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Building Cool Stuff

1. Opportunity Atlas and
the MOSE

2. LODES and EE-ER
Privacy

3. IMI Hot Reports

4. Post-Secondary
Employment Outcomes

5. Veterans Employment
Outcomes
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A PRACTICAL METHOD TO REDUCE PRIVACY LOSS WHEN DISCLOSING
STATISTICS BASED ON SMALL SAMPLES

Raj Chetty
John N. Friedman
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Source of Opportunity Atlas Data

Data for people, i, in (race, gender, tract) group g
D, = (yi,rank;)icq

Fit least-squares regression models per g
Vi = ag + pyrank; +v;

Queries of interest
04 (rank) = q(Dg,rank) =ay + B;rank

* Very small cells
* High sensitivity

£\ | Terry College of Business
ll UNIVERSITY OF GEORGIA




@

Calibrating Noise to Sensitivity

Using Laplace mechanism, publish
%(rank) = q(Dg,rank) + wy

Where
Lap(0 1
wy~Lap(0, E)

Properties
« Satisfies e-differential privacy
« Parallel composition across groups means that total
privacy loss is
€ = max(€gy)
g
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This Won't Work

Recall:

DP depends on how much output can -
change when evaluated on

ANY two different datasets

-

)<= Person —HE

D1 D2
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The (global) sensitivity Is too danqg high

For Opportunity Atlas, sensitivity is:

how much could conditional mean of child earnings rank

change

If | added or removed any legal value

from any conceivable dataset?
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Answer: a lot

1.0
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OLS Estimate in Hypothetical Data
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How about local sensitivity?

Global requirement is overkill
Local sensitivity:

How much could conditional mean of child earnings rank
change

If | added or removed any legal value
fromany-conceivable-dataset

from the observed dataset, D,
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New Method
Publish
@(rank) = q(Dg,rank) + wy
Where
AY q
~ LS
wy~Lap(0, . )
Aqu = D’gva()zgg) | q(Dg,rank) — q(D’', rank)|
Properties
ot iff Lo

« Parallel composition across groups means that total privacy loss is
€ = max(€,)
g
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This won't work, either

Privacy-aware analysis requires knowledge of

Afsq
var(wg)— -
But
A g = max D, rank)— qg(D’ rank
Lsq D,EN(Dg)Iq(g ) —a( )|

IS a function of D,

...It Is also a population statistic
...which also has a privacy cost
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Goldilocks Solution: Maximum Observed Sensitivity

Using Laplace mechanism, publish
6, (rank) = q(Dy, rank) + w,

Where
Amose(Ng)
wg~Lap(0, . )
X
A N, = —
mosk( g) Ng
for
X = max[N, X Afs]
g
Properties

 NOT e-differential privacy
« HOWEVER, conditional on y

« Satisfies DP guarantee
« Parallel composition across groups
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Implementation details

Local sensitivity further controlled through Winsorization

Scaling parameter y estimated separated for state-gender-
race groups

Set privacy loss parameter at
e =28

Based on accuracy measure:
* Probability of correctly classifying tracts into top or bottom

tall
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Takeaways

« MOSE *“hack” solves issue of high global sensitivity
« Hard to imagine these data being published under conventional SDL
» Chetty-Friedman show cell suppression is far worse (see last talk)

e Latest research (Alabi et al. https://arxiv.org/abs/2007.05157) gives
full differential privacy results for this class of problems

Issues
 Noise scales in data size.

Cell counts are not always publishable

* Not formally private (unless Alabi et al. methods are used)
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Utility Cost of Formal Privacy for Releasing National

Employer-Emponee Statistics

Start Base Map Selection Results

|5 Ssave [] Load @Feedbatk 4 Previous Extent 1 Hide Tabs r Hide Chart/Report

Click a Characteristic link in

Work Area Profile Analysis
Workers Aged 30 to 54

® the Summary Report to see more detail.

Age Earnings

= Display Settings.

Characteristic Filter Total
Year@ 2017 -

it

- Map Centrols &

Color Key [ ]
Thermal Cverlay [«
v
v

Point Overlay

Selection Outline

[]identify , Zoom to Selection
il Clear Overlays [H Animate Overlays Q ©

Industry Sector Race
=]

