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When to Lock, Not Whom:
Managing Epidemics Using Time-Based Restrictions

1 Introduction

Since March 2020 there has been a rapidly expanding research effort dedicated
to COVID19 analysis across disciplines, inter alia, in Economics. This comes
against the background of the pandemic having created a global health and
economic crisis of a magnitude not experienced since the Great Influenza Pan-
demic of 1918-1919. After a year, the death toll in the U.S. is around 530, 000,
and the declines in U.S. GDP and consumer expenditures for 2020 have been
−3.5% and −3.9%, respectively. A typical analysis posits a planner problem
that seeks to derive optimal policy – Non-Pharmaceutical Interventions (NPIs),
and in particular, lockdowns – subject to a model of COVID19 dynamics. The
planner trades off the costs of public health outcomes, such as breach of ICU
capacity and death, with the economic costs of suppression policy, including
declines in production. In the real world, the policy response across countries
and U.S. states and over time has been volatile, heterogeneous, and, occasion-
ally, erratic.

This paper offers two innovations.
One is a modelling contribution. It comes against the background of preva-

lent misspecification of disease dynamics in Economics research, at odds with
the epidemiological evidence, explored in detail in a companion paper (Bar-
On, Baron, Cornfeld, Milo, and Yashiv (2021)). We have shown that erroneous
modelling has substantial consequences for policy. Two key properties of dis-
ease dynamics, its scale and speed, are at the center of misspecification. Here
we present a constructive alternative with a sound model that may guide re-
searchers and place the analysis in Economics on solid footing. We evidently
eschew the cited modelling errors.

The second is that the paper introduces novel policy tools for pandemic or
epidemic management, based on time restrictions. The proposed tools consist
of alternating periods of work and lockdown, at pre-defined frequencies, for
the entire population. The paper stresses the crucial multiple roles played by
time in this context. We present both normative and positive analyses. The
former applies to the management of the ongoing COVID19 pandemic, as well
as to any future pandemic or epidemic. The latter evaluates policy against real
world benchmarks in the U.S.

The novel tools are particularly relevant in light of the difficulties experi-
enced by policymakers in finding a policy strategy that lessens the trade-offs
involved. In theory, targeted population lockdowns could constitute “fine tun-
ing ” of lockdown measures, which would serve to lessen any economic cost. In
practice, however, it turned out to be challenging to identify sub populations to
be allowed unrestricted economic activity, while imposing restrictions on other
population groups. Political and moral issues, as well as practical implemen-
tation issues, have come into play. This was made even more difficult by the
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uncertainty with respect to the exact state and dynamics of the epidemic. The
novel, time-based public health management policy avoids these difficulties,
taking time, rather than population, as the medium of restrictions.

We highlight the following dimensions related to time:
(i) From the normative perspective, the paper analyzes novel policy that re-

lies on time restrictions. Such policy is an alternative to policy based on restric-
tions of sectors, age groups, regions, or other targeted population groups. It
is a cyclical strategy, using an alternating work and lockdown schedule for the
whole population, to manage the epidemic ahead of full vaccine introduction.

(ii) The rationale for the proposed policy is directly based on the timescales
of virus transmission. The essential idea is that for every 14 day period, there
will be k days of work and 14− k days of lockdown. This number, k, uses the
timescales of the virus against itself, inter alia taking into account a latent pe-
riod after exposure, whereby the infected person does not infect others. This
policy follows epidemiologically-grounded work by Karin et al (2020). For fu-
ture epidemics, a similar empirical logic would apply. We elaborate on this
issue below.

(iii) Using an optimizing social planner model, the control variables for this
policy are the timing of the various measures – initial lockdown, the cyclical policy
phase, and release. Hatchett, Mecher, and Lipsitch (2007) highlight the idea that
imposing NPIs early in an epidemic can significantly reduce mortality. In the
current paper, the exploration of timing issues, both start time and duration,
are at the heart of the analysis.

(iv) This policy is compared to a prevalent policy path which sets lockdown
and release as functions of disease prevalence, which is time-varying. Specifically,
the latter uses trigger thresholds, such as the number of persons hospitalized
in ICU in a given period of time, and gives rise to the pattern of recurrent lock-
down and release observed in the U.S. and other countries since the start of
COVID19.

(v) The proposed policy is also compared to the actual experience of New
York State (NYS) and Florida. The outcomes observed for these states turn out
to depend crucially on the timing of the policies undertaken.

The model explicitly takes into account two important realistic elements:
one is a dynamic path for the reproduction parameter, reflecting both rational
individual behavior and the effects of suppression policy. We take into account
that individuals adjust to the new environment and behave differently, both
with and without government interventions. These changes happen in part as
a direct result of government NPIs and in part as a voluntary response. We
model this time variation by relying on data estimates.

The second is vaccine arrival. The planner uses a PDF to form ex-ante ex-
pectations of this arrival time. Specifically, the arrival time of the vaccine is
modeled as a result of simultaneous competition among many firms, which is
well approximated by a Gumbel distribution. In our simulations vaccine ar-
rival is realized after 540 days. We note that, at the time of writing (March
2021), there has been considerable progress in vaccine development, authoriza-
tion, and vaccination.
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We simulate the optimal time-restrictions (cyclical) policies and examine
their health and economic implications. The methodology is to find the val-
ues of three time points that minimize the planner cost function. We solve the
continuous time system of ODE describing the stocks of population in different
epidemiological and clinical states. The solution is obtained using a hierarchical
search of the three-dimensional control variables space. We derive a set of inter-
polated functions describing the dynamics of all stocks, enabling us to evaluate
the planner’s objective.

The cyclical policy is compared to four non-cyclical benchmarks: two polar
cases, of no policy intervention (i.e., no lockdown) or full lockdown till vaccine
arrival; a single lockdown policy, whereby the starting date and the duration
are chosen optimally; and a theoretical path trying to mimic real-world policy,
whereby the planner chooses thresholds for multiple lockdowns in terms of the
critically ill. We also evaluate the novel tools in relation to the 2020 experience of
NYS and Florida. The latter comparison also allows us to check the validity of
our model in the data, as we compare the NYS and Florida outcomes predicted
by the model to the data.

We trace out a policy frontier consisting of outcomes of optimal planner
policies under the cyclical instruments, using a two-dimensional graph of the
death toll per 1 million people and the value of lost output, in annual GDP
terms. Movement along the frontier occurs as the policy instrument in use
changes, or as the weight assigned to fatalities in the planner objective func-
tion changes.

Our analysis yields the following key findings.
First, in terms of the policy frontier, for the most part a trade-off between

health and economic outcomes is clear, with deaths rising and output loss falling
with an almost constant proportion. Movement along the frontier is generated
by variations in the stringency of interventions, either because the policy in-
struments used vary, or because a different relative weight is assigned to losses
due to death. In short segments at the extremities, the frontier is almost verti-
cal (where the death toll is low) and almost horizontal (where the death toll is
high), implying no trade-off.

Second, the novel instruments, based on time restrictions, provide for sig-
nificant improvement, substantially lessening the trade-offs involved relative to
the four non-cyclical benchmarks. The latter are situated in points on the graph
beyond the frontier.

Third, we quantify social welfare in terms of planner costs. These are given
in Present Discounted Value (PDV) terms over two years, in units of GDP per
annum. While the different cyclical strategies place these losses at 27% to 32%
of annual GDP in PDV terms over two years, the no intervention policy results
in 113%, full lockdown in 50%, optimal lockdown in 42%, and the thresholds
strategy in 34% of annual GDP The underlying rationale for the improvement
is that cyclical strategies allow the planner to achieve similar death tolls with
fewer lockdowns, or to reduce the death toll dramatically without a significant
damage to output. These results are due to the optimally-derived timings of
intervention (for example, “front loading” interventions is beneficial in specific
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cases, which are spelled out) and the ability of the cyclical strategies to suppress
the disease while maintaining a reasonable level of economic activity.

Fourth, using daily data from March to November 2020, optimal cyclical
policies fare much better than actual experience in the states of New York and
Florida. While deriving this result, we confirm that the model is able to repro-
duce the data outcomes observed in each state, using state-specific parameters
in the simulations.

Importantly, the benefits of the time-based policy tools that we find are
likely to be a lower bound of their true advantage over strategies that have
been implemented. This is so because, for tractability, we are not giving the
planner full flexibility when applying the cyclical tools. Similarly, we do not
quantify their additional benefits, such as predictability of production, gains in
other health matters, transparency, ease of communication, and fairness.

We note that the idea of a cyclical strategy, which is at the focal point of the
normative analysis of this paper, has been brought to the attention of policy-
makers (see Yashiv (2020), Alon and Yashiv (2020), and Alon, Milo and Yashiv
(2020)) and has been considered or implemented by a host of firms and educa-
tional institutions in the U.S., in Europe, and in Latin America.

The paper proceeds as follows: in Section 2 we present some key data facts
on lockdowns and their economic effects in the U.S. and discuss the relevant
literature. Section 3 discusses the model, including the novel policies, which
are further elaborated in online Appendix A. Section 4 presents the calibration
and the solution methodology. Section 5 presents the results. Section 6 explores
the underlying mechanism. Section 7 examines the relation between the model
planner solution and actual outcomes in two U.S. states – NYS and Florida.
Section 8 concludes.

2 Background

We briefly present key facts pertinent to the current analysis and the relevant
parts of the rapidly-growing literature in Economics on COVID19.

2.1 Key Data Facts

We present U.S. data facts focusing on the variables that play a key role in our
analysis. We look at the entire U.S. and at the six biggest states, namely, Califor-
nia, Texas, Florida, New York, Pennsylvania, and Illinois, encompassing about
40% of the U.S. population. Panel a in Figure 1 shows data of a stringency in-
dex of lockdown restrictions and closures – school closings, workplace closings,
public event cancellations, closure of public transportation, public information
campaigns, internal movement restrictions, and international travel controls –
computed by the Blavatnik School of Government at the University of Oxford.
The figure shows the index, in 14-days MA terms, from late January to Decem-
ber 2020; see the methodology in Hale et al (2020).
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Figure 1: Background data

a. Oxford Stringency Index Across U.S. States in 2020, 14 days moving
average

Source: Oxford Coronavirus Government Response Tracker,
https://github.com/OxCGRT/covid-policy-tracker

b. GDP Growth Across U.S. States 2019-2020, Qt/Qt−4 − 1 (%)

Source: Gross Domestic Product by State, Bureau of Economic Analysis
https://www.bea.gov/data/gdp/gdp-state.
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Figure 1 (continued)

c. 2020 GDP Loss and COVID 19 Deaths in U.S. States

Source: State-level employment from CES, Bureau of Labor Statistics (www.bls.gov);
cumulative death count from the COVID-19 Data Repository, Center for Systems Sci-
ence and Engineering (CSSE) at Johns Hopkins University (https://github.com/CSSEGISandData/COVID-
19); and authors’ computations (see Appendix B for full description of the computation
procedure)

d. Employment to Population Ratio in the U.S. in 2020

Source: FRED
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The emerging pattern shown by the figure is that following a lag in response
after the February outbreaks, there was a fast rise in lockdown measures in
March 2020. Subsequently policy became more heterogenous and more volatile
across states and over time.

We briefly summarize the main points which can be seen in the figure:
in NYS there was stability of measures over a few weeks, very gradual re-
lease from May, and some re-tightening from late September. California had
a broadly similar response, but release was less gradual, policy became looser,
and it re-tightened later, relative to NYS. Pennsylvania can be described in sim-
ilar terms to California but went even looser. Illinois kept the tightest mea-
sures longer, till late May, but then came down faster and looser than the afore-
mentioned states. It re-tightened in October but remained much looser than
NYS. Very different behavior was shown by the other two states: Texas did not
stay tight long, came down fast to a much lower level of restrictions, and tight-
ened somewhat from July. Florida did stay with tight restrictions longer than
Texas, but then went on a long release period, from April to October, achieving
the lowest restrictions relative to the other five states, doing some re-tightening
only in December.

