Task Displacement and Wage Inequality

Daron Acemoglu Pascual Restrepo

DC, March 5th, 2020

Rising Wage Inequality Between Groups of Society

Figure: Cumulative change in real weekly wages, working-age adults (Autor, 2019)

Rising Wage Inequality Between Groups of Society

Figure: Change in real hourly wages for 500 education-experience-gender-race-nativity groups

Rising Wage Inequality Between Groups of Society

Task-displacing technologies \Rightarrow wage inequality across groups?

 \Rightarrow stagnant or declining wages?

 Task framework: wages depend on allocation of tasks to workers (Grossman–Rossi-Hansberg 2008; Acemoglu–Autor 2011; Acemoglu–Restrepo 2018)

- automation and offshoring change boundaries of allocation
- quantify role of task-displacement via automation and offshoring

Existing literature

This paper

- SBTC (Katz–Murphy 92; Krusell–et.al 00; Card–Lemieux 01)
- industry shifts and demand for skills (Buera-et.al 15; Bárány-Siegel 18)
- occupational shifts (Lee–Shin 18; Jaimovich–et.al 20)

Outline of the Paper

Tractable task framework

Measure task displacement & reduced forms

Quantifying effect of task displacement

- role of task allocation $\ln w_g = a \cdot \ln(y/\ell_g) + b \cdot \ln task share_g$
- automation and offshoring \Rightarrow change $\ln task share_g$ and tfp
- large distributional effects and small tfp gains $\Rightarrow d \ln w_g < 0$
- task displacement_g =effect of technology on $\ln task \operatorname{share}_g$
- g displaced from routine tasks in industry with falling labor share
- correlates with wage changes across groups
- use model to compute effects on output and wages
- account for ripple effects, industry shifts and productivity gains
- explain 48% to 57% of wage changes and sizable share of declines

Outline of the Talk

- 1. Task model with multiple skills
 - effect of technology on wages and tfp
 - model with multiple industries to connect with data
- 2. Measuring task displacement
 - and reduced-form evidence
- 3. Quantifying effect of task displacement on wages and tfp

Outline of the Talk

1. Task model with multiple skills

- effect of technology on wages and tfp
- model with multiple industries to connect with data
- 2. Measuring task displacement
 - and reduced-form evidence
- 3. Quantifying effect of task displacement on wages and tfp

Model: Environment

Output combines mass M of tasks in \mathcal{T}

$$y = \left(\frac{1}{M}\int_{\mathcal{T}} (M \cdot y(x))^{\frac{\lambda-1}{\lambda}} \cdot dx\right)^{\frac{\lambda}{\lambda-1}}, \quad \lambda = \text{task subs.}$$

Tasks produced by capital or different types of labor g

$$y(x) = A_k \cdot \psi_k(x) \cdot k(x) + \sum_g A_g \cdot \psi_g(x) \cdot \ell_g(x)$$

Factor supply and equilibrium

• capital k(x) produced from final good at rate $r \cdot q(x)$

- labor of type g has fixed supply $\ell_g > 0$
- allocation of tasks to factors maximizes $y r \cdot \int_{\mathcal{T}} k(x) \cdot q(x) \cdot dx$

Model: Allocation of Tasks and Task Shares

Task allocation defined by sets \mathcal{T}_g and \mathcal{T}_k

$$\mathcal{T}_{g} := \left\{ x : rac{1}{\psi_{g}(x)} \cdot rac{w_{g}}{A_{g}} \leq rac{1}{\psi_{j}(x)} \cdot rac{w_{j}}{A_{j}}, \ rac{q(x)}{\psi_{k}(x)} \cdot rac{r}{A_{k}} \ orall j
ight\}$$
 $\mathcal{T}_{k} := \left\{ x : rac{q(x)}{\psi_{k}(x)} \cdot rac{r}{A_{k}} \leq rac{1}{\psi_{j}(x)} \cdot rac{w_{j}}{A_{j}} \ orall j
ight\}$

