
A Appendix

A.1 Nitrogen pollution damages and abatement costs

In this section, we discuss in more detail studies related to nitrogen pollution damages and abate-
ment costs that are summarized in Table 1 of the main text. We also discuss some additional
studies.

Taylor and Heal (2021) estimate the economic effects of U.S. algal blooms generated by nitrogen
fertilizers excluding health effects, which, according to the authors, can be viewed as lower bounds
for the external costs of the fertilizers. Based on their estimates, 1 ton of nitrogen entails an
external (damage) cost of $583 (they also report the range $370–$1,400) to downstream coastal
counties. Blottnitz et al. (2006) estimate damage costs of nitrogen fertilizer equal to e0.3 per
kg (see their Table 2) that is about 60% of the market price of fertilizer (farmers’ private cost) at
the time. Damages pertain to global warming due to the production of fertilizer, damages due to
air pollutants emitted during the production of fertilizer, global warming due to the application of
fertilizer, eutrophication due to leaching of fertilizer, and damages due to to the release of volatile
substances from fertilizer.

Sobota et al. (2015) compile damages from specific nitrogen inputs from Compton et al. (2011) and
Van Grinsven et al. (2013b) per kg of nitrogen input (see their Table 1). They provide damages for
air/climate, land, freshwater, drinking water, and coastal zones. The damages from coastal nitro-
gen loadings ($2008), which are relevant for some analysis in this paper, are due to recreational use
($6.38), and declines in fisheries and estuarine/marine habitat ($15.84). The damages from recre-
ational use are for the Chesapeake Bay and are from Figure 2 in Birch et al. (2011). Van Grinsven
et al. (2013a) provide a range of damages from nitrogen pollution that account for human health,
ecosystems, and climate from nitrogen for E.U. 27 in 2008 (see their Table 2). The range of the
total damages attributed to nitrogen loss to rivers and seas from agricultural sources is e25–100
billion per year. The damages of e25–100 billion per year implies damages of e4.11–16.43 per
lb of nitrogen using 0.6×4.6 = 2.6 million tons of nitrogen attributed to agricultural sources. At
an exchange rate of about $1.5/ein 2008, we have damages of 6.05–24.20 per lb of nitrogen in
$2008.

UCS (2020) found that, on average, 87,000 tons of excess nitrogen (per year) have washed off Mid-
west cropland into the Mississippi and Atchafalaya rivers, and ultimately into the Gulf of Mexico
(GoM). This nitrogen has contributed between $552 million and $2.4 billion ($2018) of damages
to ecosystem services generated by fisheries and marine habitat every year during 1980–2017. Ho
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et al. (2019) argue that freshwater algal blooms result in damages of more than $4 billion annually
in the U.S. alone (citing Kudela et al. (2015)), primarily due to harm to aquatic food production,
recreation and tourism, and drinking water supplies. Dodds et al. (2009) calculate potential annual
value losses in recreational water usage, waterfront real estate, spending on recovery of threatened
and endangered species, and drinking water, due to nutrient pollution and the resulting eutroph-
ication in U.S. freshwaters. The combined damages are approximately $2.2 billion annually. In
an early paper, Anderson et al. (2000) discuss annual economic impacts from harmful U.S. algal
blooms. The estimates ($2000) are for 1987–1992 and pertain to public health, commercial fishery,
recreation & tourism, and monitoring management. Their low, average, and high estimates of the
15-year capitalized impacts are: $309 million, $449 million, and $743 million, respectively (see
also GOMNTF (2015)).

Averted damages and abatement costs. Xu et al. (2021) use an integrated assessment model
(IAM) to evaluate the effects of energy and nitrogen fertilizer prices on nitrogen runoff to the GoM
and to assess abatement costs. They find that changes in energy costs have a modest impact on
land-use change and nitrogen runoff, while the price of nitrogen fertilizer has a more notable effect
on acreage and nitrogen delivery to the GoM. The cost of achieving the GoM Hypoxia Task Force
goal of nitrogen reduction is $6 billion, which corresponds to the average cost of $29.3 per kg of
nitrogen runoff abatement.

UCS (2020) show how improved agricultural practices in the Midwest can offer economic benefits
to the GoM fishing industry. Their findings are based on nitrogen-loss reduction scenarios achieved
through changes in agricultural practices, derived from four previously published studies (NRCS
(2017a), Kling et al. (2014), Rabotyagov et al. (2014a), and Tallis et al. (2019)). Their calculations
show that 98 million to 2.8 billion ($2018) in damages to Gulf fisheries and marine habitat could
have been averted every year from 1980–2017 through shifts in agricultural practices (see their
Figure 5 and Appendix 3 for details). Moreover, reductions in the May GoM nitrogen loading of
the Mississippi and Atchafalaya rivers due to shifts in agricultural practices upstream ranged from
just over 5% to 45%.

Tallis et al. (2019) analyze 5 financial mechanisms to increase adoption of beneficial practices in
the Mississippi River Basin (MRB) aiming to reduce GHG emissions and nutrient runoff in Iowa,
Illinois, Indiana, and Ohio. They estimate the nutrient runoff savings and the associated costs.25

The 5 mechanisms could save up approximately 168,000 tons of nutrient runoff each year, which

25Examples of beneficial practices considered include cover crops, nutrient management, land retirement, conserva-
tion tillage, and sub-surface tile management. The five mechanisms are: crop insurance incentives, increased private
technical services, expansion and redistribution of Farm Bill funds, creation of new state funds, redirection of federal
disaster funds. In general, nutrient management costs include annualized installation and implementation costs, and
foregone income associated with changes in crop yields net of savings from reduced commercial fertilizer purchases.
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is equivalent to a 25% reduction (see their Table 1). This reduction exceeds the intermediate HTF
target (20% reduction by 2025) and achieves more than half of the long-term HTF target (45%
reduction). The reductions could be achieved at a cost of about $15 per kg of nitrate reduced for a
total cost of $2.6 billion.

Marshall et al. (2018) model changes that would achieve the 45% reduction in nitrogen and phos-
phorous loads from cropland to the GoM at least cost to consumers and producers using 2 im-
plementation scenarios, the USDA REAP model, and data from the USDA CEAP.26 In the Gulf
Constraints (GC) scenario, the objective is to reduce overall nutrient loads regardless of where
they originate. In the Regional Constraints (RC) scenario, they require a 45% reduction in nutrient
loads in each of the 135 REAP regions in the MRB. The study aims to identify the combination of
conservation practices, crop rotations, tillage, irrigation, and land-use change that meets nutrient-
reduction goals at least cost.

Under the GC scenario, domestic consumer surplus, falls an estimated 2.5%, or $1.9 billion relative
to the baseline case. Under the RC scenario, consumer surplus drops an estimated 4.4%, or $3.3
billion. These dollar amounts do not account for benefits to the consumers due to improvements
in water quality. Under the GC scenario, meeting a 45% nutrient-reduction goal at the Gulf is
estimated to increase producer net returns within the MRB by 1.3%, or $847 million. The RC
scenario, on the other hand, decreases producer net returns by 0.4% or $264 million. Hence,
depending on the scenario, the reduction of 3,305 square miles in the average size of the summer
hypoxic zone is at a cost between $1.053 (GC) and $3.564 (RC) billion. The implied cost is
$123,015 per square kilometer (GC) to $416,358 per square kilometer (RC), which is of the same
order of magnitude of the cost in Rabotyagov et al. (2014a) discussed below.