Overall, the tightest restrictions were imposed in New York State and the
most loose in Florida. In terms of the index, the latter’s stringency was 55% of
the former in November. Standard deviations of the index over the entire pe-
riod are high, with a coefficient of variation of 0.4 to 0.5.

Panel b in Figure 1 shows GDP growth for the same states in 2019 and 2020.
The figure shows GDP growth measured in terms of the current quarter relative
to the same quarter in the preceding year. In 2019 these rates for the entire U.S.
ranged roughly between 2% and 2.3%. In 2020 these rates were 0.3%,−9%, and
−2.8% in the first three quarters, respectively. In terms of the states, four states
had negative growth already in Q1; by Q2 all were in decline, with rates ranging
from−8% to −12%; in Q3 this decline softened to a range of −2% to −6%.

Panel c in Figure 1 puts together data on deaths and output loss in the pe-
riod March to November 2020. Output loss is imputed on the basis of actual
employment data in 2020 and counterfactual employment projections for 2020.
The details of the imputation procedure are described in Online Appendix B.
The main feature of panel c is the very diverse experience of the different states.
First, within the group of states excluding New York State, there seems to be a
trade-off between output loss and cumulative death (see the dotted, linear line
in the figure). This trade-off is broadly consistent with the interventions strin-
gency dynamics presented in panel a of Figure 1, with states that had short-
lived or less stringent measures losing less output but faring worse in terms
of the death toll. The states are not perfectly aligned on the line, reflecting
background variation across locations in terms of population density, health-
care quality, age composition, occupational composition, propensity to comply
with restrictions, and numerous other factors. Second, the experience of New
York State is strikingly different, dwarfing the outcomes in the other states on
both dimensions. Our analysis sheds light on how such different results arise,
deriving the outcomes depicted on the figure axes as endogenous variables.
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We show that the diversity of scenarios depend on the available policy instru-
ments and on the properties of the disease and the economy. We also show how
outcomes can improve significantly when the timing of the interventions is set
optimally, and particularly so when using the cyclical policy instruments, that
are at the focal point of our normative analysis.

2.2 The Literature

There has been an explosion of research in Economics on COVID19. Reviews
and discussions are provided by Avery, Bossert, Clark, Ellison, and Ellison
(2020) and Baqaee, Farhi, Mina, and Stock (2020). Two kinds of papers are rele-
vant for the current analysis.

One is work using the concept of an optimizing planner. It examines the
health-related losses due to the pandemic in economic terms and the economic
consequences of public health policy. An objective function is defined, with
values taking into account output losses and the value of statistical life. Thus,
tradeoffs are measured and alternative policies are evaluated. The planner con-
straints include, inter alia, disease dynamics typically examined within the SIR
epidemiological model. Prominent contributions include Abel and Panageas
(2020), Acemoglu, Chernozhukov, Werning, and Whinston (2020), Alvarez, Ar-
gente, and Lippi (2020), Farboodi, Jarosch, and Shimer (2020), and Jones, Philip-
pon, and Venkateswaran (2020).

The second kind of work includes papers which tie macroeconomic dy-
namics to the epidemiological dynamics of the SIR model. These models posit
that individual rational economic behavior has two-way connections with dis-
ease transmission. Notable contributions include Atkeson, Kopecky, and Zha
(2021), Eichenbaum, Rebelo, and Trabandt (2020), Garibaldi, Moen, and Pis-
sarides (2020), and Krueger, Uhlig, and Xie (2020). An elaborate analysis, em-
phasizing heterogeneous agents, is offered by Kaplan, Moll, and Violnate (2020)
using the SIRD model.

It should be noted that in the epidemiological literature, pandemic or epi-
demic management is a key topic of study. Inter alia, it deals with the measure-
ment of key parameters needed for policy, such as the reproduction parameter,
which are also at the focus of the current paper. Prominent examples of such
studies, pre-COVID 19, include Mills, Robins, and Lipsitch (2004) and Wallinga,
van Boven, and Lipsitch (2010).

3 The Model

We model an optimizing social planner who operates within a SEIR model of
the epidemic and a model of the macroeconomy. We elaborate on the novel
policy strategies based on time restrictions.
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3.1 The Evolution of the Epidemic

We analyze the evolution of the epidemic in two complementary blocks – infec-
tion transmission and clinical progression.

The infections transmission block is characterized by the SEIR Erlang model,
reflecting the epidemiological properties of COVID19.1 Before contacting the
disease for the first time, a person is Susceptible (S). Once a person gets in-
fected, disease progression is split into distinct compartments – Exposed (E),
Infectious (I), and Resolved (R). We denote by β the infections transmission
rate, σ, the transition rate from E to I, and γ, the transition rate from I to R.
An infected individual spends some time in each compartment before moving
on to the next one. The person is infectious only when in the I compartment,
but not when residing in the preceding E compartment. The time durations
spent in the E and I compartments are known as the latent and infectious pe-
riods, respectively. Once people move to the Resolved stage, they no longer
participate in disease transmission. With Poisson transition rates between com-
partments, the residence times in each of them are distributed exponentially,
and thus have zero mode. Exponential distributions capture the mean but not
the mode of the biologically accurate distributions of residence times, because
in reality what most people spend in each stage is close to the mean of the dis-
tribution, rather than zero. Therefore, we split the E and I compartments into
two sub-compartments and double the rate of transition. Now, the latent and
infectious periods are the sum of the time spent in the E1 and E2 or I1 and I2
sub-compartments, respectively. Their distribution is the sum of exponentially
distributed random variables, a special case of the Gamma distribution, known
as the Erlang distribution. The means of Erlang distributions remain 1/σ and
1/γ, but the modes are now near the means, as they should be. In the remain-
der of the paper we shall refer to this model as the SEIR model, without noting
the number of sub-compartments.

Graphically, this block is presented in panel a of Figure 2.

1The model is essentially based on the seminal contribution of Kermack and McKendrick
(1927). Its present form is discussed in Champredon, Dushoff, and Earn (2018). See Bar-On,
Baron, Cornfeld, Milo and Yashiv (2021) for a more detailed analysis, where we explain the need
for the two complementary model blocs.
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Figure 2: The Model
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The following equations describe this block. Throughout, all stock variables
are expressed as a fraction of the population.

Ṡ(t) = −β(t) · (I1(t) + I2(t)) · S(t) (1)
Ė1(t) = β(t) · (I1(t) + I2(t)) · S(t)− 2σE1(t) (2)
Ė2(t) = 2σE1(t)− 2σE2(t) (3)
İ1(t) = 2σE2(t)− 2γI1(t) (4)
İ2(t) = 2γI1(t)− 2γI2(t) (5)
Ṙ(t) = 2γI2(t) (6)

An important parameter is the reproduction number Rt, which is the aver-
age number of people infected by a person, and is given by:

Rt =
β(t)

γ
(7)

We use Rt for the reproduction number at date t and denote the basic re-
production number byR0 at the initial stage, when S(0) = 1. Beyond the initial
t = 0, our formulation will allow forRt to be affected by policy and by rational
individual behavior, as elaborated below in sub-section 4.1. We shall also be
discussing the effective reproduction number, defined as:

Re = S(t)Rt (8)

The clinical block describes the clinical progression of the disease and the
progression of new cases through the healthcare system, depending on the de-
velopment and severity of symptoms. We postulate the following. Once in-
fected, a person enters an incubation period, a P state, during which there
are no symptoms, lasting for 1/θP on average. Following it, a person either
remains asymptomatic (O) or develops symptoms (M). Denote the share of
asymptomatic cases by η. The others (1 − η ) develop symptoms, and with
probability ξ are hospitalized (H). A given share π of patients become critically
ill (denoted X), i.e., develop conditions requiring transition to ICU. Once criti-
cally ill, a fraction δ(·) dies. We specify the death probability, once critically ill,
as:

δ(X(t), X) = δ1 + δ2 ·
I(X(t) > X) ·

(
X(t)− X

)
X(t)

(9)

where X denotes ICU capacity and I is the indicator function.
At any stage, a person may recover (C). The clinical block is represented

graphically in panel b of Figure 2.
The analytical description of the symptomatic branch is:
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Ṗ(t) = β(t) · (I1(t) + I2(t)) · S(t)− θP · P(t) (10)
Ṁ(t) = (1− η) · θP · P(t)− θM ·M(t) (11)
Ḣ(t) = ξ · θM ·M(t)− θH · H(t) (12)
Ẋ(t) = π · θH · H(t)− θX · X(t) (13)
Ḋ(t) = δ(X(t)) · θX · X(t) (14)

The parameters θP, θM, θH, and θX relate to the average time that passes be-
tween the stages of infection, symptoms onset, hospitalization, ICU admission,
and death, respectively.

3.2 The Economy

The economy is described as follows. We use a linear production technology:

Y(t) = AN(t) (15)

where A is technology and other inputs and N(t) is employment. We normalize
steady state output to unity:

YSS = 1

During COVID 19 we posit that the number of people who can work daily,
N(t), is reduced relative to the steady-state level NSS and is given by:

N(t) = NSS · ρ · (1− D(t)− X(t)− H(t)− φM(t)) (16)

where 0 < ρ ≤ 1 is the fraction able to work given current policy restrictions,
and 0 ≤ φ ≤ 1 is the fraction of people with symptoms who do not work. If
φ = 1, anyone who develops symptoms self-isolates immediately and does not
work.

In the planner problem below, the flow loss of output is thus given by:

1− N(t)
NSS = 1− ρ · (1− D(t)− X(t)− H(t)− φM(t))

3.3 Policy Based on Time Restrictions

The novel policy, pertaining to the entire population, was introduced in Karin et
al (2020), where its epidemiological implications are analyzed extensively. Fol-
lowing an initial lockdown, move to a regime of k days of work and 14− k days
of lockdown, every 14 days. On work days, people are released from lockdown
with strict hygiene and physical distancing measures on the same k weekdays
for everyone. On lockdown days, people are kept away from work places as
well as from other public spaces. Epidemiological measures need to be used
throughout, including rapid testing, contact isolation, and compartmentaliza-
tion of workplaces. Table 1 offers a visual summary.2

2All strategies respect regular weekends, facilitating application.
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Table 1: Menu of the Cyclical Strategies

Note:
k is the number of open (non-lockdown) days every 14 days.
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Epidemic dynamics using these policies are discussed in detail below, where
they are depicted graphically in Figures 4 and 5 (see Section 5).

The rationale for the policy is as follows. Cyclical strategies reduce the av-
erage value of the reproduction parameter – which will be shown below to
capture the progress of the disease – through two effects: time-restrictions and
anti-phasing.

The time-restrictions effect is a reduction in the time T that an infectious per-
son is in contact with many others, compared to the situation with no lock-
down. For example, a 4-day work, 10-day lockdown cycle (k = 4) reduces T
to 4

14 T ≈ 0.3T. The anti-phasing effect uses the timescales of the virus against
itself. Most infected people are close to peak infectiousness for about 3-5 days,
beginning after a latent period of about 3 days (on average) after exposure. A
proper work-lockdown cycle, such as a 4-work 10-lockdown schedule, allows
most of those infected during work days to reach maximal infectiousness dur-
ing lockdown, thus avoid infecting many others. Those with significant symp-
toms can be infectious for longer, but remain hospitalized, isolated, or quar-
antined along with their household members, preventing secondary infections
outside the household.

