to the economist’s role, to trace

out the implications of that policy.

I use the truncation function 1 ( ) =  ()max (||− ||  0), because it yields simpler
calculations. I assuming ̂  0, to focus on the retirement case. We have, when  :=


−  −̄ ,


¡
 ̄




¢
=  + ̄ , so

̂ :=  − ̄ =
¡
 − ̄

¢
+
¡
 − 

¢
=

̂

 − 
+  + ̄ =

̂

 − 
+



 − 
+ ̄

µ
̄ +

̂

 − 

¶
i.e. b = (1 + ̄) ̂ + 

 − 
+ ̄̄ (122)

Let us examine the first time  at which the agent thinks about retirement. It if it in (0 ), we
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have ̂ = 0, and


− + ̄̄ = 0, so  =  + 
̄̄
. In general, we windsorize by 0 and , and obtain:

 := max

µ
0min

µ
  +



̄̄

¶¶
(123)

To find , we again apply (122), observing that ̂ = 0:

 = ̄ +



+ ̄̄ if  = 0 (124)

= ̄ if  ∈ (0 )

From then on, we assume   .

After the agent has starting thinking about retirement, we have (122), so taking the time

derivative, using ḃ = −̂, we have:

ḃ = (1 + ̄) ̂ + 

( − )
2

+
(1 + ̄)

 − 
ḃ =

b − ̄̄

 − 
− (1 + ̄)b

 − 

= −̄b + ̄

 − 

As  = b + ̄, we have ̇ = − 

− , so
 ln 


= −
− , ln  =  ln ( − ) + , and

 =  ( − )


for a constant . Given the value at 

 =

µ
 − 

 − 

¶

 (125)

The wealth at time  ≤  is

̂ =

Z 



− ( − ̄)  = (− ) ̄ − 1

1 + 

Ã
( − )− ( − )

1+

( − )


!
 (126)

13.3 Lifecycle: Policy of the hyperbolic log agent

The log case is particularly clean (Barro 1999). The agent at time  has decision utility: ln  +


P−1

=+1 ln  . Given full wealth (including discounted future income ) call Ω, his policy will be

some  = Ω, for  independent of Ω, so we shall have

−1X
=

ln  = ( − ) lnΩ +
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for some constant . The implies a consumption policy

 = argmax () +  ( − − 1) ln (Ω − ) ++1

The first order condition is
1


=

 ( − − 1)
Ω − 

i.e.

 =
Ω

1 +  ( − − 1)
We see that there is no “cliff” at retirement. The agent makes no distinction between pre and post

retirement income.

14 Proofs Omitted in the Paper

Proof of Lemma 4.2 Exact result. The problem is

max
()≥0

X
≥0



1−


1− 
s.t.

X
≥0

 ≤ Ω0

where  =
1

(1+0)(1+−1)
is the time-0 Arrow-Debreu price of a dollar received at , and  is the

discount factor (which is not necessarily of the form  here), and

Ω0 := 0 +
X
0



is the full wealth. Forming the Lagrangian,

 =
X
≥0



1−


1− 
+ 

Ã
Ω0 −

X
≥0



!

we have 
−
 = , i.e. (with  = 1


),  = 0

³



´
for some 0. The budget constraint gives:

Ω0 =
X
≥0

 = 0
X
≥0



 

1−


i.e.

0 = Ω0  :=
1P

≥0 

 

1−


(127)

Given  0 (Ω0) = 0 (0) = 0 (Ω0), we have (as the function is also homogeneous of degree 1−):
 (Ω0) =

1

 (Ω0).
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Suppose now that  =  and  = 1. Then the interest rate is constant,  = −, and

 = 1
≥0−

= 1
1

1− 1


= ̄

and Ω0 = 0 +

̄


. So, 0 = Ω0 =

0+̄


.

Taylor expansion, first in the deterministic case. The impact of a change  is very easy:

0 = Ω0 =
̄



+1 . The impact of an interest rate is more delicate. Consider a change change

 , for just one date  . It creates a bond price change  =
−1
+11 , so thatX

≥0
 =

X
≥0

−1
+1

1 =
X
≥+1

−1
+1

 =
−1

+1


This gives




= − (1− )

X
≥0



 
−
  = − ̄


(1− )

X
≥0



= (1− )
̄



1

+1
 =  (1− )



+2

Also, Ω0 = ̄
P

≥1  =
−̄



+1 . Recalling that 0 = Ω0:

0 = Ω0



+ Ω0 = 0 (1− )



+2
+

̄



−̄




+1

=

µ
−0 + 0 + ̄


− ̄

¶


+2
=

µ
−0 +  (0 − ̄)



¶


+2

This gives announced value.

Stochastic case. As we are reasoning up to 
¡kk2¢, we can take the certainty equivalent, e.g.

use E [ ()] =  (E []) +  ( ()) for a 2 function  . Section 14) provides the (standard)

details.

Value function. Write  =  ( − ̄)+, for values   independent of . Because one dollar

now can be consumed today, we have  0 () = 0 (), and indeed  () =
1

 ( ( − ̄) + ).

Using (45), in particular  =
(−̄)


+ ̄ and  () :=

̄

(−̄)−


, we obtain:

 +  =  =  + ̂ =  + E

"X
≥

1

−+1 ( () ̂ + ̂ )

#

=
̄ ( − ̄)


+ ̄ + E

⎡⎣X
≥

1

−+1

⎛⎝ ̄

( − ̄)− 

³
(−̄)


+ ̄
´


̂ + ̂

⎞⎠⎤⎦
which gives the announced values.
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Proof of Lemma 4.4 In the AR(1) case,

E

"X
≥

1

−+1 ̂

#
=
X
≥

1

−+1
−
 ̂ =

X
≥

1



³


´−
̂ =

1

1− 


̂


=

1

− 
̂

 =
̄


+ (1− )

̄


E[
X
≥

̂

−+2 ] =
̄


+ (1− )

̄

2
1

− 
̂

 = ̄ + E[
X
≥

−̄


̂ + ̂

−+1 ] = ̄ +
−̄


1

− 
̂ + 

1

− 
̂

Proof of Lemma 3.6 This is a variant on the standard proof. We have

T (  ) ()− T
³
̃   

´
() = E

h
 ( 0)− ̃ ( 0)

i
(128)

with  0 :=  (  (  )  ).

