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The Canonical Model

Elegantly, powerfully operationalizes supply and demand for skills

• A formalization of Tinbergen’s “Education Race” analogy

• Two distinct skill groups that perform two different and imperfectly

substitutable tasks

Model is a theoretical and empirical success

• Katz and Murphy ’92

• Autor, Katz, Krueger ’98

• Card and Lemieux ’01

• Acemolgu, Autor and Lyle ’04

• Goldin and Katz ’08

• Carneiro and Lee ’11

But its limitations are also apparent
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Wage Inequality Rises Less than Predicted by the Canonical
Model

Acemoglu and Autor 2011
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Declining Log Real Wages Among Non-College Workers after
1980 – Despite Falling Relative Supply

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1963 1972 1981 1990 1999 2008 2017

A. Men

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1963 1972 1981 1990 1999 2008 2017

B. Women

High School Dropout High School Graduate Some College
Bachelor's Degree Graduate Degree

Autor 2019
Autor: Young Scholars in AI Skills, Tasks, Technologies September 23, 2020 (Provisional draft) 5 / 86



Occupational Polarization, 1970 – 2016: Percent Growth in
Employment by Occupational Category

Autor 2019
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Changes in Employment Shares 1970 – 2016 by Broad
Occupational Category: Non-College and College Workers

Autor 2019
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Occupational Polarization in Sixteen European Union
Countries, 1993 - 2010
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Labor’s Falling Share of National Income

Karabarbounis and Neiman, 2014
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FIGURE II

Declining Labor Share for the Largest Countries

The figure shows the labor share and its linear trend for the four largest economies in the world from 1975.
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Labor’s Falling Share of National Income

Autor, Dorn, Katz, Patterson, & Van Reenen Forthcoming
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A Model of Skills, Tasks and Technologies

1 Explicit distinction between skills and tasks
• Tasks—Unit of work activity that produces output
• Skill—Worker’s endowment of capabilities for performing various

tasks

2 Allow for comparative advantage among workers and machines

in accomplishing tasks
• Assignment of workers to tasks is endogenous (as in Roy, 1951)

3 Allow for multiple sources of competing task ‘supplies’
• Workers of different skill levels
• Machines—Task can be routinized/automated
• Trade/offshoring—Tasks can be performed elsewhere

4 Trade and automation
• Substitution of machines or foreign workers for labor, can lead to the

displacement of workers from some tasks
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Task Framework: Motivation

Framework builds on

• Autor, Levy, Murnane (2003)

• Grossman, Rossi-Hansberg (2008)

• Acemoglu and Autor (2011)

• Acemoglu and Restrepo (2016, 2017, 2018a - 2020z3)

1 First model in this lecture: Acemoglu and Restrepo (2018),

“Artificial Intelligence, Automation, and Work”

2 Second model in this lecture: Acemoglu-Autor (2011), “Skills,

Task and Technologies”
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Task Framework: Model

Aggregate output Y

• Produced by combining the services, y(x), of a unit measure of

tasks x ∈ [N − 1,N]:

lnY =

∫ N

N−1
ln y(x)dx ,

• Tasks run between N − 1 and N allows for changes in range of tasks

• Notice that this is a Cobb-Douglas structure with identical factor

shares for services of each task
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Task Framework: Model

Tasks produced by human labor, `(x), or by machines, m(x)

• Tasks above I are not technologically automated and must be

produced by labor:

y(x) =

{
γL(x)`(x) + γM(x)m(x) if x ∈ [N − 1, I ]

γL(x)`(x) if x ∈ (I ,N].

• γL(x) =productivity of labor in task x , increasing in x

• γM(x) =productivity of machines in automated tasks

• Comparative advantage: γL(x)/γM(x) is increasing in x

• L workers and K units of capital (machines) supplied inelastically
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Task Framework: Aggregate Output

Simplifying assumption

γL(N)

γM(N − 1)
>

W

R
>

γL(I )

γM(I )
(A1)

• where R is the capital rental rate

• Implies that tasks below I are produced with machines/offshoring

Assumption says that new tasks (rising N) raise output

• Wage ratio not so high that new task creation lowers output

• Not so low so that technologically automated tasks are still

performed by labor
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Task Framework: Aggregate Output

Aggregate output takes the form

Y =Θ

(
K

I − N + 1

)I−N+1(
L

N − I

)N−I
,

Θ = exp

(∫ I

N−1
ln γM(x)dx +

∫ N

I

ln γL(x)dx

)

• Notice that this production function is pure Cobb-Douglas with

non-constant shares

• Θ = Solow residual: All technological ∆ generates Hicks-neutral

TFP gain ∆Θ
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Task Framework: The Demand for Labor

The demand for labor is given by

W = (N − I )
Y

L
(1)

• This expression is equal to labor share of total output, (N − I ),

times output Y divided by number of workers L

• The share of labor in national income is given by

sL =
WL

Y
= N − I

Factor-augmentation, automation and labor share

• Factor-augmenting technical ∆ does not change labor share SL in

this model even though automation (task encroachment) does

• Even if underlying production f’n were CES with σ < 1,

factor-augmenting tech ∆ would have indirect (generally small)

effect on SL, automation would have first-order effect
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Task Framework: Four Forces at Play

1 Automation at the extensive margin – displacement
• Expansion of the set of tasks that are technologically automated or

trade-substituted, I
• Not present in conventional models

2 Automation at the intensive margin – deepening of
automation

• Increases in the productivity of tasks that are already

automated/offshored.
• Corresponds to an increase in the γM(x) function for tasks x < I

3 Labor-augmenting technological advances
• Increases in the function γL(x)
• This is the canonical factor-augmenting model

4 Creation of new tasks
• An increase in N
• A new idea due to Acemoglu-Restrepo ’16 via Jeffrey Lin ’11 ReStat
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Mechanism 1. Extensive Margin Tech ∆: The Displacement
Effect

Automation or trade/offshoring (an increase in I ) generates a

displacement effect

• From equation (1)

d lnW

dI
=

d ln(N − I )

dI︸ ︷︷ ︸
Displacement

effect < 0

+
d ln(Y /L)

dI︸ ︷︷ ︸
Productivity

effect > 0

• The displacement effect implies that wages—marginal product of

labor—can decline, despite the fact that output per worker rises

• Wages necessarily grow by less than output per worker → labor

share falls
dsL
dI

= −1 < 0
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Displacement also Has a Productivity Effect

By reducing the cost of producing a subset of tasks,

automation/trade raises the demand for labor in remaining tasks

• Formally

d ln(Y /L)

dI
= ln

(
W

γL(I )

)
− ln

(
R

γM(I )

)
> 0

• Note that ln [w/γL (I )]− ln [R/γM (I )] is the cost difference btwn

labor and capital/offshoring in the marginal task I
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Displacement also Has a Productivity Effect

The overall impact on labor demand can be written as

d lnW

dI
= − 1

N − I︸ ︷︷ ︸
Displacement

effect < 0

+ ln

(
W

γL(I )

)
− ln

(
R

γM(I )

)

