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Prediction Policy Problems†

By Jon Kleinberg, Jens Ludwig, Sendhil Mullainathan, and Ziad Obermeyer*

Empirical policy research often focuses on 
causal inference. Since policy choices seem to 
depend on understanding the counterfactual—
what happens with and without a policy—this 
tight link of causality and policy seems natural. 
While this link holds in many cases, we argue 
that there are also many policy applications 
where causal inference is not central, or even 
necessary.

Consider two toy examples. One policymaker 
facing a drought must decide whether to invest 
in a rain dance to increase the chance of rain. 
Another seeing clouds must decide whether to 
take an umbrella to work to avoid getting wet on 
the way home. Both decisions could benefit from 
an empirical study of rain. But each has differ-
ent requirements of the estimator. One requires 
causality: Do rain dances cause rain? The other 
does not, needing only prediction: Is the chance 
of rain high enough to merit an umbrella? We 
often focus on rain dance–like policy problems. 
But there are also many umbrella-like policy 
problems. Not only are these prediction prob-
lems neglected, machine learning can help us 
solve them more effectively.

In this paper, we (i) provide a simple frame-
work that clarifies the distinction between 

causation and prediction; (ii) explain how 
machine learning adds value over traditional 
regression approaches in solving prediction 
problems; (iii) provide an empirical example 
from health policy to illustrate how improved 
predictions can generate large social impact; 
(iv) illustrate how “umbrella” problems are 
common and important in many important pol-
icy domains; and (v) argue that solving these 
problems produces not just policy impact but 
also theoretical and economic insights.1

I.  Prediction and Causation

Let ​Y​ be an outcome variable (such as rain) 
which depends in an unknown way on a set of 
variables ​​X​ 0​​​ and ​X​. A policymaker must decide 
on ​​X​ 0​​​ (e.g., an umbrella or rain dance) in order to 
maximize a (known) payoff function ​π(​X​ 0​​, Y )​.  
Our decision of ​​X​ 0​​​ depends on the derivative

​​ 
dπ(​X​ 0​​, Y ) ______ 

d​X​ 0​​
  ​​  =  ​​ ∂ π ___ ∂ ​X​ 0​​

 ​​ ​​  ​(Y )   ⏟
​​ 

prediction

​​​  +  ​​ ∂ π ___ ∂ Y ​​ ​​  ​​ ∂ Y ____ ∂ ​X​ 0​​
 ​ 

 
 

⏟
​​ 

causation

​​​.

Empirical work can help estimate the 
two unknowns in this equation: ​​ ∂ Y

 ___ ∂ ​X​ 0​​
 ​​ and 

​​ ∂ π ___ ∂ ​X​ 0​​
 ​​. Estimating ​​ ∂ Y

 ___ ∂ ​X​ 0​​
 ​​ requires causal inference: 

answering how much does ​​X​ 0​​​ affect ​Y​?

The other term,  ​​ ∂ π ___ ∂ ​X​ 0​​
 ​​  , is unknown for a differ-

ent reason. We know the payoff function, but 
since its value must be evaluated at ​Y​ , knowing 
the exact value of ​​ ∂ π ___ ∂ ​X​ 0​​

 ​​ requires a prediction ​Y​. 

We know how much utility umbrellas provide 
only once we know the level of rain.

Choosing ​​X​ 0​​​ therefore requires solving both 
causation and prediction problems. Assume 

1 A longer version of this paper (Kleinberg, Ludwig, 
Mullainathan, and Obermeyer 2015) fleshes out each of 
these points, providing greater detail on the model, the 
empirical work and a more thorough summary of machine 
learning. 
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away one of these terms—place an exclusion 
restriction—and only one problem remains. 
Rain dances are a pure causal inference problem 
because rain dances have no direct effect on pay-
offs ​​ ∂ π ___ ∂ ​X​ 0​​

 ​  =  0​. Umbrellas are a pure prediction 

problem because umbrellas have no direct effect 

on rain ​​ ∂ Y ___ ∂ ​X​ 0​​
 ​  =  0​.

This derivative also illustrates two key fea-
tures of prediction problems. First, the need for 
prediction arises exactly because ​​ ∂ π ___ ∂ ​X​ 0​​

 ​​ depends 

on ​Y​. Prediction is necessary only because the 
benefit of an umbrella depends on rain. As we 
illustrate in the final section, this kind of depen-
dency is common for many important policy 
problems. Second, because only ​​Y ˆ ​​ enters the 
decision, prediction problems only require low 
error in ​​Y ˆ ​​; they do not require the coefficients to 
be unbiased or causal.

