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Basic Design of Differential Privacy Mechanisms
Outline

@ Basic Design of Differential Privacy Mechanisms
© The Role of Strategy

© Chi-Squared Testing

@ Takeaway Messages

© Common Pitfalls

@ Additional Mechanisms
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Basic Design of Differential Privacy Mechanisms
What we learned

Definition (Differential Privacy [DMNSO06])
Given a privacy loss budget ¢ > 0, an randomized algorithm M satisfies

e-differential privacy if for all E C range(M) and all pairs of databases
Dy, D, that are neighbors of each other,

P(M(D;) € E) < e“P(M(D») € E)

@ Mechanisms: algorithms for Differential Privacy.

@ Protects confidentiality of our responses.

DP Stats 3/48



Basic Design of Differential Privacy Mechanisms
What we learned

Definition (Differential Privacy [DMNSO06])

Given a privacy loss budget ¢ > 0, an randomized algorithm M satisfies
e-differential privacy if for all E C range(M) and all pairs of databases
Dy, D, that are neighbors of each other,

P(M(D;) € E) < e“P(M(D») € E)

Mechanisms: algorithms for Differential Privacy.
Protects confidentiality of our responses.
But how do we design mechanisms M?
The conditions have to hold for:
o All pairs of databases that are neighbors of each other.

o All sets E.
e Nearly infinitely many equations to check!
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Basic Design of Differential Privacy Mechanisms

Differential Privacy and Modularity

@ Complex Mechanisms built from simpler ones ’

@ Basic tools:
e Sensitivity & Laplace Mechanism.
e Postprocessing.
e Composition.
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Basic Design of Differential Privacy Mechanisms

Sensitivity

@ Neighbors in Differential Privacy: D; ~ D5

e Bounded neighbors: == ~— Person —»(
o differ on value of one record. — —
@ use this to ensure response is protected. D1 D2

e Unbounded neighbors: —]
= ~— Person —¢

o differ on presence/absence of one record.
@ use this to protect participation and response.

D
o Differential privacy: hide differences between neighbors.

average age of voters
average age of non-voters

e How to compute f(D) = [ ] with privacy?
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Basic Design of Differential Privacy Mechanisms

Sensitivity

@ Neighbors in Differential Privacy: D; ~ D5 —
e Bounded neighbors: == ~— Person —»(

—

—

o differ on value of one record.

@ use this to ensure response is protected. D1
e Unbounded neighbors: —
o differ on presence/absence of one record. =
@ use this to protect participation and response.
protect particp P D1 D2

o Differential privacy: hide differences between neighbors.

average age of voters
average age of non-voters

e How to compute f(D) = [ ] with privacy?

e Inject enough noise to hide any person's response.
e For any Dy ~ Dy, noise should mask difference between f(D;) and
f(Dy).
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Basic Design of Differential Privacy Mechanisms
Sensitivity

@ If we want to add noise, sensitivity tells us how much.

2 g 2 0

e For Laplace noise:

e L Sensitivity A¢: largest possible impact of one person on f.
o Af=supp,.p, ||f(D1) — f(D2)|]1.
@ Supremum over all pairs of neighbors.

o Add Laplace noise with scale As/e (std=v/2A¢ /)
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Basic Design of Differential Privacy Mechanisms
Sensitivity

o If we want to add noise, sensitivity tells us how much.
@ For Laplace noise:
o L Sensitivity A¢: largest possible impact of one person on f.

o Ar =supp, .p, ||f(D1) = f(D2)|x.
@ Supremum over all pairs of neighbors.

— —

e Person —»(
D1 D2
e f(D) = sum of ages of people in D
o Assume ages are apriori capped at 115
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Basic Design of Differential Privacy Mechanisms
Sensitivity

o If we want to add noise, sensitivity tells us how much.
@ For Laplace noise:
o L Sensitivity As: largest possible impact of one person on f.

o Ar =supp, .p, |[f(D1) = f(D2)|1
@ Supremum over all pairs of neighbors.

)<— Person —»(
D1 D2
e f(D) = sum of ages of people in D
o Assume ages are apriori capped at 115
e Adding or removing 1 person to any database can change sum by at
most +£115
o Ar =115
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Basic Design of Differential Privacy Mechanisms
Sensitivity

o If we want to add noise, sensitivity tells us how much.
@ For Laplace noise:
e L Sensitivity A¢: largest possible impact of one person on f.
o A =supp, .p, |[f(D1) = £(D2)|]1.