Definition of task share of *g* & task share *k*

$$\Gamma_g(w^e, \Psi) := \frac{1}{M} \int_{\mathcal{T}_g} \psi_g(x)^{\lambda - 1} \cdot dx$$

$$\Gamma_k(w^e, \Psi) := \frac{1}{M} \int_{\mathcal{T}_k} (\psi_k(x)/q(x))^{\lambda - 1} \cdot dx.$$

Determinants of Γ_g and Γ_k

wages/rates per efficiency unit w^e = {w₁/A₁,..., w_G/A_G, c/A_k}.
 task-specific technologies Ψ ⇒ also affect boundaries T_σ, T_k!

Proposition (Equilibrium objects as function of task shares) Given $\ell = (\ell_1, \ell_2, ..., \ell_G)$ and task shares $\{\Gamma_1, ..., \Gamma_G, \Gamma_k\}$, output is given by

$$y = (1 - (c/A_k)^{1-\lambda} \cdot \Gamma_k)^{\frac{\lambda}{1-\lambda}} \cdot \left(\sum_g \Gamma_g^{\frac{1}{\lambda}} \cdot (A_g \cdot \ell_g)^{\frac{\lambda-1}{\lambda}}\right)^{\frac{\lambda}{\lambda-1}}$$

wages are given by

$$w_g = \left(\frac{y}{\ell_g}\right)^{\frac{1}{\lambda}} \cdot A_g^{\frac{\lambda-1}{\lambda}} \cdot \Gamma_g^{\frac{1}{\lambda}}$$

and factor shares are given by

$$s^{K} = (r/A_{k})^{1-\lambda} \cdot \Gamma_{k}, \qquad \qquad s^{L} = 1 - (r/A_{k})^{1-\lambda} \cdot \Gamma_{k}.$$

(2

(3

Model: A Wide Menu of Technologies

Conditional on w^e , two main technology classes changing Γ_g and Γ_k :

Productivity deepening

- improvements in $\psi_g(x)$ or $\psi_k(x)/q(x)$ for tasks in \mathcal{T}_g or \mathcal{T}_k
- denote effect on $\frac{1}{1-\lambda}d\ln\Gamma_g$ by $d\ln\Gamma_g^{\text{deep}}$ or $d\ln\Gamma_k^{\text{deep}}$

Task displacement via automation or offshoring

- $\mathcal{T}_g \downarrow$ and $\mathcal{T}_k \uparrow$ due to improvements in $\psi_k(x)/q(x)$ for tasks in \mathcal{T}_g
- denote effect on $d \ln \Gamma_g$ by $d \ln \Gamma_g^{\text{disp}}$
- $\pi_g = \text{avg cost reduction in such tasks } \ln w_g/\psi_g(x) \ln \psi_k(x)/q(x)$

Besides: usual factor augmenting technologies, A_g and A_k , affect task shares through w^e .

Outline of the Talk

- 1. Task model with multiple skills
 - effect of technology on wages and tfp
 - model with multiple industries to connect with data
- 2. Measuring task displacement
 - and reduced-form evidence
- 3. Quantifying effect of task displacement on wages and tfp

Effects of Technology: Shock and Propagation

Propagation of a wage shock

$$\Theta := \left(\mathbb{1} - \frac{1}{\lambda} \frac{\partial \ln \Gamma_g}{\partial \ln w^e} \cdot d \ln w \Rightarrow d \ln w = \Theta \cdot a_L, \text{ where} \right)^{-1} = \mathbb{1} + \frac{1}{\lambda} \frac{\partial \ln \Gamma_L}{\partial \ln w^e} + \left(\frac{1}{\lambda} \frac{\partial \ln \Gamma_L}{\partial \ln w^e} \right)^2 + \dots$$