︸ ︷︷ ︸
Productivity

effect > 0

1 Case 1: Productivity effect dominates displacement effect:

γM(I )/R >> γL(I )/W . Productivity jump big enough to overcome

displacement effect

2 Case 1: Displacement effect dominates productivity effect:

γM(I )/R ≈ γL(I )/W . New technologies/trade are so-so
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Displacement also Has a Productivity Effect

Two complementary manifestations of the productivity effect

1 Raising labor demand in non-automated tasks in adopting

sectors

• Uber effect: People take a lot more ‘cab rides’ than they used to

• ATMs raised demand for tellers (Bensen, 2016)

• Automation in weaving increased the price of yarn and the demand

for the complementary task of spinning (Mantoux, 1928)

2 Raising demand for labor in other sectors (not in this model)

• Network effects: productivity improvements in one sector raise

demand in supplier and customer sectors, e.g., rising productivity in

steel production raises steel demand in autos, ore demand in mining

• Walmart effect: Lower prices rise HH’s purchasing power, increasing

spending elsewhere. By reducing food prices, mechanization enriched

consumers who then demanded more non-agricultural goods

(Herrendorf, Rogerson and Valentinyi, 2013)
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Mechanism 2. Intensive Margin Technological ∆: Deepening
of Automation

Initially, a task or process is automated/offshored → Displacement

• Subsequent improvements or cost reductions in already-automated

tasks may raise productivity without further displacement

• Consider an increase in the productivity of machines by

d ln γM(x) = d ln γM > 0 for x < I , with no change in the extensive

margin of automation, I

• Wage impact is

d lnW = d lnY /L = (I − N + 1)d ln γM > 0

• Intensive margin improvements tend to increase labor demand and

wages, further counteracting the displacement effect

• This is a pure capital-skill complementarity
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Intensive margin technological change: Some examples

• Introduction of electric lighting increased operating hours, work

precision, and safety in factories without changing task allocation

• Improvements in tractors make farm workers more efficient without

changing task allocation

• Better auto-assembly robots improve the quality of welds on new

cars (even though robots have been doing the welding for years)
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Intensive Margin Technological Change and Capital Supply

If capital supply fixed, displacement effect on W magnified

• With fixed supply of capital

• Automation at extensive margin increases the demand for capital

• Raises the equilibrium rental rate, R

• “Medium-run”

• Supply of machines expands as well (or more offshore supplies come

online)

• Capital accumulation bolsters the productivity effect by reducing the

cost of machinery

• If capital accumulation fixes R
• Productivity effect dominates the displacement effect—all gains go

to inelastically supplied factor
• See “Robotic Arithmetic” paper by Caselli and Manning in AERi in

2019
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Mechanism 3. Labor Augmenting Technological ∆: The
Canonical Mechanism

• Consider an increase in the productivity of workers by d ln γL(x) > 0

for x > I , with no change in the extensive margin of automation, I

• Wage impact is

d lnW = d lnY /L = (N + 1− I )d ln γL > 0

• This is a a pure factor-augmenting technological change, as in the

Katz-Murphy/Tinbergen model

• This could come from rising education or better management

practices
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Mechanism 4. New Task Creation

Creation of new, labor-using tasks may be counterbalancing force

1 In 19th-century Britain, rapid expansion of new industries and

jobs—engineers, machinists, repairmen, and managers (Landes,

1969, Chandler, 1977, and Mokyr, 1990)

2 In early 20th-century America, agricultural mechanization coincided

with a large increase in employment in new industry and factory jobs

(Olmstead and Rhode, 2001, Rasmussen, 1982)

3 From 1980 to 2010, new tasks and job titles explain non-negligible

share of employment growth (Acemoglu and Restrepo, 2016)

4 In general, new tasks tend to be more skill-intensive—which is both

good and bad news
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New Tasks and the Demand for Labor

• An increase in N—the creation of new tasks—raises

productivity

d lnY /L

dN
= ln

(
R

γM(N − 1)

)
− ln

(
W

γL(N)

)
> 0

which is positive from Assumption A1

• Besides its effect on productivity, new tasks also increase labor

demand and equilibrium wages by creating a reinstatement effect:

d lnW

dN
= ln

(
R

γM(N − 1)

)
− ln

(
W

γL(N)

)

︸ ︷︷ ︸
Productivity

effect > 0

+
1

N − I︸ ︷︷ ︸
Reinstatement

effect > 0

• (Reinstatement effect partially an artifact of unit range of tasks)

Autor: Young Scholars in AI Skills, Tasks, Technologies September 23, 2020 (Provisional draft) 29 / 86



New Tasks and Automation

Creation of new tasks generates additional labor demand, increases

the share of labor in national income

• Total wage effect equals

d lnW =

[
ln

(
R

γM(N − 1)

)
− ln

(
W

γL(N)

)]
dN

+

[
ln

(
W

γL(I )

)
− ln

(
R

γM(I )

)]
dI

+
1

N − I
(dN − dI ),

and also for the labor share, we get

dsL = dN − dI .

• Labor share stable and wages increase 1:1 w/productivity iff new

tasks, N, introduced at same rate as automation, I
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The Endogenous Evolution of New Tasks

Some reasons why new tasks, N, may keep up with automation

• Rapid automation may endogenously generate incentives for firms to

introduce new labor-intensive tasks (Acemoglu and Restrepo, 2016)

• Some automation technology platforms, especially AI, may facilitate

the creation of new tasks

• But it is also possible that we are heading to a future with a lower

range of tasks done by human labor, N − I
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Summary: Four Forces at Play

1 Automation at the extensive margin – displacement
• Expansion of the set of tasks that are technologically automated or

trade-substituted, I
• Not present in conventional models

2 Automation at the intensive margin – deepening of
automation

• Increases in the productivity of tasks that are already

automated/offshored.
• Corresponds to an increase in the γM(x) function for tasks x < I

3 Labor-augmenting technological advances
• Increases in the function γL(x)
• This is the canonical factor-augmenting effect

4 Creation of new tasks
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Some Implications

1 Welfare: Technological change or trade/outsourcing only Pareto

improving in restrictive special cases

2 Task displacement: Automation (or trade) can directly substitute

for labor

3 Disruptive: Process is disruptive – displacement almost inevitable

4 Comparative advantage: Can forecast which tasks will be

displaced by understanding comparative advantage of workers,

machines, foreign suppliers, etc.

5 Complementarity: Automation (or trade) should boost productivity

and wages in tasks not displaced: workers/tasks that are not not

substituted should be complemented

6 Speed of adjustment: Gains are typically diffuse and possibly

slow-moving—demand effects, income effects, capital deepening

7 New task creation: May ‘reinstate’ labor by creating new

labor-using tasks. We know little about this process at present
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A Ricardian Model of Skills, Tasks and Technologies
Production technology: Tasks into goods

• Static environment with a unique final good, Y

• Y produced with continuum of tasks on the unit interval, [0, 1]

• Cobb-Douglas technology mapping tasks the final good:

lnY =

∫ 1

0

ln y(i)di ,

where y (i) is the “service” or production level of task i .

