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Outline

This Talk
• Trading off privacy and data accuracy

• Learning from privacy protected data

• Accuracy as improved decision making

Next Talk
• Implementing formal privacy in Census data
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Dual Mandate

privacy guarantee

accurate statistical summaries
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Choice of ε

Each calculation based on the data consumes the 
privacy budget

𝜖𝜖1 + 𝜖𝜖2 + 𝜖𝜖3 + ⋯𝜖𝜖𝑛𝑛 = 𝜖𝜖𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

2018 Decennial Census End to End Test: 𝜖𝜖 = .25
2010 Demonstration Data Products 𝜖𝜖 = 4 + 2
On The Map 𝜖𝜖 = 8.9
Opportunity Atlas 𝜖𝜖 = 8.0
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Economic Perspective (Abowd and Schmutte 2019)

1. finite resource: information in an 
existing database

2. competing uses
• accuracy
• privacy

3. an optimal allocation should equate
• Marginal rate of transformation
• Willingness to pay

4. accuracy and privacy are public goods



Learning from Privacy Protected Data
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General model of privacy protection

Population: 𝑁𝑁

Complete data matrix: 
D, (𝑁𝑁 × 𝐾𝐾)

Process parameter: 𝜃𝜃𝑝𝑝

Distributions
Data model: 𝑝𝑝𝐷𝐷 𝐷𝐷 𝜃𝜃𝑝𝑝
Prior: 𝑝𝑝𝜃𝜃𝑝𝑝(𝜃𝜃)

Estimands of interest
Functions of 𝐷𝐷(finite-population)
Functions of 𝜃𝜃𝑝𝑝 (super-population)
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Ignorable Privacy Protection 

• Published data: 𝑍𝑍

• Privacy model:
𝑝𝑝𝑍𝑍|𝐷𝐷 𝑍𝑍 𝐷𝐷,𝜃𝜃𝑀𝑀

• Privacy parameter: 𝜃𝜃𝑀𝑀, with prior 𝑝𝑝𝜃𝜃𝑀𝑀|𝜃𝜃𝑝𝑝 𝜃𝜃 𝜃𝜃𝑝𝑝

• Likelihood for published data
𝐿𝐿𝜃𝜃
𝑝𝑝𝑝𝑝𝑝𝑝 𝜃𝜃𝑝𝑝,𝜃𝜃𝑀𝑀 = ∫ 𝑝𝑝𝑍𝑍|𝐷𝐷 𝑍𝑍 𝐷𝐷,𝜃𝜃𝑀𝑀 𝑝𝑝𝐷𝐷 𝐷𝐷 𝜃𝜃𝑝𝑝 𝑑𝑑𝑑𝑑
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Inference based on
𝑝𝑝𝜃𝜃𝑝𝑝|𝑍𝑍 𝜃𝜃𝑝𝑝|𝑍𝑍 = ∫ 𝑝𝑝𝜃𝜃𝑝𝑝|𝐷𝐷 𝜃𝜃𝑝𝑝|𝐷𝐷 𝑝𝑝𝐷𝐷|𝑍𝑍 𝐷𝐷 𝑍𝑍 𝑑𝑑𝑑𝑑

Ignorable privacy protection
𝑝𝑝𝜃𝜃𝑝𝑝|𝐷𝐷 𝜃𝜃𝑝𝑝|𝐷𝐷 = 𝑍𝑍 = 𝑝𝑝𝜃𝜃𝑝𝑝|𝑍𝑍 𝜃𝜃𝑝𝑝|𝑍𝑍

• Is privacy-protection ignorable?
• Can privacy-aware analysis be conducted?
• Is the privacy model discoverable?
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Topcoding

Ignorable
for inference on quantiles less than quantile of 𝑇𝑇 (e.g. 90-10 ratio in CPS)

Non-ignorable 
for quantiles above 𝑇𝑇
but privacy-aware analysis is sometimes possible
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• Non-ignorable
• cf. Bollinger and 

Hirsch (2006)
• Induces bias 

• No privacy-aware analysis
• Unknown model
• Unknown rate
• Unknown variables

• Not discoverable

Suppress and Impute

𝑝𝑝𝑍𝑍|𝑌𝑌(𝑍𝑍|𝑌𝑌,𝜃𝜃𝑀𝑀)
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High-risk records:
• Matched to a “nearby” record
• .. And swapped

Preserves counts on key 
characteristics

May prevent disclosure of 
sensitive attributes

Swapping
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Ignorable if..
only care about matching variables

Non-ignorable for 
covariance between matching 
and other variables

Parameters are secret
• Swap rate
• Sensitive chars
• Swap domain
• Etc.