As Table 1 shows, we only consider k ≤ 8 in our analysis of the cyclical
strategies. This is because higher values of k imply shorter periods of lock-
downs, for example, locking only on weekends. Though similar lockdown poli-
cies have been implemented (for example, in India), they do not line up with
the epidemiological rationale of the cyclical policies. Furthermore, we find that,
in the U.S. context, such extremely open policy tools are hardly consistent with
a policy of efficient epidemic suppression.

Online Appendix A provides further details.

3.4 The Planner Loss Function

The planner is concerned by output loss and by loss of life. The former loss
is due to employment falling below steady state levels due to lockdowns. The
latter loss is due to deaths generated by the epidemic, which depend on ICU
capacity. The problem is thus formulated as follows:

min V
T0,T1,T2

=

∞∫
TV=0

f (TV) ·

 TV∫
0

e−rt ·
(

YSS

NSS ·
(

NSS − N(t)
)
+ χ ·YSS ·

·
D(t)

)
dt+ RD(TV) + RY(TV)


(17)

subject to equations (1)-(16).
The loss function V is minimized in PDV terms (r is the discount rate) over

the infinite horizon. The loss function includes both lost (steady state) output
per worker YSS

NSS , due to a decline in employment N(t) relative to steady state

NSS, 3and the value (with parameter χ) of lost life, where
·

D(t) denotes fatali-
ties flow as a fraction of the population. The parameter χ reflects estimates of

3As we have assumed a linear production functon, YSS

NSS =
Y(t)
N(t) .
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the Value of Statistical Life in steady state output per capita terms and is defined
and discussed in sub-section 4.2 below. The term of lost life is affected by the
breach of ICU (see equations (9) and (14)). The expression f (TV) denotes the
probability distribution function of the availability of a vaccine at time TV . We
assume that following vaccine arrival, the pool of susceptibles drops to zero,
so that the epidemic stops growing. Given each cyclical strategy k, the planner
chooses the optimal intervention timing: T0 lockdown of the economy; T1 im-
plementation of a cyclical strategy; T2 release of the economy. It is important to
note that we constrain the planner possibilities here for tractability. The bene-
fits of the cyclical policy tools that we are thus able to find are likely to mark a
lower bound of their true advantage over real-world strategies. Note, too, that
when we introduce benchmark policies below, in those we shall not constrain
the planner in a similar way.

After time TV , there is a residual cost due to death toll RD(TV) and output
loss RY(TV), which accompany the decline of the epidemic. These terms are
defined as follows:

RD(TV)

YSS = χ · δ1 · (X(TV) + π · H(TV) · ξ · ((M(TV) + (1− η) · P(TV))))︸ ︷︷ ︸
the expected number of people who will die after TV

· e−rTV

(18)

RY(TV)

YSS = φ · (M(TV) + (1− η) · P(TV))︸ ︷︷ ︸
the expected number of people not able to work

out of symptomatic

·
TV+

1
θM∫

TV

e−rtdt+ (19)

(H(TV) + ξ · (M(TV) + (1− η) · P(TV)))︸ ︷︷ ︸
the expected number of people who will be hospitalized after TV

·
TV+

1
θH∫

TV

e−rtdt+

(X(TV) + π · (H(TV) + ξ · (M(TV) + (1− η) · P(TV))))︸ ︷︷ ︸
the expected number of people who will be in ICU after TV

·
TV+

1
θX∫

TV

e−rtdt+

δ1 · (X(TV) + π · (H(TV) + ξ · ((M(TV) + (1− η) · P(TV)))))︸ ︷︷ ︸
the expected number of people who will die after TV

·
∞∫

TV

e−rtdt

3.5 Modelling Vaccine Arrival Time

We avoid modelling an arrival time known with certainty because it can create
an artefact in the optimal plan. The planner may enable an outbreak shortly
before vaccine arrival, relying on the vaccine to eradicate it. Such a plan is not
robust to delays in the arrival time. We also avoid modelling it using a Poisson
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process since exponential distribution has a mode of zero which is implausible
in case of vaccine development.

Rather, we assume that the arrival of the vaccine is a result of simultaneous
competition among many firms. The time of arrival is the minimum develop-
ment time across these firms.4 The distribution of arrival time is then well ap-
proximated by a Gumbel distribution (see Kotz and Nadarajah (2000)), which
is a member of the family of extreme value distributions. Specifically, it is used
for modeling the minimum of a sample from many distributions, including ex-
ponential, logistic, and normal distributions. Under mild regularity conditions,
it is suitable to be a model for a sample minimum even when the distributions
from which the sample is drawn are unknown. In our setting, we remain ag-
nostic about the distributions of vaccine development time by individual firms.

The cumulative distribution function G (x) of a Gumbel distribution is de-
fined over the real numbers and parametrized by a location parameter µG and
a scale parameter σG :

G(x; µG, σG) = 1− exp
(
− exp

(
x− µG

σG

))
(20)

We anchor the distribution’s parameters (µG, σG), by positing that the mean
of the distribution is 540 days, and that the probability of such vaccination be-
fore day 360 is only 1%. These assumptions engender two linear equations:

E(Gumbel (µG, σG)) = µG − EulerGamma · σG = 540
Q(Gumbel (µG, σG) , q) = µG + log (− log (1− q)) · σG = 360

where E is the mean and Q is the quantile function. Targeting a mean of 540
and Q(q = 0.01) = 360 leads to the solution of µG = 565.83, σG = 44.74.

We make these assumptions given the progress actually made in 2020 and
the start of vaccination in December 2020. In terms of the model, TV refers
to the time of sufficient vaccination; with logistics, production times, gradual
take-up rates, etc. an expected 540 days seems reasonable at the time of writing
(March 2021). For the U.S., given the initial outbreak took place at some point
in February 2020, this means an arrival time in August 2021. This number (540
days) is also the one used by Alvarez et al. (2020) and Shimer et al. (2020) and
is the middle of the range in Acemoglu et al. (2020).

3.6 Benchmarks

We shall compare the results of simulating the model, calibrated to the U.S.
economy, to the following benchmarks:

(i) and (ii) The polar cases of no policy intervention (i.e., no lockdown) or
full lockdown till vaccine arrival.

4At the time of writing, March 2021, three vaccines have actually been approved by the FDA
in the U.S., two are close to approval, over 80 vaccines are in clinical trials, and over 180 are
in pre-clinical evaluations. See https://www.who.int/publications/m/item/draft-landscape-
of-covid-19-candidate-vaccines
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(iii) Optimal lockdown; this is essentially the case of k = 0.
(iv) A theoretical path trying to mimic real-world policy by re-interpreting

the planner problem as choosing thresholds for lockdown policy in terms of
the critically ill, X. The first threshold defines a level X0 whereby if Xt > X0 an
initial lockdown is imposed. Subsequently, a second threshold defines a level
X1 whereby if Xt < X1 lockdown is released. Finally, a third threshold defines a
level X2 whereby if Xt > X2 lockdown is re-imposed. The planner chooses the
three thresholds optimally. Note that this strategy leads to recurrent lockdown
and release policies, and, that the planner here is not as constrained as in the
case of the cyclical strategies, when we allowed for only three optimal points in
time to be chosen.

In Section 7 we compare the model to the actual experience of the states of
New York and Florida.

4 Calibration and Solution Methodology

At first, we calibrate the model to fit the U.S. economy, which – as seen in Sec-
tion 2 above – was badly hit by COVID19. Throughout we work in daily terms.
In Section 7, we shall discuss the methodology and calibration values used for
the analysis of two specific states in the U.S.

4.1 Calibration of the Epidemiological Model

In Table 2, we present the relevant parameter values for the two blocks, where
we rely on sources in the epidemiological and medical literatures published in
Science, Nature, the Lancet, and JAMA, as detailed in the table’s notes.
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Table 2: Calibration

Interpretation Range Parameter value
a. The Infection Transmission Block (SEIR)

σ latent period duration 3− 5 days 1/3
γ infectious period duration 4− 5 days 1/4

b. The Clinical Block
θP incubation period 5− 6 days 1/5
θM days from symptoms till hospitalization 7 days 1/7
θH days in hospital till ICU 2 days 1/2
θX days in ICU before death 5.5 days 1/5.5
η Prob. to be asymptomatic 20%− 50% 0.5

ξ
Prob.of hospitalization

when symptomatic

#Hospitalized
#In f ected

= [2%− 4%]
0.04

1−0.5 = 0.08

π Prob. of ICU admission 10%− 40% 0.4
IFR Infection Fatality Rate (implied) 0.008

Sources:
1. Panel a: Bar-On et al (2020); He at al (2020); Li et al (2020); Tian et al

(2020);
2. Panel b – Bar-On et al (2020); Huang et al (2020); Richardson et al (2020);

Salje et al (2020).

Notes:

1. #Hospitalized
#In f ected = #Hospitalized

#Symptomatic ·
#Symptomatic

#In f ected = ξ · (1− η) =⇒ ξ =
#Hospitalized

#In f ected
1−η ;

2. IFR = (1− η) · ξ · π · δ1. We use δ1 = 0.5.
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We use X = 58,094
329.529∗106 = 1. 8× 10−4 based on an estimate of 58, 094 ICU beds

by the Harvard Global Health Institute.5 The implied Infection Fatality Rate
(IFR) is 0.8%, 6 consistent with the recent estimates for the U.S. by the IHME
COVID-19 Forecasting Team (2021).

The path assumed for the reproduction parameter merits discussion. The
idea is to model a time-varying parameter, Rt. The reason is that Rt reflects
both rational individual behavior and the effects of suppression policy. We take
into account that individuals adjust to the new environment and behave dif-
ferently, both with and without government interventions.7 In particular, as
the epidemic unfolds, people become increasingly aware of the risks and adjust
their behavior. This adjustment is manifested in avoiding or reducing social
contact and taking precautions, such as wearing masks. These changes hap-
pen in part as a direct result of government NPIs and in part as a voluntary
response. It is a rational choice to adopt new norms of behavior, even when re-
strictions by the government are weakened or removed. As a result, the speed
of disease transmission declines relative to its start.

The way we proceed is to model the time variation inRt by relying on data
estimates as follows.

(i) Initial level. We set

R0 = 2.50 (21)

We get the value of 2.50 in equation (21) using the methodology of Fernandez-
Villaverde and Jones (2020), adapted to our model8, and daily death flow data
taken from Johns Hopkins University CSSE (2020). This yields estimates of R0
values of 2.67 on March 17, 2020 and 2.48 on March 18, 2020. This is the re-
production number during the initial phase of the epidemic, before significant
lockdowns were imposed in the U.S. 9

(ii) Subsequent values. To reflect the fact that over the course of the initial
outbreak and following it, individuals change their modes of behavior and eco-
nomic activity, including compliance with NPIs, we allow the reproduction
number in subsequent periods to be lower than the initial R0. We posit that
there is a value ofRt during times of lockdown, to be denotedRL, and another
value at other times, denotedRW (“work”). Both are lower thanR0 to take into
account the fact that individuals have adjusted to the new environment and are
taking more precautions. When lockdowns are in place, policy and individual
responses together engenderRL < RW .

For their calibration, we rely on two sets of estimates.

5See https://globalepidemics.org/our-data/hospital-capacity/
6This rate is given by IFR = ξ · π · (1− η) · δ1
7These mechanisms are explored in the second strand of literature discussed in sub-section

2.2 above.
8See online Appendix C for details.
9As noted by Farboodi et al. (2020), social activity and population mobility started declining

even before that. Therefore, it is conceivable that prior to mid March the reproduction number
was even higher. However, due to very incomplete and noisy data on early COVID19 fatalities
it is not possible to credibly infer the reproduction number in the US before mid March (see, for
example, the very wide confidence intervals in Li et al., 2020)
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First, Karin et al (2020) review the literature and estimate values forRL and
RW .10 These relate to developed countries with a population density of over
100 people per square km. Figure 3 reports their estimates.