II.  Machine Learning

Standard empirical techniques are not opti-
mized for prediction problems because they 
focus on unbiasedness. Ordinary least squares 
(OLS), for example, is only the best linear unbi-
ased estimator. To see how it can lead to poor pre-
dictions, consider a two variable example where 
OLS estimation produced ​​​β ˆ ​​ 1​​  =  1 ± 0.001​ 
and ​​​β ˆ ​​ 2​​  =  4 ± 10​ , suggesting a predictor of ​​
x​ 1​​ + 4​x​ 2​​​. But given the noise in ​​​β ˆ ​​ 2​​​ , for pre-
diction purposes one would be tempted to 
place a smaller (possibly ​0​) coefficient on ​​x​ 2​​​. 
Introducing this bias could improve prediction 
by removing noise.

This intuition holds more generally. Suppose 
we are given a dataset ​D​ of ​n​ points ​(​y​i​​, ​x​ i​​) ∼ G​. 
We must use this data to pick a function ​​f ̂ ​ ∈ ​ 
so as to predict the ​y​ value of a new data point ​
(y, x)  ∼  G​. The goal is to minimize a loss 
function, which for simplicity we take to be 
​(y − ​f ̂ ​ ​(x))​​ 2​​.

OLS minimizes in-sample error, choosing 
from ​​​ lin​​​ , the set of linear estimators:

	 ​​​f ̂ ​​ OLS​​  =  ​arg  min​ 
​f​ β​​∈​​ lin​​

​ ​ ​ ∑ 
i=1

​ 
n
  ​​(​y​i​​ − f  (​x​ i​​)​)​​ 2​​,

but for prediction we are not interested in doing 
well in sample: we would like to do well out of 
sample. Ensuring zero bias in-sample creates 

problems out of sample. To see this, consider the 
mean squared error at the new point ​x​ , ​MSE(x) 
=  ​E​ D​​[​( ​f ̂ ​(x) − y)​​ 2​]​. This can be decomposed as

​​​​E​ D​​[​(  ​f ̂ ​(x) − ​E​ D​​[​​y ̂ ​​ 0​​])​​ 
2
​] 

 
 ​​  

Variance

​  ​  +  ​​​(​E​ D​​[​​y ̂ ​​ 0​​] − y)​​ 2​ 
 
 ​​ 

Bia​s​​ 2​

​  ​​ .

Because the ​f​ varies from sample to sample, it 
produces variance (the first term). This must be 
traded off against bias (the second term). By 
ensuring zero bias, OLS allows no trade-off.

Machine learning techniques were developed 
specifically to maximize prediction perfor-
mance by providing an empirical way to make 
this bias-variance trade-off (Hastie, Tibshirani, 
and Friedman 2009 provide a useful overview). 
Instead of minimizing only in-sample error, ML 
techniques minimize:

​​​f ̂ ​​ ML​​  =  ​arg  min​ 
f∈

​  ​ ​ ∑ 
i=1

​ 
n
  ​​​(​y​i​​ − f (​x​ i​​))​​ 2​ + λR( f ).​

Here ​R( f   )​ is a regularizer that penalizes func-
tions that create variance. It is constructed such 
that the set of functions ​​​ c​​ = {  f  | R( f   ) ≤ c |}​ 
create more variable predictions as ​c​ increases. 
For linear models, larger coefficients allow more 
variable predictions, so a natural regularizer is ​
R( ​f​ β​​) = ǁ β​ǁ​  ​ 

d​​ , which is the lasso and ridge esti-
mators for ​d  =  1​ and ​2​ respectively. In effect, 
this minimization now explicitly includes 
a bias (in-sample error) and variance term 
(​R( f  )​), where ​λ​ can be thought of as the price 
at which we trade off variance to bias. OLS is a 
special case where we put an infinite (relative) 
price on bias ​​(​ 1 __ λ ​ = ∞)​​.

A key insight of machine learning is that 
this price ​λ​ can be chosen using the data itself. 
Imagine we split the data into ​f​ subsets (often 
called “folds”). For a set of ​λ​ , we estimate the 
algorithm on ​f − 1​ of the folds and then see 
which value of ​λ​ produces the best prediction 
in the ​f  th​ fold. This cross-validation procedure 
effectively simulates the bias-variance trade-off 
by creating a way to see which ​λ​ does best “out 
of sample.”

These two insights—regularization and 
empirical choice of the regularization penalty—
together also change the kinds of predictors we 
can consider. First, they allow for “wide” data, to 
predict even when we have more variables than 
data points. For example, researchers using lan-
guage data often have ten or a hundred times as 
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many variables as data. Second, this allows for far 
more flexible functional forms. One can include 
many higher order interaction terms or use tech-
niques such as decision trees which by construc-
tion allow for a high degree of interactivity.