Ja8it®

25

S
o

= Report/Map Outputs &/

&
4 &

= : B i
1= Detailed Repun o

ani®

(&4 Print Chart/Map

e} o S ° &
o legeris b v Atifmé-clame -Coun'ly unified govemnment (balance)
b o o X
5-916 Jobs/Sq.Mile G
917 - 3,649 Jobs/Sq.Mile o = o T ceciapgeol|
M 3,650 - 8,206 Jobs/Sq.Mile s O vﬂ", Ao\ AT O%O 5
I 8,207 - 14,584 Jobs/Sq.Mile 2 . S et
M 14,585 - 22,786 Jobs/Sq.Mile
+ 1-13 Jobs
© 14-201 Jobs
© 202 - 1,014 Jobs
@ 1,015 - 3,204 Jobs
@ 3.205 7,823 Jobs

[/ Analysis Selection

Q
o

o
o

View as Bar Chart |~

i"w} 4

¥
& Total Primary Jobs
3P - E ; 2017
o e AR B Count  Share
3 Bel Total Primary Jobs 33,605 100.0%

N Worker Age

N 2017
2 Count Share

[JAge 29 or younger 0

[JAge 30to 54 33,505 101

Was-(a ° z N M Age 55 or older 0

} Analysis Settings

Earnings
7.

Samuel Haney

Ashwin Machanavajjhala
Duke University

John M. Abowd
Duke University

U.S. Census Bureau, U.S.A.

£\ | Terry College of Business
UNIVERSITY OF GEORGIA

shaney@cs.duke.edu

Matthew Graham
U.S. Census Bureau, U.S.A.

matthew.graham@census.gov

ashwin@cs.duke.edu

Mark Kutzbach
U.S. Census Bureau, U.S.A.
mark.j.kutzbach@census.gov

john.maron.abowd@census.gov

Lars Vilhuber
Cornell University
lars.vilhuber@cornell.edu



@

How to protect LODES?

LODES = LEHD Origin-Destination Employment Statistics

Tabulation of jobs
« Workplace characteristics

* Location (block)
e Industry

 Ownership Type
 Worker Characteristics

« Age

« Race

o Ethnicity
e gender
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Problem features

e Data are sparse

 Employment data are right-skewed

* Need to protect both WORKERS and EMPLOYERS
 What is the data, D?

 How to think about neighbors?

New Approach (Pufferfish; Kifer Machanavajjhala 2014)

* Decide what needs to be protected

» Define neighboring databases in terms of protected characteristics
* Devise provably private algorithms

£\ | Terry College of Business
ll UNIVERSITY OF GEORGIA




@

What must be protected

1. No re-identification of individuals. Should not learn too much about
whether an employee

IS In the database or not
works for a specific type of employer
has particular demographic characteristics

2. No precise inference of establishment size
existence is not private (for employer businesses)
industry and location are not private
coarse size is not private, but exact size is

3. No precise inference of workforce composition
e.g., can't infer the share of female employees
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Formalization: Protected from Whom?

The adversary knows
« Set of all employer establishments, E, and their public attributes

o Set of all workers, U
 Each worker, w € U has private attributes, A4, 4,, ..., A; (including
where they work and whether they are not in the data)

* Adversary’s beliefs
e m,, a distribution over attributes

e § =1Il,¢ym, . beliefs over all workers
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DEFINITION 4.1 (EMPLOYEE PRIVACY REQUIREMENT).
For randomized algorithm A, if for some € € (0, 00), and for every
employee w € U, for every adversary 0 € O, for every a,b € T
such that Prolw = a] > 0and Prolw = b] > 0, and for every

output w € range(A):
Pro alw = a|A(D) =w] / Prelw = a
log
Prg alw =b|A(D) =w| / Prolw = 1|

)SE 3)

Then the algorithm A protects employees against informed attack-
ers at privacy-loss level e.
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DEFINITION 4.2 (EMPLOYER SIZE REQUIREMENT). Let e
be any establishment in £. A randomized algorithm A protects
establishment size against an informed attacker at privacy level
(€, ) if, for every informed attacker 6 € ©, for every pair of num-
bers x, vy, and for every output of the algorithm w € range(A),

og ((Proallel = 2| AD) =]/ Prollel =a]\ | _
1 g(PTg}A[E' = y|A(D) =w| / Pry|le| y}> ' <e (4)

whenever x < y < [(14«a)x| and Prg|w = x|, Pro|w = y| > 0.
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Differential Privacy

Need a concept of neighboring
databases } e Person =—={

Option 1: Neighbors add or remove a

single worker D1
 Queries are counts

» Laplace mechanism with
sensitivity 1

* FAILS employer size
requirement

=
=
D2

Option 2: Neighbors add or remove a

single employer } e EMplOyer —{
e Queries include sums of E
workers
« Can satisfy all requirements D1 D2

e Quality is atrocious
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Goldilocks Solution

