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Libecap and Ariel Dinar.  University of Chicago Press, 2023. https://www.nber.org/books-and-

chapters/american-agriculture-water-resources-and-climate-change

This supplementary information document contains three appendices. Appendix A 

contains an overview of information (e.g., source, level of aggregation, and description) about 

the primary data used in the analysis, as well as a figure illustrating the spatial location and scale 

of the weather stations underlying our drought data. Appendix B discusses empirical challenges 

regarding use of seasonal or sub-seasonal drought forecasts as control variables in this analysis. 

Appendix C provides information on the extent of potential spatial variation in U.S. drought-

tolerant (DT) corn prices.  
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Appendix A Data Overview 

 

Table A1 Data Sources  

   

Variable and units Data 

Source 

Area Description 

2016 DT corn adoption rate, 

{0,1} 

ARMS  Field Field planted to corn traited with drought resistance in 2016 

    
Months of severe-or-worse 

droughts in 2011-151 

PMDI,  

USDM 

12 nearest 

stations 

within 100 mi 

of field 

Total number of months of D2 (severe), D3 (extreme), or 

D4 (exceptional) droughts in the growing season (May-

September) during 2011-15, based on mapping Palmer 

Modified Drought Index (PMDI) to Drought Monitor 

(USDM) classes 

    

Maximum drought value in 

2011-15 

PMDI 12 nearest 

stations 

within 100 mi 

of field 

Maximum monthly PMDI value during 2011-15. (Note: to 

ease interpretation, we reverse the sign of the raw PMDI 

values so that larger positive numbers indicate greater 

drought severity.) 

    
Drought risk, [0, ∞)  PMDI County Standard deviation of Palmer Modified Drought Index 

(PMDI) in July months over 1913-2013 

    
30-year temperatures – mean 

and standard deviation, (° C)2 

PRISM 4 km cells 

averaged to 

county 

Average monthly temperature in corn growing season 

(May-August), averaged over 1985-2014. 

    
30-year precipitation – mean 

and standard deviation, (in.)2 

PRISM 4 km cells 

averaged to 

county 

Average monthly temperature in corn growing season 

(May-August), averaged over 1985-2014. 

    
Irrigation, {0,1} ARMS Field Corn in any part of the field received irrigation in 2016 

Share of irrigated, harvested 

corn acreage, [0,1]  

Ag Census County Share of county’s harvested corn acreage irrigated in 2012 

Clay, {0,1} ARMS Field Primary soil type for the field is clay 

Highly erodible, {0,1} ARMS Field Any part of field has been classified as USDA-NRCS as 

“highly erodible”  

    

Corn-soy soil index – mean, 

[0,10] and standard deviation, 

[0, ∞)3 

gSSURGO 30 m cell avg. 

within 3 km 

of field 

USDA-NRCS’ NCCPI about the soil’s capacity for corn and 

soybeans 

 

    

Average basis, ($)4 USDA,  

CME 

5 nearest 

buyers within 

70 mi of field 

February 2016 cash price (within 70 mi of ARMS field) 

subtracted from March (national) futures price for the 

December 2016 contract traded on CME 

Note.  1. Interpolation relies on inverse distance weighting (IDW) such that stations closer to sample fields receive 

greater weight than more distant stations. Only U.S. Drought  

    Monitor (USDM) categories are used; county PMDI index values are matched to USDM categories. 

 2. Aggregation to county is based on distance to centroids, clipped and weighted by cropland density. 

3. Average NCCPI values are first aggregated by NRCS to 30 m cells; we use an average of all cells within 

3 km of the field. 

4. Interpolation relies on IDW such that grain purchasers closer to sample fields receive greater weight than 

more distant purchasers. 
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Figure A1. Locations of weather stations underlying PMDI data. 
 