• Price of the final good, Y , is numeraire.
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A Ricardian Model of Skills, Tasks and Technologies
Supply of skills to tasks

Three types of labor: High, Medium and Low

• Fixed, inelastic supply of the three types. Supplies are L, M and H

• We later introduce capital or technology (embedded in machines)

Each task on continuum has production function

y(i) = ALαL (i) l(i) + AMαM (i)m(i)

+ AHαH (i) h(i) + AKαK (i) k(i),

• A terms are factor-augmenting technologies

• αL (i), αM (i) and αH (i) are task productivity schedules

• For example, ALαL (i) is the productivity of low skill workers in task

i , and l (i) is the number of low skill workers allocated task i .
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A Ricardian Model of Skills, Tasks and Technologies

Role of comparative advantage

• All tasks can be performed by low, medium or high skill workers

y(i) = ALαL (i) l(i) + AMαM (i)m(i)

+ AHαH (i) h(i) + AKαK (i) k(i)

But comparative advantage differs {αL (i) , αM (i) , αH (i)}

• Assumption: αL (i) /αM (i) and αM (i) /αH (i) are continuously

differentiable and strictly decreasing

• Higher indices correspond to “more complex” tasks

• In all tasks, H has absolute advantage relative to M, M has abs.

adv. relative to L

• But comparative advantage determines task allocations
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A Ricardian Model of Skills, Tasks and Technologies

Equilibrium objects: Task thresholds, IL, IH

• In any equilibrium there exist IL and IH such that 0 < IL < IH < 1

and for any i < IL, m (i) = h (i) = 0, for any i ∈ (IL, IH),

l (i) = h (i) = 0, and for any i > IH , l(i) = m (i) = 0

Allocation of tasks to skill groups determined by IH , IL

• Tasks i > IH will be performed by high skill workers (Abstract)

• Tasks i < IL will be performed by low skill workers (Manual)

• Middle tasks IL ≤ i ≤ IH will be performed by medium skill workers

(Routine)

Boundaries of these sets are endogenous

• Given skill supplies, firms (equivalently workers) decide which skills

perform which tasks → Substitution of skills across tasks.
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Three equilibrium conditions

1 Law of one price for skills

2 Equal division of labor among tasks within a skill group

3 No arbitrage between tasks
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Three equilibrium conditions: Law of one price for skill

1. Law of one price for skills

• Let p (i) denote the price of services of task i . In equilibrium all

tasks employing L workers must pay them the same wage, wL, and

similarly for H and L:

WL = p(i)ALαL (i) for any i < IL.

WM = p(i)AMαM (i) for any IL < i < IH .

WH = p(i)AHαH (i) for any i > IH .
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Three equilibrium conditions: Law of one price for skill

1. Law of one price for skills

• In equilibrium all tasks employing L workers must pay them the

same wage, wL, and similarly for H and L:

WL = p(i)ALαL (i) for any i < IL.

• This has a convenient implication:
• p(i)αL (i) = p(i ′)αL (i ′) ≡ PL for any i , i ′ < IL

• p(i)αM (i) = p(i ′)αM (i ′) ≡ PM for any IH > i , i ′ > IL

• p(i)αH (i) = p(i ′)αH (i ′) ≡ PH for any i , i ′ > IH
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Three equilibrium conditions: Equal division of labor

2. Equal division of labor among tasks within a skill group

• The Cobb-Douglas technology implies:

p(i)y(i) = p(i ′)y(i ′)

• Noting that

y (i) = ALαL (i) l (i) for any i < IL

PL = p (i)αL (i) for any i < IL

⇒ p (i) y (i) = PLALl (i)

• Substituting

PLALl (i) = PLALl (i ′)

⇒ l (i) = l (i ′) for any i , i ′ < IL
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Three equilibrium conditions: Equal division of labor

2. Equal division of labor among tasks within a skill group

l (i) = l (i ′)

• which implies

l(i) =
L

IL
for any i < IL,

m(i) =
M

IH − IL
for any IH > i > IL,

h (i) =
H

1− IH
for any i > IH .

• Any two tasks performed exclusively by workers of one skill group

use identical amounts of labor, equal to the group’s total labor

supply divided by the fraction of the task continuum performed by

the group.
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Three equilibrium conditions: No arbitrage across skill groups

3. No arbitrage between tasks

• Start with observation that wages equal marginal products:

WL = PLAL = ALp (i)αL (i) for i < IL

WM = PMAM = AMp (i)αM (i) for IL < i < IH

WH = PHAH = AHp (i)αH (i) for i > IH
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Three equilibrium conditions: No arbitrage across skill groups

3. No arbitrage between tasks

• The threshold task IH must be such that it can be profitably

produced using either H or M workers, and similarly for the

threshold task IL:

AHαH (IH)H/ (1− IH) = AMαM (IH)M/ (IH − IL)

AMαM (IL)M/ (IH − IL) = ALαL (IL) L/IL

• Implies

PHAHH/ (1− H) = PMAMM/ (IH − IL)

PMAMM/ (IH − IL) = PLALL/ (IL)
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No Arbitrage Across Skill Groups: Relative Cost of Producing
Marginal Task(s) Rising in Task Threshold(s)'
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Relative Supply and Demand for Skills Across Tasks

1128 Daron Acemoglu and David Autor
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Figure 23 Equilibrium allocation of skills to tasks.

respective factor-augmenting technologies). The left-hand side, on the other hand, can
be interpreted as the eVective demand for high relative to medium skills. The left-hand
side of (29) is shown as the outer curve (on the right) in Fig. 23. It is downward sloping
as a function of IH (for a given level of IL ) since ↵M (IH ) /↵H (IH ) is strictly decreasing
in view of Assumption 1. Similarly, we rewrite (24) as:

IH � IL

IL

↵L (IH )

↵M (IH )
=

AM M
AL L

for given IH , and this expression has the same relative eVective demand and supply
interpretation. Since ↵L (IH ) /↵M (IH ) is strictly decreasing again from Assumption 1,
the left-hand side traces a downward sloping curve as a function of IL (for given IH )
and is shown as the inner (on the left) curve in Fig. 23. Where the outer curve equals
AH H/AM M , as shown on the vertical axis, gives the threshold task IH , and where the
second curve is equal to AM M/AL L gives IL . This picture does not determine the two
thresholds simultaneously as Fig. 22 does, since the dependence of the two curves on
the other threshold is left implicit. Nevertheless, Fig. 23 is helpful in visualizing the
equilibrium because it shows how equilibrium tasks are partitioned between the three
types of skills. We will return to this figure when conducting comparative static exercises.

4.3. Special cases
We now study some special cases that help clarify the workings of the model. Suppose
first that there are no medium skill workers. Assumption 1 in this case simply implies that
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Three equilibrium conditions

3. No arbitrage between skill groups across tasks

PHAHH/ (1− IH) = PMAMM/ (IH − IL)

PMAMM/ (IH − IL) = PLALL/ (IL)

• Substituting

WH = PHAH , WM = PMAM , WL = PLAL

WHH/ (1− H) = WMM/ (IH − IL)

WMM/ (IH − IL) = WLL/ (IL)

⇒ WH

WM
=

(
1− IH
IH − IL

)
L

H
,
WM

WL
=

(
IH − IL

IL

)
L

M
,
WH

WL
=

(
IH
IL

)
L

H
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A Ricardian Model of Skills, Tasks and Technologies

• These three conditions [law of one price, equal shares, no arbitrage]

imply that relative wages are solely a function of labor supplies and

task thresholds

wJ = wJ [IH , IL|H,M, L,AH ,AM ,AL, αH (·) , αM (·) , αL (·)] for

J ∈ [H,M, L]:

wH

wM
=

(
1− IH
IH − IL

)(
H

M

)−1
,

wM

wL
=

(
IH − IL

IL

)(
M

L

)−1

• So, labor supplies L, M, H plus compare adv. α (L) , α (M) , α (L)

determine task allocation, IL and IH , and hence wages.