McLellan et al. (2016) use the SPARROW model to explore the downstream water quality impacts
for a set of agricultural conservation and landscape restoration practices in the Upper Mississippi
Ohio River basins (UMORB). Their modeling aims to identify scenarios (types and levels of prac-
tice implementation at various locations throughout the UMORB) capable of achieving the HTF
target of 45% reduction in nitrogen loads delivered to the UMORB outlet at Cairo, Illinois. The
authors consider adaptive nitrogen management (ANM) on 25% of the land in the UMORB, and
cover crops on 20% of the land in the UMORB excluding Minnesota and Wisconsin. They then
vary the levels and locations of implementation of the buffer, wetland, and stream practices, as
needed to achieve a 45% reduction in nitrogen loads at the UMORB outlet. The annualized costs
of implementing the proposed restoration scenario is about $1.48 billion in their Table 5 with a
detailed breakdown provided in their Table 4.

26To give some context, this is the reduction required to limit the average size of the summer hypoxic zone in the
Gulf from 5,236 square miles (13,561 square kilometers) to 1,931 (5,000 square kilometers, 5-year moving average).
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Whittaker et al. (2015) use the SWAT model to simulate the reduction in nitrogen loads in the
Upper Mississippi River Basin (UMRB) that would result from enrolling all row crop acreage in
the USDA CRP. Nitrogen loads at the outlet of the UMRB are used to predict the areal of the
hypoxic zone, and net cash farm rent is used as the price for participation in CRP.27 Over the
course of the 42-year (1960–2001) simulation, the direct CRP costs are more than $388 billion
($9.25 billion annually), and the assumed HTF goal (5-year moving average) of hypoxic area less
than 5,000 square kilometers is met in only 2 years (see their graphical abstract).

In Rabotyagov et al. (2014a), a reduction of about 60% in the areal extent of the hypoxic zone in
the GoM is required to achieve the goal of 5,000 square kilometers at a cost of $2.7 billion per
year using the HUMUS-CEAP model. Hence, the abatement cost is equal to (2.7×109)/7,500 =

$360,000 per square kilometer per year—a 60% reduction in 12,500 square kilometers implies
5,000 square kilometers. The reduction requires investment on approximately 178,000 square
kilometers of cropland implying an average cost of $62 per acre of cropland.

Kling et al. (2014) use the LUMINATE IAM combining SWAT with a land-use economic model
(see their Figure 2) to analyze the costs and benefits of cover crop scenarios in the UMRB and the
Ohio-Tennessee River Basin (OTRB).28 The cover crop scenario in the paper consists of planting
rye within the typical 2-year rotations of corn and soybeans or continuous corn, in which the
rye cover crop was planted in the fall after corn or soybean harvest and then harvested shortly
before planting of the following row crop in the spring. Based on the assumed costs of cover crop
adoption from $61.8–$86.6 per hectare ($25–$35 per acre), the abatement cost of a kg of nitrogen
is $12.02–$17.10 for the UMRB and $7.74–$10.88 for the OTRB (see their Table 4).

Compton et al. (2011) provide abatement costs for reducing nitrogen from various sources and from
integrated projects (Table 3). The abatement cost for agriculture is $10 per kg of nitrogen. The
abatement cost for agricultural drainage water is $2.71 per kg of nitrogen. Both of these abatement
costs are from Birch et al. (2011). As a benchmark, the price of nitrogen fertilizer (private cost
to the farmers), was 0.44 per kg of nitrogen from 1980—2000 and it was 1.21 per kg of nitrogen
in 2008. Birch et al. (2011) report marginal abatement cost per ton of reactive nitrogen by source
in 2000 in the Chesapeake Bay watershed. In the case of nitrate nitrogen from agriculture, the
abatement cost per ton of reactive nitrogen is 10,000 according to their Table 2.

USEPA (2001) reports a range of TMDL implementation costs from under $1 billion per year

27Although the CRP average price at the county level is available, where a large part of land goes into the CRP, the
authors argue that the average cash rent price (for non-irrigated cropland) is a better estimate.

28As the authors discuss, winter cover crops including rye, oats, winter wheat or other close grown crops, are used
in the Corn belt region to maintain and improve the quality of soil resources, and mitigate export of sediment and
nutrients from cropland landscapes.
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to $4.3 billion per year depending on the efficiency of the TMDLs in Table ES-1. The table
breaks down the costs by type of source (point and non-point). Table IV-1 shows leading causes
of impairment—nutrients account for 11.5%—and leading sources of impairment (agriculture ac-
counts for 24.6%) based on the States’ 303(d) lists in 1998.

Ribaudo et al. (2001) analyze the cost effectiveness of intercepting nitrogen through wetland
restoration of 0.4, 2.0, 4.0, and 7.0 million hectares (equivalently, 1, 5, 10, 18 million acres)
targeted to maximize nitrogen reductions in the MRB using the USMP market equilibrium and the
EPIC biophysical models. Restoring 1 million acres of wetlands was estimated to remove 97,000
tons of nitrogen from field runoff per year (see their Table 1). The welfare cost is $1,022 million
and the net welfare cost is $468 million (equivalently, (468× 106)/97,000 = $4,824 per ton of
nitrogen removed). The cost per ton when restoring 5, 10, and 18 million acres is $3,651, $4,062,
and $4,620, respectively. Expressed in dollars per lb of nitrogen removed, the cost is $1.7–$2.2
depending on the wetland acreage. Expressed in dollars per acre of wetland, the cost of nitrogen
removed is $345–$468. Assuming that these costs are expressed in $2000 (it is not clear from the
paper, hence, based on the year of publication), when expressed in $2017 they would be close to
40% higher taking into account only the inflation (GDP implicit price deflator).29

Finally, in one of the earliest studies we are aware of, Doering et al. (1999) analyze the costs of the
following nitrogen loss reduction strategies in the MRB: (1) EoF nitrogen loss reductions of 20%–
60% through economically optimum actions; (2) fertilizer reductions of 20% and 45%, (3) 500%
increase in fertilizer tax; (4) wetland acreage of 1–18 million acres (assuming filtering capacity
of 15 grams of nitrogen per square meter per year); (5) 27 million acres acres of riparian buffers
assuming filtering of 4 grams of nitrogen per square meter per year (equivalently, 4,046.86 ×
4/1,000 ≈ 16.2 tons per acre per year). The analysis is based on the USDA ERS USMP economic
model coupled with the EPIC biophysical model (see Section 4.1 of Topic 6) using the 1997 USDA
Economic Baseline and the 1992 NRI and is summarized in their Table 6.1. Depending on the loss
reduction strategy, Doering et al. report net social costs of −$0.1 (hence, savings are possible) to
$17.95 billion.

29According to the note in Table 2 of the paper, welfare costs include changes in consumer and producer surpluses
plus wetland restoration costs. Government costs include restoration and easement costs. Net welfare costs include
producer and consumer surplus, wetland restoration costs, erosion benefits, and wetland benefits. Government costs
are shown for information only, and are already included under welfare costs. The cost of wetland restoration consists
of permanent easement and restoration. Easement costs equal the full opportunity costs of removing productive crop-
land from production. Restoration costs are the one-time cost of converting cropland back into a functioning wetland.
Landowners participating in wetland restoration sell a conservation easement to the government to restore and protect
wetlands. The landowner and the NRCS develop a plan for the restoration and the maintenance of the wetland. The
government pays for the easement and 100% of the costs of restoring the wetland.
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A.2 Water Quality Portal Data

In this section, we provide some additional details regarding the data from the Water Quality Portal.