@ Supremum over all pairs of neighbors.

)<— Person —»(
=
D1 D2
e (D) = number of people 18 years or older.

e Adding or removing 1 person can change count by at most +1
o Ar=1
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Basic Design of Differential Privacy Mechanisms
Sensitivity

o If we want to add noise, sensitivity tells us how much.
@ For Laplace noise:
e L Sensitivity A¢: largest possible impact of one person on f.
o A =supp, .p, |[f(D1) = £(D2)|]1.

@ Supremum over all pairs of neighbors.

)<— Person —»(
=
D1 D2
e f(D) = [number in GQ, number of Asians].

o Largest change caused by adding/removing 1 Asian individual in a GQ.
o A =2
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Basic Design of Differential Privacy Mechanisms
Sensitivity

o If we want to add noise, sensitivity tells us how much.
@ For Laplace noise:
e L Sensitivity A¢: largest possible impact of one person on f.
o A =supp, .p, |[f(D1) = £(D2)|]1.

@ Supremum over all pairs of neighbors.

)<— Person —»(
=
D1 D2
e f(D) = [# of 1-year-olds, # of 2-year-olds, ..., # of 100-year-olds]
e Any record addition/removal changes exactly one component by +1.
o Ar=1.
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Basic Design of Differential Privacy Mechanisms

Sensitivity

o If we want to add noise, sensitivity tells us how much.
@ For Laplace noise:
o Ly Sensitivity A¢: largest possible impact of one person on f.

o Ar =supp, .p, |[f(D1) = f(D2)|a
@ Supremum over all pairs of neighbors.

—
)e— Person —{
— —
— —
—

D1 D2
° f(D) _ [ #£ average age of voters }

#t average age of non-voters

e Assume ages are apriori capped at 115
o Assume avg(0) =0
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Basic Design of Differential Privacy Mechanisms
Sensitivity

o If we want to add noise, sensitivity tells us how much.

@ For Laplace noise:
o L Sensitivity A¢: largest possible impact of one person on f.
® Ar =supp, .p, |[f(D1) = f(D2)|1
@ Supremum over all pairs of neighbors.
)<— Person —»(
D1 D2
° f(D) _ [ #£ average age of voters }

#£ average age of non-voters
e Assume ages are apriori capped at 115

o Assume avg(0) =0
o Consider D; = (), D, = {115}.

e f(D1)=10,0]
o f(D2) =[0,115]
o Ar=115
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Basic Design of Differential Privacy Mechanisms

Sensitivity

o If we want to add noise, sensitivity tells us how much.

@ For Laplace noise:
o Ly Sensitivity A¢: largest possible impact of one person on f.
o Af =supp,.p, |[f(D1) — f(D2)|]1.
@ Supremum over all pairs of neighbors.
o Laplace mechanism M(D): add independent Laplace(Ar/¢€) noise to
each component of f.

f(D) = [# of 1-year-olds, # of 2-year-olds, ..., # of 100-year-olds]
[ # of 1-year-olds  +Laplace(Afs/¢)]
# of 2-year-olds  +Laplace(Af/€)
M(D) = | # of 3-year-olds  +Laplace(Ar/c)

| # of 100-year-olds  +Laplace(Ar/¢) |
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Basic Design of Differential Privacy Mechanisms

Differential Privacy and Modularity

@ Complex Mechanisms built from simpler ones ’

@ Basic tools:
o Sensitivity & Laplace Mechanism.
e Postprocessing.
e Composition.
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Basic Design of Differential Privacy Mechanisms
Postprocessing

@ Suppose M satisfies e-differential privacy.

# of 1l-year-olds  +Laplace(Af/e)
of 2-year-olds  +Laplace(Af/e
eg. M(D) = # y p '( £/€)

# of 100-year-olds  +Laplace(Af/e)
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Basic Design of Differential Privacy Mechanisms
Postprocessing

@ Suppose M satisfies e-differential privacy.

# of 1l-year-olds  +Laplace(Af/e)
# of 2-year-olds  +Laplace(Af/¢)

e.g., M(D) =
# of 100-year-olds  +Laplace(Af/e)
o Let g be code that performs chi-squared test.

o go M: run M(D) then run g on the result.
o Then g o M satisfies e-differential privacy (same e parameter)

DP Stats 8/48



Basic Design of Differential Privacy Mechanisms
Postprocessing

@ Suppose M satisfies e-differential privacy.

