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Rising Wage Inequality Between Groups of Society

this paper
Task-displacing technologies ⇒ wage inequality across groups?

⇒ stagnant or declining wages?

This paper

• Task framework: wages depend on allocation of tasks to workers
(Grossman–Rossi-Hansberg 2008; Acemoglu–Autor 2011; Acemoglu–Restrepo 2018)

• automation and offshoring change boundaries of allocation
• quantify role of task-displacement via automation and offshoring

Existing
literature

• SBTC (Katz–Murphy 92; Krusell–et.al 00; Card–Lemieux 01)

• industry shifts and demand for skills (Buera–et.al 15; Bárány–Siegel 18)

• occupational shifts (Lee–Shin 18; Jaimovich–et.al 20)
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Outline of the Paper

Tractable task
framework

• role of task allocation lnwg = a · ln(y/ℓg) + b · ln task shareg

• automation and offshoring⇒ change ln task shareg and tfp
• large distributional effects and small tfp gains⇒ d lnwg < 0

Measure task
displacement &

reduced forms

• task displacementg =effect of technology on ln task shareg

• g displaced from routine tasks in industry with falling labor share
• correlates with wage changes across groups

Quantifying
effect of task
displacement

• use model to compute effects on output and wages
• account for ripple effects, industry shifts and productivity gains
• explain 48% to 57% of wage changes and sizable share of declines
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2. Measuring task displacement
• and reduced-form evidence
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Model: Environment

Output combines
mass M of tasks in T y =

(
1
M

∫
T
(M · y(x)) λ−1

λ · dx
) λ
λ−1

, λ = task subs.

Tasks produced by
capital or different

types of labor g
y(x) = Ak · ψk(x) · k(x) +

∑
g

Ag · ψg(x) · ℓg(x).

Factor supply and
equilibrium
formal definition

• capital k(x) produced from final good at rate r · q(x)
• labor of type g has fixed supply ℓg > 0
• allocation of tasks to factors maximizes y− r ·

∫
T k(x) · q(x) · dx
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Model: Allocation of Tasks and Task Shares

Task allocation
defined by sets

Tg and Tk

Tg :=

{
x :

1
ψg(x)

·
wg
Ag
≤

1
ψj(x)

·
wj
Aj
,

q(x)
ψk(x)

·
r

Ak
∀j
}

Tk :=

{
x :

q(x)
ψk(x)

·
r

Ak
≤

1
ψj(x)

·
wj
Aj
∀j
}

Definition of
task share of g
& task share k

Γg(we,Ψ) :=
1
M

∫
Tg
ψg(x)λ−1 · dx

Γk(we,Ψ) :=
1
M

∫
Tk

(ψk(x)/q(x))λ−1 · dx.

Determinants
of Γg and Γk

• wages/rates per efficiency unit we = {w1/A1, . . . ,wG/AG, c/Ak}.
• task-specific technologies Ψ⇒ also affect boundaries Tg, Tk!
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Proposition (Equilibrium objects as function of task shares)
Given ℓ = (ℓ1, ℓ2, . . . , ℓG) and task shares {Γ1, . . . , ΓG, Γk}, output is given by

y = (1− (c/Ak)
1−λ · Γk)

λ
1−λ ·

(∑
g

Γ
1
λg · (Ag · ℓg)

λ−1
λ

) λ
λ−1

, (1)

wages are given by

wg =

(
y
ℓg

) 1
λ

· A
λ−1
λg · Γ

1
λg . (2)

and factor shares are given by

sK = (r/Ak)
1−λ · Γk, sL = 1− (r/Ak)

1−λ · Γk. (3)
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Model: A Wide Menu of Technologies

Conditional on we, two main technology classes changing Γg and Γk:

Productivity
deepening

• improvements in ψg(x) or ψk(x)/q(x) for tasks in Tg or Tk

• denote effect on 1
1−λd ln Γg by d ln Γdeep

g or d ln Γdeep
k

Task
displacement

via automation
or offshoring

• Tg ↓ and Tk ↑ due to improvements in ψk(x)/q(x) for tasks in Tg

• denote effect on d ln Γg by d ln Γdisp
g

• πg =avg cost reduction in such tasks lnwg/ψg(x)− lnψk(x)/q(x)