• It’s that simple!
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Canonical skill-biased technical change case – rising AH

(relative to AM ,AL)

1 A rise in AH (SBTC)

2 A rise in high-skilled labor supply

3 Analogous comparative statics for rise in AL or AH

4 What about a rise in AM or M on WH/WL?
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The response of task location to technology and skill supplies

• An increase in the supply of H labor or an H-augmenting

technical change AH

1 Own task share dIH
d ln AH

= dIH
d lnH

< 0

2 L task share: dIL
d ln AH

= dIL
d lnH

< 0

3 M task share: d(IH−IL)
d ln AH

= d(IH−IL)
d lnH

< 0

• Analogously for d ln L or d lnAL

• dIH
d ln AL

= dIH
d ln L

> 0, dIL
d ln AL

= dIL
d ln L

> 0

• and d(IH−IL)
d ln AL

= d(IH−IL)
d ln L

< 0
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The response of wages to skill supplies

• Impact of an increase in the supply of labor on relative wages

1 High skill supply: d ln(wH/wL)
d lnH

< 0, d ln(wH/wM )
d lnH

< 0

2 Medium skill supply: d ln(wH/wM )
d lnM

> 0, d ln(wM/wL)
d lnM

< 0

3 Low skill supply: d ln(wM/wL)
d ln L

> 0, d ln(wH/wL)
d ln L

> 0

• What about d ln(wH/wL)
d lnM ...? (see below)
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The response of wages to factor-augmenting technological
changes

• Impact of technological changes on relative wages

1 H augmenting: d ln(wH/wL)
d ln AH

> 0, d ln(wH/wM )
d ln AH

> 0, d ln(wM/wL)
d ln AH

< 0;

2 M augmenting: d ln(wH/wM )
d ln AM

< 0, d ln(wM/wL)
d ln AM

> 0

3 L augmenting: d ln(wH/wL)
d ln AL

< 0, d ln(wH/wM )
d ln AL

> 0, d ln(wM/wL)
d ln AL

< 0;

• What about d ln(wH/wL)
d lnAM

...?
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Change in productivity or supply of middle-skill workers

What happens when either M or AM rises?

• Depends critically on this term

βH (I ) ≡ lnαM (I )− lnαH (I ) , βL (I ) ≡ lnαL (I )− lnαM (I )

• β are comp. advantage of L versus H workers in M tasks

• β′L (IL) IL = ∂βL/∂IL and β′H (IH) IH

• If β′L (IL) is low relative to β′H (IH), high skill workers have strong

comparative advantage for tasks above IH

Hence, rise in M displaces L workers more than H iff

d ln (wH/wL)

d lnM
> 0 iff |β′L (IL) IL| < |β′H (IH) (1− IH)|

Implicitly this occurs because IL falls more than IH rises
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How labor-replacing technology enters

Easy to model a ‘task replacing technology’

• Both K and Labor can supply tasks—all perfect substitutes

• K supplies task if can perform more cheaply than L, M, or H.

Example: Routine Task Replacing technology

• Capital that out-competes M in a subset of tasks i ′ in the interval

IL < i ′ < IH

Own wage effects

• Immediately lowers relative wage of M by narrowing set of M tasks

Cross-price effects on WL and WH?

• Again depend on |β′L (IL) IL| T |β′H (IH) (1− IH)|
• If M workers better suited to L than H tasks, then WH/WL rises
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Routine task replacing technology

Focal case

• Task replacing technology concentrated in middle-skill/routine tasks

• Strong comparative advantage of H relative to L at respective

margins with M

Leads to wage and employment ‘polarization’

1 Wages:
• Middle wages fall relative to top and bottom.
• Top rises relative to bottom

2 Employment:
• Middle-skill/routine tasks mechanized
• Declining labor input in Routine tasks
• Given comparative advantage, middle-skill workers move

disproportionately downward in task distribution.
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Offshoring

Offshoring works identically to capital that competes for tasks

• In this sense, model is akin to Grossman and Rossi-Hansberg (2008)

• But the comparative advantage setup here is much more general
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Two further extensions

Endogenous choice of skills

• Workers can have a bundle of l ,m, and h skills

• When comparative advantage of one skill sufficiently eroded, may

switch skills

• Example: Former manager, now driving delivery truck

Endogenous technical change

• Endogenous tech change favoring skills is well understood from

Acemoglu (1998, 2007)

• We also consider endogenous technical change favoring tasks in this

model
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Ricardian Model: Summary

Model’s inputs

1 Explicit distinction between skills and tasks

2 Comparative advantage among workers in different tasks

3 Multiple sources of competing task ‘supplies’

What the model delivers

• A natural concept of occupations (bundles of tasks)

• An endogenous mapping from skill to tasks via comparative

advantage

• Technical change (offshoring) that can raise and lower wages

• Migration of skills across tasks as technology changes

• Polarization of wages and employment as one possible outcome
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Conclusions

Canonical model has been a conceptual and empirical success

• But silent on some key phenomena of interest
• Falling real wages for some groups
• Non-monotone wage changes
• Polarization of employment
• Reallocation of skill groups across occupations

Additional insights gained by

1 Distinguishing between skills and tasks

2 Allowing for comparative advantage among workers in different tasks

3 Allowing for multiple sources of competing task ‘supplies’
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Agenda

1 Motivation: The Canonical Model and Its Limitations

2 A Simplified Task Model with New Tasks

Model setup

The displacement effect—Extensive margin tech ∆

Deepening of automation—Intensive margin tech ∆

Labor-Augmenting Technological ∆

New task creation
3 A Task Model with Comparative Advantage Across Skill Groups

[for self-study]

Production

Three equilibrium conditions

Comparative statics

Factor Augmentation, Factor Displacement, Offshoring

4 Tasks and Technologies: Some Applications

Projecting the Labor Market Effects of Artificial Intelligence

The Skill Complementarity of Broadband Internet

5 Where Does New Work Come From?
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Michael Webb 2019 (JMP): Using Patent Text to Measure
Automation Exposure

Figure 2: Illustration of process for constructing technology exposure measures

3.1 Overview

To assess the exposure of occupations to a given technology, I use the text of patents to identify
what the technology can do, then quantify the extent to which each occupation in the economy
involves performing similar tasks. The method is depicted in Figure 2.

On the patent side, I first choose the set of patents corresponding to a particular technology.
For example, I define the set of artificial intelligence patents as those that use certain keywords,
such as “neural network”, in their titles or abstracts. I extract all the titles from this set of patents.
Such patent titles might include “Method for diagnosing diseases” and “Method for recognizing
aircraft”. From this list of titles, I extract all verb-noun pairs. This results in a long list of pairs, such
as (diagnose, disease), (recognize, aircraft), and so on. For each pair, I calculate how often that pair,
or ones similar to it, occurs in the list of all pairs. (I explain how I group “similar” pairs below.) For
example, pairs similar to (diagnose, disease) might represent 0.1% of all pairs extracted from the
titles of my set of artificial intelligence patents.