# of 1l-year-olds  +Laplace(Af/e)

of 2-year-olds +Laplace(Af/e
e M(D) — # Y p '( £/€)

# of 100-year-olds  +Laplace(Af/e)

o Let g be code that performs chi-squared test.

o go M: run M(D) then run g on the result.

o Then g o M satisfies e-differential privacy (same e parameter)
@ Let h be code that links to external data.

o Then ho M satisfies e-differential privacy.
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Basic Design of Differential Privacy Mechanisms
Postprocessing

@ Suppose M satisfies e-differential privacy.

# of 1l-year-olds  +Laplace(Af/e)

of 2-year-olds +Laplace(Af/e
e M(D) — # Y p '( £/€)

# of 100-year-olds  +Laplace(Af/e)

o Let g be code that performs chi-squared test.
o go M: run M(D) then run g on the result.
o Then g o M satisfies e-differential privacy (same e parameter)
@ Let h be code that links to external data.
o Then ho M satisfies e-differential privacy.
o Let ¢ be any function that does not look directly at the collected data
D.
e Then ¢ o M satisfies e-differential privacy.
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Basic Design of Differential Privacy Mechanisms
Postprocessing

@ Suppose M satisfies e-differential privacy.

# of 1l-year-olds  +Laplace(Af/e)

of 2-year-olds +Laplace(Af/e
e M(D) — # Y p '( £/€)

# of 100-year-olds  +Laplace(Af/e)

o Let g be code that performs chi-squared test.
o go M: run M(D) then run g on the result.
o Then g o M satisfies e-differential privacy (same e parameter)
@ Let h be code that links to external data.
o Then ho M satisfies e-differential privacy.
o Let ¢ be any function that does not look directly at the collected data
D.
e Then ¢ o M satisfies e-differential privacy.

o Differential privacy is closed under post-processing.
@ Very few other disclosure avoidance techniques have this property.
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Basic Design of Differential Privacy Mechanisms

Differential Privacy and Modularity

@ Complex Mechanisms built from simpler ones ’

@ Basic tools:
o Sensitivity & Laplace Mechanism.
e Postprocessing.
e Composition.
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Basic Design of Differential Privacy Mechanisms
Composition

@ Week 1: we conduct Senate Poll using e;-differential privacy.
o Release number of “yes” responses + Laplace(1/¢€1) noise.

@ Week 2: we release:
o Number of “yes" responses from Democrats + Laplace(1/ez) noise.
o Number of “yes" responses from Republicans + Laplace(1/ez) noise.
o Sensitivity is 1, so week 2 release satisfies ex-differential privacy.

@ Surely there is some combined privacy leakage?
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Basic Design of Differential Privacy Mechanisms
Composition

@ Week 1: we conduct Senate Poll using e;-differential privacy.
o Release number of “yes” responses + Laplace(1/¢€1) noise.
@ Week 2: we release:
o Number of “yes" responses from Democrats + Laplace(1/ez) noise.
o Number of “yes" responses from Republicans + Laplace(1/ez) noise.
o Sensitivity is 1, so week 2 release satisfies ex-differential privacy.
@ Surely there is some combined privacy leakage?
e This is called composition.
By itself, Week 1 satisfies ¢;-differential privacy (privacy loss = €1).
By itself, Week 2 satisfies e,-differential privacy (privacy loss = €3).
The combined release (Week 1 and Week 2) satisfies
(€1 + €2)-differential privacy (privacy loss = €1 + €2).
e Hence € is the privacy loss budget.
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Basic Design of Differential Privacy Mechanisms
Composition

@ Week 1: we conduct Senate Poll using e;-differential privacy.
o Release number of “yes” responses + Laplace(1/¢€1) noise.
@ Week 2: we release:
o Number of “yes" responses from Democrats + Laplace(1/ez) noise.
o Number of “yes" responses from Republicans + Laplace(1/ez) noise.
o Sensitivity is 1, so week 2 release satisfies ex-differential privacy.
@ Surely there is some combined privacy leakage?
e This is called composition.
By itself, Week 1 satisfies ¢;-differential privacy (privacy loss = €1).
By itself, Week 2 satisfies e,-differential privacy (privacy loss = €3).
The combined release (Week 1 and Week 2) satisfies
(€1 + €2)-differential privacy (privacy loss = €1 + €2).
e Hence € is the privacy loss budget.
@ In general:
o If My, My, ..., M satisfies differential privacy with parameters
€1, .., €k, respectively
e Mechanism M: M(D) releases My(D), Ma(D), ..., Mi(D) satisfies
(Zf-;l €;)-differential privacy.
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Basic Design of Differential Privacy Mechanisms
Example 1: Average