Besides: usual factor augmenting technologies, Ag and Ak, affect task shares through we.
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Model: Examples of Different Technologies
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Effects of Technology: Shock and Propagation

Propagation of
a wage shock

• d lnwg = ag +
1
λ
∂ ln Γg
∂ lnwe · d lnw⇒ d lnw = Θ · aL, where

Θ :=

(
1−

1
λ

∂ ln ΓL(we; Ψ)

∂ lnwe

)−1
= 1 +

1
λ

∂ ln ΓL
∂ lnwe +

(
1
λ

∂ ln ΓL
∂ lnwe

)2
+ . . .

Properties of
propagation

matrix Θ

• Θ is a G× G matrix where ripple effect of j on g is θgj ≥ 0
• row sum equals λ

λ+ϱg
⇒ elast. of subs with capital λ+ ϱg

• if ϱg = ϱ, matrix has symmetry property sL
g · θgj = sL

j · θjg

• also, g and j are q−substitutes iff θgj > sL
j · λ/(λ+ ϱ)

• ripple effects can dampen or augment inequality
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Proposition (Effect of technology on wages and TFP)
The change in wages is given by

d lnwg =
1

λ+ ϱg
d ln y + d lnAg −

1
λ
Θg · d lnAL +

λ− 1
λ

Θg · d ln Γdeep
L +

1
λ
Θg · d ln Γdisp

L ,

and the change in aggregate TFP and output is given by

d ln tfp =
∑

g
sL
g · d lnAg + sK · d ln Γdeep

k +
∑

g
sL
g · d ln Γdeep

g −
∑

g
sL
g · d ln Γdisp

g · πg

d ln y =
1

1− sK ·
(
d ln tfp + sK · d ln sK) .
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Model: Multiple Industries

Industry
structure

• y =GDP and p =vector of industry prices
• sY

i (p, y) :=share industry i in value added ⇒ CES sY
i (p, y) = αi · p1−η

i

Industry i
combines Mi

tasks in Ti
yi = Ai ·

(
1

Mi

∫
Ti
(Mi · y(x))

λ−1
λ · dx

) λ
λ−1

, λ = task subs.

Task shares
now given by

Γg(ζ,we,Ψ) :=
∑

i
sY
i (p, y) · (Ai · pi)

λ−1︸ ︷︷ ︸
:=ζi

·
1

Mi

∫
Tgi
ψg(x)λ−1dx︸ ︷︷ ︸
:=Γgi
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Proposition (Equilibrium objects as function of task shares)
Given ℓ = (ℓ1, ℓ2, . . . , ℓG) and within industry task shares {Γ1i, . . . , ΓGi, Γki} for all i,
equilibrium wages, industry prices, and output are the solution to

wg =

(
y
ℓg

) 1
λ

· A
λ−1
λg ·

(∑
i

sY
i (p, y) · (Aipi)

λ−1 · Γgi

) 1
λ

(4)

Aipi =

(
Aλ−1

k · Γki +
∑

g
w1−λ

g · Aλ−1
g · Γgi

) 1
1−λ

(5)

1 =
∑

i
sY
i (p, y). (6)
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Measuring Task Displacement: Cobb-Douglas case λ = 1 and ϱi = 0

A1. Technology and
markups

• changes in ψk(x)/q(x) leading to task displacement, d ln Γdisp
L

• no change in markups

A2. Routine tasks in
industry i automated

at common rate

• Γgi = ΓN
gi + ΓR

gi

• d ln ΓN,disp
gi = 0 and d ln ΓR,disp

gi = d ln ΓR,disp
i

A1+A2: recover
task displacement

from industry data on
labor shares, sL

i

d ln ΓR,disp
i =

1
sR
i
· d ln sL

i d ln Γdisp
g =

∑
i

sR
gi

sR
i
· d ln sL

i
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Measuring Task Displacement: CES case

A1. Set of
technologies is

restricted

• sectoral productivity shocks: Ai
• capital deepening: uniform decline in q(x) of d ln qi
• changes in ψk(x)/q(x) leading to task displacement, d ln Γdisp