Neighbor Definition: Strong a-Neighbors

 Two databases, D and D' are Strong a-Neighbors if they

Differ in the employment attribute of exactly one
record, e

Let x be the number of workers at e in D
Let x’ be the number of workers at e in D’
x<x'<max((1+a)x,x+ 1)

« Similar to original LEHD specification for Quarterly
Workforce Indicators
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New privacy concept

DEFINITION 7.2  ((«, €)-ER-EE PRIVACY). A randomized al-
gorithm M is said to satisfy («, €)-ER-EE Privacy, if for every set
of outputs S C range(M ), and every pair of strong a-Neighbors
D and D', we have

PriM(D) € S] < ePriM(D") € S

« Sufficient for worker and establishment size requirements
« Satisfies sequential and parallel composition in €
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Application

Global sensitivity can still be high

Key query: Total employment

Let g(D) be such a counting query.

Sensitivity,
Aq = max|q(D) — q(D")| = max(ax,)

(with D and D' strong a-neighbors)
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Application

Sensitivity,
Aq = max|q(D) — q(D")| = max(ax,)

Essentially unbounded.

However,
Ajpgq = max|logq(D) —logq(D)| =1+«
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Algorithm 1 Log-Laplace Mechanism

Input: : n : the sum of employment counts for a set of cells, «, €: privacy
parameters
Output: : n: the noisy employment count
Sety <+ 1/«
¢ < In(n + )
Sample n ~ Laplace(21In(1 + «)/€)
f o et — o

Result:
» Log-Laplace Mechanism satisfies strong (a, €)-privacy for employer attributes

 Biased
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Other Mechanisms

Smooth Sensitivity: Complementary approach to the “Goldilocks” problem

Idea: Derive function, S(x), such that

S(D) = LS, (D)
While

S(D) <e*S(D"
For all D' neighbors of D

tl;dr, can add noise proportional to max(ax,) over all employers, e in D
e

Algorithm 2: Smooth Gamma
« Satisfies strong («a, €)-EE-ER privacy
e Unbiased

Algorithm 3: Smooth Laplace
« Satisfies strong («, €, §)-EE-ER privacy [approximate]
e unbiased
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Data
e 11 mill. jobs;
o 527K employers

Queries: all margins of
* Place = city/town
 NAICS Sector
* Ownership

Compare L1 Error using
* Orig. system
* Proposed systems
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UMETRICS Employee Profile Reports

Structure of the American Academic Research Workforce | R | S INSTITUTE FOR

. \ RESEARCH ON
B Facuity [ Research Sta Students and Trainees |N NOVAT'ON & SC' ENCE

Other NonFed (16.4% )

United States

Census
Track employment and earnings

outcomes of grant-funded employees o= Bureau

NIH (25.3%)

NSF (12.1% )

DOD (5.1%)

DOE (3.4% )

Other Federal (25.6% )
Foundations (7% )
Industry (3.1%)

State (2% )

Funding Source (% of employees)

Method:
Link UMETRICS data to W2, LEHD, BR
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Desired outputs

Cells
 Title (e.qg. faculty, grad student)
o Sector of employment [3 categories]
* Years since leaving [up to 10]

Statistics
 Employment
e Average Wage

...one table per University!
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Privacy reguirements

* Protect university employees against re-identification on
the basis of

 Inclusion in the data
« All attributes of employment history

* Neighboring databases add or remove a single employee
and their entire employment history

o Simpler if we were just protecting single jobs...
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Methods

« Laplace mechanism for employment counts (sensitivity 1)

* Modified MOSE for average earnings (Chetty-Friedman 2019)
« MOS at job title-by-sector level (9 values)

* Upper bound MOSE

Accuracy Requirement
« Target a threshold for

true. — nois
APDC=| c Vel

true,
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Privacy Analysis

Composition possibilities

« Each worker only appears in one (job title)-by-(sector) pair [parallel]
« Each worker can appear in multiple years [serial]

« Each record is used to compute both employment and earnings

[serial]

Define
€omp,¢ (fOr employment queries t years out at university s)

€sarn ¢ (FOr mean earnings queries t years out at university s)

The total privacy loss associated with Employee Report for University s:

€ = z (Egmp,t-l'egarn,t)

t=1.TS
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Other Examples

Post-Secondary Employment Outcomes:
https://lehd.ces.census.gov/data/pseo experimental.html

Veterans Employment Outcomes:
https://lehd.ces.census.gov/applications/veo/service

Technical documentation on privacy protection: Foote et al.
Releasing Earnings Distributions using Differential Privacy,
Journal of Privacy and Confidentiality, 2019,

DOI: https://doi.org/10.29012/|pc.722.
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Thank You!

lan M. Schmutte
https://lanschmutte.org
Schmutte@uga.edu
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