Figure 3: Estimates ofRW andRL

Source: Karin et al (2020).

10The full details of their analysis, including references and the code, are found at:
www.github.com/milo-lab/
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Looking at the black points in the figure, the value of 1.50 for RW is the
upper bound of estimates; the estimates for RL range from 0.6 to 0.9 with a
value of 0.80 as the estimate for NYC.

Second, we use the U.S. estimates of Fernandez-Villaverde and Jones (2020)
for the biggest 15 states in the U.S., covering 65% of the U.S. population11 We
look at the minimal and maximal values of the estimated Rt series from April
1, 2020 till September 30, 2020. According to the Oxford Stringency Index, dis-
cussed in sub-section 2.1 above, this period covers lockdowns and release in
all of the states, at different points in time. These Rt values are indicative of
RL and RW : RL cannot be lower than the minimal data value, and RW cannot
be higher than the maximal data value. The median (average) minimal value
across the 15 states is 0.68 (0.61) and the median (average) maximal value across
the 15 states is 1.42 (1.49).

Given these two sets of estimates we posit values that are conservative, in
the sense of being biased against the cyclical strategies, i.e.,RL andRW that are
relatively high:

Rt =

{
1.50 RW , work
0.80 RL, lockdown

}
(22)

(iii) Dynamics of the reproduction parameter. To capture the gradual nature
of learning and adjustment of individual behavior, we posit that a certain mini-
mal time should pass under lockdown before the reproduction number declines
from its initial value R0 to RW . To capture this time span, we look at two
sources.

a. Using the Fernandez-Villaverde and Jones (2020) methodology applied to
our model, as discussed in online Appendix C, we get that it takes 8 days to
get from Rt = 2.48 to Rt = 1.50. This decline took place in the third week of
March, when lockdowns only started to unfold. Thus, we interpret this decline
mainly as rational adjustment of behavior.

b. We use Imperial College COVID-19 Response Team (2020) estimates Rt
for U.S. states since the start of the epidemic. We focus on the initial decline
of Rt when suppression measures have been undertaken across the US and
assume a log-linear decay function12

lnR(Ts
1) = lnR(Ts

0)− α̂
log−linear
s · (Ts

1 − Ts
0) (23)

α̂log−linear =

45

∑
1

α
log−linear
s

S
(24)

We obtain two alternative estimates for the average speed α̂log−linear of aRt
decline, depending on the definition of the decline in period Ts

0 to Ts
1 :

11Due to insuffiicent estimates, we exclude the state of New Jersey. As noted, these authors
inferRt from daily death flow data taken from Johns Hopkins University CSSE (2020).

12Out of the fifty states and DC, six were not included in this analysis (AK, HI, MT, ND, SD,
WY) because their initial values of the reproduction number were already below unity at the
start of the epidemic.
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a. The speed α̂log−linear = 0.027 per day was obtained when Ts
0 = the day of

the first Rt observation in the state, and Ts
1 = end of the decline (i.e., the point

whereRt is not statistically different from 1 at 5%). It thus takes ln(2.5)−ln(1.5)
0.027 =

19.2 days to get from 2.50 to 1.50.
b. The speed α̂log−linear = 0.065 per day was obtained when Ts

0 = the day
the highestRt observed in the state; Ts

1 as in (a). It takes ln(2.5)−ln(1.5)
0.065 = 7.9 days

to get from 2.50 to 1.50.
The decay time of Rt is 8 days based on Fernandez-Villaverde and Jones

(2020) national death data, or 8 or 19 days based on the state-level data, Imperial
model estimates. Again, we adopt a conservative calibration and assume that
14 days must pass beforeRt declines from 2.50 to 1.50.

When we examine two specific U.S. states in Section 7, we revisit the com-
putation ofRt.

4.2 Calibration of the Economic Model

Discounting. We posit a 4% annual discount rate for the planner (r = 0.04),
converted to daily terms.

The value of φ. We assume that all symptomatic people who are not hospi-
talized (M) self-isolate and so do not work (φ = 1).

The value of ρ. We use a number of sources to determine ρ, the fraction of
people working out of NSSwhen in lockdown.

a. Panel d in Figure 1 shows BLS data on the U.S. employment-population
ratio. It implies the following for the most stringent lockdown, in April 2020:

ρ =
N(t)
NSS =

0.513
0.61

= 0.84

b. Studying remote work, Dingel and Neiman (2020) find that 37 percent
of jobs in the United States can be performed entirely at home, with significant
variation across cities and industries.

c. An Economic Policy Institute (EPI) analysis13 puts essential workers at
55, 217, 845. February 2020 employment was 158, 759, 000; hence 55.2

158.8 = 0.35.
d. A McKinsey Global Institute analysis14 of all 804 occupations tracked by

the BLS (O*NET data) assign each one a vulnerability rating of low, medium, or
high. Low-vulnerability jobs are the essential ones, require no physical proxim-
ity to others, or are likely to guarantee pay even if workers are furloughed.
Medium-vulnerability jobs require workers to be in proximity to coworkers
but not the public; shutdowns affect 30 to 50 percent of these jobs. High-
vulnerability jobs are nonessential roles that involve exposure to the public;
shutdowns affect 70 to 90 percent of these jobs. This analysis estimates that
a nationwide shutdown could leave 44 million to 57 million jobs vulnerable.

13See https://www.epi.org/blog/who-are-essential-workers-a-comprehensive-look-at-their-
wages-demographics-and-unionization-rates/

14See https://www.mckinsey.com/industries/public-sector/our-insights/covid-19-and-jobs-
monitoring-the-us-impact-on-people-and-places
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Note that this analysis covers both remote work and essential workers. Hence
ρ = 1− 44

158.759 = 0.72 to ρ = 1− 57
158.759 = 0.64.

From this discussion a reasonable conjecture is that ρ ∈ [0.65, 0.80]; we take
ρ = 0.65 at the baseline; this value is consistent with values used by Kaplan,
Moll, and Violante (2020). Subsequently, we also examine the value ρ = 0.75.

Value of Statistical Life.
We compute the value of life as follows:

χ =
expected years remaining · value of statistical life per annum

YSS

POP

(25)

where POP is the population. As is well known, there is a wide set of estimates
for the Value of Statistical Life (VSL). Indeed, Hall, Jones, and Klenow (2020)
state that estimates of the VSL per annum range from $100, 000 to $400, 000.
Greenstone and Nigam (2020) work with Environmental Protection Agency es-
timates of $11.5 million for the VSL for adults, in 2020 terms. This translates
into approximately $250, 000 per annum.

Taking the maximal value of the cited range of estimates, using the pre-
COVID 19 GDP per capita at $65, 430, and the fact that COVID 19 deceased have
an expected average of 14.1 years of life remaining (Hall, Jones, and Klenow
(2020)), this yields:

χ =
14.1 ∗ 400, 000

65, 430
= 14.1 ∗ 6.11 = 86.15 (26)

In what follows we use a rounded number, χ = 85, in the baseline case.
For a robustness check, we examine the following. A widely used value

for annual VSL in per capita terms ( value of statistical life per annum
YSS
POP

) is 4, which yields

χ = 14.1 ∗ 4 = 56. 4. As mentioned, Greenstone and Nigam (2020) use an EPA-
based number, yielding χ = 14.1∗250,000

65,430 = 14.1 ∗ 3.82 = 53.86, which is close. We
round this up to 60, and explore the latter as an alternative in sub-section 6.2
below.

4.3 Solution Methodology

To derive an optimal policy under each cyclical intrument, we use a numerical
solver in Mathematica (NDSolve, see Abell and Braselton (2016)).

We find the values of the control variables (T0, T1, T2) that minimize the
planner cost function in problem (17) by conducting a hierarchical search of
the three-dimensional control variables space. The restriction 0 ≤ T0 ≤ T1 ≤
T2 ≤ 730 is enforced throughout the search. In order to avoid the cost of
an exhaustive grid search at daily granularity, we start with a rough grid in
which T0, T1, T2 are multiples of 16 and then refine it repeatedly. For each triplet
(T0, T1, T2) on the current grid we solve the continuous time system of ODE
describing the stocks S(t), E1(t), E2(t), I1(t), I2(t), R(t) in the SEIR block as de-
scribed by equations (1)-(6) and the continuous time system of ODE describing
the stocks P(t), M(t), H(t), X(t), D(t) in the clinical block (equations (10)-(14))
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given the policy regimes defined by (T0, T1, T2), according to the calibration of
Table 2.

Note that the timing of interventions (T0, T1, T2) and the number of open
days (k) in the cyclical strategy under consideration define the periods of time
in which specific reproduction numbers – R0,RL, and RW – are applicable.
Therefore, we solve the systems (1)-(6) and (10)-(14) separately for each time
period, given its relevant reproduction number. The stocks of infectious, criti-
cally ill, etc. at the endpoint of each time period serve as initial values for the
ODE system describing the dynamics during the subsequent time period.

We use the following steps:
(i) In the very first period, initial values are taken from an infection seed of

0.01% of the population (100 people per million). Within this seed, infectious
and latent subcompartments are initialized so as to be consistent with an initial
exponential growth rate of the disease; susceptibles (S(t)) form the rest of the
pool. The clinical block of the epidemiological model is initialized to 0 at t = 0.

(ii) Using the solution of the ODE system, a set of interpolated functions15describing
the dynamics of all stocks S(t), E1(t), E2(t), I1(t), I2(t), R(t), P(t), M(t), H(t), X(t), D(t),
we are able to evaluate the planner’s objective (17), which is a function of these
stocks (through the cumulative deaths stock D(t) and the employment stock
N(t) as defined in (16)). We solve the system of ODE for each point (T0, T1, T2)
on the current grid and identify the one for which the minimum of the objective
function is attained. We keep this point and all points that produce values of
the objective function within 20% of the minimal value. From these, we select
16 points that best span the control variable space. This is done by starting with
the set that contains only the minimum point. We then add to this set the point
that is the geometrically farthest from the set, and then the point that is second-
farthest, and so on, until 16 points are added to the set. If there are less than 16
points yielding the value of objective function within 20% of the minimal value
in the current step, we keep all of them for the next step.

(iii) The selected 16 grid points are the basis for the grid to be examined
in the next iteration of the minimization. We expand the base grid by adding
more points such that each point (T0, T1, T2) in the base grid is complemented
by 125 grid points located uniformly around it in a three-dimensional space.
The resulting grid is fed into the next iteration of the optimization procedure,
as described above. The process is repeated until minimum granularity of 1
day is reached and the grid cannot be further refined. The optimum is the
point (T0, Tt, T2) on this grid, which is the most fine we get, with the lowest
value of the objective function.

(iv) Finally, we verify that the solution is robust to the initial values fed into
the optimization, and numerically ascertain that the above hierarchical proce-
dure yields solutions that are close to the optimum obtained using exhaustive
search.

The no intervention and full lockdown cases ((i) and (ii) in sub-section 3.6)
are solved similarly imposing (T0 = T1 = T2 = TV) and (T0 = 0 and T1 =

15Interpolated functions are approximate functions which values are found by interpolation.
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T2 = TV), respectively. Optimal lockdown (case (iii) in sub-section 3.6) is found
by imposing the condition T1 = T2, and solving for (T0, T1, T2), as above. Fi-
nally, when solving the solution for optimal thresholds, (case (iv) in sub-section
3.6), for the three continuous control variables (X0, X1, X2), we find the optimal
thresholds minimizing the planner cost by conducting an exhaustive hierarchi-
cal search of the control variables space, spanning the values from 0 to X over
a logarithmic discrete grid.