I now turn to occupations. In my database of occupations, any given occupation, such as
“doctor”, consists of a collection of tasks. Each task is described in free-form text, such as “Interpret
tests to diagnose patient’s condition”. From each task description, I extract all verb-noun pairs.
For the task just mentioned, the pairs would be (interpret, test) and (diagnose, condition). Most
occupations have 20-40 extracted pairs in total. To each pair, I assign the relative frequency of similar
pairs in my patent titles. For example, if pairs similar to (diagnose, condition) represented 0.1% of
all pairs extracted from the titles of my set of artificial intelligence patents, I would assign a score of

13
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Assessing Relative Employment and Wage Effects of Three
Technologies

1 Software

2 Robots

3 Artificial Intelligence
• Note: no outcome data yet available!
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I. Software Patents: Keywords

Table 6: Top extracted verbs and characteristic nouns for software.

Verb Example nouns Verb Example nouns

record data, position, log, location,
reservation, transaction

detect defect, error, malware, fault,
condition, movement

store program, data, information, image,
instruction, value

generate data, image, file, report, map, key,
password, animation, diagram

control access, display, unit, image, device,
power, motor

measure rate, performance, time, distance,
thickness

reproduce data, picture, media, file, sequence,
speech, item, document, selection

receive signal, data, information, message,
order, request, instruction, command

Notes: This table lists the top eight verbs by pair frequency extracted from the title text of patents corresponding to
software, together with characteristic direct objects for each verb chosen manually to illustrate a range of applications.
Patents corresponding to each technology are selected using a keyword search. A dependency parsing algorithm is used
to extract verbs and their direct objects from patent titles.

5.1 Background and definition

Software refers to computer programs that implement manually-specified “if-then” rules. Conceptu-
ally, I regard a computer program as software (as opposed to AI) if every action it performs has been
specified in advance by a human. This requires human programmers to be able to anticipate every
contingency, and also to be able to describe the steps required to complete the task. Examples of
software include most applications we use on our computers, such as word processing, spreadsheet
software, and web browsers, as well as business applications such as enterprise resource planning
and reservation and ticketing systems.

5.2 Patent selection

To calculate exposure scores for software, I first define the set of patents that represent software
applications. Unlike for robots, where I had to construct my own definition, there is already
a standard definition of software patents in the literature. This was developed in Bessen and
Hunt (2007). In that paper, the authors follow a variant of the procedure I followed for robots: they
manually created a “test set” of patents that they labeled as either software or not software, identified
candidate key terms, and constructed a keyword search algorithm using these terms that they then
validated against their test set. Their final search algorithm require one of the keywords “software”,
“computer”, or “program” to be present, and none of the keywords “chip”, “semiconductor”, “bus”,
“circuity”, or “circuitry” to be present. This algorithm has a recall rate (fraction of “true” software
patents retrieved) of 78%, and a false discovery rate of 16% on their test set.

28
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I. Software: Most/Least Exposed Occupations

Table 7: Occupations with highest and lowest exposure to software.

Most exposed occupations Least exposed occupations

Broadcast equipment operators Barbers
Water and sewage treatment plant operators Podiatrists
Parking lot attendants Subject instructors, college
Packers and packagers by hand Art/entertainment performers
Locomotive operators: engineers and firemen Mail carriers for postal service

Notes: Table displays census occupation title for the five occupations with the highest exposure scores and with the
lowest exposure scores above employment threshold of 150.

5.3 Measurement results

Top verb-noun pairs from patents Table 6 presents the most frequent verbs and illustrative nouns
extracted from the software patents. They include recording information, reservations, and locations;
controlling access and displays; storing information, values, and instructions; reproducing media;
and executing programs, logic, and rules. These activities may be summarized as manipulating
information according to pre-defined rules, reflecting very closely our conceptual definition of
software.

Most and least exposed occupations Table 7 presents the top 5 and bottom 5 occupations by
software exposure. The most-exposed occupations include broadcast equipment operators, plant
operators, parking lot attendants, and packers and packagers. These are all occupations that involve
processing information according to pre-defined rules, and have all seen computers take over
large parts of their tasks. For example, many parking lot attendants have been fully replaced by
software-driven parking permit payment machines, which record and track information pertaining
to vehicles and process payments according to pre-defined rules. Occupations least exposed to
software include barbers, podiatrists, and postal service mail carriers. These are occupations that
have substantial manual components that are not easy to hard-code in advance, and, in many cases,
interpersonal components too.

Comparison to Autor, Levy, and Murnane (2003) As a form of qualitative validation, I compare
my occupation-level software exposure scores to the measures of routineness developed in Autor,
Levy, and Murnane (2003). That paper’s measures of routine manual and routine cognitive tasks
were designed to capture the tasks for which software substitutes. I find that routine manual and
routine cognitive scores are strongly positively correlated with my measures of software exposure.

29
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I. Software: Who Performs Software-Relevant Tasks?
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Figure 5: Exposure to software by demographic group
Notes: Plot (a) shows the average of standardized occupation-level exposure scores for software by occupational wage
percentile rank using a locally weighted smoothing regression (bandwidth 0.8 with 100 observations), following Acemoglu
and Autor (2011). Wage percentiles are measured as the employment-weighted percentile rank of an occupation’s mean
hourly wage in the May 2016 Occupational Employment Statistics. Plot (b) is a bar graph showing the exposure score
percentile for software averaged across all industry-occupation observations, weighted by 2010 total employment in
given educational category. Plot (c) is a binscatter. The x-axis is the percent of workers in an industry-occupation
observation reported female in the 2010 census. Plot (d) is a binscatter. The x-axis is the average age of workers in an
industry-occupation observation in the 2010 census.
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I. Binscatter: Changes in Employment and Wages 1980 – 2010
by Exposure to Software
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Figure 6: Change in employment and wages 1980-2010 by exposure to software.
Notes: Plot is a binscatter. Change in employment is measured as DHS change of an occupation-industry cell’s share of
overall employment between 1980 and 2010, winsorized at the top and bottom 1%. Change in wages is measured as log
di�erence in a cell’s mean FTFY weekly wage. Controls added for o�shorability and industry fixed e�ects. Observations
are weighted by cell’s labor supply, averaged between 1980 and 2010.
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II. Robotics Patents: Keywords

Table 2: Top extracted verbs and characteristic nouns for robots.

Verb Example nouns Verb Example nouns

clean surface, wafer, window, glass, floor,
tool, casting, instrument

walk robot, structure, base, stairs, circuit,
trolley, platform, maze

control robot, arm, motion, position,
manipulator, motor, path, force

carry substrate, wafer, tray, vehicle,
workpiece, tool, object, pallet

weld wire, part, tong, electrode, sensor,
component, nozzle

detect position, state, collision, obstacle,
force, angle, leak, load, landmine

move robot, body, object, arm, tool, part,
substrate, workpiece

drive unit, wheel, motor, belt, rotor, vehicle,
automobile, actuator

Notes: This table lists the top eight verbs by pair frequency extracted from the title text of patents corresponding to robots,
together with characteristic direct objects for each verb chosen manually to illustrate a range of applications. Patents
corresponding to each technology are selected using a keyword search. A dependency parsing algorithm is used to
extract verbs and their direct objects from patent titles.