Figure A1 depicts the coordinates of the roughly 1,815 weather stations across the contiguous 

United States that provide input into calculations of NOAA’s Modified Palmer Drought Severity 

Index (PMDI). Although aggregation bias arising from use of gridded weather and climate data 

can be problematic in some climate change analyses, our use of interpolation based on inverse 

distance weighting (IDW) from the corn field to 12 nearest weather stations alleviates these 

concerns (e.g., Auffhammer et al., 2013). This is because the IDW-based interpolation generates 

variation in the main coefficients of interest—monthly counts of drought severity—while giving 

more weight to index values that are more likely to hold at fields in our sample. Although there 

is fewer than one weather station per county (fig. A1), significant aggregation bias is unlikely to 

hold given the density of our sample points (fig. 5, main text) and the fact that drought 

conditions, unlike precipitation events that can be highly localized, tend to pervade across wide 

geographic areas (e.g., Cook et al., 2015). 

 



47 

 

Appendix B Drought Forecasts 

 

Recent studies have shown that omitted variables bias can arise from excluded expectations of 

future weather when estimating the impacts of climate on agricultural land values using cross-

sectional data (Severen et al., 2018) and the impacts of weather shocks on broader economic 

outcomes (Lemoine, 2017). Empirical models that do not account for agents’ forecasts (or use of 

forecasts) of changing weather conditions can produce skewed climate change predictions if 

optimal decisions depend on such forecasts. Apart from those in models of agricultural land 

values, seasonal weather forecasts could influence U.S. crop farmers’ economic decision making 

about crop choice and irrigation use, among other input decisions.  

 The Climate Prediction Center at NOAA’s National Weather Service produces Monthly 

Drought Outlook (MDO) and Seasonal Drought Outlook (SDO) forecasts. The latter are 

generally valid for the three months beyond release date. Both datasets provide illustrations of 

large-scale trends using subjective probabilities of droughts from statistical and dynamic 

forecasts (NOAA, 2019a; NOAA, 2019b).1 Geographical summaries of four categories of 

drought changes are supplied: 1) persists, 2) remains but improves, 3) removal unlikely, and 4) 

development likely—all based on the U.S. Drought Monitor’s D1-D4 classifications.  

 There was virtually no variation in the MDO or SDO forecast data at the time farmers 

were making their corn varietal decisions in 2016 for our study region (figs. B1-B6). Drought 

was expected to persist during February, March, and April 2016 for several areas in the Pacific 

Northwest and American Southwest (fig. B1), though these areas were not surveyed in the 2016 

ARMS because their estimated corn acreage was eclipsed by at least 19 other states included in 

the survey. Early-season forecasts are similar: the vast majority of the contiguous U.S. and also 

major corn-producing areas did not have drought and were not forecast to develop drought 

within the relevant timeframe (fig. B2). In contrast, widespread droughts in California, Oregon, 

Nevada, and Utah were forecast to remain but improve. 

 Lack of adequate variation in short-term drought forecasts generally precludes us from 

estimating a model that conditions farmers’ adoption decisions on these kinds of forecasts.  

 
1 To the extent that these subjective probability models rely extensively on near-term U.S. Drought Monitor data and 

climatology, our use of the number of months within drought categories, as well as the first two moments of the 30-

year distributions of temperature and rainfall, is expected to capture most of the effect, if any, of seasonal drought 

forecasts.   
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Figure B1. U.S. Monthly Drought Outlook: February, March, and April 2016 
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Figure B2. U.S. Seasonal Drought Outlook: Dec 2015-Mar 2016, Jan-April, Feb-May 2016 
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We are implicitly setting these coefficients to zero, though there may have been some positive 

effect. That is, adoption may have been higher during the 2016 season (or subsequent seasons) 

had NOAA or other forecast-producing groups predicted major widespread drought, and if these 

forecasts were to enter U.S. farmers’ decision making.  