5 Results

We present the results for the baseline calibration of ρ = 0.65, χ = 85, and
IFR = 0.8%. In the next section we shall explore some variations in these val-
ues.

The optimizing planner chooses how long to wait till first lockdown (T0),
when to start implementing a cyclical strategy (T1), and when to release com-
pletely (T2), for each instrument, namely for each given k. Optimal timing is
based on probability-weighted scenarios for vaccine arrival over the horizon of
two years.16 In the simulations, vaccine arrival is actually realized on day 540,
at its arrival time in expectation using the afore-discussed Gumbel distribution.

We present the results for the four benchmarks discussed in sub-section 3.6
above and six values of the k strategies. Table 3 reports the planner’s optimal
timing T0, T1, T2, the resulting values of cost, V (in annual PDV, GDP per annum
terms evaluated over two years), decomposed into VY, the value of foregone
output and VD, the value of lost life, and the cumulative number of dead, per 1
million people. Figures 4 and 5 show the time evolution of I+ E and of X for six
selected strategies: three benchmarks (no intervention, optimal lockdown only,
and thresholds on X) and three cyclical strategies (k = 4, 6, 8).

16According to the vaccine arrival time distribution that we assume, the probability that it will
take more than two years to introduce the vaccine is practically 0.
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Table 3: Outcomes of the Different Policy Strategies - Baseline

ρ = 0.65, χ = 85, IFR = 0.8%

T0 T1 T2 V VY VD D (per 106)
Non-cyclical

(i) No Intervention 540 540 540 1.13 0.03 1.10 13, 023
(ii) Full lockdown 0 540 540 0.50 0.50 0.00 4
(iii) k = 0 40 133 133 0.42 0.10 0.32 3, 834
(iv) Thresholds n.a. n.a. n.a. 0.34 0.32 0.02 212

Cyclical

(v) k = 3 9 28 483 0.32 0.31 0.00 45
(vi) k = 4 0 14 511 0.29 0.29 0.00 27
(vii) k = 5 0 14 540 0.27 0.26 0.01 166
(viii) k = 6 0 100 540 0.27 0.26 0.01 137
(ix) k = 7 0 128 540 0.29 0.24 0.05 596
(x) k = 8 31 63 388 0.28 0.10 0.19 2, 258

Notes:
a. T0 is the start day of lockdown, T1 start day of the cyclical strategy, and

T2 the release day; the numbers in these columns indicate day number since the
start of the epidemic. The assumption is that vaccine arrival happens on day
540.

b. The loss function is given by:

V =

540∫
0

e−rt ·

 YSS

NSS (N
SS − N(t))︸ ︷︷ ︸

output loss

+ χ ·YSS ·
·

D(t)︸ ︷︷ ︸
value of lost life

 dt+ (RD + RY)

VY =

540∫
0

e−rt
(

YSS

NSS (N
SS − N(t))

)
dt+ RY

VD =

540∫
0

e−rt · χ ·YSS ·
·

D(t)dt+ RD

where RY = RY(540) and RD = RD(540)) reflect residual output and death
costs incurred from the moment of vaccine arrival on day 540 and till day 731,
as defined in the planner problem in Section 3.

c. D is the stock of the deceased as a fraction of the population.
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Figure 4: E+ I in selected strategies

No Intervention Lockdown only

Thresholds 4-10

6-8 8-6
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Figure 5: X in selected strategies

No Intervention Lockdown only

Thresholds 4-10

6-8 8-6
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In the graphs, initial lockdown is marked by purple, the cyclical phase by
blue, release by no color, and the post-vaccine arrival period by grey.17Table
3 and Figures 4 and 5 show that the results can be characterized as follows,
discussing first the cyclical tools.

(i) Cyclical strategies with low k (= 3, 4, 5, 6, 7) keep the epidemic under con-
trol and ICU capacity is not breached. For this case, the figures show the k = 4
and k = 6 strategies. In the infected (E + I) figure 4 it can be seen that there
is a rise in the number of infected over time but it remains extremely low. As
can be seen in the X plot (figure 5), the number of critically ill is hardly appar-
ent relative to the ICU constraint X. This happens as k is relatively low and as
the cyclical strategy is applied for a long time (blue region) following a quick
initial lockdown (purple region). These strategies lead to relatively low num-
bers of deceased, between (approximately) 15, 000 and 200, 000, lower than the
actual number of deceased in the U.S. by late September 2020. Total planner
costs vary between 27% and 32% of annual GDP in PDV terms over two years,
coming mostly from the value of foregone output.

(ii) A cyclical strategy with high k (= 8) does not have the disease under con-
trol, as shown in the figures. There are two waves, whereby ICU capacity is
breached in the first one. Note the scale of infection, which is much higher than
in the preceding case. The initial lockdown (purple region) comes later, and the
cyclical strategy (blue region) does not last as long. It leads to a relatively high
number of deceased, approximately 750, 000. Total cost is 28% of annual GDP
in PDV terms over two years, coming mostly from the value of lost life.

The results for the four benchmarks discussed in sub-section 3.6 above and
reported in Table 3, to which we compare the afore-going cyclical policies, are
as follows.18 The first two are non-optimizing, extremal benchmarks.

(i) The no intervention case has the disease erupt, breach the ICU capacity
constraint X, and reach herd immunity (to be discussed in Section 6.1 below) at
S = 0.40 by day 53, after which the epidemic starts to decline by itself. It leads
to a high number of deceased – about 4.3 million people – and has a huge cost,
at 113% of annual GDP in PDV terms over two years, most of it coming from
the value of lost life (with V = 1.13 and VD = 1.10).

(ii) The full lockdown case (not shown in the graphs) has the disease under
control as it entails an immediate lockdown, remaining in place until vaccine
arrival. It leads to a very low number of deceased, around 1, 300 people, and
has a substantial cost, at 50% of annual GDP in PDV terms over two years,
coming from the value of foregone output (V = VY = 0.50).

(iii) The case of optimal lockdown, (k = 0), marked “lockdown only” in the
graphs, implies that a cyclical strategy is de facto unavailable to the planner and
all the planner can do is optimally set the lockdown start and end dates. Un-

17Note that the graphs in Figures 4 and 5 have very different vertical scales, all in percent out
of the population. In Figure 4, the range of the graph in the case of no intervention, is between
0% and 25% while that of the k = 4 strategy is between 0% and 0.01%. The scales of the other
graphs are in between. In Figure 5 these ranges are 0% to 0.25% for no intervention and 0% to
0.018% for k = 4.

18While here we compare to theoretical benchmarks, note that in Section 7 below we directly
compare the model results to two actual U.S. cases – New York State and Florida
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like the full lockdown case, here the planner lets the epidemic erupt, breach the
ICU capacity constraint X, and only after 40 days locks for about three months.
Subsequently the planner releases for good; disease growth is extremely slow,
as the system gets close to herd immunity. The planner does not impose the
lockdown for longer because its economic costs are too high. This strategy ends
up with losses of 42% in annual GDP PDV terms, which is 8 percentage points
lower than in the full lockdown, non-optimizing case. Most of this cost reduc-
tion comes from the gain in production, which more than compensates (in GDP
terms) for the loss of value due to the substantial amount of deaths under this
scenario, amounting to about 1.3 million fatalities.

(iv) The thresholds policy case follows the policy rationale adopted in many
places in the real world; the planner optimally chooses thresholds for lockdown
policy in terms of ICU hospitalizations, X. It keeps the epidemic under control
and ICU capacity is not breached. In the figures one sees low rates of infec-
tion and a hardly discernible X series. The planner in this case is very cautious
and locks the economy early, far ahead of the point of an immediate threat to
ICU capacity. The disease develops in several consecutive waves that rise and
fall as the planner switches between release and lockdowns. It leads to rela-
tively low numbers of deceased, around 70, 000 people. Given that the U.S. has
exceeded this number by early May 2020, it must be the case that U.S. policy-
makers have not been implementing this type of strategy optimally, or have
been implementing some other policy altogether. Total cost in this benchmark
case is 34% of annual GDP in PDV terms over two years, coming mostly from
the value of foregone output (with V = 0.34, VY = 0.32).

Table 3 shows that the cyclical strategies entail much lower losses, as com-
pared to the benchmark cases, varying between 27% and 32% in annual GDP,
PDV terms.

6 Exploring Planner Policies

While the preceding section presented the baseline results, in this section we
analyze their implications. First we study the underlying mechanism, exploring
the rationale for the planner optimal decisions (sub-section 6.1). Second, we
evaluate the cyclical policies by comparing them to the alternative benchmark
policies using a plot of the policy frontier (6.2). Finally, we study variations in
key parameters (6.3).

6.1 The Mechanism

To understand the underlying mechanism consider the following.
The progression of the epidemic can be classified according to the effective

reproduction numberRe as follows:
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(i) When Re = 1,19 the population has reached herd immunity and an out-
break (i.e., a spurt of disease growth) is no longer possible, though susceptibles
still do get infected.

(ii) Below that, when Re < 1, the epidemic is suppressed and the number
of newly infected people declines with time.

(iii) When 1 ≤ Re < 1.1, the epidemic is slow growing; its doubling time is
at least 6 weeks.

(iv) WhenRe ≥ 1.1 there is an outbreak.20

Note thatRe depends both on the current reproduction numberRt and the
current fraction of susceptibles S(t), i.e., Re = Rt · S(t), where Rt reflects the
current intervention regime. A low effectiveRe is achieved either following an
extensive exposure of the population to the virus (a low S(t)), or by imposing
stringent restrictions to curb virus spread (lowRt).

We can now formulate the outcomes of the optimal planning problem in
these terms. The outcomes presented in the preceding section basically follow
one of two basic paths.

Strong containment. This path implies that Re is kept below or around 1 al-
most throughout the planning period with stringent restrictions (lowRt), while
preserving the pool of the susceptibles intact to a large extent (high S(t)). This
path requires strong suppression measures to be imposed for long periods of
time. These measures either reduce the epidemic or keep it growing at a very
slow pace. The costs of loss of output are high, but the death toll is low.

Weak containment. This path implies that the reduction in Re is obtained
by the depletion of the susceptibles pool (a low S(t)), while policy interven-
tions are loose or short-lived (resulting in a high Rt). Since this path involves
less prolonged and more delayed interventions, it is cheaper in terms of loss
of output, while the ensuing death toll is inevitably high relative to the strong
containment path.

These two policy paths reflect the fundamental trade-off between economic
costs and death tolls in managing the epidemic. The resolution of the trade-
off, the optimal policy choice, depends on a number of factors: the extent to
which economic activity can be maintained in lockdowns, the fatality rate of
the virus, and the value of statistical life. Even more critically, it depends on
the type of policy instruments available to the planner. It turns out that when
cyclical strategies are in the toolkit, the fundamental trade-offs can be softened
in a way that allows achieving lower economic costs and/or lower death tolls,
while waiting for vaccine arrival.

A key point about the cyclical strategies is that they average out k working
days and (14− k) lockdown days and therefore reduceRt. This approximation

19In this case

Re = RtSHI(t) = 1

SHI(t) =
1
Rt

20The demarcation value of 1.1 is arbitrary, but we find it to be useful for the current discussion.
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of the averageRt, to be denotedRa, is given by:21

Ra(k) '
k · RW + (14− k) · RL

14
< RW (27)

From equation (27), it is immediately clear that the tighter, low-k strategies
are more efficient in epidemic suppression as their reproduction number Ra is
lower. Crucially, they can bring down the infection while not closing down the
economy completely. These strategies can be applied over long time horizons
and achieve the strong containment type of solution. The high-k strategies can
only be compatible with strong containment when applied after a prolonged
lockdown and for relatively short periods of time, not giving the epidemic
enough time to vastly grow.