- Θ is a $G \times G$ matrix where ripple effect of j on g is $\theta_{gj} \ge 0$
- row sum equals $rac{\lambda}{\lambda+arrho_g} \Rightarrow$ elast. of subs with capital $\lambda+arrho_g$
 - if $\rho_g = \rho$, matrix has symmetry property $s_g^L \cdot \theta_{gj} = s_j^L \cdot \theta_{jg}$
 - also, g and j are q-substitutes iff $\theta_{gj} > s_j^L \cdot \lambda/(\lambda + \varrho)$
 - ripple effects can dampen or augment inequality

 $\begin{array}{c} \text{Properties of} \\ \text{propagation} \\ \text{matrix } \Theta \end{array}$

Proposition (Effect of technology on wages and TFP) The change in wages is given by

$$d\ln w_{g} = \frac{1}{\lambda + \varrho_{g}} d\ln y + d\ln A_{g} - \frac{1}{\lambda} \Theta_{g} \cdot d\ln A_{L} + \frac{\lambda - 1}{\lambda} \Theta_{g} \cdot d\ln \Gamma_{L}^{deep} + \frac{1}{\lambda} \Theta_{g} \cdot d\ln \Gamma_{L}^{disp}$$

and the change in aggregate TFP and output is given by

$$d\ln tfp = \sum_{g} s_{g}^{L} \cdot d\ln A_{g} + s^{K} \cdot d\ln \Gamma_{k}^{deep} + \sum_{g} s_{g}^{L} \cdot d\ln \Gamma_{g}^{deep} - \sum_{g} s_{g}^{L} \cdot d\ln \Gamma_{g}^{disp} \cdot \pi_{g}$$
$$d\ln y = \frac{1}{1 - s^{K}} \cdot \left(d\ln tfp + s^{K} \cdot d\ln s^{K} \right).$$

Outline of the Talk

1. Task model with multiple skills

- effect of technology on wages and tfp
- model with multiple industries to connect with data
- 2. Measuring task displacement
 - and reduced-form evidence
- 3. Quantifying effect of task displacement on wages and tfp

Model: Multiple Industries

Industry structure

• $s_i^Y(p, y) :=$ share industry *i* in value added $\Rightarrow CES s_i^Y(p, y) = \alpha_i \cdot p_i^{1-\eta}$

•

Industry icombines M_i tasks in \mathcal{T}_i

$$y_i = A_i \cdot \left(\frac{1}{M_i} \int_{\mathcal{T}_i} (M_i \cdot y(x))^{\frac{\lambda-1}{\lambda}} \cdot dx\right)^{\frac{\lambda}{\lambda-1}}$$
, $\lambda = \text{task subs.}$

Task shares now given by

$$\Gamma_{g}(\zeta, w^{e}, \Psi) := \sum_{i} \underbrace{s_{i}^{Y}(p, y) \cdot (A_{i} \cdot p_{i})^{\lambda - 1}}_{:=\zeta_{i}} \cdot \underbrace{\frac{1}{M_{i}} \int_{\mathcal{T}_{gi}} \psi_{g}(x)^{\lambda - 1} dx}_{:=\Gamma_{gi}}$$

Proposition (Equilibrium objects as function of task shares) Given $\ell = (\ell_1, \ell_2, ..., \ell_G)$ and within industry task shares $\{\Gamma_{1i}, ..., \Gamma_{Gi}, \Gamma_{ki}\}$ for all *i*, equilibrium wages, industry prices, and output are the solution to

$$w_{g} = \left(\frac{y}{\ell_{g}}\right)^{\frac{1}{\lambda}} \cdot A_{g}^{\frac{\lambda-1}{\lambda}} \cdot \left(\sum_{i} s_{i}^{Y}(p, y) \cdot (A_{i}p_{i})^{\lambda-1} \cdot \Gamma_{gi}\right)^{\frac{1}{\lambda}}$$

$$A_{i}p_{i} = \left(A_{k}^{\lambda-1} \cdot \Gamma_{ki} + \sum_{g} w_{g}^{1-\lambda} \cdot A_{g}^{\lambda-1} \cdot \Gamma_{gi}\right)^{\frac{1}{1-\lambda}}$$

$$1 = \sum_{i} s_{i}^{Y}(p, y).$$

$$(6)$$

Outline of the Talk

- 1. Task model with multiple skills
 - effect of technology on wages and tfp
 - model with multiple industries to connect with data
- 2. Measuring task displacement
 - and reduced-form evidence
- 3. Quantifying effect of task displacement on wages and tfp

