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Appendix

Scrutinizing the Treatment Design

To further investigate our treatment design, we approximate the parameters defined in the

theoretical model and impose the values on the heat map (Figure A1). Although treatment

and control groups were determined by impacts during only drought years, we estimate

perceptions using three 16-year periods that include both dry and wet years. Drought shocks

are random, and a producer would develop perceptions about the probability of a call

conditional on a variety of weather realizations. The estimate for the probability of a call (θ) is 

the average number of years a water right at a given structure was called during the period, 

divided by the length of the period. The estimate for the proportion of water received when 

called (δ) is the average of (1 − days under curtailment )  for the years in which a water right
growing season days

was called. From Figure A1 it is evident that most treatment structures shifted from darker to 

lighter areas in the period containing the shock (2000-2015), indicating a movement from low 

to high gross benefits from adopting a more water-efficient irrigation technology. The control 

structures do not exhibit the same movement. Although many control structures lie in an area 

that predicts a high benefit of adoption, our treatment designs aims to capture a change in 

perceived water availability. The relatively stable parameter estimates for the control group 

indicate they did not experience the drought shock to the same degree, as compared to prior 

droughts, as the treatment group.

Next, we test the robustness of the 50% curtailment increase we use to define our treat-ment 

group. Our theoretical model suggests a nonlinear impact of curtailment length on the

benefits of adoption, so although the 50% choice aligned well with how treatment structures 

moved on the theoretical heat map, larger increases in curtailment may impact behavior

differently. We examine coefficient estimates for the Sprinkler % and Total Acres models with

cutoffs ranging from 50% to 150% in increments of 5%. For each incremental increase,

structures that no longer meet the treatment criteria are dropped from the analysis rather



than moving into the control group. Results are presented in Figure A2 and Figure A3,

where each row refers to the dependent variable in the model runs and each column to the

treatment-year interaction term. For the Sprinkler % model, pre-treatment coefficient esti-

mates are consistently insignificant, and post-treatment coefficient estimates are consistently

significant. Nearly all coefficient estimates for the Total Acres model are insignificant. How-

ever, the magnitude of the coefficient estimates are not as stable. For the post-treatment

coefficients in the Sprinkler % model, differences in average adoption rates fluctuate upwards

of 5% as of 2010 and 2015.

Addressing Threats to Identification

Here we address the possibility of multiple or staggered treatments. In our main econometric

specification, we leverage the shift in the call regime as a singular treatment event. However,

drought varies in intensity from year to year, and it is possible that some treatment structures

were impacted differently in years post-2002. If treatments are heterogeneous and staggered

across time, then our model would be misspecified, and we would instead need to employ

a difference-in-difference design suitable for estimating average treatment effects with two-

way fixed effects and heterogeneous treatments (e.g., Callaway and Sant’Anna, 2021). We

explore this possibility graphically and further clarify the aim of our current treatment

design. We first draw attention to the bottom right panel of Figure A1, which displays

parameter estimates from the theoretical model for all treatment structures for the 2000-

2015 time period. We find that all treatment structures move similarly on the heat map,

in aggregate. Disaggregating to yearly impacts, Figure A4 shows the average days under

curtailment for every diversion structure in our sample by year. Each point represents the

average number of days under curtailment across all water rights associated with a given

structure in that year. Grey points correspond to dry years (PDSI < 0) and black points

correspond to wet years (PDSI > 0). From the bottom panel of Figure A4, it appears that

treatment structures are consistently curtailed more in dry years post-2002 than any dry
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year previous. Although calls at different treatment structures may have varied across years,

we argue that our treatment design aims to capture the singular and systematic shift in the

way calls are administered post-2002. In other words, the treatment captures a change in

perceptions about water supply certainty due to a distributional change in the call regime

rather than year to year drought severity, which makes our model specification appropriate.

Next, we examine the robustness of our econometric results to adjustment of the reference

year. The reference year of 2001 was chosen as it is the most recent year prior to treatment,

but its omission inhibits the ability to fully investigate possible anticipatory behavior. If

water right owners were anticipating the shift in the call regime and took action prior to its

realization, the parallel trends assumption would not hold and our results could be biased.

Figure A5, Figure A6, and Figure A7 present coefficient estimates with 95% confidence

intervals for the main econometric models (Table 2) with reference years 1976, 1987, and

1997, respectively. For the Flood Acres, Sprinkler Acres, and Sprinkler % models, results

do not change qualitatively across reference years and pre-treatment coefficient estimates

are consistently insignificant. Most importantly, the insignificant coefficient estimates for

2001 indicate no substantial behavioral differences between treatment and control diversion

structures in the year immediately preceding the shock.

Lastly, we discuss the model specification, in particular the choice of year fixed effects ver-

sus a drought severity control variable (e.g., PDSI) across our study area. Localized weather

conditions influence crop water demands as well as the amount of effective precipitation

available to plants. As with much of the American West, the timing and quantity of surface

water supplies available to producers for irrigation is based largely on winter (quantity of

snow) and spring/early summer (timing of snowmelt) weather conditions in the mountains

outside of our study area (as much as 200 miles away from the planting location and/or in

another river basin). While PDSI is an effective measure of long-term (18 month) drought, it

reflects local conditions. Within a time period, there is little variation across our study area,

and the variation that does exist would not explain differences in surface water availability
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across producers (or the exogenous shock to perceived water right reliability that we ob-

serve). Our goal in this paper is to identify the effect of changing perceptions about surface

water availability on producer behavior. Including year fixed effects allows us to estimate the

effect of the unexpected shortages beginning around 2002 while controlling for differences

in weather conditions (along with market conditions and any other factors constant across

space) that may exist across the study period.

Nonlinear Impacts of Changing Perceptions

From the theoretical model, we determined that changing perceptions can impact adoption

nonlinearly depending on the movement of θ and δ. The increase in expected gross benefit

from an increase in θ could potentially be nullified by either an increase or decrease in δ,

depending on the starting combination. Looking again at the right-hand column of figure

Figure A1, we would expect treated units that moved to the lightest areas to have higher rates

of adoption. We investigate this hypothesis informally by imposing total changes in sprinkler

acreage (Figure A8) and sprinkler acreage as a percentage of total acreage (Figure A9) for

each structure on the bottom right panel of Figure A1.10 A larger point indicates a bigger

increase in sprinkler technology adoption. In both figures, there appears to be a greater

concentration of high adoption rates near the lighter areas, where the gross benefits of

adoption are predicted to be highest.

10Change in sprinkler acreage as a percentage of total acre is calculated as a difference in percentage points.

40



Figure A1: Estimated Perception Parameters for Control versus Treatment Diversion Struc-
tures
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Figure A2: Robustness of Difference-in-Difference Estimations to Cutoff Selection, Pre-
Treatment

Figure A3: Robustness of Difference-in-Difference Estimations to Cutoff Selection, Post-
Treatment
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Figure A4: Average Days Under Curtailment for all Treatment and Control Structures by
Year
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Figure A5: Difference-in-Difference Estimations, Reference Year 1976
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Figure A6: Difference-in-Difference Estimations, Reference Year 1987
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Figure A7: Difference-in-Difference Estimations, Reference Year 1997
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Figure A8: Nonlinear Impacts of Perceptions on the Adoption of Sprinkler Technology, Total
Sprinkler Acreage
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Figure A9: Nonlinear Impacts of Perceptions on the Adoption of Sprinkler Technology,
Sprinkler Acreage as a Percentage of Total Acreage
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