The optimal timings reported in Table 3 show how these different policy
choices are implemented by the planner at the baseline parameter values. Table
4 elaborates on the associatedRa and S(t) values.

Table 4: Dynamics Under the Cyclical Strategies – Baseline

Baseline: χ = 85, ρ = 0.65, IFR = 0.8%
k k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

Ra 0.94 1 1.05 1.1 1.16 1.20
T0 9 0 0 0 0 31
T1 28 14 14 100 128 63
T2 483 511 540 540 540 388

S(T0) 1.00 1.00 1.00 1.00 1.00 0.96
S(T1) 1.00 1.00 1.00 1.00 1.00 0.91
S(T2) 0.99 1.00 0.98 0.98 0.93 0.72
S(TV) 0.99 1.00 0.98 0.98 0.93 0.72
Re(T0) 0.8 0.8 0.8 0.8 0.8 0.77
Re(T1) 0.94 1 1.05 1.1 1.16 1.09
Re(T2) 1.49 1.5 1.47 1.47 1.40 1.08

D (per 106) 45 27 166 137 596 2, 258
Containment strong weak

Notes:
Re(T0) = S(T0) · RL is the effective R at the beginning of lockdown.
Re(T1) = S(T1) · Ra is the effective R at the beginning of the cyclical strategy
Re(T2) = S(T2) · RW is the effective R at the beginning of release.

21The average here is not exactly a linear function ofRW ,RLand so this is an approximation.
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The low-k strategies (k = 3, 4, 5, 6, 7) are used to achieve strong containment,
where, by the time of vaccine arrival, no more than 7% of the population is
exposed to the virus. As can be seen in Table 4, this is achieved by a very early
lockdown phase followed by an extremely prolonged cyclical stage, which lasts
up to vaccine arrival in most cases. Strong containment here is possible since
the average reproduction Ra of these strategies is low, and so they achieve an
effective Re below or near unity, even though the pool of susceptibles remains
largely intact. Within this group, the most stringent strategies (k = 3, 4) manage
to bring down the disease. The less stringent strategies (k = 5, 6, 7) do not bring
down the disease but do not allow it to grow fast before the vaccine arrives.
They also require a longer initial lockdown. These dynamics can be seen in
Figures 4 and 5 above.

The high-k strategy (k = 8) results in a weak containment solution. By the
time the vaccine arrives, almost 30% of the population gets the virus; see the
S(TV) value in Table 4. This is achieved by delaying the first lockdown by al-
most a month, and also by removing all interventions relatively early. The dy-
namics feature two waves: an initial eruption and its suppression with the first
lockdown, and then another, smaller wave, during the cyclical strategy phase.
This second wave is moderate because Re in the latter stage is low despite a
high Ra, due to the depleted pool of susceptibles (see S(T1) and Re(T1) in Ta-
ble 4). When the restrictions are lifted, the effective Re is so low that there will
be almost no disease growth. This, too, may be seen in Figures 4 and 5.

6.2 The Policy Frontier

As shown above, there are two major ways to deal with the epidemic: strong
and weak containment. The timing of interventions, the ensuing epidemic dy-
namics, and realized costs all depend on the instruments available to the plan-
ner. The trade-offs involved are most easily seen in a two-dimensional graph,
that maps the outcome obtained under each instrument on two axes – the death
toll per million people and the value of lost output in annual GDP terms. One
can trace out a policy frontier using this graphical representation. Panel a of
Figure 6 presents this frontier. It does so for different values of k, ranging from
3 to 8, and for three different values of the value of life, χ (60, 85, 100).
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Figure 6: The Policy Frontier

a. χ = 60, 85, 100 and k ∈ {3, 4, 5, 6, 7, 8} b. Baseline χ = 85

c. Baseline, zoomed in d. Parameter Variations
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Panel a clearly shows that there exists a policy frontier. Note that for a large
segment, the frontier is almost linear. In this part, deaths rise and output loss
falls with an almost constant proportion, as the value of life, χ, falls. In the seg-
ments at the extremities it is almost vertical (on the left) and almost horizontal
(on the right). This means that in those parts there is no tradeoff. When deaths
are low, raising χ just increases output loss without much effect on deaths;
when deaths are high, lowering χ just increases them more, without much gain
in terms of output.

Panel b of the figure shows the frontier using just the baseline values, dis-
cussed in Section 4, i.e., with χ = 85. It also shows the benchmark strategies,
discussed in sub-section 3.6, marked by a mash. The two extreme benchmarks
of locking the economy completely till vaccine arrival and not doing any inter-
vention are represented by two extreme points on the graph, with huge output
or death toll, respectively. The benchmark optimal lockdown policy (k = 0),
denoted “lockdown only,” lies above the frontier. Panel c magnifies part of this
figure, showing that the thresholds strategy benchmark also lies above the fron-
tier.

In panels b and c, the cyclical policy plans trace out the frontier, conditional
on χ = 85. The strategies marked in green follow strong containment policies.
Hence they have a relatively high cost of lost output and a moderate death toll.
These are low-k strategies with just a few days open each fortnight, and are
located on the upper-left part of the graph. The cyclical strategy marked in red
(k = 8) is not powerful enough to suppress the epidemic efficiently, as more
open days are allowed every fortnight and therefore containment is weak. This
strategy is located on the lower-right segment of the frontier, representing a
high death toll with moderate output losses.

The figure clearly shows that the use of cyclical strategies brings about a
very substantial improvement in outcomes relative to the two extremes of no
intervention or full lockdown (as also seen in the values reported in Table 3).
Compared to the optimal threshold strategy, the type of decision-making seen
in reality, the cyclical strategies provide significant improvement too. Using
Table 3 and Figure 6b, one can see that the k = 8 strategy provides some im-
provement in social welfare by lowering output loss. However this is done
at the price of a higher death toll. It is the low-k cyclical strategies, especially
k = 5, 6 that provide for a much more significant improvement. They lower
output losses with small changes in the death toll, within a strong containment
solution.

Panel a of Table 5 presents model outcomes with the alternative value of
χ = 60 as discussed above instead of the baseline case of χ = 85.
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Table 5
a. An Alternative Value of Life χ

value of life: χ = 60
k k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
T0 36 32 0 33 31 31
T1 56 56 14 56 49 52
T2 99 371 540 360 325 332

S(T0) 0.92 0.96 0.99 0.95 0.96 0.96
S(T1) 0.84 0.91 0.99 0.89 0.93 0.92
S(T2) 0.79 0.85 0.98 0.78 0.74 0.70
S(TV) 0.55 0.84 0.98 0.77 0.72 0.70

V 0.31 0.28 0.27 0.26 0.23 0.22
VY 0.06 0.20 0.26 0.14 0.10 0.08
VD 0.25 0.08 0.01 0.12 0.13 0.14

D (per 106) 4, 194 1, 348 166 1, 987 2, 250 2, 432
Containment weak strong weak

b. Parameter Variations - ρ and IFR
V

ρ = 0.75 IFR = 0.6%
Cyclical:

k = 3 0.23 0.31
k = 4 0.21 0.29
k = 5 0.20 0.27
k = 6 0.20 0.26
k = 7 0.21 0.24
k = 8 0.24 0.23

Non-cyclical:
k = 0 0.31 0.36

Thresholds 0.24 0.32

Notes: See Table 3.
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Table 5a shows in numbers what is seen in panel a of Figure 6 graphically:
though the location of the frontier does not visibly change as χ declines, the
points move to the lower-right corner, i.e., to the region of weak containment.
Even when armed with the most stringent instruments (k = 3 and k = 4), pre-
viously used to keep the disease under strict control, the planner now chooses
weak containment. This is so because the economic costs of these very restric-
tive strategies do not justify using them for prolonged suppression when life
is less valuable. Only the k = 5 cyclical strategy that is characterized by both
suppression efficiency and moderate output costs is still used to implement the
strong containment solution.

The trade-offs embodied in the frontier graph and the planner optimal choices
depend on the lockdown severity parameter ρ (the fraction of working in lock-
down) and on the infection fatality rate. We explore the sensitivity of outcomes
to these parameters next.

6.3 Parameter Variations

Panel d in Figure 6 and panel b in Table 5 present the results with a higher
ρ = 0.75, i.e., employment is at 75% of its steady state level during lockdown,
and, separately, with an alternative IFR value of 0.6%.

Higher ρ means output losses from lockdowns are less severe; thus the plan-
ner can aim for strong containment, which is now less costly. Hence the policy
frontier is to the left of the baseline frontier, and concentrated on the left hand
side of the graph. Even the weakest (high-k) instrument is now used for strong
containment, which is achieved by applying a very prolonged initial lockdown
followed by a short cyclical phase.

A lower fatality rate moves the frontier leftwards, to lower death tolls. This
shift is more pronounced at the lower-right end of the frontier, where weak
containment solutions are located. These solutions rely on high exposure of
the population to the disease. When the death probability declines, fatalities
drop significantly, and so the frontier moves perceptibly. Such solutions are
now optimal under a wider range of instruments. Facing a lower fatality rate,
the planner is more inclined to open more and thus reduce output costs, in
exchange for somewhat higher death tolls. In the strong containment solutions
located at the upper-left region of the frontier, exposure to the disease is low to
begin with. Even though the fatalities rate goes down, the decline in the death
toll is small in absolute terms.

As seen in panel b of Table 5, the advantage of the cyclical tools relative to
the benchmarks is preserved under these parameter variations.

7 The Cyclical Strategies vs Actual Experience

The cyclical strategies can be compared to actual real world experience. We
do so by simulating optimal plans under the cyclical strategies and compar-
ing them to a policy path based on the experience of the states of New York
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and Florida. The choice of these two states is motivated by the fact that both
experienced high levels of the epidemic but very different dynamics.

7.1 Data and Methodology

We use daily death data.22In both New York State and Florida, it spans 275 days,
from March to November 2020. This is the sum of confirmed and probable
deaths from COVID19. The death count is smoothed using a 7-day centered
moving average.

The methodology we use is as follows.
(i) Estimation of disease growth rates to obtain initial guesses of the repro-

duction number at various stages of the epidemic.23

(ii) Estimation of the reproduction number at various stages of the epidemic
by minimizing squared deviations of the simulated series of daily deaths and
the corresponding data series, using the estimated rates in (i) as starting values.

(iii) Using the derived parameter values for simulation of the optimal cycli-
cal strategies and for simulation of the policy path based on actual experience.

In what follows we elaborate on these steps.
(i) Estimation of disease growth rates
We use the following relations. At the start of the epidemic S(t) ' 1. The

path of I(t) = I1(t) + I2(t) is postulated to be:

I (t) = I (0) eλt (28)

For the model in use, i.e., a SEIR model with 2 sub-compartments, λ satis-
fies the following relation (using equation 4 in Wearing et al (2005)):

R = λ( λ
2σ+1)

2

γ

(
1−

(
λ

2γ + 1
)−2

) (29)

At later stages, as the amount of susceptibles declines, the effective repro-
duction numberRe is given by

Re = S(t) · Rt (30)

We estimate λ, the growth rate of I(t), the infected, employing daily death
data. Using the values of γ and σ from Table 2, we derive the value of R0 from
equation (29) for the initial outbreak period. We subsequently use equations
(29) and (30) to deriveRL for the lockdown period.