Measuring Task Displacement: Cobb-Douglas case $\lambda = 1$ and $\varrho_i = 0$

A1. Technology and markups

- changes in $\psi_k(x)/q(x)$ leading to task displacement, $d \ln \Gamma_L^{\text{disp}}$
- no change in markups

A2. Routine tasks in industry *i* automated at common rate

A1+A2: recover task displacement from industry data on labor shares, s¹_i

•
$$\Gamma_{gi} = \Gamma_{gi}^{N} + \Gamma_{gi}^{R}$$

• $d \ln \Gamma_{gi}^{N,\text{disp}} = 0$ and $d \ln \Gamma_{gi}^{R,\text{disp}} = d \ln \Gamma_{i}^{R,\text{disp}}$

$$d\ln\Gamma_i^{R,\text{disp}} = \frac{1}{s_i^R} \cdot d\ln s_i^L \qquad \qquad d\ln\Gamma_g^{\text{disp}} = \sum_i \frac{s_{g_i}^R}{s_i^R} \cdot d\ln s_i^L$$

Measuring Task Displacement: CES case

- sectoral productivity shocks: A_i
- capital deepening: uniform decline in q(x) of $d \ln q_i$
- changes in $\psi_k(x)/q(x)$ leading to task displacement, $d \ln \Gamma_L^{\text{disp}}$
- no change in markups

A2. Routine tasks in industry *i* automated at common rate

A1. Set of

restricted

technologies is

A1+A2: recover task displacement from industry data on labor shares, *s*^{*l*}_{*i*}

•
$$\Gamma_{gi} = \Gamma_{gi}^{N} + \Gamma_{gi}^{R}$$

• $d \ln \Gamma_{gi}^{N,\text{disp}} = 0$ and $d \ln \Gamma_{gi}^{R,\text{disp}} = d \ln \Gamma_{i}^{R,\text{disp}}$

$$d\ln\Gamma_i^{R,\text{disp}} = \frac{1}{s_i^R} \frac{d\ln s_i^L + (1 - \sigma_i) \cdot s_i^K \cdot (d\ln q_i - d\ln w_i)}{1 + (\lambda - 1) \cdot s_i^L \cdot \pi_i}$$
$$d\ln\Gamma_g^{\text{disp}} = \sum_i \frac{s_{gi}^R}{s_i^R} \cdot \frac{d\ln s_i^L + (1 - \sigma_i) \cdot s_i^K \cdot (d\ln q_i - d\ln w_i)}{1 + (\lambda - 1) \cdot s_i^L \cdot \pi_i}$$

Data and Measurement

Data for 49 industries from BEA, BLS, and KLEMS • for reduced form: $\sigma_i = \sigma \in (0.5, 1.2)$, $\lambda = 0.5$, $\pi_i = 30\%$

- measure task displacement from 1987-2016
- across industries, d ln Γ_i^{disp} correlates with:
 ✓ rising tfp and quantities; falling prices
 ✓ higher demand for skilled workers
 ✓ proxies of automation and offshoring

Construct measure of task displacement for 500 skill groups

- Census data for 1980 to measure occupational wage shares
- groups defined by education-experience-gender-race-nativity
- routine jobs measured using ONET as in Acemoglu-Autor 2011

Data and Measurement

Figure: Industry correlations between proxies of automation and offshoring and task displacement

Data and Measurement

Figure: Estimated task displacement for 500 education-experience-gender-race-nativity groups

18

Outline of the Talk

- 1. Task model with multiple skills
 - effect of technology on wages and tfp
 - model with multiple industries to connect with data
- 2. Measuring task displacement
 - and reduced-form evidence
- 3. Quantifying effect of task displacement on wages and tfp

Reduced-form evidence: Cobb-Douglas

Figure: Reduced-form relation between task displacement and change in wages, 1980–2016.