° f(D) _ [ #£ average age of voters }

#£ average age of non-voters

e Assume ages are apriori capped at 115
o Assume avg(0) =0
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Basic Design of Differential Privacy Mechanisms
Example 1: Average

° f(D) _ [ #£ average age of voters }

#£ average age of non-voters
e Assume ages are apriori capped at 115
o Assume avg(0) =0
o Attempt #1: Laplace Mechanism
e Sensitivity Ar = 115

o # average age of voters+Laplace(115/¢)
° So output M(D) - |:# average age of non-voters+Laplace(115/¢€)
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Basic Design of Differential Privacy Mechanisms

Example 1: Average

° f(D) _ [ #£ average age of voters }

#£ average age of non-voters
e Assume ages are apriori capped at 115
o Assume avg(0) =0
o Attempt #1: Laplace Mechanism
e Sensitivity Ar = 115

o # average age of voters+Laplace(115/¢)
° So output M(D) - |:# average age of non-voters+Laplace(115/¢€)
o stda 163/e.

[l TRIED IT AT HOME!]
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Basic Design of Differential Privacy Mechanisms
Example 1: Average

° f(D) _ [ #£ average age of voters }

#£ average age of non-voters

e Assume ages are apriori capped at 115
o Assume avg(0) =0

o Attempt #2:
@ Use half privacy budget for f,(D)

@ Use half privacy budget for f(D)
© Then divide.

sum ages of voters
sum ages of non-voters

# of non-voters

|: # of voters }
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Basic Design of Differential Privacy Mechanisms

Example 1: Average

° f(D) _ [ #£ average age of voters }

#£ average age of non-voters
e Assume ages are apriori capped at 115
o Assume avg(0) =0

o Attempt #2:
@ Use half privacy budget for f,(D)

° € =¢/2
e Sensitivity Ay =115

_ sum ages of voters+Laplace(115/€3)
° MI(D) - |:sum ages of non-voters+Laplace(115/€1)

sum ages of voters
sum ages of non-voters
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Basic Design of Differential Privacy Mechanisms
Example 1: Average

° f(D) _ [ #£ average age of voters }

#£ average age of non-voters
e Assume ages are apriori capped at 115
o Assume avg(0) =0

o Attempt #2:
@ Use half privacy budget for f,(D)

° € =¢/2
e Sensitivity Ay =115

_ sum ages of voters+Laplace(115/€3)
° MI(D) - |:sum ages of non-voters+Laplace(115/€1)

sum ages of voters
sum ages of non-voters

@ Use half privacy budget for f(D) = [ # of voters }

# of non-voters
° e =¢/2
e Sensitivity A, =1
° Mz(D) _ |: # of voters+Laplace(1/e2) ]

# of non-voters+Laplace(1/e2)
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Basic Design of Differential Privacy Mechanisms

Example 1: Average

° f(D) — [ # average age of voters }

## average age of non-voters
e Assume ages are apriori capped at 115
o Assume avg(0) =0
o Attempt #2:

@ Use half privacy budget for f;(D) = [ sum ages of voters }

sum ages of non-voters
° ¢ =¢/2
e Sensitivity Ay = 115
_ sum ages of voters+Laplace(115/€1)
° Ml(D) - |:sum ages of non-voters+Laplace(115/€1)

@ Use half privacy budget for (D) = { # of voters }

# of non-voters
° e =¢/2
e Sensitivity Ag, =1
° M2(D) _ |: # of voters+Laplace(1/e2) ]

# of non-voters-+Laplace(1/e2)

© Then divide.
° noisy sum of ages of voters stda 325
noisy count of voters ' ™~ # of voters
@ noisy sum of ages of non-voters | stda 325

noisy count of non-voters # of non-voters
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Basic Design of Differential Privacy Mechanisms

Example 1 Recap

€,-DP

Noifsy sum
or ages Public
(El+£2)-DP —
Composition €,-DP

Postprocessing

Noisy counts
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Basic Design of Differential Privacy Mechanisms

Example 1 Recap

&-DP Public
Noicsy sum
orages Public
(El+52)-DP —
Composition £,-DP Postprocessing
Public