4.3 Measurement results

Top verb-noun pairs from patents Table 2 presents the most frequent verbs and illustrative nouns
extracted from the robot patents. They include cleaning floors, surfaces, and instruments; moving
arms, substrates, and workpieces; welding wires and parts; detecting surfaces, loads, and mines;
and assembling vehicles, cabinets, and windshields. These correspond to a wide variety of major
applications of robots, particularly in semiconductor and automobile manufacturing, two industries
that have seen major adoption of robots.

There are also some verb-noun pairs that likely reflect noise in the measure, such as cleaning a
robot, controlling an actuator, and detecting a load. For the most part, this noise seems unlikely
to a�ect the results, since job descriptions do not mention such robotically instrumental activities.
However, it is possible that some human tasks, such as those involving cleaning, will receive higher
scores than they “ought” to because of, for example, the semantic similarity between cleaning a
robot and cleaning other things.

Most and least exposed occupations Table 3 displays the five occupations most exposed to robots,
and the five occupations least exposed. I find that the most-exposed occupations include various
kinds of materials movers in factories and warehouses, and tenders of factory equipment. Many
of these occupations have in fact seen robot-driven automation. For example, one might naively
expect both truck driving and forklift truck driving to be automated, given they involve similar
activities. However, the method correctly identifies that forklift truck driving (i.e., materials moving
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II. Robots: Most/Least Exposed Occupations

Table 3: Occupations with highest and lowest exposure to robots.

Most exposed occupations Least exposed occupations

Forklift driver Payroll and timekeeping clerks
Operating engineers of cranes, derricks, etc. Art/entertainment performers
Elevator installers and repairers Clergy
Janitors Correspondence and order clerks
Locomotive operators: engineers and firemen Eligibility clerks for government programs

Notes: Table displays census occupation title for the five occupations with the highest exposure scores and with the
lowest exposure scores above employment threshold of 150.

in warehouses and factories) has been heavily automated by robots, while road truck driving has
not. (To the extent road truck driving is being automated currently, this automation is not being
done by industrial robots as defined here.) Least-exposed occupations include payroll clerks, artistic
performers, and clergy. These do not primarily involve the kinds of repetitive manual tasks that
robots automate.

The noise in the measure creates some false positives. For example, a highly-exposed occupation
is “elevator installers and repairers”. It receives a high score because its tasks feature assembling
and welding elevator cars. The algorithm extracts the word “cars” as the noun in the verb-noun pair,
rather than “elevator cars”, and so assigns a high score based on the large number of car welding
and assembly robots patents.

4.4 Distributional impacts of robots: descriptive evidence

I now turn to consider the distributional impacts of robots, by studying the kinds of people who
work in occupations highly exposed to robots. To each individual in the IPUMS 2010 census sample,
I assign the exposure score of the their occupation. I then create two kinds of results. In the first kind,
I look at particular demographic groups, such as individuals with di�erent levels of education, and
calculate the average exposure scores of these individuals given their occupations. In the second
kind, I use occupations as the unit of analysis. I rank occupations by, for example, the percent of
workers who are female, or by their average wage, and plot exposure scores against these rankings.

The results are presented in Figure 3. Panel (a) plots exposure scores against occupational
wage percentiles, with percentiles weighted by hours worked. This figure shows that low-wage
occupations are most exposed, and high-wage occupations much less. Panel (b) presents exposure
scores by individuals’ levels of education. Individuals with less than high school education are
most exposed to robots. Exposure decreases monotonically by level of education, with almost no
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II. Robotics: Who Performs Robot-Relevant Tasks?
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Figure 3: Exposure to robots by demographic group
Notes: Plot (a) shows the average of standardized occupation-level exposure scores for robots by occupational wage
percentile rank using a locally weighted smoothing regression (bandwidth 0.8 with 100 observations), following Acemoglu
and Autor (2011). Wage percentiles are measured as the employment-weighted percentile rank of an occupation’s mean
hourly wage in the May 2016 Occupational Employment Statistics. Plot (b) is a bar graph showing the exposure score
percentile for robots averaged across all industry-occupation observations, weighted by 2010 total employment in
given educational category. Plot (c) is a binscatter. The x-axis is the percent of workers in an industry-occupation
observation reported female in the 2010 census. Plot (d) is a binscatter. The x-axis is the average age of workers in an
industry-occupation observation in the 2010 census.
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II. Binscatter: Changes in Employment and Wages 1980 –
2010 by Exposure to Robots
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Figure 4: Change in employment and wages 1980-2010 by exposure to robots.
Notes: Plot is a binscatter. Change in employment is measured as DHS change of an occupation-industry cell’s share of
overall employment between 1980 and 2010, winsorized at the top and bottom 1%. Change in wages is measured as log
di�erence in a cell’s mean FTFY weekly wage. Controls added for o�shorability and industry fixed e�ects. Observations
are weighted by cell’s labor supply, averaged between 1980 and 2010. Sample is restricted to industries within the
manufacturing sector.
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III. Artificial Intelligence Patents: Keywords

Table 10: Top extracted verbs and characteristic nouns for AI.

Verb Example nouns Verb Example nouns

recognize pattern, image, speech, face, voice,
automobile, emotion, gesture, disease

determine state, similarity, relevance,
importance, characteristic, strategy,
risk

predict quality, performance, fault, behavior,
tra�c, prognosis

control process, emission, tra�c, engine,
robot, turbine, plant

detect signal, abnormality, defect, object,
fraud, event, spammer, human, cancer

generate image, rating, lexicon, warning,
description, recommendation

identify object, type, damage, illegality,
classification, relationship,
importance

classify data, object, image, pattern, signal,
text, electrogram, speech, motion

Notes: This table lists the top eight verbs by pair frequency extracted from the title text of patents corresponding to AI,
together with characteristic direct objects for each verb chosen manually to illustrate a range of applications. Patents
corresponding to each technology are selected using a keyword search. A dependency parsing algorithm is used to
extract verbs and their direct objects from patent titles.

to a�ect di�erent occupations. Indeed, I find that the set of occupations exposed to AI is very
di�erent to that exposed to robots and software. The most and least exposed occupations are
displayed in Table 11. Consider some of the occupations most exposed to AI. Clinical laboratory
technicians perform the visual and analytical work of identifying pathologies from medical tests; AI
applications have now been developed to automate much of this work (Janowczyk and Madabhushi
2016). Chemical engineers design and operate chemical production processes. AI algorithms are
particularly well-suited to these discovery and optimization tasks, and are already being used in
such applications (Agrawal, McHale, and Oettl 2019; Goh, Hodas, and Vishnu 2017). Optometrists
detect diseases in the eye. Optometry is the area of medicine that has seen perhaps the most success
of AI algorithms to date (De Fauw et al. 2018). Finally, power plant operators control all kinds of
equipment to generate the right amount of power in a safe and energy e�cient manner. To date,
several companies who run power plants and data centers have replaced manual human operation
with AI algorithms, which are able to achieve much more e�cient operation than human engineers
(Lazic et al. 2018).