Reduced-form evidence: Cobb-Douglas

Figure: Reduced-form relation between task displacement and change in wages, 1980–2016.

Reduced-form evidence: CES

Figure: Reduced-form relation between task displacement and change in wages, 1980–2016.

Reduced-form evidence: Cobb-Douglas

	Dependent variable: change log hourly wages 1980-2016					
	(1)	(2)	(3)	(4)	(5)	(6)
Task displacement	-1.482 (0.096)	-1.132 (0.162)	-1.429 (0.302)	-1.243 (0.219)	-1.172 (0.218)	-1.032 (0.205)
Sectoral expansion		0.214 (0.076)	0.099 (0.084)	0.111 (0.079)	0.117 (0.075)	0.652 (0.155)
Industries with declining labor share Relative specialization in routine jobs			-0.416 (0.404) 0.060 (0.059)			
R-squared	0.62	0.66	0.70	0.77	0.79	0.81
Observations	500	500	500	500	500	500
Broad group dummies Regional shares Broad sectoral shares				\checkmark	\checkmark	\checkmark \checkmark

Technology or Rising Markups?

Industry correlates suggest technology important

- task displacement correlates with rising tfp and quantities, lower prices
- within manufacturing, task displacement correlates with automation and offshoring
- labor share declines mostly in manufacturing and industry

- Reduced-form evidence
- as labor share declines, labor demand falling for routine workers but not for others
 - Takeaway markups might be important, but one needs a richer theory of their relationship to tfp, technology and demand for skills

Reduced-form evidence: Task displacement vs SBTC

	Dependent variable:	change log hourly	/ wages 1980-2016
	(1)	(2)	(3)
Education: highschool	0.005	0.017	0.027
	(0.032)	(0.028)	(0.028)
Education: some college	0.032	-0.047	-0.054
	(0.035)	(0.037)	(0.039)
Education: full college	0.247	0.030	-0.045
	(0.029)	(0.053)	(0.060)
Education: more than college	0.395	0.142	0.016
	(0.027)	(0.056)	(0.074)
Gender: women	0.144	0.104	0.070
	(0.026)	(0.022)	(0.023)
Task displacement		-1.174	-1.032
		(0.195)	(0.205)
Sectoral expansion			0.652
Sectoral expansion			(0.155)
R-squared	0.68	0.76	0.81
Observations	500	500	500
Additional covariates:			
Regional and broad sectoral shares			\checkmark

Reduced-form evidence: Robustness—CES case

		Dependent variable: change log hourly wages 1980-2016				
	$\sigma = 0.7$	$\sigma = 0.8$	$\sigma = 0.9$	$\sigma = 1$	$\sigma = 1.1$	$\sigma = 1.2$
	(1)	(2)	(3)	(4)		
Education: highschool	0.045	0.041	0.035	0.027	0.016	0.004
	(0.028)	(0.029)	(0.029)	(0.028)	(0.028)	(0.027)
Education: some college	-0.004	-0.019	-0.036	-0.054	-0.072	-0.088
	(0.033)	(0.035)	(0.037)	(0.039)	(0.040)	(0.040)
Education: full college	0.033	0.008	-0.019	-0.045	-0.067	-0.082
	(0.054)	(0.056)	(0.058)	(0.060)	(0.060)	(0.059)
Education: more than college	0.113	0.082	0.049	0.016	-0.013	-0.033
	(0.068)	(0.070)	(0.072)	(0.074)	(0.074)	(0.073)
Gender: women	0.144	0.124	0.099	0.070	0.038	0.007
	(0.020)	(0.020)	(0.021)	(0.023)	(0.027)	(0.030)
Task displacement	-0.736	-0.841	-0.943	-1.032	-1.095	-1.120
	(0.181)	(0.192)	(0.201)	(0.205)	(0.203)	(0.194)
	0.542	0.566	0.603	0.652	0.711	0.775
Sectoral expansion	(0.164)	(0.161)	(0.158)	(0.155)	(0.153)	(0.153)
R-squared	0.70	0.80	0.81	0.81	0.81	0.82
Observations	500	0.00 E00	500	500	500	0.02 E00
Observations	500	500	500	500	500	500
Additional covariates:						
Region and broad sector shares	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Outline of the Talk