-

Noisy counts

@ Noisy measurements:
o Noisy sum of ages (unbiased)
o Noisy counts (unbiased)
o Safe to release as well.
e Should release them.
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Basic Design of Differential Privacy Mechanisms
What We Learned

@ Spend your privacy loss budget wisely!

o It is easy to waste.
o Another reason it is called a "budget”

o Carefully choose:

e What to inject noise into.
e How to inject the noise.

o Additional improvements possible:

o e.g., Compute quantiles instead [Smill].
o e.g., Compute histograms support age ranges instead [QYL13].
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Basic Design of Differential Privacy Mechanisms

Example 2: Linear Regression

@ Linear regression model.
Data: {()_('layl)a ()_(27_)/2)7 ey (§n7Yn)}

e Each ||)_<;||1 < Cl-

e Each |y;| < G.

e Model: y=Xg3+¢
N X1 x12 ... Xk [Ba
V2 X1 X22 ... Xok| |B2
S}n Xn1 Xn2 ... Xnk /Bk

Classical solution: 3 = (XTX)~!XTy
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Basic Design of Differential Privacy Mechanisms

Example 2: Linear Regression

@ Linear regression model.
Data: {(?1,}/1% (?2,)/2)7 ) ()?ny)/n)}
Each ||)_<;||1 < Cl-
e Each |y;| < G.
o Model: = X5 +¢
o Classical solution: = (XTX) X'y
o A differentally private approach:
Q Sete; =6 = 6/2.
@ Compute noisy (X7 X)~1 using €; budget.
© Compute noisy X7y using e» budget.
@ Model coefficients: multiply noisy (X7 X)~! and noisy X' y.
@ Also release the noisy measurements
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Basic Design of Differential Privacy Mechanisms

Example 2: Linear Regression

@ Linear regression model.
Data: {()_('layl); ()_(27_)/2)7 ey (§n7Yn)}
Each ||)_<;||1 < Cl-
e Each |y;| < G.
o Model: y= X3+
o Classical solution: = (XTX) X'y
o A differentally private approach:
Q Sete; =6 = 6/2.
@ Compute noisy (X7X)~1 using €; budget.
e Sensitivity of X" X is C?.
o Add independent Laplace(CZ/e1) noise to each element of X7 X.
o Compute inverse.
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Basic Design of Differential Privacy Mechanisms

Example 2: Linear Regression

@ Linear regression model.
Data: {(x1,y1), (%2, ¥2), -+, (X, yn)}
Each ||)_<;||1 < Cl-
e Each |y;| < G.
o Model: y=XG+¢
o Classical solution: 3 = (XTX)"IXTy
o A differentally private approach:
Q Sete; =6 = 6/2.
@ Compute noisy (X7X)~1 using €; budget.
e Sensitivity of X" X is C?.
o Add independent Laplace(CZ/e1) noise to each element of X7 X.
o Compute inverse.
© Compute noisy X' ¥ using €, budget.
o Sensitivity of X7y is C1 Ca
o Add independent Laplace(Ci C2/e2) noise to each element of XTY.
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Basic Design of Differential Privacy Mechanisms

Example 2: Linear Regression

@ Linear regression model.
Data: {()_(layl)a ()_(23)/2)3 ceey ()_(myn)}
Each ||)?,||1 < Cl.
Each |y,| < C2.
Model: = X3 +¢
o Classical solution: 3 = (XTX)"1XTy
o A differentally private approach:
Q Seteg =€ =¢/2.
@ Compute noisy (X7X)~! using ¢; budget.
o Sensitivity of X" X is CZ.
o Add independent Laplace(CZ/e1) noise to each element of X7 X.
o Compute inverse.
© Compute noisy X'y using €, budget.
o Sensitivity of XT)7 is C1 G
o Add independent Laplace(Ci Cz/¢2) noise to each element of X7y,
© Model coefficients: multiply noisy (X7 X)~! and noisy X .
© Also release the noisy measurements
e noisy (X7X)
e noisy X'y
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The Role of Strategy
Outline

@ Basic Design of Differential Privacy Mechanisms
© The Role of Strategy

© Chi-Squared Testing

@ Takeaway Messages

© Common Pitfalls

@ Additional Mechanisms
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The Role of Strategy
Flexibility

@ Differential privacy can be used to:

e Obtain noisy sub-population totals.

o Build generalized linear models [CMS11] with confidence intervals
[WKL19].

o Train deep learning models [ACG™16].

o Create synthetic data [LHR"10, HLM12].