L
• no change in markups

A2. Routine tasks in
industry i automated

at common rate

• Γgi = ΓN
gi + ΓR

gi

• d ln ΓN,disp
gi = 0 and d ln ΓR,disp

gi = d ln ΓR,disp
i

A1+A2: recover
task displacement

from industry data on
labor shares, sL

i

d ln ΓR,disp
i =

1
sR
i

d ln sL
i + (1− σi) · sK

i · (d ln qi − d lnwi)

1 + (λ− 1) · sL
i · πi

d ln Γdisp
g =

∑
i

sR
gi

sR
i
·

d ln sL
i + (1− σi) · sK

i · (d ln qi − d lnwi)

1 + (λ− 1) · sL
i · πi
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Data and Measurement

Data for 49 industries
from BEA, BLS, and

KLEMS

• for reduced form: σi = σ ∈ (0.5, 1.2), λ = 0.5, πi = 30%
• measure task displacement from 1987-2016
• across industries, d ln Γdisp

i correlates with:
X rising tfp and quantities; falling prices
X higher demand for skilled workers
X proxies of automation and offshoring

Construct measure of
task displacement for

500 skill groups

• Census data for 1980 to measure occupational wage shares
• groups defined by education–experience–gender–race–nativity
• routine jobs measured using ONET as in Acemoglu–Autor 2011
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Data and Measurement
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Data and Measurement
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Reduced-form evidence: Cobb-Douglas
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Figure: Reduced-form relation between task displacement and change in wages, 1980–2016. 19
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Reduced-form evidence: CES
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Reduced-form evidence: Cobb-Douglas

Dependent variable: change log hourly wages 1980-2016
(1) (2) (3) (4) (5) (6)

Task displacement -1.482 -1.132 -1.429 -1.243 -1.172 -1.032
(0.096) (0.162) (0.302) (0.219) (0.218) (0.205)

Sectoral expansion 0.214 0.099 0.111 0.117 0.652
(0.076) (0.084) (0.079) (0.075) (0.155)

Industries with declining
labor share

-0.416
(0.404)

Relative specialization in
routine jobs

0.060
(0.059)

R-squared 0.62 0.66 0.70 0.77 0.79 0.81
Observations 500 500 500 500 500 500

Additional covariates:
Broad group dummies X X X
Regional shares X X
Broad sectoral shares X
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Technology or Rising Markups?

Industry correlates
suggest technology

important

• task displacement correlates with rising tfp and quantities,
lower prices

• within manufacturing, task displacement correlates with
automation and offshoring

• labor share declines mostly in manufacturing and industry

Reduced-form
evidence

• as labor share declines, labor demand falling for routine
workers but not for others

Takeaway • markups might be important, but one needs a richer theory
of their relationship to tfp, technology and demand for skills
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Reduced-form evidence: Task displacement vs SBTC
Dependent variable: change log hourly wages 1980-2016

(1) (2) (3)
Education: highschool 0.005 0.017 0.027

(0.032) (0.028) (0.028)
Education: some college 0.032 -0.047 -0.054

(0.035) (0.037) (0.039)
Education: full college 0.247 0.030 -0.045

(0.029) (0.053) (0.060)
Education: more than college 0.395 0.142 0.016

(0.027) (0.056) (0.074)
Gender: women 0.144 0.104 0.070

(0.026) (0.022) (0.023)
Task displacement -1.174 -1.032

(0.195) (0.205)

Sectoral expansion 0.652
(0.155)

R-squared 0.68 0.76 0.81
Observations 500 500 500

Additional covariates:
Regional and broad sectoral shares X
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Reduced-form evidence: Robustness—CES case
Dependent variable: change log hourly wages 1980-2016

σ = 0.7 σ = 0.8 σ = 0.9 σ = 1 σ = 1.1 σ = 1.2
(1) (2) (3) (4)

Education: highschool 0.045 0.041 0.035 0.027 0.016 0.004
(0.028) (0.029) (0.029) (0.028) (0.028) (0.027)

Education: some college -0.004 -0.019 -0.036 -0.054 -0.072 -0.088
(0.033) (0.035) (0.037) (0.039) (0.040) (0.040)