- 1. Task model with multiple skills
 - effect of technology on wages and tfp
 - model with multiple industries to connect with data
- 2. Measuring task displacement
 - and reduced-form evidence
- 3. Quantifying effect of task displacement on wages and tfp

Proposition (Counterfactuals)

The effect of task displacement by automation and offshoring on wages, industry prices and GDP is given by the solution to the following system of linear equations:

$$d\ln w_g = \frac{1}{\lambda + \varrho_g} \cdot d\ln y + \frac{1}{\lambda} \Theta_g \cdot d\ln \zeta + \frac{1}{\lambda} \Theta_g \cdot d\ln \Gamma_L^{disp}$$

$$d\ln \zeta_g = \sum_i s_{gi}^L \cdot \left(d\ln s_i^Y(p, y) + (\lambda - 1) \cdot d\ln p_i \right),$$

$$d\ln p_i = s_i^L \cdot \sum_g s_{ig}^L \cdot \left(d\ln w_g + d\ln \Gamma_{gi}^{disp} \cdot \pi_{gi} \right)$$

$$d\ln tfp = -\sum_g s_g^L \sum_i s_{gi}^L \cdot d\ln \Gamma_{gi}^{disp} \cdot \pi_{gi}$$

$$d\ln y = \frac{1}{1 - s^K} \cdot \left(\lambda \cdot d\ln tfp - s^K \cdot d\ln s^K \right).$$

Estimating Θ and ϱ : Approach

- Assume ρ_g = ρ ⇒common elast of subs between capital and labor (see Dvorkin–Monge-Naranjo 2019 for approach with dif ρ_g)
- $\beta_{gj} = \frac{1}{\lambda} \cdot \theta_{gj} / s_j^L$ is the per unit ripple effect from *j* to $g \Rightarrow \beta_{gj} = \beta_{jg}$
- Parametric assumption: $heta_{gg} = eta_{\mathrm{own}} \geq 0$ and if g
 eq j

$$eta_{gj} = \sum_{n=1}^N eta_n \cdot \exp(-d(x_{g^n}^n, x_j^n)), ext{ with } eta_n \geq 0,$$

where x_g^n are vectors of industry shares in 1980, occupational shares in 1980, state shares in 1980 and skill level

• Combine labor supply shocks (demographic trends), sectoral shifts (Bartik measure), and task displacement into a single shock to estimate β_{own} and $\beta_n \Rightarrow \widehat{\Theta}$

Estimating Θ and ϱ : Results and Parametrization

- evidence of ripple effects among:
 - groups in similar industries
 - groups in similar occupations
 - groups in similar states
 - groups of similar wages and years of education
- own effects sizable and Θ has dominant diagonal
- estimate for $\lambda + \varrho = 0.9$ close to 1
- Next: CES industry structure with $\eta = 0.2; \ \lambda = 0.5; \ \pi = 30\%$

Estimates of Θ and ϱ				
Effect	Estimate of $\frac{1}{\lambda}\theta$	Significant?		
Own effect	0.73	[t=19.27]		
Industry	0.09	[t=1.22]		
Geography	0.17	[t=2.24]		
Occupation	0.05	[t=2.23]		
Wages and Education	0.06	[t=3.33]		
$\lambda + arrho$ (or σ)	0.91			

Quantitative Implications: Effects on Wages

Figure: Effect on wages (not including rise in GDP).