For (i), using
¯̄̄
 ( 0)− ̃ ( 0)

¯̄̄
≤
°°° − ̃

°°°
∞
,

¯̄̄
T (  ) ()− T

³
̃   

´
()
¯̄̄
≤ E

h¯̄̄
 ( 0)− ̃ ( 0)

¯̄̄i
≤ E

h°°° − ̃
°°°
∞

i
= 

°°° − ̃
°°°
∞

and taking the sup on the left-hand side,°°°T (  )− T
³
̃   

´°°°
∞
≤ 

°°° − ̃
°°°
∞


For (ii), if  ( 0)−̃ ( 0) ≤ 0 for all  0, then (128) implies that T (  ) ()−T
³
̃   

´
() ≤

0. The operator is monotone.

Proof of Lemma 3.6 This is the usual fixed point argument. Define 0 :=  , and for  ≥ 0,
+1 = T (  ). By Lemma 3.6,

k+1 − k∞ = kT (  )− T (−1  )k∞ ≤  k − −1k∞

hence  is a Cauchy sequence and converges in a complete metric space.

Proof of Proposition 3.9 Proposition 3.11 implies that  ( ) =   ( ) + 
¡kk2¢.83

Next, Lemma 3.12 implies that the optimal policy satisfies  ( ) =  ( ) + 
¡kk2¢. Next,

decompose  ( ) =  () +
P

  () + 
¡kk2¢. Then, using the policy  without sparse

83Proposition 3.9 is stated in the text before some results this proof uses (this is useful to make the flow of the

paper more natural), but there is no logical circularity.
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max, we have

 ( ) =  () +
X


 () +
¡kk2¢

Finally, using Lemma 3.3, we have:

 ( ) =  () +
X




µ
 () 





¶
 +

¡kk2¢ 
Proof of Proposition 3.11 It is in Section 16.1.

Proof of Lemma 3.12 The reasoning is a direct transposition of the arguments in the proof

of Proposition 3.11.

Proof of Lemma 3.13 Given a value function  ( ), Lemma 10.2 shows that, up to


¡kk2¢ terms,  ( ) just depend on  ( 0)   ( 0) (but not on  ( 0)). The Lemma

assumes that the two functions   ( ) =  0 ( ) have the same values of  ( 0)   ( 0).

Hence, their actions  ( ) are the same up to 
¡kk2¢ 

Proof of Proposition 3.14 We will prove by induction on  ≥ 0 that the following property
holds  : 

() () =   () +
¡kk2¢.

This is true by assumption for  = 0. Suppose  holds, we will see that +1 holds. By Lemma

3.13,


¡
  ()

¢
= 

¡
  (0)

¢
+

¡kk2¢ (129)

Because (0) () is 1, we also have 
¡
  (0)

¢
=  () + (kk), so  ¡  ()

¢
=  () + (kk).

Lemma 3.12 in turns implies that  (+1) () =   () +
¡kk2¢.

Proof of Lemma 4.2: Complements The following completes the arguments given in the

paper.

Stochastic case. With stochastic    , we use E [ ()] =  (E []) +  ( ()) when the

random variable  has small variance. Technically, we assume a bounded distribution of , and 

is 2 in a compact interval  containing E [] in its interior.84 This, way, we can move from the

deterministic version of (45) to its expectation, capturing absorbing the uncertainty terms in the


¡kk2¢.
84The proof is standard. Normalizing  = 0, and calling  here just a real number, we use  () =  (0) +

 0 (0)+ () with  () =
R 
0
 00 () (− ) . So  () =  (0) +  0 (0) + (), and

 () =  () + ()

Using| ()| ≤ 2 for  := 1
2
sup∈ | 00 ()|, we have | ()−  ()| ≤ 

£
2
¤
=  (). So,  () =

 () + ( ()).
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Proof of Lemma 4.4 One proof is that it is just a straightforward corollary of (51). Here I

show another proof, via a Taylor expansion of the default value function.

The Bellman equation is

 ( ) = max


 () +  ((+ ) ( − ) + 0 0) (130a)

I suppress the expectation operator, as the shocks are assumed to be small. We assume a law of

motion:

0 =  + 0

Call next-period wealth 0:

0 = (+ ) ( − ) + 0

We assume that the agent knows the simple model where the interest rate is always at its

average,  ≡ 0. As is well-known, the optimal policy is  =  + , and, with  = 1 + ,

 () = 
¡
 + 

¢1−
 (1− ) ,  =  = ()

−

First, we differentiate the Bellman equation with respect to the new variable:

 ( ) =  0
0 (

0 0)
0


+  0

0 (
0 0)

0



 ( ) =  0
0 (

0 0) ( − ) +  0
0 (

0 0)  (131)

Evaluating at  = 0, this leads to

 ( 0) =  
 ()

 ( − )

1− 

We now take the total derivative with respect to  ,  =  +


 , e.g. the full impact

of a change in , including the impact it has on a change in the consumption . The baseline policy

is  () = + , so  =  : , and 
0 =  ( ( − ))  = − = 1.