Swapping
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these distortions might matter a lot
…but we don’t really know
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Cell Suppression

• “Blank out” cells to protect outliers
• i.e., where one large firm dominates

• Then “blank out” more cells to prevent subtraction attack

• e.g., Economic Census, County Business Patterns
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Cell Suppression

Not ignorable unless

…suppression was random with respect to your estimand of interest

…or you really only care about the unsuppressed data.

So then what?
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Hack the protection!?
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Suppression is not ignorable
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Takeaways

• We know analysis needs to account both for
• The phenomenon of interest
• The measurement of that phenomenon

• Accounting for traditional privacy models either
• Can’t be done
• Actively undoes privacy protection

• Privacy-aware analysis requires transparent formal 
privacy systems



Accuracy for What?



21

What are we buying with privacy loss?
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Decision-making

𝐷𝐷:      a population-level dataset
𝑞𝑞(𝐷𝐷): some population statistic
𝑎𝑎:       the published output

Accuracy based on some loss function
𝐿𝐿 𝑞𝑞 𝐷𝐷 ,𝑎𝑎
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Use Cases

• Zero-Sum 
• Total/Category 

(Allocation)
• Single Year of Age
• Rates (population 

shares)
• Percent Threshold
• Numeric Threshold

Accuracy Measures

• Mean/Median 
Absolute Error (MAE)

• Mean/Median 
Numeric Error (ME)

• Root Mean-Squared 
Error (RMSE)

• Mean/Median 
Absolute Percent 
Error (MAPE)

• Coefficient of 
Variation (CV)

• Total Absolute Error 
of Shares (TAES)

• 90th Percentile 
Absolute Error

Proposed Accuracy Measures for 2020 Decennial 
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Policy Decision: Minority Language Voting Rights

• Voting Rights Act, Section 203

• Jurisdictions are evaluated for 68 minority languages

• Covered if number/shares of speakers surpasses 
threshold

• If covered, must provide election information in minority 
language

What if these decisions must be based on differentially private 
data?
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Policy Decision: Minority Language Voting Rights
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Caveat

• Pujol et al. model does not accurately characterize how VRA Section 
203 coverage is determined

• Determination made by Census with model-based small-area 
estimates that account for sampling variation and other data issues.

See…(https://www.census.gov/library/working-papers/2018/adrm/RRS2018-12.html)

https://www.census.gov/library/working-papers/2018/adrm/RRS2018-12.html
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• 2016 ACS treated as “ground 
truth” for

𝑋𝑋𝑣𝑣𝑣𝑣𝑣𝑣 ,𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙,𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙

• Produce noisy estimates from 
Laplace mechanism (modified)

�𝑋𝑋𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑋𝑋𝑣𝑣𝑣𝑣𝑣𝑣 + 𝜈𝜈
�𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙 + 𝜈𝜈
�𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙 + 𝜈𝜈

• Assume DM ignores privacy 
protection

• How bad?

• Who loses?