Table A2 shows that the split of surface- and ground-water monitoring sites is roughly 96% and
4%. According to Table A3, 94% of the activities are routine samples. Table A4 shows that
approximately 14% of the nitrogen data are subject to censoring. In more detail, the reported value
for nitrogen concentration is less than or equal to a historical lower reporting limit. The hydrologic
event is equal to routine sample for about 88% of the data. Setting aside storms (5.6%), no other
hydrologic event accounts for more than 3% of the data (Table A5). Finally, 98% of the result
value measurements are actual with the remaining 2% being estimates (Table A6).

Table A7 shows a breakdown of the nitrogen data by decade keeping in mind that the 2010s stop in
2018. There is a steady decline in the number of monitoring sites, counties, and 8-digit hydrologic
units. The decrease is more notable in 2010s and seems to be rather unlikely that the smaller
number of years explain the decrease. For example, the number of monitors drops from about
12,700 in the 1970s to about 4,400. We also see a drop in the number of counties and 8-digit
hydrologic units from 1,653 (1,334) to 871 (690). The drop in coverage across multiple dimensions
documented here is consistent with the findings in Sprague et al. (2017).

Table A8 shows a breakdown of the nitrogen data by site type following the categories in Read
et al. (2017). Stream (84%) and lake (8%) site types account for about 92% of all observations.
No other site type accounts for more than 3.8%, which is the case of well sites.

Table A9 shows alternative calculations of nitrogen concentration based on parameter codes we
identified in the technical information regarding the data and graphics on the U.S. Geological Sur-
vey National Water-Quality Assessment annual reporting Web site. These alternative calculations
are based on sums of alternative parameter codes. As the table shows, our calculation of nitrogen
concentration is essentially identical to those alternative ones.

A.3 Total Nitrogen Calculation using the USGS NWQN Methods

In this section, we describe the approach we followed to construct what we call the USGS-NWQN
data for which the calculation of total nitrogen follows the NWQN methodology described here.

The steps for collecting the data associated with the relevant parameter codes are as follows. First,
we downloaded the data from the WQP portal using web service calls based on parameter codes.
Second, We limited the data to years 1970–2018 and to those for which the activity media name
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field is “water” and the activity media subdivision name field is “surface water” or “groundwater.”
Finally, we excluded data with for which the organization identifier field is “usgs-ak,” “usgs-hi,”
and “usgs-pr.”

We converted mg/L of nitrate or nitrite to mg/L of nitrogen following the NWQN methods. For the
parameter codes 71850 and 71851, we multiplied the concentrations (result values) by 0.2259. For
the parameter code 71856, we multiplied the concentrations by 0.3045. We calculated dissolved
NO3+NO2 (nitrate plus nitrite) concentrations following the NWQN methods. Among the param-
eter codes used in these calculations, parameter code 00631 accounted for 51% of the observations
for dissolved nitrate plus nitrite concentrations. Parameter code 00630 accounted for 29% of the
observations for dissolved nitrate plus nitrite concentrations, and parameter code 00618 accounted
for 13% of the observations. Parameter code 00620 accounted for 5% of the observations while
the rest of the parameter codes accounting for the remaining 2% of the observations.

We calculated total organic nitrogen plus ammonia concentrations following NWQN methods.
Parameter code 00625 accounted for 93% of the observations. Parameter codes 00605 and 00608
accounted for 5% of the observations, and parameter codes 00605 and 00610 for the remaining 2%
of the observations.

We calculated total nitrogen concentrations using the following NWQN methods:

• Method 1: dissolved NO3+NO2 + total organic nitrogen plus ammonia (638,135 obs)

• Method 2: dissolved NO3+NO2 + 00623+45970 (19,818 obs)

• Method 3: 62854+45970 (16,542 obs)

Once we completed the steps described above, parameter code 00600 accounted for 91% of the
observations for nitrogen concentrations. NWQN Method 1 accounted for the remaining 9% of
the observations. In all, using imputed nitrogen concentrations following the NWQN methodology
allowed us to have a sample of 681,313 obs while using parameter code 00600 allowed to have a
sample of 620,816 observations, which is an increase of 9.7% in the number of observations; see
Table A10.

A.4 Alternative Calculations of Total Nitrogen Concentration

For the USGS-NWIS data discussed in the main text, we use the USGS parameter code 00600.
We accessed the data from the WQP portal using web service calls based on this parameter code.
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Subsequently, we limited the data to those for the CONUS for which the activity media name
is “water” and the activity media subdivision name is “surface” or “groundwater.” Finally, we
excluded observations for which the nitrogen concentration was negative or exceeded 50 mg/L.

For the USGS+EPA data, we used the NWIS parameter codes 00600, 71887, and 62855 in the case
of the USGS data. Subsequently, we limited the data to those for the CONUS for which the activity
media name is “water” and the activity media subdivision name is “surface” or “groundwater.”
Finally, we excluded observations for which the nitrogen concentration was negative or exceeded
50 mg/L. In the case of EPA STORET data, we limited the data to those for CONUS for which the
activity media name is “water”. We also limited the data to those for which the result measure unit
code is “mg/L” or “µ g/L.” and the characteristic name is one of the following: (i) nitrogen, mixed
forms (nh3), (nh4), (ii) organic, (no2) and (no3), (iii) nutrient-nitrogen, (iv) total nitrogen, mixed
forms, and (v) total nitrogen, mixed forms (nh3), (nh4), organic, (no2) and (no3).

A.5 Cross-Section Regressions

We estimate year-specific OLS regressions of the form:

yit = δi +β1ait +β2ait pit + z′itγ + εit . (A1)

We also estimate a “between” model using OLS regressions of the form:

yi = δi +β1ai +β2ai pi + z′iγ + εi. (A2)

Following our earlier notation, we use δi to denote various spatial FEs such as state FEs, and FEs
for hydrologic units of different size. The between model in equation (A2), which allows us to
assess longer-term impacts of agriculture on nitrogen pollution than the panel FE regression dis-
cussed earlier, resemble models used in hydrology (e.g., David et al. (2010)), and the Ricardian
approach in accessing agricultural damages due to climate change (e.g., Mendelsohn et al. (1994))
taking into account adaptation. The similarity with the hydrology models is mainly due to the
cross-sectional nature of the regressions and the controls considered keeping in mind that the hy-
drology models tend to employ nonlinear specifications often aiming to identify factors that best
describe variation in nitrogen pollution as opposed to estimating causal effects.

The validity of the cross-section approach hinges on the assumption that there are no omitted
variables correlated with both planting decisions and pollution that our spatial FEs fail to account
for, in which case our estimates will be biased; a classical example of omitted variable bias (OVB).
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For example, if counties that grow a lot of corn also tend to adopt more conservation efforts that our
spatial FEs fail to account for, our cross-section regressions will be understating the true effect of
acreage on nitrogen pollution. Numerous of our robustness checks in a subsequent section involve
additional controls aiming to alleviate such OVB-related concerns.