Quantitative Implications: Combined Effect on Wages

Quantitative Implications: Groups with Declining Wages

Quantitative Implications: Summary

Implications of measured task displacement via automation and offshoring:

- Increase in GDP of 20% and average wage of 5%
- TFP increase of 3.3%
- Explains 57% of observed wage changes across groups (48% ignoring industry price changes)
- Explains a third of wage declines below 5% and half of wage declines below 10%
- Explains a third of the rise in college premium and half of rise in postcollege premium
- Explains 0.6 pp decline in share of manufacturing in GDP (1/10th of decline since 1987)

Concluding Remarks:

- technologies that favor displacement of labor via automation or offshoring can have large distributional consequences and bring small productivity gains
- we made this point theoretically in a task-framework, via reduced-form evidence, and through a preliminary quantitative exercise

Work to do:

- 1. Much more to do regarding estimation of Θ_{\cdots}
- 2. Markups? direct measures of technology and estimation
- 3. Factor-augmenting technologies: bound effect on labor share
- 4. Repercussions for within-group inequality?

Appendix Model: Formal Definition of Equilibrium • back to model

Let \mathcal{T}_g denote the set of tasks allocated to labor of type g and \mathcal{T}_k the set of tasks allocated to capital.

Definition (Market equilibrium)

Given a supply of labor $\ell = (\ell_1, \ell_2, \dots, \ell_G)$, a market equilibrium is given by wages $w = (w_1, w_2, \dots, w_G)$, capital production decisions $\{k(x)\}$, and an allocation of tasks to factors $\{\mathcal{T}_k, \mathcal{T}_1, \dots, \mathcal{T}_G\}$, such that:

- the allocation of tasks to factors minimizes the total cost of producing each task;
- the choice of capital maximizes net output;
- the market for capital and labor clears.

Why Focus on Task-Displacing Technologies?

Rhetorical point - compelling way of thinking about automation and offshoring - some tasks can now be automated or offshored: others not

2. **Mechanism** affecting wages

- task-displacing techs directly change task-share boundaries
- large distributional impact that is independent of elast. of subs.
- effect of other techs mediated by $\lambda, \lambda + \varrho_g \lessgtr 1$
- 3. **Productivity** implications
- task-displacing techs can have small effects on tfp if $\pi_g pprox 0$
- other techs: prod gains and distributional effects coupled
 example: bounds on productivity
 example: SBTC
- 4. Factor shares implications - direct and intuitive effect on labor share that is independent of the elasticities of substitution $\lambda + \rho_g$

Example I: Bounding Effects on Wage Inequality • back to main

Large *G* and uniform rise in inequality • observed inequality $d \ln w_g = m_0 + \frac{1}{\lambda} \Theta_g \cdot m_g$, where $m_g \sim U[0, 2\delta]$

 how big is tech change required to explain this rise in inequality? (assuming no technological regress)

Example I: Bounding Effects on Wage Inequality Deck to main

Large *G* and uniform rise in inequality • observed inequality $d \ln w_g = m_0 + \frac{1}{\lambda} \Theta_g \cdot m_g$, where $m_g \sim U[0, 2\delta]$

 how big is tech change required to explain this rise in inequality? (assuming no technological regress)

Via task deepening

- $d \ln \mathrm{tfp} \geq \delta \cdot s^L / |1 \lambda|$
- effects through $\lambda \in (0.5, 1) \Rightarrow$ subs across tasks