Machine learning techniques are in one sense 
not new: they are a natural offshoot of non-para-
metric statistics. But they provide a disciplined 
way to predict ​​y ̂ ​​ which (i) uses the data itself to 
decide how to make the bias-variance trade-off 
and (ii) allows for search over a very rich set 
of variables and functional forms. But every-
thing comes at a cost: one must always keep in 
mind that because they are tuned for ​​y ̂ ​​ they do 
not (without many other assumptions) give very 
useful guarantees for ​​β ˆ ​​ .

III.  Illustrative Application

Osteoarthritis (joint pain and stiffness) is a 
common and painful chronic condition among 
the elderly. Replacement of the affected joints, 
most commonly hips and knees, provide relief 
each year to around ​500, 000​ Medicare benefi-
ciaries in the United States. The medical benefits ​
B​ are well understood: surgery improves quality 
of life over the patient’s remaining life expec-
tancy ​Y​. The costs ​C​ are both monetary (roughly ​
$15, 000​ calculated using 2010 claims data) and 
nonmonetary: surgeries are painful and recovery 
takes time, with significant disability persisting 
months afterwards. The benefits accrue over 
time, so surgery only makes sense if someone 
lives long enough to enjoy them; joint replace-
ment for someone who dies soon afterward is 
futile—a waste of money and an unnecessary 
painful imposition on the last few months of life.

The payoff to surgery depends on (eventual) 
mortality, creating a pure prediction problem. 
Put differently, the policy challenge is: can we 
predict which surgeries will be futile using only 
data available at the time of the surgery? This 
would allow us save both dollars and disutility 
for patients.

To study this example we drew a 20 percent  
sample of 7.4 million Medicare beneficiaries, 
98,090 (1.3 percent) of which had a claim for 
hip or knee replacement surgery in 2010.2 Of 

2 We restricted to fee-for-service beneficiaries with full 
claims data living in the continental United States, and 
exclude any with joint replacement in 2009. 

these, 1.4 percent die in the month after surgery, 
potentially from complications of the surgery 
itself, and 4.2 percent die in the 1–12 months 
after surgery. This low rate—roughly the aver-
age annual mortality rate for all Medicare recip-
ients—seems to suggest on average surgeries are 
not futile. But the average is misleading because 
the policy decision is really about whether sur-
geries on the predictably riskiest patients were 
futile.

To answer this, we predicted mortality in the 
1–12 months after hip or knee replacement using 
lasso (see Kleinberg, Ludwig, Mullainathan, 
and Obermeyer 2015 for full details).3 We used 
65,395 observations to fit the models and mea-
sured performance on the remaining 32,695 
observations. ​3,305​ independent variables were 
constructed using Medicare claims dated prior 
to joint replacement, including patient demo-
graphics (age, sex, geography); co-morbidities, 
symptoms, injuries, acute conditions, and their 
evolution over time; and health-care utilization.

These predictions give us a way to isolate 
predictably futile surgeries. In Table 1, we sort 
beneficiaries by predicted mortality risk, show-
ing risk for the riskiest ​1 percent​ , ​2 percent​, and 
so on, which is highly and predictably concen-
trated: for example, the ​1 percent​ riskiest have a ​
56 percent​ mortality rate, and account for fully ​
10 percent​ of all futile surgeries.4

Imagine the dollars from these futile surgeries 
could instead have been spent on other benefi-
ciaries who would benefit more. To understand 
the potential savings, we simulated the effect of 
substituting these riskiest recipients with other 

3 This interval reflects two choices. (i) We excluded 
deaths in the first month after surgery to focus on prediction 
of ​Y​ rather than the short-term causal effect of ​​X​ 0​​​ on ​Y​ (i.e., 
operative risk, post-surgical complications). (ii) We chose a 
threshold of ​12​ months based on studies showing substantial 
remaining disability six months after surgery, but improved 
clinical outcomes at the 12-month mark (Hamel et al. 2008). 
Alternatively, a “break-even” threshold could be derived 
empirically. 