While these are all high-skilled jobs, it is worth noting that there are also low-skilled jobs that
are highly exposed to AI. For example, many production jobs that involve inspection and quality
control are exposed to AI. However, as we will see in the next section, these jobs constitute a small
proportion of the low-skill workforce, meaning that low-skilled jobs are less exposed to AI on an
employment-weighted basis.
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III. Artificial Intelligence: Most/Least Exposed Occupations

Table 11: Occupations with highest and lowest exposure to artificial intelligence.

Most exposed occupations Least exposed occupations

Clinical laboratory technicians Animal caretakers, except farm
Chemical engineers Food preparation workers
Optometrists Mail carriers for postal service
Power plant operators Subject instructors, college
Dispatchers Art/entertainment performers

Notes: Table displays census occupation title for the five occupations with the highest exposure scores and with the
lowest exposure scores above employment threshold of 150.

The occupations least exposed to AI include college professors, food preparation workers, and
postal service mail carriers. We can loosely split these occupations into three categories. First, there
are high-skill occupations that involve reasoning about situations that have never been seen before,
such as various kinds of researcher. Second, there are occupations of all skill levels that involve
interpersonal skill, such as teachers and managers. Third, there is manual work that occurs in
non-factory environments, and that often involves some element of interpersonal skill too, such as
baristas, food preparation workers, or massage therapists.

6.3.1 Industry case studies

To draw out these di�erences, it is instructive to consider sets of superficially similar occupations
in the same industry. First, consider legal occupations. The large number of companies working
on artificial intelligence for the law makes it tempting to conclude that lawyers will soon be made
obsolete. However, my results suggest that two other occupations, paralegals and administrative
law judges, are much more exposed to AI than lawyers themselves. The reason for this is clear
from their tasks. Paralegals spend most of their time reviewing documents. These tasks, such
as reviewing contracts for unusual clauses, are highly amenable to automation using AI. This is
because the objectives can be clearly specified (e.g., “score this clause for how common it is in
contracts of this type”), and there exist large amounts of relevant training data, often in the public
domain. Administrative law judges, similarly, spend most of their time making judgments on
cases that are highly standardized and for which the law is settled. By contrast, lawyers spend
much of their time conferring with clients and colleagues, representing clients in negotiations and
court cases, and working on cases for which su�cient precedent does not exist for an algorithm
to be trained successfully. This mix of interpersonal work and handling novel situations renders
them only very lightly exposed to AI. This conclusion matches other work that has considered this
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III. Artificial Intelligence: Who Performs AI-Relevant Tasks?
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Figure 7: Exposure to AI by demographic group
Notes: Plot (a) shows the average of standardized occupation-level exposure scores for AI by occupational wage percentile
rank using a locally weighted smoothing regression (bandwidth 0.8 with 100 observations), following Acemoglu and
Autor (2011). Wage percentiles are measured as the employment-weighted percentile rank of an occupation’s mean hourly
wage in the May 2016 Occupational Employment Statistics. Plot (b) is a bar graph showing the exposure score percentile
for AI averaged across all industry-occupation observations, weighted by 2010 total employment in given educational
category. Plot (c) is a binscatter. The x-axis is the percent of workers in an industry-occupation observation reported
female in the 2010 census. Plot (d) is a binscatter. The x-axis is the average age of workers in an industry-occupation
observation in the 2010 census.
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Summary of Webb 2019

• A general methodology for identifying ‘task content’ of new

technologies, linking them to occupations

• Remarkably clear results on relationship between software and robot

exposure and changes in employment and wages by

industry-occupation

• Definitely possible but far from certain that AI exposure will have

similar relationship (like software, robots) to employment/earnings in

exposed occupations group
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Summary

What is potentially missing here?

1 Cannot say where complementarity happens: Is it all substitution?

2 Complementarity is actually operating in background
• Overall employment and wage growth largely absorbed by including

industry fixed effects
• We know that high skill employment and wages rose in

non-substitutable activities
• Importance of relative complements

3 Näıve read: Asymptotic task encroachment
• But is that right? Studying ‘new tasks’
• Do they exist? Where to they come from? How important are they

for skill demands?
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The Skill Complementarity of Broadband Internet:
Rollout of Broadband Internet in Norway, 2001 – 2005
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FIGURE I

Geographical Distribution of Broadband Availability Rates

The graphs show the geographical distribution of broadband availability rates of households in 2001, 2003, and 2005.
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Estimated Effect of Broadband Availability on Wages and
Employment by Skill Level

By comparison, hourly wages increase throughout our sample
period. In 2007, our estimates suggest the wages are (0.6 percent
lower) 1.8 percent higher for (un)skilled workers than they would
have been in the absence of the broadband expansion. Online
Appendix Figure B.3 complements by comparing the actual and
counterfactual time trends in relative wage bills (i.e., the skilled
wage bill divided by the unskilled wage bill). To compute the
trends in relative wage bills, we combine the predicted effects
on wages and employment. We find that the expansion of

TABLE III

INTENTION-TO-TREAT EFFECTS ON WAGES AND EMPLOYMENT

(1) (2) (3) (4)
Dependent variable Log hourly wage Employment

2 skills 3 skills 2 skills 3 skills

Unskilled 2.939*** 0.691***
(0.00455) (0.00262)

Low skilled 2.905*** 0.664***
(0.00431) (0.00231)

Medium skilled 2.977*** 0.731***
(0.00454) (0.00288)

Skilled 3.169*** 3.171*** 0.734*** 0.737***
(0.00420) (0.00407) (0.00480) (0.00477)

Availability !
Unskilled "0.00622 0.000794

(0.00455) (0.00252)
Low skilled "0.0108*** "0.00392

(0.00325) (0.00244)
Medium skilled "0.00793 0.00388

(0.00600) (0.00281)
Skilled 0.0178** 0.0202*** 0.0208** 0.0225**

(0.00720) (0.00692) (0.00920) (0.00892)
Worker-year observations 8,759,388 8,759,388 20,327,515 20,327,515

p-values
Test for no skill bias .000 .000 .012 .001

Notes. * p< .10, ** p< .05, *** p< .01. Estimates are based on the model in equation (1), using
worker-year observations over the period 2001–2007. Columns (1) and (2) consider the sample of workers
aged 18–67 who are recorded in the wage statistics survey; the dependent variable is the log hourly wage
in a given year. Columns (3) and (4) consider the entire population of individuals between the ages of 18
and 67; the dependent variable is an employment dummy, taking the value of 1 if the individual is
employed in a given year. (Un)Skilled comprises workers with(out) a college degree. Low skilled comprises
individuals without high school diploma, and medium skilled consists of high school graduates (without a
college degree). All regressions include fixed effects for year, municipality, and industry and controls for
gender, years of experience, and years of experience squared. The standard errors are clustered at the
municipality level and robust to heteroskedasticity. We report p-values from two-sided tests of the null
hypothesis that the coefficient on availability ! log skilled is equal to the coefficient on availability! log
unskilled (or availability ! log low skilled).
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Estimated Effect of Broadband Availability on Evolution of
High-Skill Wages

(a) Log hourly wages
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FIGURE III