 = 


0 = 1

This means that one extra dollar of wealth received today translates into exactly one dollar of

wealth next period; its interest income, , is entirely consumed.
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So differentiate (using the total derivative) equation 131. We obtain

−1 ( ) =  0
00 (

0 0) (0) · ( − ) +  0
0 (

0 0) ( − ) +  0
00 (

0 0) 
0

=  0
00 (

0 0) ( − ) +  0
0 (

0 0) (1− 


) +  0

00 (
0 0) 

so, using

 0
00 (

0 0) = − 0
 ·

1

 + 
= − 0

 ·




 =

 0
0


¡
1− 

¡
−


¢¢
1− 

Finally, let’s derive the impact of a change in  on . We have

 =  (+ ) 0
0 = 0 ()

so




=



00 ()
=
−1
00 ()





1− 
¡


− 1¢

− 

=
−1

0 () 




1− 
¡


− 1¢

− 




=
1




¡


− 1¢− 1
− 

 = 

 =

¡
 − 

¢− 



 (− )

=

¡
 − +



¢− 



 (− )
=



( − )− 



 (− )

We note that the result

 =


 (− )
  =


¡
 − 

¢− 



 (− )

becomes, in continuous time:

 =


 + 
  =

 − 
 + 

(132)

Proof of Proposition 5.2 When   0, we saw that

 =

Ã


 + 
− 

µ
 +



 + 

¶2
 + 



!
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Let  :=
 + 


6= 0 Then

 = −1 − ( + −1)2

which is equivalent to

( − ) =  = 1− [( + −1)]2

= 1− ( + 1)2

= 1− (22 + 2 + 1)

Rearranging yields

( + 2)2 + (2− 1) + (− 1) = 0
The quadratic formula then gives

 =
(1− 2) ±

√
∆

2( + 2)


where

∆ = [(2− 1)]2 − 4( + 2)(− 1)
= 2

£
(2− 1)2 − 4(− 1)¤+ 4(1− )

= 2
£
(42 − 4+ 1)− (42 − 4)¤+ 4(1− )

= 2 + 4(1− )

In the case  = 0, the correct root is the higher one for  (i.e., it’s the higher root of  = 

+
,

the one with the +
√
∆ sign). Hence,  =

(1− 2) +
√
∆

2( + 2)
. Finally,

 =  −  =

h
(1− 2) +

√
∆
i
− 2( + 2)

2( + 2)

=
[(1− 2)− 2( + 2)]  + 

√
∆

2( + 2)
=
− [22 + 2+ ]  + 

√
∆

2( + 2)

=
− [22 + 2+ ]  + 

p
2 + 4(1− )

2( + 2)
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15 Extensions of the Basic Model

15.1 Evaluating the benefits of thinking at the true model

In the basic sparse max, benefits of thinking are evaluated at the default model. Here is a simple

extension where they’re evaluated at the true model. This is useful to avoid “starvation” in some

extreme examples.

Call

 () := E
£−0

¡
 

¢


¡

¡
 

¢
 

¢


¡
 

¢¤
the prospective benefits of thinking, evaluated at model . The basic sparse max sets attention to

∗
 = A

µ
1



¡

¢¶

But one could enrich it e.g. as

∗
 = A

µ
1


max

µ

¡

¢

 ()



¶¶
with   1. The max features two term: in the first one (

¡

¢
), the benefits are evaluated at

the default model; in the second term ( ()) benefits are evaluated at the true model. To capture

the fact that this is a more complex procedure, a penalty of   1 is applied, for some , e.g.

 = 10.

A benefit is that then the model “detects the danger of starvation”. In the 3-period model, we

have

∗
1 = A

µ
2
2
max

½¯̄̄
00
³1
2

´¯̄̄

1



¯̄̄
00
³1
2
+ 

´¯̄̄¾¶
so that if 1

2
+  is too close to a starvation level, then the second part is “active”, and attention

becomes higher (if 000  0). For instance, if
¯̄
00
¡
1
2
+ 

¢¯̄
= ∞, then ∗

1 = 1, and the consumer

becomes fully attentive.

Likewise, we’ll have

∗
0 = A

µ
2
6
max

½¯̄̄
00
³0
3

´¯̄̄

1



¯̄̄̄
00
µ 20

3
+ 

2

¶¯̄̄̄¾¶
as the value function is evaluated as a derivative of  1 (1 ) = 2

¡
1+
2

¢
.
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15.2 Finite-difference in the sensitivity to 

When we calculate 
= 


in Definition 3.1, the following variant 

 is sometimes useful. We

first need to define the finite-difference operator:

∆
 () :=  ()=1, −=0 −  (0) =  (0  0 1 0  0)−  (0)

where the 1 is at the -th coordinate of . This is the “finite difference” analogue to 
 () =



 |=0. Next, we define:


 () := ∆

( · ) = ∆

ÃX


µ



 ()|=0

¶


!
= (∆

) () · 

Note that if  () =
P

, then 
 () =  = 

 (). However, the definition

using 
generalizes better. For instance, if  is one-dimensional ( = 1) and

 (1 ) =

3X
=1


1

then 1
 () =

P3

=1 , whereas 1
 () =

()

1 |=0 = 11. The higher-power terms

23 are “invisible” when using 1
, but “visible” when using 1

.

15.3 Taking into account the costs of thinking in the value function

One could take into account the costs of thinking in the value function. This will complicate the

issues a bit and change the optimal action only by second order terms. Therefore, it’s best not to

do that in the first model.

Should thinking costs be taken into account?

There are some reasons to do it. If attention is a resource, then its cost should be taken into

account.

There are also reasons not to do it. First, we’re modelling a BR agent and imagining that

the BR agent optimizing today will take into account future thinking costs may assume too much

rationality. Technically when optimizing, the agent may take a default value of 0 for  . Second,

it could be that the costs in his decision utility (the ones used when deciding) are not the actual

costs of thinking. This is the case if the agent misoptimizes on inattention, i.e. does as if the cost

was  — but perhaps the true cost is  = 10 or  = 01.

In the basic statement of the model, I opted for the simplest version of the framework. Here is

an expanded version that does take them into account.