4 One might wonder whether these riskier patients may 
also be the ones who also stood to benefit the most from the 
procedure, potentially justifying surgery. However, variables 
that should correlate with surgery benefit (number of physi-
cian visits for hip or knee pain, physical therapy, and thera-
peutic joint injections) do not vary significantly by predicted 
mortality risk. In practice, this exercise is approximate, since 
some replacements may not have been elective, e.g., for frac-
ture or other acute events. We present alternative specifica-
tions in our more detailed paper (footnote 3). 
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beneficiaries who might have benefited from 
joint replacement procedures under Medicare 
eligibility guidelines, but did not receive them. 
To be conservative, rather than comparing to the 
lowest-risk eligibles, we draw from the median 
predicted risk distribution of these eligibles, and 
simulate effects of this replacement in columns 
3 and 4. Replacing the riskiest ​10​ percent with 
lower-risk eligibles would avert 10,512 futile 
surgeries and reallocate the ​158​ million per year 
(if applied to the entire Medicare population) 
to people who benefit from the surgery, at the 
cost of postponing joint replacement for 38,533 
of the riskiest beneficiaries who would not have 
died.5

5 The existence of a large pool of low-risk beneficiaries 
potentially eligible for replacement argues against moral 

IV.  Prediction Problems are Common 
and Important

Our empirical application above highlights 
how improved prediction using machine learn-
ing techniques can have large policy impacts 
(much like solving causal inference problems 
has had). There are many other examples as 
well. In the criminal justice system, for instance, 
judges have to decide whether to detain or 
release arrestees as they await adjudication of 
their case—a decision that depends on a predic-
tion about the arrestee’s probability of commit-
ting a crime. Kleinberg, Lakkaraju, Leskovec, 
Ludwig, and Mullainathan (2015) show that 
machine learning techniques can dramatically 
improve upon judges’ predictions and substan-
tially reduce the amount of crime.

Other illustrative examples include: (i) in 
education, predicting which teacher will have 
the greatest value added (Rockoff et al. 2011); 
(ii) in labor market policy, predicting unem-
ployment spell length to help workers decide on 
savings rates and job search strategies; (iii) in 
regulation, targeting health inspections (Kang et 
al. 2013); (iv) in social policy, predicting highest 
risk youth for targeting interventions (Chandler, 
Levitt, and List 2011); and (v) in the finance 
sector, lenders identifying the underlying cred-
it-worthiness of potential borrowers.

Even this small set of examples are biased 
by what we imagine to be predictable. Some 
things that seem unpredictable may actually be 
more predictable than we think using the right 
empirical tools. As we expand our notion of 
what is predictable, new applications will arise.

Prediction problems can also generate the-
oretical insights, for example by changing our 
understanding of an area. Our empirical applica-
tion above shows that low-value care is not due 
just to the standard moral-hazard explanation of 
health economics but also to mis-prediction. The 
pattern of discrepancies between human and 
algorithmic decisions can serve as a behavioral 
diagnostic about decision-making (Kleinberg, 
Lakkaraju, Leskovec, Ludwig, and Mullainathan 
2015). And prediction can shed light on other 
theoretical issues. For example, understanding 

hazard as an explanation for these findings, since physicians 
who predicted well acting consistent with moral hazard 
would first exhaust the low-risk pool of patients before oper-
ating on higher-risk patients. 

Table 1—Riskiest Joint Replacements

Predicted Observed Futile Futile
mortality mortality procedures spending
percentile rate averted ($ mill.)

1 0.435   1,984   30
(0.028)

2 0.422   3,844   58
(0.028)

5 0.358   8,061 121
(0.027)

10 0.242 10,512 158
(0.024)

20 0.152 12,317 185
(0.020)

30 0.136 16,151 242
(0.019)

Notes: We predict 1–12 month mortality using an ​​L​ 1​​​ regu-
larized logistic regression trained on ​65,395​ Medicare bene-
ficiaries undergoing joint replacement in ​2010​ , using ​3,305​ 
claims-based variables and ​51​ state indicators. ​λ​ was tuned 
using ten-fold cross-validation in the training set. In columns 
1 and 2 we sort a hold-out set of ​32, 695​ by predicted risk 
into percentiles (column 1) and calculate actual 1–12 month 
mortality (column 2). Columns 3 and 4 show results of a 
simulation exercise: we identify a population of eligibles 
(using published Medicare guidelines: those who had multi-
ple visits to physicians for osteoarthritis and multiple claims 
for physical therapy or therapeutic joint injections) who did 
not receive replacement and assign them a predicted risk. 
We then substitute the high risk surgeries in each row with 
patients from this eligible distribution for replacement, start-
ing at median predicted risk. Column 3 counts the futile pro-
cedures averted (i.e., replaced with non-futile procedures) 
and column 4 quantifies the dollars saved in millions by this 
substitution.
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how people change their behavior as regulators 
or police change the algorithms they use to tar-
get monitoring effort can shed light on the game 
theory of enforcement.

Prediction policy problems are, in sum, 
important, common, and interesting, and deserve 
much more attention from economists than they 
have received. New advances in machine learn-
ing can be adapted by economists to work on 
these problems, but will require a substantial 
amount of both theoretical and practical reori-
entation to yield benefits for those currently 
engaged in policy studies.
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