We show our year-specific and between elasticity estimates based on the cross-section regressions
using data for 1975–2017 in Figure A1. Our year-specific elasticities are based on equation (A1).
Their between counterparts are based on equation (A2). Hence, we report 43 year-specific esti-
mates and a single between estimate. We start our analysis in 1975 as opposed to 1970 due to the
small number of observations in the early years of our sample for the year-specific regressions.30

We use the 6 panels to report results from two specifications that differ in the set of spatial FEs
included: no spatial FEs (panels A–C), and HUC4 FEs (panels D–F). We also experimented with
HUC2 and state FEs and obtain results that are very similar to those using HUC4 FEs. All spec-
ifications contain the same 48 weather controls and an interaction of acres with total annual pre-
cipitation as in panel C of Table 3. The standard errors are clustered at the HUC4 level. The
reader should keep in mind the substantial variation in the number of counties when we discuss
our year-specific estimates. In particular, the year-specific estimates are based on 802–1,915 coun-
ties depending on the year noting that there is a downward trend in the number of observations
over time.

The vast majority of the elasticities are significant at conventional levels in the absence of spatial
FEs without exhibiting a clear pattern, such as an upward or downward trend, over time. Depending
on the precipitation quartile, the between elasticities are 0.141–0.332. They are of similar magni-
tude to those reported in column C1 of Table 3, which makes sense because that model excludes
county FE and therefore identifies coefficients using cross-sectional variation. Their year-specific
counterparts are 0.045–0.280 (first quartile), 0.075–0.303 (median) and 0.078–0.412 (third quar-
tile). In the presence of HUC4 FEs, the between estimates are 0.096–0.202 and are somewhat
smaller than those in the absence of spatial FEs. The year-specific elasticities are now 0.032–
0.153 (first quartile), 0.063–0.206 (median), 0.062–0.326 (third quartile).31

30The 6 panels in the figure show elasticity estimates along with 95% CIs based on the same calculations as in the
case of the panel FE regressions, namely using the mean concentration, mean acreage, and appropriate precipitation
quartiles, all of which vary across years. In other words, the difference between the elasticities reported in the bottom
of panel C of, say, Table 3 and the elasticities shown in Figure A1 is due to coefficient estimates, as well as summary
statistics of the relevant components of the elasticity calculation. The same holds when we compare the elasticities in,
say, 1980, to the elasticities in, say, 1995 in Figure A1.

31For the specifications without spatial FEs, all 48 weather-related controls are jointly significant in the case of
the between regression. They are also jointly significant for the vast majority of the year-specific regressions. In the
presence of HUC4 FEs, the 24 precipitation-related controls fail to be significant at conventional levels in the case
of the between regression. Their moderate- and extreme-heat counterparts, however, are jointly significant. All 48
weather-related controls are jointly significant for most of the year-specific regressions.
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A.6 Additional estimates

In the case of the panel FE regressions, we control for other sources of nitrogen pollution (eco-
nomic activity, fossil-fuel combustion, atmospheric deposition, animal manure, point sources), as
well as agricultural best management practices. We also control for the acres of other major crops
(e.g., soybeans), acres enrolled to the Conservation Reserve Program, and fertilizer sales. Addi-
tionally, we explore heterogeneous effects exploring temporal (by decade) and spatial variation
(e.g., counties in the MRB) in acreage effects, and alternative time windows (e.g., during the corn
growing season) for the measurement of nitrogen concentration. Moreover, we interact corn acres
with runoff as opposed to precipitation and we use alternative measures of nitrogen concentration
accounting for streamflow (downstream monitoring sites) and stream levels. Furthermore, we ex-
amine the role of crop uptake by interacting corn acreage with heat and yield shocks and the idea
that long-run acreage may matter more than its annual fluctuation. In addition, we explore the
role of censoring in the measurement of nitrogen concentration and alternative data filters used
in Keiser and Shapiro (2018). We use alternative datasets (e.g., EPA data from STORET) and
extend the geographic scope of our analysis to the CONUS, we employ a flexible modeling of
the interaction of acres and precipitation (splines), and alternative radii (100 and 200 miles) for
the measurement of nitrogen pollution. We employ different data aggregation schemes perform-
ing monitoring-site- and hydrologic-unit-centric analyses. Finally, we perform statistical inference
using alternative clustering schemes.

Discussion. Similar to the baseline results, the coefficient of the interaction of corn acreage and
precipitation (coefficient β2 in equation (1)) is positive and highly significant in the vast majority
of the models we explored. Hence, the amount of precipitation matters for the magnitude of the
estimated acreage elasticities. With very few exceptions, the corn acreage elasticities based on
the second and third precipitation quartiles are highly significant. Their counterparts based on the
first precipitation quartile are not. For the second precipitation quartile, the elasticities that are
significant at conventional levels are 0.043–0.331. Their counterparts for the third precipitation
quartile are 0.059–0.438. As a reminder, for our preferred baseline specification in column C8 of
Table 3, the acreage elasticities are 0.076 and 0.118 for the second and third precipitation quartiles.

The acreage elasticity estimates are very similar for the specifications that include Bureau of Eco-
nomic Analysis (BEA) series that vary by state and year aiming to control for overall economic
activity that also contributes to nitrogen pollution; see models M1 and M2 in Table 4. Their
counterparts for the specifications that include BEA series exhibiting variation by county and year
(M3) are larger. Adding fuel consumption—an additional source of nitrogen pollution—from the
Energy Information Administration State Energy Data System (EIA-SEDS) to the specifications
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has a very small effect on the magnitude of these elasticities (M4–M6). The specifications for
which the beginning of our sample shifts to the mid 1990s and the number of observations drops
from about 64,000 to somewhere between 24,000 (M7–M9, M12) or 33,500 (M10 and M11), im-
ply elasticities that are not significant at conventional levels. We should note, however, that the
main driver behind this finding is the shorter sample size and not the additional controls.32 The
specification with controls from the TREND nitrogen dataset of Byrnes et al. (2020) imply elastic-
ities that are somewhat larger than their baseline counterparts. The elasticities that are significant
at conventional levels and are based on the second precipitation quartile are between 0.075 and
0.164. Their counterparts based on the third precipitation quartile are 0.117–0.223. The high end
of these elasticities are from a model where we also control for economic activity using data from
the BEA regional economic accounts, fossil-fuel consumption from the EIA-SEDS, and nitrogen
yields from waste water treatment plants (see model M13 in Table 4).

As Table 5 and Table 6 show, in the case of median precipitation, the elasticities are not signifi-
cant at conventional levels in the following instances: (i) when we control for CRP acres and the
acres of other major crops, (ii) when we explore temporal (1970s, 1990s, and 2010s) and spatial
variation (MRB, northern states, southern states), (iii) when we consider alternative time windows
during the year to track nitrogen concentration (all windows), (iv) when we use downstream mon-
itoring sites (both on the mains stems and all tributaries), (v) when we use downstream monitoring
sites located in rivers and streams of levels 1–3 (SL1–SL3). The range of the elasticities that are
significant at conventional levels is 0.043–.0.331. We see the largest effect of corn acreage on
nitrogen concentration tracked in downstream monitoring sites located in SL4 rivers and streams
(see Downstream SL4 in Table 6). For the third precipitation quartile, the elasticities are not sig-
nificant at conventional levels in the following instances: (i) when we explore temporal variation
(1970s, 1990s, 2010s), (ii) when we explore spatial variation (northern states, southern states), and
(iii) when we use downstream monitoring sites SL1 and SL2 rivers and streams. The range of the
elasticities that are significant at conventional levels is 0.059–0.438.

A.6.1 Panel fixed-effect regressions: additional controls

In this section, we discuss a series of additional controls related to economic activity, fossil fuel
combustion, atmospheric deposition, animal manure, point sources of nitrogen pollution, agricul-
tural management practices, tillage, and drainage for the estimates reported in Table 4. In what
follows, we discuss the rationale behind these additional controls and data sources.