The selection of the action is still (27). Calling ∗ (  ) the attention return by the smax in
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(27), and the value function iteration in (29) becomes

T (  ) () :=  ( (  )   )−  (∗ (  )) + E [ ( (  (  )  ))]

where  () =
P

  (), and  is the perceived cost as included in the value function, and the

state vector  is expanded to include  as a state variable. The basic sparse max corresponds to

taking  = 0 at the Bellman iteration stage.

How do results change? First, the basic smax agent does not change his action at all. What

changes is for the −iterated agent case with  ≥ 1. Second, in accordance of Section 3.5, this

change makes only a second order difference in the action.

Formally, this can be interpreted by enriching the action space to ̄ = () and having attention

be part of the action vector and an expanded utility function:

̄ ( ) =  (  )−  ()

Then, the perceived decision utility may or may not capture the correct value of . This is close to

the perspective taken in Farhi and Gabaix (2015, Section 6.1).

15.4 Iterated Static Sparse Max

In some cases, it is useful to have a generalization of the basic sparse max.

Definition 15.1 (Iterated sparse max for static problems) The −times iterated sparse max,
smax

;|  ( ), is defined by the following procedure. Define 
()=1 to be the initial default

attention, .

Start at round  = 1. At each round  ≤ , apply the regular smax, using the default  ():

smax;|()  ( ), and call 
∗ () and ∗ () the resulting attention. Define then ( + 1) =

∗ ().

Stop at the end of round  = , and return ∗ () and ∗ (), the optimal attention and action

at the last iteration.

Illustration. Suppose that  ( ) = −1
2
(− 1 (1 + 2))

2
so that the rational policy is  (1 2) =

1 (1 + 2). If the agent doesn’t think of 1 (replacing it with 1 = 0), then he should not think

about 2.

We next apply the iterated smax outlined in Definition 15.1, iterating twice ( = 2). Initial

default attention is  (1) = (0 0). We start at step  = 1. We observe that so 1 = 1 + 2,

2 = 1, which gives

∗
1 (1) = A

µ
21


¶
 ∗

2 (1) = 0
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So, at the beginning of the second step, the default is  (2) = ∗ (1). Again applying the plain

smax but with that default  (2), we have

∗
1 (2) = A

µ
21


¶
 ∗

2 (2) = A
Ã
∗
1 (1)

2
22



!

Hence, the action is  =  (∗ (2)¯ ) = ∗
1 (2)1 (1 +∗

2 (2)2). We also see that, as → 0, the

action converges to the rational action.85

15.5 Proportional Thinking

Here is a simple microfoundation for the scale-free  of Section 10.2.2, equation (133). Thinking

about  implies some “mental costs”  (). These costs translate into some trembling in the

action, so that, with ∗∗ = argmax  ( ∗), the actual action is:

 = ∗ + ̃

where ̃ is a mean 0 noise with standard deviation:

 () =
√
2̄

ÃX


 ()

!12

The size of the noise proportional to the typical scale  of the action (this proportional is encoun-

tered in much of psychophysics, e.g. in the Weber-Fechner law)86, and increasing in mental activity

. . We call
√
2̄ the factor of proportionality.

Hence, the utility losses from this noise  = −E [ (∗ +  )−  (∗ )] are, to the leading

order:

 = −1
2
E
£
2
¤
 = −̄2

¡

¢2X



 ()

Hence, as in Gabaix (2014, Lemma 2), the utility losses from imperfect inattention are, to the

leading order:
1

2

X
=1

(1−)Λ (1−) + 
X


 ()

85This iterated smax suffices for the problems considered in this paper. For other purposes, one could imagine a

variant where the default is at say  = (  ), for some   0, so as to better “probe” the importance of all

variables.
86The microfoundation of that is probably that noisy computations are made in the brain in a scale-free space,

and then at the end multiplied by  to get an action to scale. This generates the proportionality to . This type

of thinking, however, it still speculative at this stage (Glimcher 2010).
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with Λ := −E
£




¤
and

 =
¡
̄
¢2 ¯̄


¡

¡


¢¢¯̄
 (133)

15.6 Simplification of Functions

15.6.1 Taylor expansion inside a value function

We develop here a bit of simple machinery to reflect how the agent can “simplify” a function (in

practice a value function), by forcing them to have a given functional form.

A motivating example. Suppose that the agent consumes 1 =

2
+ 1 and 2 =


2
+ 2, where

 = (1 2) can be viewed as small. His rational value function, assuming no discounting, is

 () = 
³
2
+ 1

´
+ 

³
2
+ 2

´
The agent may wish to use a simplified representation of this function. We observe that  () =

 () +
¡kk2¢ with

 () := 2

µ
 + 1 + 2

2

¶
We shall take this function   as a “simplified” representation of . We can then form a more

general function: 
¡


¢
:=
¡
1−

¢
 () +   (). If  = 1, then the agent uses the

rational value function. If  = 0, then the agent uses the proxy value function , which is in

some sense simpler.

The following definition generalizes that thought and codifies the creation of a “simplified” value

function.

Definition 15.2 (Simplifying function) Let  : R → R be a function such that  ()|=0 6= 0 for
all , and  : {1 } → {1 }. Call E := { ∈ 1 (RR) such that  (0) =  (0)}. We define
the simplification function  : E → E by

( ()) () :=  ( · ) (134)

where  is the uniquely determined matrix  ∈ R× such  = 0 unless  =  () and

 () =  ( · ) +  (kk) (135)

Furthermore,  =
 ()|=0
()|=0

if  =  ()   () = 0 otherwise.

We prove the  is indeed unique.
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Proof We want  () =  ( · ) +  (kk). This is equivalent to

 ()|=0 =
X


 = ()()

Inspecting the Taylor expansions gives the result. ¤
This defines an attention-augmented function


¡


¢
:=
¡
1−

¢
 () +  ()

where parameter  captures the attention to the true value .