Example I: Bounding Effects on Wage Inequality • back to main

Large G and uniform rise in inequality

> Via task deepening

Via laboraugmenting technologies

- observed inequality $d\ln w_g = m_0 + rac{1}{\lambda} \Theta_g \cdot m_g$, where $m_g \sim U[0, 2\delta]$
 - how big is tech change required to explain this rise in inequality? (assuming no technological regress)
 - $d \ln \mathrm{tfp} \geq \delta \cdot \frac{s^L}{|1 \lambda|}$
 - effects through $\lambda \in (0.5, 1) \Rightarrow$ subs across tasks

•
$$d \ln \mathrm{tfp} \geq \delta \cdot \sum_{g} s_{g}^{L} / |\sigma_{g} - 1|$$
, where $\sigma_{g} \geq \lambda$

• effects through $\sigma_g \in (1,2) \Rightarrow$ subs across tasks and within marginal task

Example I: Bounding Effects on Wage Inequality • back to main

Large G and uniform rise in inequality

> Via task deepening

Via laboraugmenting technologies

Via task displacement

- observed inequality $d \ln w_g = m_0 + rac{1}{\lambda} \Theta_g \cdot m_g$, where $m_g \sim U[0, 2\delta]$
 - how big is tech change required to explain this rise in inequality? (assuming no technological regress)
- $d \ln \mathrm{tfp} \geq \delta \cdot \frac{s^L}{|1 \lambda|}$
- effects through $\lambda \in (0.5, 1) \Rightarrow$ subs across tasks

•
$$d \ln \mathrm{tfp} \geq \delta \cdot \sum_{g} s_{g}^{L} / |\sigma_{g} - 1|$$
, where $\sigma_{g} \geq \lambda$

• effects through $\sigma_g \in (1,2)$ \Rightarrow subs across tasks and within marginal task

•
$$d \ln \mathrm{tfp} \geq \delta \cdot \sum_{g} s_{g}^{L} \cdot \pi_{g}$$
, where $\pi_{g} \geq 0$

• effects through changes in productivity at marginal tasks, π_g

Example II: Unpacking SBTC • back to main

Canonical model

$$d\ln\frac{w_H}{w_L} = -\frac{1}{\sigma_L} \cdot d\ln\frac{H}{L} + \frac{\sigma_L - 1}{\sigma_L} \cdot d\ln\frac{A_H}{A_L}$$

Effects on TFP $d \ln \operatorname{tfp} = s^H \cdot d \ln A_H + s^L \cdot d \ln A_L$

Tight link btn inequality, productivity, and real wages

- estimate of $\sigma_L = 1.5$
- explains skill premium with $d \ln A_H \ge d \ln A_H / A_L = 10\%$ p.a.
- but this implies $d \ln tfp \ge 2-3\%$ p.a (vs 1–1.2% in data)
- and $d \ln w_L \ge 1.3 2\%$ p.a (vs -0.2-0.2% in data)

Example II: Unpacking SBTC • back to main

Task model

$$d\ln\frac{w_H}{w_L} = -\frac{1}{\sigma_L} \cdot d\ln\frac{H}{L} + \frac{\sigma_L - 1}{\sigma_L} \cdot d\ln\frac{A_H}{A_L} - \frac{1}{\sigma} \cdot d\ln\Gamma_L^{\text{disp}},$$

$$\sigma_L := (\theta_{HH} - \theta_{LH})^{-1} = (\theta_{LL} - \theta_{HL})^{-1} > \lambda$$

$$d\ln \mathrm{tfp} = s^{H} \cdot d\ln A_{H} + s^{L} \cdot d\ln A_{L} - s^{L} d\ln \Gamma_{L}^{\mathrm{disp}} \cdot \pi_{L}$$

Decoupling of inequality, productivity, and real wages

- suppose $\sigma_L = 1.5$ and $\pi_L = 30\%$
- one can explain skill premium with $d \ln \Gamma_l^{\text{disp}} = -4.5\%$ p.a.
- this implies $d \ln t f p = 0.45\%$ p.a (vs 1–1.2% in data)
- and $d \ln w_L = -0.55\%$ p.a (vs -0.2–0.2% in data)