32Our elasticities are either highly similar or smaller to the ones reported here when we use the shorter samples but
we exclude the additional controls.
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Economic activity. We use the BEA series SAEMP25 (total employment, number of jobs) and
SAGDP2 (GDP by state, all industry total) to control for economic activity as a potential source of
nitrogen pollution (e.g., urban non-point pollution). Both series exhibit variation by state and year.
We also use three BEA series that exhibit variation by county and year, namely, CAINC30110
(per capita personal income, dollars), CAINC45190 (fertilizer and lime, incl. ag. chemicals 1978-
fwd.), and CAINC45370 (farm earnings). The last economic series used to control for economic
activity is the county-level monthly unemployment rate from the BLS Local Area Unemployment
Statistics, which starts in 1990. We deflate all dollars using the GDP deflator.

Fossil-fuel combustion. We consider controls related to nitrogen pollution from fossil fuels.
Fossil-fuel combustion releases nitrogen into the atmosphere, which is then redeposited on land
and water through the water cycle—rain and snow. The first control is fossil-fuel consumption
from the EIA State Energy Data System that exhibits variation by state and year. The second con-
trol is NOx emissions from fuel combustion (electric utilities, industrial, and other) from the EPA
Air Pollutant Emissions Trends data. The data on NOx emissions exhibit variation by state and
year and are available beginning in 1996.

Atmospheric deposition. Atmospheric deposition is a significant non-point source of nitrogen
pollution (e.g., see Alexander et al. (2008) and Robertson and Saad (2006), among others). To
control for atmospheric deposition, we use annual county level data on atmospheric deposition
(kilograms of nitrogen per hectare per year) from Byrnes et al. (2020).

Animal manure. Animal manure can be a significant source of nitrogen and other nutrients needed
for crop growth. Improper use or disposal of manure can lead to the buildup of nitrogen in soils
and the loss of nitrogen to surface or ground water. We control for animal manure using annual
county level data on manure from livestock (kilograms of nitrogen per hectares per year) from
Byrnes et al. (2020).

Point sources of nitrogen pollution. Waste water treatment plants (WWTPs) and commercial and
industrial point sources that discharge directly to streams are major contributors to surface-water
nitrogen loads. We use data on the nitrogen yields (kilograms per square kilometer) for WWTPs
in the EPA Clean Water Needs Survey (CWNS) from Dataset 16 in Falcone (2018) to control for
point sources. The data are available for approximately two-year intervals between 1978 and 2012
at the 10-digit hydrologic unit level.

Agricultural management. Agricultural best management practices (BMPs) are designed to min-
imize the environmental impacts of agriculture while sustaining crop productivity (Dubrovsky et al.
(2018)). BMPs reduce nutrient losses to streams through management of nutrient inputs on the
land surface and through curtailment of erosion and runoff of nutrients from the land surface to
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streams. Three common BMPs are conservation tillage (see below), nutrient management plans,
and conservation buffers. Comprehensive nutrient management plans help guide decisions on the
placement, rate, timing, form, and method of nutrient application to avoid inputs in excess of crop
requirements and to minimize loss to streams, groundwater, or the atmosphere. Nutrient man-
agement plans can incorporate a variety of agronomic tests to balance the amount of nutrients
currently available in the soil against the amount required for crop production, and to identify the
ideal timing for crop growth and irrigation to minimize runoff and leaching. Conservation buffers
are areas of permanent vegetation often planted adjacent to streams, lakes, ponds, and wetlands or
along the edges of agricultural fields to help reduce runoff or leaching of nutrients by filtering out
nutrients and sediments, enhancing infiltration, and increasing plant uptake. We believe the spatial
fixed effects (FEs) and spatially differentiated trends in our specifications adequately control for
agricultural BMPs.

Tillage. Tillage is used to control weeds, incorporate crop residue, and prepare land for planting,
but minimizing soil disturbance and maintaining soil cover are critical to improving soil health
(Claassen et al. (2018)). Conservation tillage, particularly no-till or strip-till, used in conjunction
with soil cover practices, such as conservation crop rotations and cover crops, entail numerous
benefits, such as improved agricultural productivity, greater drought resilience, and better environ-
mental outcomes. To name a few examples, compared to conventional tillage, conservation tillage
increases water infiltration, and reduces water runoff and sediment yield (Capel et al. (2018)).
Similar to the best management practices discussed above, we believe the spatial FEs and spatially
differentiated trends in our specifications adequately control for tillage practices.

Drainage. Drain flow is water that moves off the landscape through artificial subsurface drains
following rainfall or irrigation. Information on the location and areal extent of artificial drainage
networks is crucial to understanding and quantifying their potential effects on water quality (Capel
et al. (2018)). For example, subsurface tile drainage can provide both economic benefits for crop
production through the removal of excess water from the soil column, and environmental improve-
ments in soil and water quality through reductions in runoff, erosion, and phosphorous transport.
Unfortunately, tile drains also transport nitrogen from fertilizer and other sources in water-soluble
nitrate form more readily from the field to surface water.

The locations of surface drainage ditches are well known, because they are easily observable on
the landscape. The extent of subsurface drainage systems, however, is poorly known in most areas
because of their distributed nature, the extended period of installation, incomplete location maps,
and a general lack of recent, systematic surveys of their spatial distributions. In addition to the
lack of drainage information in recent decades, the lack of a consistent data collection method
has resulted in great uncertainty as to the locations of subsurface drains throughout the country.
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Networks of subsurface drainage systems have been installed beneath agricultural fields in the last
few decades. In many cases, these systems have been installed as patterned drainage to improve
control over soil water and thus increase crop yield. Landowners, however, are not required to
report the installation of subsurface drainage systems or keep track of their locations. As a result,
the locations of these networks are largely unknown.

The drainage-related datasets that we are aware off exhibit only spatial variation. The most recent
dataset is based on a 30-meter resolution of tile-drained croplands using a geospatial modeling
approach in Valayamkunnath et al. (2020).33 We believe the spatial FE and spatially differenti-
ated estimates of the effects of corn acreage on nitrogen pollution adequately control for drainage
practices.

A.6.2 Panel fixed-effect regressions: other checks

The discussion in this section pertains to the additional estimates reported in Table 5, Table 6, and
Figure 4 in the main text.

Conservation programs, acres of other major crops, and fertilizer sales. Agricultural conser-
vation programs, ranging from voluntary technical assistance only to payment-based voluntary and
cross-compliance programs, have been implemented since the Food Security Act of 1985 with an
early focus on the viability of agricultural production through soil conservation. The Farm Security
and Rural Investment Act of 2002 substantially increased the level of public funding for conserva-
tion and initiated the goal of maximizing environmental benefit. Subsequently, the Conservation
Effects Assessment Project (CEAP) was established to provide science-based guidance on the best
use of funding for conservation and to facilitate the alignment of conservation programs with na-
tional environmental protection priorities such as the restoration of the Gulf of Mexico (Garcia
et al. (2016)).