Basically  ( · ) is like a non-linear Taylor expansion of  (). For instance, in our introductory
example,  () = 2

¡
+
2

¢
,  = (1 2),  = 1,  = 2,  () = 1, and  = (1 1).

Here are two other variants of the same idea. Suppose that we have a stochastic variable and a

variant of the Black-Scholes model, with stochastic volatility. Then, we may approximate the value

function in by tweaking the implied volatility:  (   ) =  BS (̄ +  +  ()    ),

where  BS is the regular Black-Scholes formula, so that the simplified function is

  (   ) =  BS (̄ +    )

Suppose that the agent estimates a distribution,  (), where  are parameters of the distribution.

The agent may wish to replace this distribution by a distribution with a simpler functional form,

say a Gaussian: then  is a Gaussian distribution approximating the distribution , perhaps by

matching ’s mean and variance.

15.6.2 Just paying attention to first order terms

Suppose that the problem is:

max


 ( )

which gives  =  +  ·  + 
¡kk2¢, with  = −−1 . Define  () :=  ( 0), and  =

argmax  ( 0). Suppose we have an agent that actually does:

̃ =  +  · 

i.e. exactly discards the second order terms. How to we represent that agent?

First, we could define a “Taylor sparse max”, that given a problem  ( ), returns the linearized

optimum ̃, or a sparse version of it, ̃ =  +
P

 

Second, we can say that the agent uses a proxy utility function. We observe that for ( ) close
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to
¡
 0

¢
, we have:

 ( ) =  ( ) +
¡
2
¢

1 ( ) =  (− ) + 
¡
 0

¢


2 ( ) = 
¡
 

¢
+
1

2


¡
− 

¢2
+
¡
− 

¢


3 ( ) =  (− ) + 
¡
 

¢− 
¡

¢

The above representations  all “work”, i.e. deliver the linear expansion.

15.6.3 Linearizing a relation

Suppose that there’s a nonlinearity, say it’s ̂ =   (), e.g.   () = 1
2
+ 3, then the agent may

use a linearized policy, i.e.,

 () =  (0) +1
0 (0)+2 ( ()−  (0)−  0 (0))

This is, the function is approximated by its constant, first order term (with weight 1), and higher

order terms (with weights 2). This way, one has a “simpler” representation by linearization.

15.7 Notes on the design of the model

Here I record some notes about modelling choices of the model. This section should only interest

people thinking about the foundations of the approach (hence, potential ways to change it), not its

direct practical use.

15.7.1 Breaking the explosion of Thinking about thinking about thinking...

Why not model iterated expectations, such as the agent’s perception at time 0 of his perception

at time 2 of his perception at time 5? The short answer is that this leads to a combinatorial

explosion of the complexity of the model. This motivates the particular formulation of sparse

dynamic programming, which eschews such a combinatorial explosion.

I record this phenomenon in this subsection, using the simple 3−period model of Section 4.1,
extended here to  + 1 periods. There we obtain about 2 state variables for a −period model.
Utility is

P

=0  () and  = 1. The agent receives 0 at time 0, and  at time . So,

 = −1 − −1 + 1= for  ≥ 1. The rational problem is

max

X
=0

 () s.t.

X
=0

 = 0 + 

and the optimal consumption policy at time  is  =
+
−+1
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  (  ) =  ( + )

Next, at time  − 1, the rational value function is ( stands for rational expectations):

 −1 ¡−1 

−1
¢
= 

µ
−1 +∗

−1
2

¶
+ 

Ã
−1 +

¡
2−∗

−1
¢


2

!

for the value −1 chosen at time  − 1,. However, the perceived value function could be

 −1 (−1 −1)

for some other perceived −1.

At time  − 2, the problem is

 −2 ¡−2 

¢
=  (−2) +  −1 ¡−2 −  

−1
¢


with

−2 = argmax


 () +  −1 ¡−2 − 
−2−2 [−1]

¢
so that at each stage, the agent gets either “” or “”. So, the relevant perception vector is

−2 =
¡
−2−1 

−2 [−1]
¢ ∈ R3 — the datum of the perception of , −1 and the actual

−1.

More generally, at time , the value function is

 ( ) =  (∗ ) + +1 ( − ∗  +1)

with

∗ = argmax


 () + +1 ( − 

 


 [+1])

So, the perception vector at time  is

 = (

 +1 


 [+1])

i.e. it’s formed of the attention
 to , tomorrow’s perception vector+1, and today’s perception

about tomorrow’s vector, 
 [+1]. Ideally, the agent should keep track of all those. Call  =

dim. We have  = 0−1 = 1,  = 1 + 2+1. This yields that the dimension of the

attention vector at time  is

 = 2
− − 1

which is overwhelming.
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Simplified value function. This is why the main sparse max cuts through the difficulty

to allow for just two value functions:   ( ), the rational expectation value function, and

  ( ), the “simplified value function”. Then, we form

 
¡
 




¢
= 

 
 ( ) +

¡
1−



¢
  ( )

Lemma 15.3 The value function   ( ) is independent of  , up to  (2) terms.

Hence, we define the germ  
¡
 

¢
to be a “simplified” version of   ( ). In many

cases, it’s the  
¡
 

¢
=   (  ), assuming that the agent will be rational. Typical case,

 =  ( ), with  =  (+) + ++  (). (This applies with time-varying interest

rate, income and equity premium). Then, we set 
¡
 

¢
:=  ( (+) +  +)  (+).

If chosen representation is  = + +  (), then we set: 
¡
 

¢
:= 

¡
+

¢
+.

More abstractly, if it’s  =  ( () + ()) +  (), for some function , then we set


¡
 

¢
=  ( ( () + () )).

15.8 Generalization: The  Procedure

Here I discuss how to do an expansion when  is required but not known by the agent. This

greatly generalizes the Cass-Koopmans of Section 5.