However, evidence on the extent to which farmers use seasonal or sub-seasonal forecasts 

for planting-time decisions, especially choice of particular varieties, conditional on broader crop 

choice, needs further exploration. Patt et al. (2005) found that Zimbabwean farmers who used 

seasonal rainfall forecasts for the 2003-04 season had marginally significantly higher relative 

harvests than those who did not use forecasts. A year earlier, in 2002, these farmers made use of 

the forecasts by planting a greater proportion of their fields earlier, and with short-season 

varieties, though no significant effects on relative harvests were found between forecast users 

and non-users in this year. In the United States, relatively well-educated organic farmers in 

Georgia use and act on climate information, but climate forecasting remains poorly understood 

(Furman et al., 2011).  

 The 2016 ARMS questionnaire did not ask U.S. farmers if they used weather or climate 

information to inform their choice of variety on their corn fields. However, 57% of farmers in 

our sample indicated they used weather data to “assist in determining either the need or when to 

make pesticide applications” (USDA-ERS, 2016). Use of weather data for chemical applications, 

however, is expected to differ significantly from seasonal forecast use for varietal decisions. 

Very near-term wind, temperature, and rainfall conditions are main determinants of farmers’ 

application timing due to concerns about pesticide drift and volatilization, moisture necessary for 

activation of chemical compounds, or pesticide leaching or runoff (Sexton et al., 2007). We 

conclude that more information is needed to assess, on a national scale, the full extent of U.S. 

farmers’ forecast use.  
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Appendix C Spatial Variation in Relative Drought-Tolerant Corn Prices 

 

Although prices of certain agricultural inputs and outputs, like pesticides and expected crop 

prices, have been assumed in past studies to be constant within a given year (e.g., Perry et al., 

2016), recent evidence from roughly 12,000 corn seed invoices from U.S. farmers suggests there 

may be broad spatial variation in drought-tolerant corn variety prices (Farmers Business 

Network, 2018a). Based on a listing of 11,300 corn seed prices for 2,300 U.S. corn varieties, the 

authors find evidence of “zone” pricing. U.S. farmers within the same zone pay identical or 

nearly identical prices for the same traited variety, while farmers outside of these zones pay 

different prices for the same variety. As one example, they find evidence for 14 distinct pricing 

zones for an aggregate of Monsanto-branded seeds in their sample across 14 (mainly 

Midwestern) states. 

 To assess the potential effects of omitted seed pricing of drought-tolerant varieties, we re-

do the analyses contained in tables 2 and 3 using publicly-available information on the prices of 

these DT varieties (Farmers Business Network, 2018a). In particular, we are able to construct the 

relative price for a particular type of drought tolerance, Monsanto Genuity DroughtGard®. State-

level pricing data are available for VT Double PRO® seeds, an insect-resistant variety with two 

modes of action against above-ground corn pests, as well as VT Double PRO® with 

DroughtGard® drought tolerance. By constructing a price ratio for these two varieties, we are 

able to isolate a drought tolerance premium. Median list prices and actual (equilibrium) prices 

are available for both Monsanto varieties. Median seed prices are preferable to average seed 

prices since a range of discount types—bundling, early payment, loyalty, new customer, and 

volume—can produce outlying price points that would skew the average (Farmers Business 

Network, 2018b).  

Averaged across states, the median list price ratio is 1.024 and the actual price ratio is 

1.017. In level terms, the median list price of the DT seeds is $7.50 per bag more expensive, on 

average, than the identically-traited but non-DT seeds. The per-bag premium based on actual 

prices is $4.00. These are somewhat lower than the national estimate of a $10 per-bag DT 

premium (McFadden et al., 2019). 

 There are three main caveats with this pricing data used for this robustness analysis. First, 

Monsanto was the only seed firm offering a genetically-engineered (GE) DT trait in 2016, unlike 

DuPont Pioneer and Syngenta that offered corn seeds with conventionally-bred drought 
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tolerance. Owing to differences in functionality, relative prices for GE drought tolerance could 

differ from non-GE drought tolerance (McFadden et al., 2019). Second, the pricing data are only 

available for six states: Illinois, Iowa, Kansas, Minnesota, Nebraska, and South Dakota. 