We control for CRP acres, soybean acres, and wheat acres, as well as the acres of other major crops
(cotton, rice, and sorghum) and fertilizer sales. Similar to the corn acres, we interact the acres of
major crops, CRP acres, and fertilizer sales with precipitation. The major crops’ acreage is from
the USDA NASS. Annual county-level data on CRP acres is from Conservation Reserve Program

33Two older datasets have been compiled by USGS and are 30-meter resolution rasters. The first is for the CONUS
in the early 1990s (Nakagaki et al. (2016)). The second is for 12 Midwest states in 2012 (Nakagaki and Wieczorek
(2016)). Both datasets are built using information from the State Soil Geographic Database Version 2 (STATSGO2),
the National Land Cover Dataset (NLCD), and Sugg (2007). The latter dataset also uses information on state-level
acreages of agricultural land drained by tiles from the 2012 Census of Agriculture. The third dataset is from Sugg
(2007), who combines information from the USDA STATSGO database and the 1992 NLCD to calculate the percent
of cropland with subsurface drainage at the county level for 18 states, which include the Corn Belt and Lakes states.
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Statistics from the USDA Farm Service Agency.34 We use annual county-level data on fertilizer
sales from Alexander and Smith (1990) and Brakeball and Gronberg (2017).

Temporal variation in corn acreage effects. We check whether acreage elasticities exhibit tem-
poral variation by estimating decade-specific panel FE regressions.

Spatial variation in corn acreage effects. We check for spatial variation in the acreage elasticities
by estimating different panel FE regressions for the top corn producing states, all other states
(CONUS excluding the top corn states), and the Mississippi River Basin.35

Alternative time windows to measure nitrogen concentration, precipitation, and degree days.
Transport of nutrients to streams and groundwater varies seasonally, in large part following sea-
sonal patterns in human activities, such as fertilizer application in the beginning of the growing
season. The transport of nutrients to streams also varies as precipitation and runoff change; loads
and water discharge are usually highest during the late winter, spring, and early summer when
runoff is highest. We consider several alternative windows during the year to measure nitrogen
concentration, precipitation, and degree days, and estimate 4 different regressions. The first three
windows (April–September, March–August, May–October) are around the typical U.S. crop grow-
ing season, which also stimulates spring and summer algae blooms directly influencing the hypoxic
zone in the GoM. In the case of the fourth window (January–June), we aim to capture the effects
of spring runoff.

Interacting corn acreage with runoff instead of precipitation. Runoff is water that flows over
the landscape and directly into the surface waters that drain the watershed (for example, streams).
The importance of runoff as a water flow path is affected by precipitation, vegetation, topography,
and soil characteristics. Precipitation in excess of what the landscape can assimilate at a given
time produces runoff (Capel et al. (2018)).36 We use runoff data from Wolock and McCabe (2018)
based on a water-balance model in Mccabe and Wolock (2011) to estimate a regression using the
interactions of acres with runoff instead of precipitation.

Nitrogen concentration accounting for streamflow. We refine the measurement of pollution
and acreage to account for streamflow. Using the NHD Plus data and R routines developed by
the USGS, we are able to identify downstream monitoring sites for each county. We estimate
two different regressions (based on main stems flowlines and tributaries flowlines) using nitrogen

34We set the CRP acres equal to zero for years 1975–1985.
35The top corn producing states are Iowa, Illinois, Minnesota, Nebraska, Indiana, South Dakota, Ohio, Wisconsin,

Missouri, and Michigan. In the case of the Mississippi River Basin, we include counties lying the following HUC2s:
Ohio (05), Tennessee (06), Upper Mississippi (07), Lower Mississippi (08), Missouri (10), Arkansas-White-Red (11).

36According to Table 6.2. in Goolsby et al. (1999) that pertains to a regression model for total nitrogen and nitrate
yields in the Mississippi River Basin, runoff is included among the explanatory variables and is assumed to represent
other unmeasured inputs such as atmospheric deposition, ground water discharge, soil erosion, etc.
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concentration data for downstream monitoring sites.37

Nitrogen concentration accounting for streamflow and stream levels. We estimate 4 different
regressions using downstream monitoring sites located in rivers and streams of levels 1–4. For
the less familiar reader, and using the Mississippi River Basin flowline network as an example, the
main stem of the Mississippi River is level 1, while the Ohio and Missouri rivers that discharge into
the Mississippi River are level 2. Rivers and streams of level 3 (4) discharge into their counterparts
of level 2 (3).

Lagged acreage. Our baseline results point to larger effects of corn acreage on nitrogen pollution
in the absence of county FEs than in their presence. This finding is consistent with the notion that
long-run corn acreage matters more than annual fluctuations. To investigate this conjecture further,
we use time averages of corn acres in place of contemporaneous corn acres. We report results from
three different regressions with the following acreage variables: (i) average of the current and prior
year’s corn acreage, (ii) average of the current and past two years’ acreage, and (iii) average of the
current and past three years’ acreage.

Reporting limits in nitrogen concentration. In our baseline results, we exclude values of nitrogen
concentration in excess of 50 mg/L noting that the 99% of the concentration empirical distribution
is 20 mg/L. We also exclude values of nitrogen concentration that are identified as being lower than
a reporting limit (e.g., less than 2.5 mg/L). We consider two robustness checks in terms of how we
handle observations with values lower than the reporting limits. In the first regression, we set such
values equal to zero. In the second regression, we set such values equal to the reporting limit.

Alternative radii. Our baseline results are based on USGS monitoring sites within 50-mile radii
from the county centroids. We explore the sensitivity of our acreage elasticities to 100- and 200-
mile radii. Apart from the effect on (potentially) altering the number of USGS monitoring sites and
corn acreage used in the analysis, increasing the radii may alter (e.g., due to attenuation/removal)
the share of the edge-of-field nutrient losses that reaches the monitoring sites where nitrogen con-
centration is measured.38

Data filtering. In this robustness check, we filter the nitrogen pollution data as in Keiser and
Shapiro (2018). In particular, we only consider data for surface water and routine samples associ-
ated with lakes and streams.

Alternative datasets and extended geographic scope (CONUS). In our baseline results, we use

37See, for example, this link.
38In general, nutrient removal rates increase with transport distance and nutrient sources that are further upstream

deliver smaller nitrogen loads (Marshall et al. (2018) and Robertson and Saad (2006)). As Kling (2011) discusses,
the degree of attenuation depends not only on physical features but also on the land use choices that gives rise to
non-constant diffusion coefficients.
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the WQP data on parameter code 00600 to measure nitrogen pollution in the Eastern part of the
country (east of the 100th meridian excluding Florida). We will refer to these data as the “USGS-
NWIS” data. In what follows, we will use the term “EAST-100” to refer to the analysis pertain-
ing to the Eastern U.S.. We also present results for the CONUS using the USGS-NWIS data.
Moreover, we present results for the CONUS based on two additional datasets. The first dataset
(“USGS-NWQN”), which is discussed in more detail in Section A.3, is based on imputation meth-
ods developed by the USGS. The second (“USGS+EPA”) dataset, which is discussed in more detail
in Section A.4, is based on a combination of the USGS-NWIS and EPA-STORET data and allow us
to increase coverage in the later years of our analysis. Figure A2 and Figure A3 show the coverage
in terms of monitoring site-date combinations, number of monitoring sites, number of counties,
and number of 8-digit hydrologic units, by year for the alternative datasets. The use of the EPA
STORET data allows us to increase significantly our sample size starting in the mid-1980s.