Suppose that we want to solve

 (0) = max
()≥0

X
≥0

 ( ) s.t. +1 =  ( ) (136)

but do not know  (0), which is required to find 0
(recall that the first order condition is

 + , so calculating 0
involves ). What to do?

I posit the following description of the agent’s world view and behavior. He considers  “his”

variable, and  the value created by the environment, which is perceived to be exogenous to him:

this is the same way that in much of macro,  is his wealth, and  is the aggregate capital

stock. He has a mental model of the law of motion of  on the equilibrium path, e.g. as in

+1 − =  ( −∗) for some matrix , and ∗ is the steady state value of . He solves in

his mind the “micro” problem:

 (00) = max
()≥0

X


̄ (  ) s.t.  = ̄  ( ) (137)

with  exogenous to his actions and I define the modified utility and production function, in a

manner that separates the micro variable  and the macro variable  :

̄ ( ) :=  ( ) +  ( ) (−)  

( ) :=  ( ) +  ( ) (−)
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This way, they capture the marginal contribution of .87 88.

Next, I assume that the agent knows    evaluated at () = (∗∗) — i.e., the agent

has solved the “microeconomic” problem of optimizing when the macroeconomic environment is at

the steady state, i.e.  = ∗ at all dates, but his microeconomic variable  is off equilibrium.89

This gives the value  (∗). This way, we can calculate  using the procedure in Section 10.1

(using the change in notations ( ) := ()).

Hence the action is ̂ = ̂ + ̂ and on the equilibrium path ̂ = ̂. To calculate  we

proceed as in section 10.1.90 Section 12.4 applies this to an optimal real investment problem.

15.9 Continuous time

Calculations are typically cleaner in continuous time, so we develop the continuous-time version of

the machinery. We take for now problems without stochastic terms (those should be added later).

The laws of motion are

̇ =  (  )

̇ =   ( )

and the Bellman equation is

 ( ) =  (  ) +  ( )
 (  ) +  ( )

 (  )

In the more complex case ̇ =   (  ), we need to solve a matrix Ricatti equation — but

87One could also imagine using , the other agent’s action, and setting  ( ) :=  () +

 () (−)+ () (−), or similar variants. What’s important is that values and first order derivatives

are preserved around ( ) = (): more precisely, function  ( ) must satisfy:  (+   +  ) =

 (+  + ) + 
¡
2 + 2

¢
, and similarly  ( ) must satisfy:  (+   +  ) =  (+  + ) +


¡
2 + 2

¢
.

88For instance, in the Cass-Koopmans problem, ( ) := ( )   ( ) =  ()− , and



( ) =  ()− +  0 () ( −) =  0 ()  + [ ()− 0 ()]− 

so that  0 ()  is the return on capital, and [ ()− 0 ()] is labor income.
89This is actually easy to derive in a number of canonical problems: For instance, in RCK this is saying that the

agent knows the “micro” problem of the life-cycle with constant interest rates. This is also true in a canonical real

investment problem derived below.
90The FOC is Ψ ( ) = 0 with

Ψ ( ) := ̄ ( ) +  ()


 ( )

This gives the marginal impact of  on the action  = −Ψ−1 Ψ , with

Ψ = ̄ + 


 =  + 

Ψ = ̄ + 


 + 


 = ̄ + 




where in the last two equations, the last part of the right-hand side is evaluated at  = .
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not here.

Call, for some function  ,  =  +  the “total impact” of a change in . Then

differentiate the Bellman equation with respect to ,

 =  + 

 + 


 + 

 (138)

Now, we differentiate with respect to  and evaluate at  = 0:

 =  ( + 

 ) + 


 + 




so

 = (−  
 )
−1
[ + 


 ] (139)

 = (−  
 )
−1
[ ( + 


 ) + 


] (140)

As  satisfies Ψ = 0 with

Ψ (  ) =  + 



where we have used here  
 = 0. Hence, the impact of  on the optimal action is

 = −Ψ−1 Ψ

Ψ =  + 



Ψ =  + 

 + 




Calculation of . We now turn to the more difficult case of . Using  =  + 

the “total impact” of a change in , we have:

 = + 
 + 


 + 



=  ( + 

 ) +  + 


 + 


 + 



Next, differentiating at  = 0,

 =  ( + 

 ) + [ + 


 + 


 ] + 




=  [ +  + 

 + 


 + 


]

+  +  + 

 + 


 + 2


 + 
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hence

(− 2 
 ) =  [ +  + 


 + 


 + 


]

+  +  + 

 + 


 + 




This is a bit of a complicated expression. Let us note it can be written

(− 2 
 ) (


 −  

) = +  + 

with  =  + 

.

We use the following elementary Lemma:

Lemma 15.4 Let  () = +0+, for  symmetric negative definite. Let ∗ = argmax  (),

so ∗ = −1
2
−1. Then, for any ,

 ()−  (∗) = (− ∗) (− ∗) 

Let’s compare  under the sparse vs rational model: the difference is just in the 

 vs 




term. Indeed,


 −

 = (

 − ) 

so, using the previous Lemma,

 
 −  

 = (− 2 
 )
−1
( − ) ( + 


) (


 − ) (141)

We gather the results.

Proposition 15.5 (What are the losses from a suboptimal policy?) Consider the value function  

under the optimal policy and   under a potentially suboptimal policy, and   ( ) =   ( )−
  ( ). Then, evaluating at  = 0, we have

  = 0  
 = 0 


 = 0 


 = 0 


 = 0 (142)

and

 
 = (− 2 

 )
−1
( − ) ( + 


) (


 − ) (143)

Equation (143) has an intuitive interpretation. At a point in time, as a function of , present

and continuation utility is  () =  ()  + (1− ) ( +  ( ) ). Hence (omitting

the  to remove the notational clutter), 0 () =  + 

 and 00() =  + 


. Hence,

reacting imperfectly to a small  (with  =  −  ) creates an instantaneous utility loss of
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Λ = −12. The full utility loss is the present discounted value of that, i.e.