Collectively, these states accounted for 62.7% of 2016 U.S. corn acreage (USDA-ERS, 2016) but 

69.5% of 2016 DT corn acreage (McFadden et al, 2019). The reduced sample size ensures more 

focus on relevant corn-producing states, as well as some states with significant DT acreage (e.g., 

Kansas and Nebraska), but results in far fewer clusters for standard error calculations. More 

importantly, the lack of finer-level variation in the price ratio rules out our ability to re-estimate 

the Spatial First Difference (SFD) results in table 5. Third, even within a particular set of GE or 

non-GE varieties, the DT premium may vary across other traits. In other words, the “base” set of 

traits might matter if it is costlier for companies to add the drought tolerance trait to varieties 

with certain combinations of traits relative to other combinations. This latter caveat is unlikely to 

be of much significance in our sample given the economics of research and development (R&D) 

in global seed markets (Heisey and Day Rubenstein, 2015). There are substantial fixed costs for 

trait innovations arising from significant R&D investments, lower incremental costs for 

combining seeds with two or more traits, and minimal marginal costs for actual seed production. 

 We find that median DT corn seed premiums are not statistically for both the mean-

variance-motivated model and the Prospect-Theory-motivated models (tables C1 and C2).2 This 

reduces some concern that the main set of estimates reported in the paper suffer from bias due to 

an omitted DT premium variable.3  

Due to the smaller sample, the coefficients are estimated less precisely than those 

reported in tables 2 and 3, but they are similar in sign and magnitude. Relative to table 2, the 

impact of 30-year average temperatures is at least 2.75 times larger, and the irrigation-clay 

interaction term is roughly 27%-30% larger. The effect of highly erodible soils roughly doubles. 

There are similar changes in magnitude for these three variables in table C2, though these 

estimates exhibit slightly more differences from those of table 3. 

 

 
2 For conciseness, we produce results only for specifications (1a) for the linear probability model from tables 2 and 

3. The results are very similar for the other specifications in tables 2 and 3, as well as for the marginal effects from 

the probit model. The full set of robustness checks are available upon request.  
3 The 2016 ARMS questionnaire inquired about farmers’ seed costs, but there is significant item non-response. 

However, it is possible to estimate shadow prices for certain GE traits, including drought tolerance, though the 

resulting coefficients are noisy in some cases. We leave for future research a full analysis of hedonic trait pricing.  
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Table C1: Mean-Variance-based Model Re-estimated with Median Drought-Tolerant Seed Premiums 
 

 LPM (marginal effects) 

 Drought risk & climate 

 (1a) (2a) (3a) 

Drought risk 0.065 0.075 0.070 

 (0.132) (0.135) (0.129) 

    

30-year temp mean 0.063*** 0.068*** 0.060** 

 (0.020) (0.022) (0.026) 

30-year temp std dev 0.345 0.470 0.368 

 (0.643) (0.649) (0.622) 

30-year precip mean -0.091 -0.123 -0.088 

 (0.149) (0.156) (0.149) 

30-year precip std dev 0.102 0.136 0.103 

 (0.161) (0.168) (0.161) 

    

Irrigation -0.101 -0.125 -0.102 

 (0.089) (0.096) (0.089) 

Irrigation x non-irrigated corn share 0.116 0.146 0.119 

 (0.156) (0.164) (0.153) 

Clay -0.019 -0.023 -0.019 

 (0.050) (0.051) (0.050) 

Irrigation x clay 0.838*** 0.854*** 0.838*** 

 (0.255) (0.249) (0.255) 

Irrigation x non-irrigated corn share x clay -1.042 -1.067 -1.044 

 (0.664) (0.658) (0.661) 

    

Highly erodible 0.151*** 0.148** 0.151*** 

 (0.056) (0.056) (0.056) 