Actual and Counterfactual Trends in Labor Market Outcomes

Solid line = actual outcome. Dashed line = counterfactual outcome in the ab-
sence of broadband internet expansion. A counterfactual outcome is measured as
the actual outcome minus the predicted effect of broadband availability on the
outcome. For comparability, in each graph the vertical axis covers four standard
deviations of the labor market outcome across municipalities and years.
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Estimated Effect of Broadband Availability on Evolution of
Low-Skill Wages

(a) Log hourly wages
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FIGURE III

Actual and Counterfactual Trends in Labor Market Outcomes

Solid line = actual outcome. Dashed line = counterfactual outcome in the ab-
sence of broadband internet expansion. A counterfactual outcome is measured as
the actual outcome minus the predicted effect of broadband availability on the
outcome. For comparability, in each graph the vertical axis covers four standard
deviations of the labor market outcome across municipalities and years.
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Estimated Effect of Broadband Availability on Log
Value-Added by Skill Group

availability of broadband internet. This prediction incorporates
both the change in the intercept and the shifts in the output elas-
ticities of capital, unskilled labor, and skilled labor. As such, it
tells us the extent to which increased availability of broadband
raises firm productivity, that is, how much more output the firm

TABLE IV

INTENTION-TO-TREAT EFFECTS ON OUTPUT ELASTICITIES

(1) (2)
Dependent variable Log value added

2 skills 3 skills

Intercept 3.880*** 4.537***
(0.0965) (0.0791)

Log capital 0.100*** 0.0981***
(0.00495) (0.00490)

Log unskilled 0.576***
(0.0116)

Log low skilled 0.298***
(0.00804)

Log medium skilled 0.265***
(0.00684)

Log skilled 0.136*** 0.134***
(0.00678) (0.00636)

Availability !
Intercept "0.500*** "0.561***

(0.111) (0.0976)
Log capital "0.00169 0.000188

(0.00750) (0.00661)
Log unskilled "0.0226

(0.0234)
Log low skilled "0.0274***

(0.00934)
Log medium skilled 0.0179*

(0.00967)
Log skilled 0.0755*** 0.0645***

(0.0166) (0.0137)
Firm-year observations 149,676 137,498

p-values
Test for no skill bias .012 .000

Notes. * p< .10, ** p< .05, *** p< .01. Estimates are based on the model in equation (1), using the
population of joint-stock firms over the period 2001–2007. The dependent variable is the log value added
in a given year. (Un)Skilled comprises workers with(out) a college degree. Low skilled comprises individ-
uals without high school diploma and medium skilled consists of high school graduates (without a college
degree). All regressions include fixed effects for year, municipality, and industry. The standard errors are
clustered at the municipality level and robust to heteroskedasticity. The hypothesis tests report p-values
from two-sided tests of the null hypothesis that the coefficient on availability! log skilled is equal to the
coefficient on availability! log unskilled (or availability! log low skilled).
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Estimated Effect of Broadband on Output Elasticity of
High-Skill Labor

(a) Output elasticity: Skilled labor
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(b) Output elasticity: Unskilled labor
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FIGURE II

Output Elasticities and Skill Premiums, Before and After the Largest Increase
in Availability Rates (Period 0)

Period 0 represents the year with the strongest growth in availability rates
in a given municipality. In each period, we estimate Cobb-Douglas production
functions and wage regressions. Graphs (a) and (b) report period-specific OLS
estimates of the output elasticity of skilled and unskilled labor. Graph (c) re-
ports period-specific OLS estimates of log hourly wage on a dummy for skilled
and controls for gender and potential experience.
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Estimated Effect of Broadband on Output Elasticity of
Low-Skill Labor

(a) Output elasticity: Skilled labor
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(b) Output elasticity: Unskilled labor
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FIGURE II

Output Elasticities and Skill Premiums, Before and After the Largest Increase
in Availability Rates (Period 0)

Period 0 represents the year with the strongest growth in availability rates
in a given municipality. In each period, we estimate Cobb-Douglas production
functions and wage regressions. Graphs (a) and (b) report period-specific OLS
estimates of the output elasticity of skilled and unskilled labor. Graph (c) re-
ports period-specific OLS estimates of log hourly wage on a dummy for skilled
and controls for gender and potential experience.
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Estimated Effect of Broadband Availability on Task-Wage
Premiums

intensity. Importantly, columns (2) and (3) show the estimates
are quite similar when we control for skill levels and their inter-
action with broadband availability.

Taken together, the results presented in Online Appendix
Table B.14 and Table VIII suggest an important mechanism
behind the skill bias of broadband internet is that it complements

TABLE VIII

WAGE REGRESSIONS WITH INTERACTIONS BETWEEN TASKS AND BROADBAND AVAILABILITY

(1) (2) (3)
Dependent variable Log hourly wage

Skill categories

2 skill
levels

3 skill
levels

Abstract 0.371*** 0.283*** 0.272***
(0.0142) (0.0139) (0.0140)

Routine !0.0641*** !0.0664*** !0.0700***
(0.00653) (0.00573) (0.00577)

Manual 0.0248*** 0.0156** 0.0138*
(0.00791) (0.00769) (0.00740)

Availability"Abstract 0.173*** 0.157*** 0.157***
(0.0320) (0.0298) (0.0297)

Availability"Routine !0.0357*** !0.0344*** !0.0338***
(0.00798) (0.00766) (0.00791)

Availability"Manual 0.00200 0.00145 0.00273
(0.0115) (0.0107) (0.0104)

Worker-year observations 4,586,333 4,586,333 4,586,333
Controlling for educational attainment:

Skill levels No Yes Yes
Availability"Skill levels No Yes Yes

Tests for no task bias: p-values
Equality of abstract and routine .000 .000 .000
Equality of abstract and manual .000 .000 .000
Equality of manual and routine .041 .040 .036

Notes. * p< .10, ** p< .05, *** p< .01. We consider workers aged 18–67 over the period 2001–2007
who are recorded in the wage statistics survey and for which we observe occupation codes at the four-digit
level. The occupation codes are linked with measures of task intensity from the Dictionary of Occupational
Title (DOT), as reported by Autor and Dorn (2013). Following Autor, Levy, and Murnane (2003), we
convert the DOT measures into percentiles of the task distribution. Column (1) presents results from a
regression of worker-year observations of log hourly wages on task intensities and their interaction with
broadband availability in the local labor market. Column (2) adds indicator variables for two levels of skill
and their interaction with broadband availability. Column (3) includes indicator variables for three levels
of skills and their interaction with broadband availability. (Un)Skilled comprises workers with(out) a
college degree. Low skilled comprises individuals without high school diploma and medium skilled consists
of high school graduates (without a college degree). All regressions include fixed effects for year, munici-
pality, and industry and controls for gender, years of experience, and years of experience squared. The
standard errors are clustered at the municipality level and robust to heteroskedasticity. We report p-
values from two-sided tests of the null hypothesis that the coefficients on the interaction variables of the
different task intensities are equal.
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1 Motivation: The Canonical Model and Its Limitations

2 A Simplified Task Model with New Tasks

Model setup

The displacement effect—Extensive margin tech ∆
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Labor-Augmenting Technological ∆
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[for self-study]
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Three equilibrium conditions
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