2Λ =

Z ∞

0

−2Λ = −
Z ∞

0

−




 with  = −0

= −
Z ∞

0

−−20




0 =

1

+ 2
0





0

= −0 (− 2 
 )
−1

 ( + 

) 


0 as 


 = −

= −0 
0

It is enough to study the “static” utility losses to derive the dynamic utility losses. This proposi-

tion 15.5 is a dynamic application of the Proposition 26 in Gabaix (2014, online appendix) regarding

losses from a suboptimal policy. For convenience, we restate this proposition here. With static prob-

lem max ( ) s.t.  ( ) ≥ 0 and a Lagrangian  ( ) =  ( ) +  ( ), the losses from a

suboptimal policy  = −  (where  is the optimal policy) are to the leading order: 1
2
0

.

Here the Lagrangian is  =
R
− [ ( ) +  (−̇ +   ( ))] , where  = ( ) is the

state vector. Hence, the loss Λ is expressed by (to the leading order)

2Λ = 0 =

Z



 =

Z
− [ + ] 




Suppose that we can linearize,  = , we have

2Λ =

Z
−0

0 [ + ]

Consider the ergodic limit, where  has a distribution independent of . Recall that

E
0
 = E

X


 =
X


E [] = Trace (E [0])

Hence,

2Λ =
1


Trace (E [0])

 = 0 [ + ] = 0

15.10 Some ancillary results

Call  () =  () a transformation function for the state vector . E.g. in the basic life-cycle

example,  ( ̂ ̂) = (̂̂). [Note: below, the notation bar isn’t ideal, as bar refers

to means; perhaps tilde would be better] When can we express the perceived model as a rational

model, with different utility and transition functions? The following Lemma gives the answer.
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Lemma 15.6 Let  () be a function and define ̄ =  (). Suppose that we can write

 ( ) = ̄ ( ())

 ( ( ) ) = ̄ ( ())

for two functions ̄ ̄ . Then the model evaluated at  is the same as a rational model with state

variables ̄, utility ̄, transition function ̄ . We also have  () = ̄ ( ())

Proof We have

̄+1 =  (+1) =  ( ( ) ) = ̄ ( ()) = ̄
¡
 ̄

¢
The value function ̄ satisfies, with  s.t. ̄ =  ()

̄
¡
̄
¢
= max


̄
¡
 ̄

¢
+ ̄

¡
̄
¡
 ̄

¢¢
= max ( ) + ̄ ( ( ( ) ))

Define  () := ̄ ( ()). Then,

 () = ̄
¡
̄
¢
= max


 ( ) +  ( ( ) )

So indeed  satisfies the Bellman equation. ¤
Also, we have  () = ((+ ̄) ( − ̄)  )

̂+1 = ̂ + 

+1

gives

̂+1 = 0
¡
̂ +


+1

¢
i.e.

̄ ̄
¡
 ̄

¢
= 0

¡
̄ +


+1

¢
I conclude with a remark which will be useful later, drawing again on Gabaix (2014). As  has

the units of utils, one can make it more endogenous with the primitive, unitless parameter , by

setting:

 = 2
¡

¡
 ()  

¢¢12
(144)
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16 Other Results

16.1 Second Order Losses From Inattention

16.1.1 Statement

The intuition is that as  is small, and the action is close to the optimum, we get only second

order losses 
¡kk2¢ from misoptimization. The idea is simple, but it turns out that it requires

some extra care, in particular to ensure that differentiability, and to define formally the objects

of interest. I present that here. This subsection does not contain surprising results, so should be

skipped at the first reading.

Recall that  is a set of variables thought about in the default model ( = 0), and  is a

set of variable not thought about in the default model. We also set  = ( ). Formally, we

assume that  ( ) and   ( ) are independent of  if  = 0. We also assume that

  ( ) = 0 if  = 0, i.e. so that small ’s at  map in small ’s at + 1.

We suppose that the attention function A is ∞ (this can easily be ensured).

Recapitulations of the notations With 1 period problems, the action is

 () := argmax


 ( ) (145)

With exogenous attention , the value function is the utility evaluated at the true model of the

world:

 ( ) :=  ( ()   ) (146)

where  denotes the true state of the world (typically  = (1  1)). With endogenous attention,

we have

∗


¡
 2 

¢
:= arg max

∈[0]


∙
1

2


( )|=0 ( − )
2
+ ()

¸
(147)

and the value function with endogenous attention is

 ( ) := 
¡
∗ ¡ 2 ¢  ¢ (148)

We sometimes drop the explicit dependence on .

With  period problems, the notions are the same, but recursive. We use  = ()=0 . The

action at time  is:

 () := argmax


 ( ) +  +1
¡
  ( ) +1

¢
(149)

which defines the value function, evaluated at the true model of the world. With exogenous atten-
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tion:

  ( ) := 
¡
 ()   

¢
+  +1

¡
  ( )  +1

¢
(150)

When attention is endogenous, we have


∗


¡
 2 

¢
:= arg max

∈[0]


∙
1

2
 


( )|=0
( − )

2
+ ()

¸
(151)

and

  ( ) :=  
¡
∗ ¡ 2 ¢  ¢  (152)

We call   ( ) :=   (  ( )=0 ) the rational value function.

We prove two propositions: the first one is elementary to state, the other one a bit more cum-

bersome.

Proposition 16.1 (Second order losses form inattention) Suppose that  and   are ∞. Recall the

decomposition  = ( ). Then, with exogenous ,  ( (  )= ) and   ( (  )= )

are ∞ and,

  (  (   )= )−   ( ) = 
¡kk2¢Ã X

=

k − k2
!