To estimate λ we run a Poisson (log-linear) regression as follows:

log (daily death count) = const+ λt (31)

22The data are taken from COVID-19 Data Repository by the Center
for Systems Science and Engineering (CSSE) at Johns Hopkins University,
https://github.com/CSSEGISandData/COVID-19

23Throughout, the underlying assumption is that there is a constant generation interval (see
sub-section 3.1).
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(ii) Derivation of parameter values.
In the case of NYS, which experienced one wave of the epidemic between

March and November 2020, to derive parameter values needed for the simula-
tions, we solve the following minimization problem:

min
T0,T1,R0,RW ,RL,τ0

∫ tend

t=0
(D (t)− Dactual (t− τ0))

2 dt (32)

where Dactual is the data death series and D(t) is the data death series solved
from our SEIR model; τ0 is the time needed to adjust the death series to model
dynamics, given the duration from infection to death; lockdown is imposed
between T0 and T1 so thus

R =


R0 t ≤ T0
RL T0 < t ≤ T1
RW T1 < t

We solve the minimization problem by an exhaustive grid search, where
τ0, T0, T1 are positive integers, T1 > T0, and R0,RL,RW are on a grid with 0.1
precision around the initial values. We use the calibrated values presented in
Table 2 above.24 Initial values are derived in step (i) above. We thus derive the
control variables of problem (32), namely T0, T1,R0,RW ,RL, τ0.

In the case of Florida, which has experienced two epidemic waves, we are
solving an expanded problem in a similar way. The minimization problem is
given by:

min
X̃0,X̃R,X̃L,R0,RW ,RL,τ0

∫ tend

t=0
(D (t)− Dactual (t− τ0))

2 dt (33)

where lockdown is imposed when X > X̃0, released when X < X̃R, and re-
imposed when X > X̃L. Now:

R =


R0 initially
RL X > X̃0 for the first time
RW X < X̃R (first lockdown is at least 14 days)
RL X > X̃L

We derive the control variables of problem (33), namely X̃0, X̃R, X̃L,R0,RW ,RL, τ0.
(iii) Using the derived parameter values.
Using the derived values of R0,RW ,RL we simulate the optimal cyclical

strategies and actual experience.

7.2 Results

We first report the results with respect to growth dynamics and the reproduc-
tion parameter. We subsequently present the outcomes of the simulated optimal
strategies and compare them to actual experience.

24We use the same IFR as in Table 2, based on the findings of IHME COVID-19 Forecasting
Team (2021).
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7.2.1 Growth Dynamics and the Reproduction Parameter

In NYS the exponential growth rate λ is estimated using equation (31) between
March 11 and March 30, 2020 to be 0.23 with a 95% confidence interval of
[0.22, 0.25]. In the model, these values correspond to R0 = 3.17 [2.95, 3.42]. The
exponential decline rate λ is estimated between April 8 and July 28, 2020 to be
−0.0456 with a 95% confidence interval of [−0.0464,−0.0447].

Our procedure, which was elaborated in sub-section 7.1, yields the result
that 12 days after the beginning of lockdown, on March 30, 2020, 11% of the
population were already infected, so S = 0.89. This is consistent with the sero-
logical findings of Richardson et al (2020). Thus RL = Re/0.89. Under SEIR,
these λ values correspond toRL = 0.84 [0.83, 0.85].

We further estimate the exponential growth rate following the release from
lockdown, λW , as 0.018 [0.016, 0.02]. At release, we find that 18% of the popu-
lation had been infected (broadly consistently with the afore-cited reference) so
S = 0.82 andRW = 1.36 [1.34, 1.37]. This value ofRW generates an effectiveRe
= 0.82 ∗ RW = 1.15 leading to a slow increase of the daily death series, as seen
in the data.

In Florida the exponential growth rate λ is estimated using equation (31)
between March 17 and April 1, 2020 to be 0.21 with a 95% confidence interval
of [0.19, 0.23]. In the model, these values correspond to R0 = 2.89 [2.65, 3.13].
The exponential decline rate λ is estimated between May 5 and May 28, 2020 to
be −0.02 with a 95% confidence interval of [−0.023,−0.016].

Our procedure yields the result that only 1.3% of the population were in-
fected, so S = 0.987. Thus RL = Re/0.987. In the model, these λ values corre-
spond toRL = 0.89 [0.88, 0.91].

We further estimate the exponential growth rate following release from lock-
down, λW , as 0.043 [0.041, 0.045].During the period of release following the first
wave in Florida, we find that 3% of the population had been infected so S = 0.97
andRW = 1.32 [1.30, 1.34].

7.2.2 Simulated Policy Strategies

We simulate a model of lockdown policy so as to generate a death series com-
parable to actual data. This will enable us to see how close the model is to the
data. As initial values we use the ones obtained in step (i) of the procedure
elaborated in sub-section 7.1. In NYS, the solution yields the following values:
R0 = 3.21, RL = 0.86,RW = 1.36. In Florida, the solution yields the following
values: R0 = 3.12,RL = 0.92,RW = 1.34. These values, which are very close to
the initial ones, minimize the distance between the actual and simulated death
series. How good is the data fit? Table 6 reports moments of the data series and
the simulated one.
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Table 6
Moments of the Cumulative Deaths Series, Simulation and Data

a. NYS

simulation data p value of equality test
mean 0.0014 0.0014 0.62

median 0.0017 0.0017 0.72
std 0.0006 0.0006 0.79

skewness −1.73 −1.65
kurtosis 4.43 4.13

correlation 0.9986

b.Florida

simulation data p value of equality test
mean 0.0003 0.0003 0.93

median 0.0002 0.0002 0.72
std 0.0003 0.0003 0.79

skewness 0.25 0.41
kurtosis 1.37 1.60

correlation 0.9937

Notes:
1. The computations are explained in sub-section 7.1.
2. Test of moment equality are t-test for mean, Wilcoxon/Mann-Whitney

test for median, and F-test for variance. A high p value means that the null of
moments equality cannot be rejected.

Source:
The data are taken from the COVID-19 Data Repository, the Center for Sys-

tems Science and Engineering (CSSE) at Johns Hopkins University,
https://github.com/CSSEGISandData/COVID-19.
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By all moments, the simulated and actual series for cumulative deaths (smoothed)
are very close, suggesting a very good fit. This point is important as it shows
that the model is able to reproduce the data.

Next, we simulate the optimal cyclical strategies using the same reproduc-
tion parameter values. Figure 7 shows the outcome using the frontier, in terms
similar to Figure 6; panel a presents NYS and panel b presents Florida. Note
that the optimization was done for the entire two year horizon, as above, but
Figure 7 presents the cumulative results only for the period from March 1 to
November 30, 2020. As actual state-level employment data from BLS (CES) are
in monthly terms, we adapt the computation to discrete time, monthly terms.
Details are provided in online Appendix B.
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Figure 7: Cyclical Strategies vs Actual Experience, March to November 2020

a. New York State

b. Florida
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The figure shows the outcomes of the cyclical strategies, with k ranging from
0 (optimal lockdown) to 8, the simulated actual experience, and the data. The
last two points are very close as the fit is good. Table 7 presents the values
shown on the figures axes as well as total planner cost, V. Note that in each
panel of the table we present the parameter values relevant for the state in ques-
tion.25

Table 7
a. New York State, March 1 – November 30

ρ = 0.65, IFR = 0.8%, χ = 85,X= 0.00023
deaths per million Output loss Vy V

lockdown only 2, 895 0.05 0.30
k = 3 1, 312 0.16 0.28
k = 4 1, 428 0.14 0.26
k = 5 38 0.13 0.13
k = 6 42 0.12 0.12
k = 7 1, 922 0.07 0.23
k = 8 1, 774 0.06 0.21

Actual experience simulation 1, 792 0.10 0.25
Data 1, 779 0.10 0.25

b. Florida, March 1 – November 30

ρ = 0.85, IFR = 0.8%, χ = 85,X= 0.00028
deaths per million Output loss Vy V

lockdown only 28 0.10 0.11
k = 3 30 0.08 0.08
k = 4 19 0.07 0.08
k = 5 12 0.08 0.08
k = 6 9 0.09 0.09
k = 7 9 0.10 0.10
k = 8 9 0.11 0.11

Actual experience simulation 795 0.06 0.13
Data 866 0.06 0.13

25The fraction of workers in employment in lockdowns in New York State is calibrated to our
baseline US value (ρ = 0.65). For Florida, the BLS (CES) employment statistics indicate that
during the period of the ‘stay-at-home’ order (in the month of April 2020), the share was rela-
tively high, at 87%. Additionally, we numerically search for the ρ value that would generate the
same employment losses in our fatalities-fitting exercise as in the data, and the resulting ρ is 0.85.
Therefore, we adopt a value ρ = 0.85 for Florida. As the source data for X we continue to use
Harvard Global Health Institute at https://globalepidemics.org/our-data/hospital-capacity/.
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Notes:
The computations are explained in sub-section 7.1.
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7.3 Discussion

Figure 7 and Table 7 show that the cyclical strategies perform better than actual
experience. The data points lie above the (imaginary, unplotted) frontier. Total
planner discounted cost, in annual GDP terms, goes down from 25% to 12% in
NYS and from 13% to 8% in Florida. Why so?

In New York, the low k cyclical strategies achieve strong containment, re-
sulting in a much lower death rate, and in only a small increase in output loss.
In fact even the high k strategies, which achieve only weak containment, are
better than the actual outcomes. Their death rates are lower or only slightly
higher and output loss is significantly lower. It is clear that actual policy un-
derperformed, and achieved only weak containment. In particular, the use of
moderately stringent k = 5 and k = 6 cyclical tools implies a dramatic reduc-
tion in the death toll and only a slight increase in output costs relative to actual
experience. Timing is key here – the optimal use of k = 5 and k = 6 involves an
immediate initial lockdown, which proves to be critical in curbing the disease
during its exponential growth phase. Compared to this optimal policy, in the
simulated actual experience, waiting with initial lockdown, resulted in death
tolls that are higher by a factor of 45.26 It appears that lockdown in New York
State was relatively late and thus a significant outbreak was facilitated.

In Florida, all cyclical strategies achieve strong containment while the ac-
tual outcome, similar to New York State, is one of weak containment. The gain,
relative to actual experience, is similar to the low k case in New York, namely
low death rates with only a slight increase in output loss. With a high fraction
of economic activity maintained during lockdown in Florida, the model implies
that stringent lockdowns should have lasted much longer, suppressing the dis-
ease without dramatic damage to output. The intuition for this result is that
actual release from lockdown in Florida in practice was relatively fast and so
renewed progression of the epidemic was facilitated.27

Note, too, that the superior outcomes of the cyclical policies are achieved
despite the fact that we constrain the planner in the cases of those policies to
choose only three points in time, while in the real world cases there were fewer
constraints.

8 Conclusions

Given the significant trade-offs between health outcomes (deaths, breaches of
ICU capacity) and economic outcomes (loss of output and employment), the
analysis has shown that pandemic management policy based on time restric-
tions may lead to significant improvement. The improvement was quantified in

26The importance of early NPIs for curbing cumulative death tolls has been stressed in the
epidemiological literature on the 1918 Influenza Pandemic (see, for example, Markel, Lipman,
Navarro, Sloan, Michalsen, Stern, and Cetron (2007) and Bootsma and Ferguson (2007)). Hatch-
ett, Mecher, and Lipsitch (2007) highlight the fact that the effects of early NPIs may be especially
pronounced over short horizons, but are still significant in terms of overall cumulative mortality.

27This can be seen in panel a of Figure 1.
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terms of social welfare, evaluated in PDV, annual GDP terms. The comparison
was made relative to four hypothetical benchmarks, as well as to the experience
of New York State and Florida. The analysis, which is relevant for COVID 19 as
well as for any future epidemic, laid down the principles for time restrictions
policy, as well as a framework for comparative policy analysis.