Corn-soy soil index mean 0.012 0.007 0.012 

 (0.020) (0.020) (0.020) 

Corn-soy soil index std dev 0.012 0.013 0.012 

 (0.047) (0.048) (0.047) 

    

February 2016 basis -0.295 -0.242 -0.309 

 (0.319) (0.328) (0.340) 

Median DT corn premium, list  0.870  

  (1.058)  

Median DT corn premium, actual   0.446 

   (2.672) 

    

Constant  -1.792 -2.895 -2.251 

 (1.374) (2.032) (2.687) 

Observations 764 764              764 

Correctly classified (%)              76              76              76 

F-statistic        2.81***     2.58**       2.70*** 

R-squared 0.07 0.07 0.07 

Note: Estimates are expanded to the population of U.S. corn fields in 2016 using a base expansion factor calibrated 

by USDA-National Agricultural Statistics Service. Standard errors in parentheses are clustered at the crop reporting 

district (CRD) level. There are 50 clusters. Exactly two of the predicted probabilities across the three models were 

less than zero and none exceeded one. Significance is denoted as ***p<0.01, **p<0.05, and *p<0.10. 
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Table C2. Prospect-Theory-Based Model Re-Estimated with Median Drought-Tolerant Seed Premiums 

 
 LPM (marginal effects) 

 Drought shocks & climate 

 (1a) (2a) (3a) 

Severe-or-greater drought duration 0.003 0.002 0.003 

 (0.006) (0.005) (0.006) 

Maximum drought intensity  -0.018 -0.012 -0.019 

 (0.036) (0.039) (0.035) 

    

30-year temp mean 0.063*** 0.067*** 0.060** 

 (0.021) (0.023) (0.027) 

30-year temp std dev 0.356 0.455 0.382 

 (0.655) (0.658) (0.621) 

30-year precip mean -0.119 -0.144 -0.117 

 (0.134) (0.147) (0.135) 

30-year precip std dev 0.127 0.159 0.129 

 (0.162) (0.176) (0.160) 

    

Irrigation -0.083 -0.102 -0.083 

 (0.114) (0.121) (0.114) 

Irrigation x non-irrigated corn share 0.085 0.113 0.087 

 (0.152) (0.159) (0.150) 

Clay -0.025 -0.027 -0.025 

 (0.048) (0.049) (0.048) 

Irrigation x clay 0.858*** 0.869*** 0.859*** 

 (0.259) (0.252) (0.259) 

Irrigation x non-irrigated corn share x clay -1.053 -1.076 -1.056 

 (0.668) (0.655) (0.664) 

    

Highly erodible 0.153*** 0.150*** 0.153*** 

 (0.055) (0.055) (0.055) 

Corn-soy soil index mean 0.011 0.007 0.011 

 (0.020) (0.020) (0.020) 

Corn-soy soil index std dev 0.009 0.009 0.009 

 (0.051) (0.051) (0.051) 

    

February 2016 basis -0.293 -0.269 -0.309 

 (0.319) (0.317) (0.345) 

Median DT corn premium, list  0.698  

  (1.125)  

Median DT corn premium, actual   0.511 

   (2.705) 

    

Constant  -1.537 -2.425 -2.048 

 (1.136) (1.881) (2.579) 

Observations          764            764            764 

Correctly classified (%)          76            76            76 

F-statistic 2.69*** 2.49** 2.59*** 

R-squared 0.07 0.07 0.07 

Note: Estimates are expanded to the population of U.S. corn fields in 2016 using a base expansion factor calibrated 

by USDA-National Agricultural Statistics Service. Standard errors in parentheses are clustered at the crop reporting 

district (CRD) level. There are 50 clusters. Exactly two of the predicted probabilities across the three models were less 

than zero and none exceeded one. Significance is denoted as ***p<0.01, **p<0.05, and *p<0.10. 
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