Education: full college 0.033 0.008 -0.019 -0.045 -0.067 -0.082
(0.054) (0.056) (0.058) (0.060) (0.060) (0.059)

Education: more than college 0.113 0.082 0.049 0.016 -0.013 -0.033
(0.068) (0.070) (0.072) (0.074) (0.074) (0.073)

Gender: women 0.144 0.124 0.099 0.070 0.038 0.007
(0.020) (0.020) (0.021) (0.023) (0.027) (0.030)

Task displacement -0.736 -0.841 -0.943 -1.032 -1.095 -1.120
(0.181) (0.192) (0.201) (0.205) (0.203) (0.194)

Sectoral expansion 0.542 0.566 0.603 0.652 0.711 0.775
(0.164) (0.161) (0.158) (0.155) (0.153) (0.153)

R-squared 0.79 0.80 0.81 0.81 0.81 0.82
Observations 500 500 500 500 500 500

Additional covariates:
Region and broad sector shares X X X X X X 25
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Proposition (Counterfactuals)
The effect of task displacement by automation and offshoring on wages, industry prices and
GDP is given by the solution to the following system of linear equations:

d lnwg =
1

λ+ ϱg
· d ln y + 1

λ
Θg · d ln ζ +

1
λ
Θg · d ln Γdisp

L ,

d ln ζg =
∑

i
sL
gi ·
(
d ln sY

i (p, y) + (λ− 1) · d ln pi
)
,

d ln pi =sL
i ·
∑

g
sL
ig ·
(

d lnwg + d ln Γdisp
gi · πgi

)
d ln tfp =−

∑
g

sL
g
∑

i
sL
gi · d ln Γ

disp
gi · πgi

d ln y =
1

1− sK ·
(
λ · d ln tfp− sK · d ln sK) .
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Estimating Θ and ϱ: Approach

• Assume ϱg = ϱ⇒common elast of subs between capital and labor
(see Dvorkin–Monge-Naranjo 2019 for approach with dif ϱg)

• βgj =
1
λ · θgj/sL

j is the per unit ripple effect from j to g ⇒ βgj = βjg

• Parametric assumption: θgg = βown ≥ 0 and if g ̸= j

βgj =
N∑

n=1
βn · exp(−d(xn

g, xn
j )), with βn ≥ 0,

where xn
g are vectors of industry shares in 1980, occupational shares in 1980, state shares

in 1980 and skill level
• Combine labor supply shocks (demographic trends), sectoral shifts (Bartik measure),

and task displacement into a single shock to estimate βown and βn ⇒ Θ̂
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Estimating Θ and ϱ : Results and Parametrization

• evidence of ripple effects among:
• groups in similar industries
• groups in similar occupations
• groups in similar states
• groups of similar wages and

years of education

• own effects sizable and Θ has
dominant diagonal

• estimate for λ+ ϱ = 0.9 close to 1

• Next: CES industry structure with
η = 0.2; λ = 0.5; π = 30%

Estimates of Θ and ϱ
Effect Estimate of 1

λθ Significant?
Own effect 0.73 [t=19.27]
Industry 0.09 [t=1.22]
Geography 0.17 [t=2.24]
Occupation 0.05 [t=2.23]
Wages and 0.06 [t=3.33]
Education

λ+ ϱ (or σ) 0.91

28



Quantitative Implications: Effects on Wages
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Figure: Effect on wages (not including rise in GDP). 29



Quantitative Implications: Combined Effect on Wages
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Quantitative Implications: Groups with Declining Wages
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Quantitative Implications: Summary

Implications of measured task displacement via automation and offshoring:
• Increase in GDP of 20% and average wage of 5%

• TFP increase of 3.3%

• Explains 57% of observed wage changes across groups
(48% ignoring industry price changes)

• Explains a third of wage declines below 5% and half of wage declines below 10%

• Explains a third of the rise in college premium and half of rise in postcollege premium