(153)

With endogenous ,  () and   () are ∞, and

  ( )−   ( ) = 
¡kk2¢ (154)

Proposition 16.2 (Second order losses form inattention, with finite differentiability) With exoge-

nous , assume that there is an  ≥ 3 such that  is +,   (the transition function from  to

 + 1) is +. Then  ( (  )= ) and   ( (  )= ) are 
+−1 for all  = 0   ,

and (153) holds.

With endogenous , assume that there is an  ≥ 5 such that  ( ≤  )   (the transition from

 and + 1) are 3+ for some . Then  () and   () are 3+−3 and (154) holds.

16.1.2 Proof of Propositions 16.1 and 16.2

The proof starts with the most elementary cases (1 period), then amplifies it to 2 and more periods.

1 period, with exogenous  We suppose that  (  ) is , with  ≥ 4, and that the
rational problem is

max


 (  )

We shall see that  ( ) is −1 and  ( ) is −3.
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First, let us suppress the dependence on , and consider max  ( ).

By the implicit function theorem,  () := argmax  ( ) is 
−1 (it is the solution of

 ( ) = 0). This makes  ( ) :=  ( ()   ) be −1.

As  ( 0) is independent of ,  (0) is independent of , so we can write:  () =

 (0 0) +  ()+ (2). As  () is 
−2 with  − 2 ≥ 1 there is a constant  such for that

all  in the compact [0 1]

, we have k ()−  ()k ≤  k− k. We consider the loss from

imperfect perception:

 ( ) :=  ( )−  (  )

=  ( ()   )−  ( ( )   )

= ( ()−  ( ))
0
 ( ()−  ( )) +  ( ()−  ( ))

2

= ( ()−  ())
0
 ( ()−  ())

0
+ 

¡kk2¢
So we have

 ( )−  (  ) =  ( ) = 
¡kk2¢ ¡k− k2¢ (155)

Reinserting the dependence in , the same reasoning show that with

 (  ) :=  (  )−  (   ) (156)

we have

 (  ) = 
¡kk2¢ ¡k− k2¢  (157)

1 period, with endogenous We supposed that  ( ) was , which led  ( )

to be −1. Now, we endogenize . We have

∗


¡
 2

¢
= argmax




∙
−1
2


( )|=0 ( − )
2 − ()

¸
So, ∗ () is a −3 function of . So  ( ) :=  ( ∗ ()) is a −3 function.

Hence, starting from a  function  ( ), we obtain a −3 value function  ( ). We

“lost” 3 orders of differentiability.91

2 period problems There are 2 periods, 0 and 1. We call

 1 (  ) := 1 ( ( )    )

 1 (  ) := 1
¡

¡
 ∗ ¡ 2¢¢    ¢

91If there was no , then we’d just have ∗ a value independent of , and function  ( ) would be −1.
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the value function at the beginning of period 1, with respectively exogenous and endogenous atten-

tion.

We assume that 1 is .

2 periods, with exogenous 1 The problem is now

max


0 (  01 1)

with

0 ( 01 1) := 0 ( 0) +  1 ( ( 0) 1 1)

where the last function  1 ( 1), which is 
−1, and  = (  ) gives the transition functions

for both  and . We assume that   1 0 are −1. So, function 0 is −1.

The reasoning in the 1 period case applies, and 0 ( 01 1) is 
−2, so

 0 (0 01 1) := 0
¡
0 (01 1)   01 1

¢
is −2. If  ≥ 3, we have

 0 (0 01 1)−  0 ( 0 01 1) = 
¡kk2¢ ¡k0 − 0k2

¢
by the time-0 result.

Also, we have

 0 ( 0 01 1)−  0 ( 0 0 1 1) = 
¡kk2¢ ¡k1 − 1k2

¢
so putting summing the two differences:

 0 (0 01 1)−  0 ( 0 0 1 1) = 
¡kk2¢ ¡k0 − 0k2 + k1 − 1k2

¢
2 periods, with endogenous 0 The problem is now

max


0 (  0)

with

0 ( 0) := 0 (  0) +  1 ( ( 0))

where the last function is  1 ( ), which is −3, and  = (  ) gives the transition functions

for both  and . We assume that   1 0 are −3. So, function 0 ( 0) is 
−3.
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By the reasoning before with 1 period,  ( 0) is 
−4 and

 0 (  0) = 0 ( ( 0)   0)

is −4. Next, to endogenize 0, again by the reasoning done with 1 period, 0 ( 
2
) is 

−6, so

that

 0 (  ) =  0
¡
 ∗

0

¡
 2

¢¢
(158)

is −6.

We next move to more than 2 periods. The reasoning is very similar to the 2 period case.

 + 1 periods, exogenous  We assumed that  is +,   (from  to  + 1) is + for

some  ≥ 3. That implies that  is +−1,   is +−1, and by backward induction on  = 0,

that  and   are +−1 for all  = 0   . So, if  ≥ 3, then  0 is 2, and

 0 (  ( )=0 )−  0 (  ()=0 ) = 
¡kk2¢Ã X

=0

k − k2
!

(159)

holds as well.

 + 1 periods, endogenous  We assumed that  ( ≤  )   (the transition from  and

+1) is 3+ for some . Then, by backwards induction on  = 0,   is 3+−3. Indeed, by the

reasoning done in the 2 period case, given that  is , we have that   is −3. As  −1 −1 are

assumed to be −3, we have that  −1 is −6.

This ends the proof of Propositions 16.1 and 16.2. ¤

16.1.3 Extensions

Noise In the problems above, there is no noise. Adding noise is straightforward, but adds yet

another layer of notations. Formally, we assume bounded noise:°°+1°° ≤  almost surely

for some , and where  = 
£kk2¤12. Then, the statements in Propositions 16.1 and 16.2 are

replaced by

  (  (  )= )−   ( ) = 
¡kk2 + 2

¢


Ã
X
=

k − k2
!

(160)

and

  ( )−   ( ) = 
¡kk2 + 2

¢
(161)
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This is, both the actual value and the variance of  matter.
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