Simulation
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• Inferences and policy assignments 
should account for the mechanism:

• Decision rule: Covered if 
Pr 𝑀𝑀 𝑎𝑎; 𝑥𝑥𝑎𝑎 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 �𝑥𝑥𝑎𝑎 > 𝑝𝑝

• For 𝜖𝜖 = 1, the correct classification rate 
can be increased to 80 percent and 
small cost (870 false positives)

Privacy-aware decisions
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Options

1. Bespoke publications tailored to each specific application
e.g. Just publish a formally private classification

2. Reserve privacy budget to improve inference on particular questions
e.g. “special tabs” to get improved classifications

3. Use mechanisms that are broadly optimal for a wide range of uses
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Universally Optimal Privacy Mechanisms

Basic Setting
• 𝑞𝑞(𝐷𝐷) is a single counting query 

• Different data users, 𝑖𝑖, with preferences,
𝑢𝑢 = 𝑢𝑢𝑖𝑖(𝑎𝑎𝑖𝑖; 𝑞𝑞 𝐷𝐷 )

For some choice variable 𝑎𝑎𝑖𝑖
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Universally Optimal Privacy Mechanisms

Given published output, M(𝐷𝐷), 

Data users make choices based on expected utility
max
𝑎𝑎

𝐸𝐸 [𝑢𝑢𝑖𝑖(𝑎𝑎𝑖𝑖; 𝑞𝑞 𝐷𝐷 )]

Expectations over posterior beliefs about 𝑞𝑞 𝐷𝐷 given 𝑀𝑀 𝐷𝐷

a privacy-aware analysis
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Universally Optimal Privacy Mechanisms

Ghosh, Roughgarden, Sundararajan (2012)

geometric mechanism 
𝑀𝑀 𝐷𝐷 = 𝑞𝑞 𝐷𝐷 + 𝜈𝜈

Where 𝜈𝜈 is geometrically distributed and scaled to 𝜖𝜖 is

1. Provably  𝜖𝜖-differentially private
2. Universally optimal for a particular class of information 

consumers

Good news:
Geometric mechanism is approximated by Laplace, but it is also 
easy to sample from and discrete
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Bad news

Universal optimality result requires

• Actions have the same (finite) domain as outputs (i.e. actions 
are also counts)

• Payoffs maximized when action “matches” the true count 
𝑎𝑎∗ = 𝑞𝑞(𝐷𝐷)

• Loss is symmetric around 𝑎𝑎 = 𝑞𝑞 𝐷𝐷

... does not apply to the VRA classification problem (and others 
like it)
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Simplified VRA application

In a simplified VRA, policymaker has preferences
𝑢𝑢(𝑎𝑎; 𝑞𝑞 𝐷𝐷 )

𝑞𝑞(𝐷𝐷) is the count speaking Russian with limited English, 

𝑎𝑎 ∈ {0,1} is the VRA classification. 

Ideally 
𝑎𝑎∗ = 𝑀𝑀(𝑞𝑞 𝐷𝐷 )

Where 𝑀𝑀() is the classification rule which (for simplicity) 
only takes the count as its input.
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More good news and more bad news

Publication as a constrained information design problem
(Schmutte and Yoder 2020)

• Geometric Mechanism is optimal as long as decision problem is 
monotone:

Choose higher action when beliefs put more  weight on higher 
counts

• This includes classification problems like VRA

• DM would not do better by asking Census to provide classification 
directly using the same privacy-loss budget!



36

More good news and more bad news
More Bad News: 

GM does not work for non-monotone decision problems

Examples of non-monotone problems:

- Safety Inspections
- If number of accidents is very high, suspect negligence
- If number of accidents is very low, suspect fraud

- SARS-CoV-2 antibody tests for my class
- If positive count is very high, no masks
- If positive count is very low, no masks
- Intermediate count: masks!
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Takeaways

• For counting queries, 
• Publishing with geometric noise is optimal for a wide 

range of monotone use-cases
• Requires user post-processing
• aka privacy-aware analysis

• NO universally optimal methods for many non-counting 
queries (Brenner and Nissim 2014)
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Statistical decisions with DP population statistics

• Privacy-aware hypothesis testing 
Wang, Li, Kifer (2017); Kifer and Rogers (2017)

• Interactive data analysis
Good news: 

DP prevents overfitting / generalization bias (Dwork
et al. 2016)

Bad news: 
Point identification for certain estimators (RDD) may 

be impossible (Komarova and Nekipelov; 2020)



Thank You!
Ian M. Schmutte

http://ianschmutte.org
schmutte@uga.edu

http://ianschmutte.org/
mailto:Schmutte@uga.edu
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