Alternative data aggregation. We explore two alternative data aggregation schemes that entail
(h)ydrologic unit-centric and (m)onitoring-site centric analyses. C-centric type analyses are gen-
erally common in the economics literature and have been utilized to produce estimates of climate
change on agriculture (e.g., Mendelsohn et al. (1994), Deschenes and Greenstone (2007)). M-
centric and h-centric analyses are common in the environmental economics and science literature
(e.g., Olmstead et al. (2013) and David et al. (2010)), and probably more so in the case of h-centric
analyses, employing biophysical and water-quality models like the APEX, SPARROW, and SWAT.
We calculate acres planted assuming a radius of 50 miles from the monitoring sites in the case of
the m-centric analysis. For the h-centric analysis, we use monitoring sites and counties that lie
within the HUC8 boundaries.

Statistical inference with alternative clustering schemes. We explore alternative clustering
schemes for the purpose of statistical inference. In particular, we consider standard errors cal-
culated by 2-digit hydrologic unit and year (HUC2 × year), by 4-digit hydrologic unit and year
(HUC4 × year) and year.

A.6.3 Cross-section regressions

For the cross-section regressions described in Section A.5, we obtain a smaller set of additional
estimates based on the following: (i) elimination of the acres’ interaction with precipitation, (ii)
alternative nitrogen concentration measurement adjusting for streamflow, and (iii) extended geo-
graphic scope plus additional data and specifications.

In this section, we discuss robustness checks to our baseline elasticity estimates for the cross-

61



section regressions in Figure A1 of the main text. As a reminder, our baseline elasticity estimates
for the between case are 0.141 (first precipitation quartile) to 0.332 (third precipitation quartile)
in the absence of spatial FEs, and they are 0.096 (first quartile) to 0.202 (third quartile) in the
presence of HUC4 FEs. Their year-specific counterparts that are significant at conventional levels
(≤ 10%) are 0.045–0.412 (no spatial FEs) and 0.032–0.326 (HUC4 FEs) depending on the year
and the quartile of precipitation.

Elimination of acres’ interaction with precipitation: In general, the elimination of the interac-
tion of corn acres with precipitation entails elasticities that are smaller. Pooling the data across
years (1975–2017), the corn acreage elasticities are 0.096 (without spatial FEs) and 0.138 (with
HUC4 FEs). The year-specific elasticities that are significant at conventional levels are 0.047–
0.239 (without spatial FEs) and 0.049–0.138 (with HUC4 FEs).

Streamflow: Adjusting for streamflow (using downstream USGS monitoring sites on main flow-
lines) the between corn acreage elasticities are 0.177 (first quartile)–0.307 (third quartile) in the
absence of spatial FEs. With HUC4 FEs, the elasticities are 0.106 (first quartile)–0.170 (third
quartile).

Extended geographic scope plus additional data and specifications. In a series of robustness
checks that resemble in the panel FE regressions, we use additional data (USGS+EPA as opposed
to the USGS-NWIS) and expand the geographic scope of our analysis from the EAST-100 to the
CONUS. These additional data allow us to alleviate some of the concerns regarding the substantial
variation in the number of observations used to obtain the year-specific elasticity estimates. For
example, using data for all years (1975–2017), we have 3,029 counties. Moreover, we consider
several additional controls to mitigate potential concerns for confounding factors (e.g., GDP, per-
capita income, population) that introduce a bias in our baseline elasticity estimates (Table A11).

For the CONUS estimates using USGS+EPA data that pertain to the 48 CONUS states, 18 HUC2s
and 205 HUC4s, there is still variation in the number of observations for the various years. The
number of observations is between 2,055–2,758 depending on the set of additional controls. The
range of the between elasticity estimates is 0.111–0.291 (first precipitation quartile), 0.094–0.296
(median), 0.078–0.299 (third quartile) depending on the set of additional controls and the spatial
FEs.

We also produced a set of elasticity estimates based on cropland acres as opposed to corn acres
for the CONUS using the USGS+EPA data and the series of controls shown in Table A11. This
analysis is limited to the Census-of-Agriculture (CoA) years because we use the CoA as our source
of cropland acres. For the regressions that utilize cropland acres, we adjust our weather-related
controls such that we use total annual precipitation and its square and the following annual degree
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days: 0C◦, 5C◦, 8C◦, 10C◦, 12C◦, 20C◦, 25C◦, 29C◦, 30C◦, 31C◦, 32C◦, 33C◦, 34C◦. Hence, we
use 2 as opposed to 24 precipitation-related controls and a much richer set of variables capturing
degree days compared to the baseline models. Finally, the elasticity estimates are based on an
increase in cropland acres and quartiles of precipitation. Similar to prior calculations based on corn
acreage, we calculate these elasticities using mean cropland acres and mean nitrogen concentration.

For our between estimates based on CoA years, we have observations for approximately 2,350
counties. When we use data for a particular CoA year, the number of observations is between
1,733–2,146 depending on the set of additional controls. The range of the between elasticity
estimates is 0.088–0.403 (first quartile), 0.055–0.428 (median), 0.086–0.448 (third quartile) de-
pending on the set of additional controls and the spatial FEs.

A notable observation regarding the cropland elasticity estimates is that additional controls (e.g.,
CRP acres, population, GDP, per-capita income) have a de minimis effect on their magnitude once
we control for weather. The only exception is when we control for corn acres. For example,
moving from the specification in which we control for CRP acres, population, GDP, and land area
to the specification in which we also control for corn acres, the between cropland elasticities drop
from 0.251 to 0.088 (first quartile), 0.279 to 0.101 (median), and 0.303 to 0.112 (third quartile) in
the case of HUC4 FEs.
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A Appendix Figures

Figure A1. Corn acreage elasticities for cross-section regressions
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A. no fixed effects, 25% precipitation
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B. no fixed effects, 50% precipitation

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

e
la
s
ti
c
it
y

1975 1980 1985 1990 1995 2000 2005 2010 2015
year

C. no fixed effects, 75% precipitation

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8
e
la
s
ti
c
it
y

1975 1980 1985 1990 1995 2000 2005 2010 2015
year

D. HUC4 fixed effects, 25% precipitation
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E. HUC4 fixed effects, 50% precipitation
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F. HUC4 fixed effects, 75% precipitation

Note: The figure shows point estimates and 95% confidence intervals (CIs) for the elasticity of nitrogen concentration with
respect to corn acres based on equations (A1) and (A2) using three precipitation quartiles. The left-most point estimates (red
diamonds) and their CIs are based on the between model in equation (A2). The standard errors are clustered by HUC4. The
specifications control for weather (precipitation, squared precipitation, moderate heat, and extreme heat). For additional details,
see Section A.5.
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Figure A2. Alternative datasets used to track nitrogen concentration I
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A. USGS-NWIS, site & date combs.
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B. USGS-NWQN, site & date combs.
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C. USGS+EPA, site & date combs.
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D. USGS-NWIS, monitoring sites
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E. USGS-NWQN, monitoring sites
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F. USGS+EPA, monitoring sites

Note: The figure shows the coverage implied by alternative datasets in terms of monitoring-site and date combinations in panels
A–C, and monitoring sites in panels D–F, respectively. For additional details, see Section A.6.2.
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Figure A3. Alternative datasets used to track nitrogen concentration II
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A. USGS-NWIS, counties
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B. USGS-NWQN, counties
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C. USGS+EPA, counties
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D. USGS-NWIS, hydrologic units
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E. USGS-NWQN, hydrologic units
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F. EPA+STORET, hydrologic units

Note: The figure shows the coverage implied by alternative datasets in terms of monitoring-site and date combinations in panels
A–C, and monitoring sites in panels D–F, respectively. For additional details, see Section A.6.2.
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A Appendix Tables

Table A1. Ranking of top 20 corn producing states

rank state production cumulative %
1 IA 81,235,491 19.035
2 IL 71,624,041 35.818
3 NE 48,475,417 47.177
4 MN 40,363,933 56.635
5 IN 34,377,920 64.690
6 OH 20,079,440 69.395
7 WI 16,704,529 73.310
8 SD 15,932,910 77.043
9 KS 13,118,720 80.117

10 MO 13,004,924 83.164
11 MI 11,429,575 85.842
12 TX 8,157,810 87.754
13 KY 6,546,971 89.288
14 CO 5,289,274 90.527
15 ND 5,234,568 91.754
16 PA 5,146,824 92.960
17 NC 4,405,036 93.992
18 TN 3,051,323 94.707
19 NY 2,759,176 95.354
20 GA 2,501,139 95.940

Note: We report total production for years 1970–2017 in 1,000 bushels. For additional details, see Section 5.1 in the main text.
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Table A2. USGS-NWIS WQP data diagnostics, Activity Media Subdivision Name

value obs. obs. %
surface water 693,671 95.978
groundwater 29,068 4.022

Note: For additional details, see Section A.2.