• Explains 0.6 pp decline in share of manufacturing in GDP (1/10th of decline since 1987)
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Concluding Remarks:
• technologies that favor displacement of labor via automation or offshoring can have

large distributional consequences and bring small productivity gains
• we made this point theoretically in a task-framework, via reduced-form evidence, and

through a preliminary quantitative exercise

Work to do:
1. Much more to do regarding estimation of Θ...
2. Markups? direct measures of technology and estimation
3. Factor-augmenting technologies: bound effect on labor share
4. Repercussions for within-group inequality?
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Appendix Model: Formal Definition of Equilibrium back to model

Let Tg denote the set of tasks allocated to labor of type g and Tk the set of tasks allocated
to capital.
Definition (Market equilibrium)
Given a supply of labor ℓ = (ℓ1, ℓ2, . . . , ℓG), a market equilibrium is given by wages
w = (w1,w2, . . . ,wG), capital production decisions {k(x)}, and an allocation of tasks to
factors {Tk, T1, . . . , TG}, such that:

• the allocation of tasks to factors minimizes the total cost of producing each task;
• the choice of capital maximizes net output;
• the market for capital and labor clears.
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Why Focus on Task-Displacing Technologies?

1. Rhetorical
point

• compelling way of thinking about automation and offshoring
• some tasks can now be automated or offshored; others not

2. Mechanism
affecting wages

• task-displacing techs directly change task-share boundaries
• large distributional impact that is independent of elast. of subs.
• effect of other techs mediated by λ, λ+ ϱg ≶ 1

3. Productivity
implications

• task-displacing techs can have small effects on tfp if πg ≈ 0
• other techs: prod gains and distributional effects coupled

example: bounds on productivity example: SBTC

4. Factor shares
implications

• direct and intuitive effect on labor share that is independent of the
elasticities of substitution λ+ ϱg
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Example I: Bounding Effects on Wage Inequality back to main

Large G and
uniform rise in

inequality

• observed inequality d lnwg = m0 +
1
λΘg ·mg, where mg ∼ U[0, 2δ]

• how big is tech change required to explain this rise in inequality?
(assuming no technological regress)

Via task
deepening

• d ln tfp ≥ δ · sL/|1− λ|
• effects through λ ∈ (0.5, 1)⇒ subs across tasks

Via labor-
augmenting
technologies

• d ln tfp ≥ δ ·
∑

g sL
g/|σg − 1|, where σg ≥ λ

• effects through σg ∈ (1, 2)⇒ subs across tasks and within marginal tasks

Via task
displacement

• d ln tfp ≥ δ ·
∑

g sL
g · πg, where πg ≥ 0

• effects through changes in productivity at marginal tasks, πg
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Via labor-
augmenting
technologies

• d ln tfp ≥ δ ·
∑

g sL
g/|σg − 1|, where σg ≥ λ
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Example I: Bounding Effects on Wage Inequality back to main

Large G and
uniform rise in

inequality

• observed inequality d lnwg = m0 +
1
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Example II: Unpacking SBTC back to main

Canonical model d ln wH
wL

= −
1
σL
· d ln H

L +
σL − 1
σL

· d ln AH
AL

Effects on TFP d ln tfp =sH · d lnAH + sL · d lnAL

Tight link btn
inequality,

productivity, and
real wages

• estimate of σL = 1.5
• explains skill premium with d lnAH ≥ d lnAH/AL = 10% p.a.
• but this implies d ln tfp ≥2–3% p.a (vs 1–1.2% in data)
• and d lnwL ≥1.3–2% p.a (vs -0.2–0.2% in data)
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Example II: Unpacking SBTC back to main

Task model
d ln wH

wL
=−

1
σL
· d ln H

L +
σL − 1
σL

· d ln AH
AL
−

1
σ
· d ln Γdisp

L ,

σL :=(θHH − θLH)
−1 = (θLL − θHL)

−1 > λ

Effects on TFP d ln tfp =sH · d lnAH + sL · d lnAL − sLd ln Γdisp
L · πL

Decoupling of
inequality,

productivity, and
real wages

• suppose σL = 1.5 and πL = 30%
• one can explain skill premium with d ln Γdisp

L = −4.5% p.a.
• this implies d ln tfp =0.45% p.a (vs 1–1.2% in data)
• and d lnwL =-0.55% p.a (vs -0.2–0.2% in data)
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