Exploring this policy seems a promising avenue for future research in the
context of managing epidemics. The analysis clearly shows that such strate-
gies allow for a nuanced response to observed epidemic dynamics, without
resorting to single out any population group. It is important to note that the
afore-mentioned advantages of the cyclical strategies over prevalent policies are
likely to be a lower bound of their full benefits. First, in our model the planner is
deliberately constrained in the way cyclical tools are applied; for example, not
permitted to mix within the set of strategies, or apply them in a staggered way.
Giving the planner additional degrees of freedom, as we do for the benchmark
thresholds strategies, should increase the advantages of the novel instruments
over prevalent policies. Second, and not less significant, our model does not
allow us to quantify the additional benefits of cyclical tools, such as the pre-
dictability of production that they entail, as well as their potential to alleviate
part of the negative impact of prolonged isolation on mental well-being.
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Online Appendices
When to Lock, Not Whom:

Managing Epidemics Using Time-Based
Restrictions

by Bar-On, Baron, Cornfeld, Milo, and Yashiv

Appendix A: Rationale, Implementation, and Advantages of the Cyclical
Strategies

We spell out the proposed policy based on time restrictions, employing a
cyclical schedule. This policy is extensively analyzed from an epidemiological
perspective in Karin et al. (2020).

Background. As shown in Section 2, COVID 19 lockdowns are widely used,
with substantial economic costs. Additionally and importantly, there are big
costs related to well-being (see, for example, Hamermesh (2020)) that cannot be
expected to be borne indefinitely. At the same time, second and third waves
have materialized in many places. The strategy in question is meant to bridge
between lockdown and release in a way which lessens the trade-off between
managing the epidemic and sustaining the economy. In the main text we offer
an extensive analysis of this point.

The basic idea. Following an initial lockdown, move to a regime of k days of
work and 14− k days of lockdown, every 14 days. On work days, people are
released from lockdown with strict hygiene and physical distancing measures
on the same k weekdays for everyone. On lockdown days, people are kept
away from work places as well as from other public spaces. Epidemiological
measures need to be used throughout, including rapid testing, contact isolation,
and compartmentalization of workplaces.

The rationale for this policy is as follows. Cyclical strategies reduce the average
value of the reproduction parameter – which will be shown below to capture
the progress of the disease – through two effects: time-restrictions and anti-
phasing.

The time-restrictions effect is a reduction in the time T that an infectious
person is in contact with many others, compared to the situation with no lock-
down. For example, a 4-day work, 10-day lockdown cycle (k = 4) reduces T
to 4

14 T ≈ 0.3T. The anti-phasing effect uses the timescales of the virus against
itself. Most infected people are close to peak infectiousness for about 3-5 days,
beginning after a latent period of about 3 days (on average) after exposure. A
proper work-lockdown cycle, such as a 4-work 10-lockdown schedule, allows
most of those infected during work days to reach maximal infectiousness dur-
ing lockdown, thus avoid infecting many others. Those with significant symp-
toms can be infectious for longer, but remain hospitalized, isolated, or quar-
antined along with their household members, preventing secondary infections
outside the household.
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Countries, regions or organizations that adopt this strategy are predicted to
resist infections from the outside. An infection entering from the outside cannot
spread widely because average R is below 1; we elaborate on this issue in sub-
section 6.1 in the main text. Intuitively, this result is due to the fact that, when
taking into account the overall effects of R under work conditions and under
lockdown conditions, the proposed cyclical strategy brings the average effec-
tive R to below 1. Hence, an infectious person entering from the outside and
adhering to the cyclical strategy will on average infect less than one additional
person in the region/organization. This implies that, with time, infections orig-
inating from infectious people entering from the outside will decay and not
spark new outbreaks.

Context. Measures are required during work days to ensure that people
do not excessively compensate for the lockdown periods by having so many
more social connections so that infection is significantly increased. This in-
cludes sound epidemiological measures such as the continuation of banning
large social gatherings, which bear the risk of superspreader events, and clear
communication campaigns by health authorities to enhance adherence to hy-
giene and physical distancing.

Applicability. The proposed strategy can be applied at many levels – na-
tional, regional, metropolitan, institution, or firm; see the discussion in Online
Appendix A. It may well be relevant, with the appropriate modifications, for
other pandemics and epidemics. The world has already encountered quite a
number of those over the past 40 years. Indeed. the set of epidemics since 1980
is quite large and includes, inter alia, HIV/AIDS, SARS, H5N1, Ebola, H7N9,
H1N1, Dengue fever, and Zika (see Bloom, Kuhn, and Prettner (2020)).

Implementation. The cyclical strategy can be applied on many scales: firms,
schools, towns, regions, or an entire country. In practice it has been imple-
mented, or is under consideration, by:

(i) Multinational firms, including MasterCard, Delvenia, SENER, and Bio-
gen

(ii) Schooling institutions – the Austrian school system, schools in and around
Atlanta (GA), a local school district in Berkeley (CA), schools in Los Angeles
(CA) and Minneapolis (MN).

(iii) Academic institutions – departments at Yale University, Cornell Univer-
sity, University of Georgia, and the University of Wisconsin-Madison.

(iv) Local government – Mexico City, NYC Department of Citywide Admin-
istrative services, and the City of Tubaro, Brazil.

The web site https://cyclicexitstrategy.org/ provides updated information.
Advantages. This paper thoroughly investigates the social welfare gains in

terms of death tolls and economic losses. We elaborate in Sections 6 and 7 of
the main text. Beyond that, the following advantages of these strategies can be
noted.

(i) The cyclical strategy is not predicated on massive testing and can work
in regions with insufficient testing capacity.

(ii) In countries or states with a large informal sector, adhering to continuous
lockdown may be untenable, so the cyclical strategies are a solution.
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(iii) The cyclical strategy provides economic opportunity during work days
that may presumably improve adherence during lockdown days.

(iv) Implementation in schools is particularly important, serving to avoid
significant educational costs.

(v) The cyclical strategy provides predictability and allows for rational plan-
ning of consumption and production decisions.

(vi) The policy is easy to communicate and transparent.
(vii) The policy is fair, not treating sectors or population groups differen-

tially.
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Appendix B: Computation of Planner Costs

The expression for planner cost over months 1 to M in discrete time, the
analog of the continuous time formulation in the paper, is given by:

V =
M

∑
t=1

1
(1+ rm)t

(
YSS,·monthly

NSS

(
NSS − N(t)

)
+ χ ·YSS · ∆D(t)

)
where YSS,·monthly is the steady-state output in a month:

YSS,·monthly =
1
12

YSS

Therefore:

V =
M

∑
t=1

1
(1+ rm)t

(
1
12

YSS
(

1− N(t)
NSS

)
+ χ ·YSS · ∆D(t)

)
The cost in units of annual output is:

V
YSS =

1
12

M

∑
t=1

1
(1+ rm)t

(
1− N(t)

NSS

)
︸ ︷︷ ︸

VY_discrete

+ χ ·
M

∑
t=1

1
(1+ rm)t ∆D(t)︸ ︷︷ ︸
VD_discrete

where VY_discrete is the discrete-time equivalent of the VY, computed over M
months.

We compute VY_discrete in the data; we get N(t) in each month from BLS
CES employment data, and we construct NSS in each month by projecting the
January 2020 employment forward using monthly employment growth rates
from 2018-2019. We compute VY_discrete in the simulation because it produces
the series of N(t)

NSS in each day and we take the monthly average of the series.
We compute VD_discrete for each month in the data based on the state-level

daily death series from COVID-19 Data Repository by the Center for Systems
Science and Engineering (CSSE) at Johns Hopkins University, in conjunction
with the latest estimates of state population from US Census. We compute
VD_discrete in the simulation aggregating the daily deaths fraction over months.
This way we can compute V/YSS both in the data and in the model for our
state-level exercises in exactly the same terms as in our theoretical sections.
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Appendix C: RecoveringRt from Daily Deaths Data, Adaptation to the
SEIR Model

We apply the Fernandez-Villaverde and Jones (2020) methodology to our
model and use daily U.S. death data to derive estimates discussed in sub-section
4.1 in the main text. The SEIR model in discrete time is described by the follow-
ing set of equations:

∆S(t+ 1) = −β(t) · I(t) · S(t) (1)
∆E(t+ 1) = β(t) · I(t) · S(t)− σE(t) (2)
∆I(t+ 1) = σE(t)− γI(t) (3)

∆R(t+ 1) = γI(t)− θR(t) (4)
∆D(t+ 1) = δθR(t) (5)
∆C(t+ 1) = (1− δ)θR(t) (6)

Denoting ∆D(t+ 1) = D(t+ 1)− D(t) = d(t)
where d denotes daily death flow series as a fraction of the population, and

∆d and ∆∆d its first and second differences, respectively.
From (5):

∆R(t+ 1) = R(t+ 1)− R(t) =
d(t+ 2)

δθ
− d(t+ 1)

δθ
=

∆d(t+ 2)
δθ

From (4):

I(t) =
∆R(t+ 1) + θR(t)

γ
=

1
γ
·
(

∆d(t+ 2)
δθ

+ θ
d(t+ 1)

δθ

)
=

1
δγ
·
(

∆d(t+ 2)
θ

+ d(t+ 1)
)

∆I(t+ 1) = I(t+ 1)− I(t) =
1

δγ
·
(

∆d(t+ 3)
θ

+ d(t+ 2)
)
− 1

δγ
·
(

∆d(t+ 2)
θ

+ d(t+ 1)
)
=

=
1

δγ
·
(

∆∆d(t+ 3)
θ

+ ∆d(t+ 2)
)

∆I(t+ 2) =
1

δγ
·
(

∆∆d(t+ 4)
θ

+ ∆d(t+ 3)
)

From (3):

∆E(t+ 1) = E(t+ 1)− E(t) =
∆I(t+ 2)− (1− γ)∆I(t+ 1)

σ

From (2):

∆I(t+ 2)− (1− γ)∆I(t+ 1)
σ

= β(t) · I(t) · S(t)− ∆I(t+ 1)− γI(t)
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Divide by I(t) :

∆I(t+ 2)/I(t)− (1− γ)∆I(t+ 1)/I(t)
σ

= β(t) · S(t)− ∆I(t+ 1)/I(t)− γ

Re-arrange:

β(t) =
1

S(t)
·
(

∆I(t+ 2)/I(t)
σ

+

(
1− 1− γ

σ

)
∆I(t+ 1)/I(t) + γ

)
Substitute for ∆I(t+ 2)/I(t), ∆I(t+ 1)/I(t):

β(t) =
1

S(t)
·
(

1
σ

∆∆d(t+4)
θ + ∆d(t+ 3)

∆d(t+2)
θ + d(t+ 1)

+

(
1− 1− γ

σ

)
·

∆∆d(t+3)
θ + ∆d(t+ 2)

∆d(t+2)
θ + d(t+ 1)

+ γ

)
(7)

We still need to express S(t) from (1):

∆S(t+ 1) = −β(t) · I(t) · S(t)/N = −β(t) · 1
δγ
·
(

∆d(t+ 2)
θ

+ d(t+ 1)
)
· S(t)/N

S(t+ 1) = S(t) ·
(

1− β(t) · 1
δγ
·
(

∆d(t+ 2)
θ

+ d(t+ 1)
))

(8)

Given the time series of daily deaths d, equations (7-8) above solve for two
unknowns in each period: β(t) and S(t). Note, again, thatRt = β(t)/γ

In the computations of sub-section 4.1 of the main text, we posit 1/σ = 3
(Exposed stage), 1/γ = 4 (Infectious stage), 1/θ = 12.5 ( Resolved stage), δ =
0.008 (Infection Fatality Rate), and initial S0 ' 1.
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