Table A3. USGS-NWIS WQP data diagnostics, Activity Type Code

value obs. obs. %
sample-routine 680,274 94.124
not determined 18,174 2.515
sample-composite without parents 11,774 1.629
quality control sample-field replicate 11,670 1.615
quality control sample-field spike 446 0.062
quality control sample-field blank 202 0.028
quality control sample-reference sample 67 0.009
quality control sample-other 62 0.009
quality control sample-spike solution 39 0.005
quality control sample-reference material 13 0.002
quality control sample-blind 12 0.002
unknown 6 0.001

Note: For additional details, see Section A.2.

Table A4. USGS-NWIS WQP data diagnostics, Detection Quantitation Limit Type Name

value obs. obs. %
612,111 84.693

historical lower reporting limit 103,289 14.291
laboratory reporting level 5,003 0.692
lower reporting limit 1,496 0.207
method detection limit (mdl) 795 0.110
upper reporting limit 39 0.005
lower quantitation limit 3 0.000
elevated detection limit 3 0.000

Note: For additional details, see Section A.2.
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Table A5. USGS-NWIS WQP data diagnostics, Hydrologic Event

value obs. obs. %
routine sample 632,764 87.551
storm 40,579 5.615
not determined (historical) 19,404 2.685
regulated flow 8,238 1.140
snowmelt 6,469 0.895
flood 4,119 0.570
tidal action 3,475 0.481
not applicable 3,031 0.419
under ice cover 2,494 0.345
spring breakup 1,078 0.149
drought 644 0.089
hurricane 211 0.029
volcanic action 100 0.014
earthquake 79 0.011
spill 23 0.003
affected by fire 16 0.002
dambreak 9 0.001
backwater 6 0.001

Note: For additional details, see Section A.2.

Table A6. USGS-NWIS WQP data diagnostics, Result Value Type Name

value obs. obs. %
actual 709,831 98.214
estimated 12,908 1.786

Note: For additional details, see Section A.2.
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Table A7. Breakdown of USGS-NWIS WQP nitrogen data

decade monitors dates states counties HUC8s obs R. obs D.
1970 12,702 2,992 49 1,653 1,334 127,658 1,128
1980 11,700 3,393 49 1,626 1,332 139,579 29,308
1990 11,006 3,566 49 1,670 1,232 128,577 37,670
2000 10,349 3,252 49 1,387 1,029 117,701 18,963
2010 4,402 3,004 47 871 690 105,813 23,559
All 40,001 16,207 49 2,529 1,758 619,328 110,628

Note: The column “obs. R” indicates the number of observations for which the the Result Measure Value is available. The
column “obs. D” indicates the number of observations for which the Detection Quantitation Limit Measure/Measure Value is
available. For additional details, see Section A.2.

Table A8. Breakdown of WQP nitrogen data

group 1 group 2 obs. obs. %
stream stream 604,604 83.655
lake lake 58,675 8.118
groundwater well 27,306 3.778
facility facility 11,932 1.651
marine estuary 10,575 1.463
spring spring 4,233 0.586
other land 1,427 0.197
groundwater subsurface 1,225 0.169

854 0.118
marine ocean 761 0.105
other wetland 739 0.102
other atmosphere 402 0.056
other surface 6 0.001

Note: For additional details, see Section A.2.

Table A9. Alternative total nitrogen concentration calculations

calculation obs. R2 intercept slope
00625+00631 277,364 0.997 -0.001 0.998
49570+62854 15,723 0.998 0.007 0.996
00623+00631+49570 15,723 0.998 0.007 0.996

Note: An observation is identified as monitoring site-date combination. For each monitoring site, we collected the average
daily Result Measure Value of the relevant parameter code and calculated the three sums indicated in the leftmost column of
the table. The four rightmost columns report the results of a regression of the average daily Result Measure Value of parameter
code 00600 used in the paper on the three alternative sums. There are 543,111 observations with non-missing values for
parameter code 00600. See also the National Water Quality Network (NWQN) sample collection and reporting methods link.
For additional details, see Section A.2.
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Table A10. Alternative nitrogen concentration calculations

A. dissolved nitrate plus nitrite 00613
calculation obs. intercept slope R2

00630 63,860 -0.0459 1.0010 0.9762
00618 367,968 0.0191 1.0025 0.9952
00620 28,299 -0.0205 1.0073 0.9891
71851 366,995 0.0198 1.0025 0.9953
71850 487 0.1066 0.9667 0.9316
00620+00613 15,363 -0.0316 0.9922 0.9937
00620+71856 16,641 -0.0321 0.9922 0.9935
00620+00615 20,121 -0.0028 0.9711 0.9913
71851+00613 223,843 0.0055 1.0000 0.9941
71851+71856 233,714 0.0053 1.0000 0.9941
71851+00615 16,834 -0.0113 0.9998 0.9998
71850+00613 59 0.1474 0.9032 0.8090
71850+71856 99 0.0894 0.9747 0.9111
71850+00615 19 0.1841 0.5836 0.5362

B. total organic nitrogen plus ammonia 00625
calculation obs. intercept slope R2

00605+00608 271,805 0.0044 1.0000 1.0000
00605+00610 267,772 0.3535 0.7825 0.7961

C. total nitrogen 00600
calculation obs. intercept slope R2

method 1 577,683 0.0122 0.9980 0.9804
method 2 19,818 -0.0011 1.0001 0.9965
method 3 16,542 -0.0005 1.0001 0.9996

Note: An observation is identified as a monitoring site-and-date combination. For each monitoring site, we collected the average
daily Result Measure Value for the relevant parameter code from the WQP. The four rightmost columns report the results of
a regression of the average daily Result Measure Value for dissolved nitrate plus nitrite, total organic nitrogen plus ammonia,
and total nitrogen, on the average daily Result Measure Value of the parameter codes indicated in the leftmost column. These
parameter codes are based on the authors’ review of USGS methodologies. For additional details, see Section A.3.
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Table A11. Additional controls in cross-section regressions based on CONUS and USGS+EPA data

model controls
1 none
2 weather
3 weather, population, GDP
4 weather, population, per-capita income
5 weather, CRP acres
6 weather, CRP acres, population, GDP
7 weather, CRP acres, population, per-capita income
8 weather, CRP acres, population, GDP, land area
9 weather, CRP acres, population, GDP, land area, corn acres

Note: For additional details, see Section A.6.3.
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