@ Common properties: clever noise strategies.
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The Role of Strategy
Strategy Example

@ In a given region, suppose we are interested in:
o X = # of Hispanic individuals
e Y = # of VotingAge individuals

@ What do we add noise to?
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The Role of Strategy
Strategy Example

@ In a given region, suppose we are interested in:
o X = # of Hispanic individuals
e Y = # of VotingAge individuals

@ What do we add noise to?
@ Attempt 1: add noise to X and Y

DP Stats 17 /48



The Role of Strategy
Strategy Example

@ In a given region, suppose we are interested in:
o X = # of Hispanic individuals
e Y = # of VotingAge individuals

e What do we add noise to?

@ Attempt 1: add noise to X and Y
@ Sensitivity:
o For any database, adding/removing one person can
o Change X by +1.
o Change Y by +1.
o Total change at most 2
e Sensitivity A: 2
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The Role of Strategy
Strategy Example

@ In a given region, suppose we are interested in:
o X = # of Hispanic individuals
e Y = # of VotingAge individuals
e What do we add noise to?
@ Attempt 1: add noise to X and Y
@ Sensitivity:
o For any database, adding/removing one person can
o Change X by +1.
o Change Y by +1.
o Total change at most 2
e Sensitivity A: 2
@ Noisy Counts (Measure):
o X = X + Laplace(2/¢)
o Y =Y + Laplace(2/¢)
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The Role of Strategy
Strategy Example

@ In a given region, suppose we are interested in:
o X = # of Hispanic individuals
e Y = # of VotingAge individuals
What do we add noise to?
Attempt 1: add noise to X and Y
Sensitivity:
e For any database, adding/removing one person can
o Change X by +1.
o Change Y by +1.
e Total change at most 2
e Sensitivity A: 2
Noisy Counts (Measure):
o X = X + Laplace(2/¢)
o Y =Y + Laplace(2/e)

@ Accuracy:
o Var(X ) =8/¢e?
o Var(Y) =8/
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The Role of Strategy
Strategy Example

@ In a given region, suppose we are interested in:
o X = # of Hispanic individuals
e Y = # of VotingAge individuals

e What do we add noise to?

o Attempt 2:

o Add noise to S = X + Y (Hispanic + VotingAge)
o Add noise to D = X — Y (Hispanic - VotingAge)
e Note: not very intuitive quantities.
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The Role of Strategy
Strategy Example

@ In a given region, suppose we are interested in:
o X = # of Hispanic individuals
e Y = # of VotingAge individuals
e What do we add noise to?
o Attempt 2:
o Add noise to S = X + Y (Hispanic + VotingAge)
o Add noise to D = X — Y (Hispanic - VotingAge)
e Note: not very intuitive quantities.
@ Sensitivity? In any database, adding/removing individual who is:
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The Role of Strategy
Strategy Example

@ In a given region, suppose we are interested in:
o X = # of Hispanic individuals
e Y = # of VotingAge individuals
e What do we add noise to?
o Attempt 2:
o Add noise to S = X + Y (Hispanic + VotingAge)
o Add noise to D = X — Y (Hispanic - VotingAge)
e Note: not very intuitive quantities.
@ Sensitivity? In any database, adding/removing individual who is:
o Neither Hispanic nor VotingAge: S and D unchanged.
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The Role of Strategy
Strategy Example

@ In a given region, suppose we are interested in:
o X = # of Hispanic individuals
e Y = # of VotingAge individuals
e What do we add noise to?
o Attempt 2:
o Add noise to S = X + Y (Hispanic + VotingAge)
o Add noise to D = X — Y (Hispanic - VotingAge)
e Note: not very intuitive quantities.
@ Sensitivity? In any database, adding/removing individual who is:

o Neither Hispanic nor VotingAge: S and D unchanged.
e Hispanic but not VotingAge: S changes by +1, D changes by +1
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The Role of Strategy
Strategy Example

@ In a given region, suppose we are interested in:
o X = # of Hispanic individuals
e Y = # of VotingAge individuals
e What do we add noise to?
o Attempt 2:
o Add noise to S = X + Y (Hispanic + VotingAge)
o Add noise to D = X — Y (Hispanic - VotingAge)
e Note: not very intuitive quantities.
@ Sensitivity? In any database, adding/removing individual who is:

o Neither Hispanic nor VotingAge: S and D unchanged.
e Hispanic but not VotingAge: S changes by +1, D changes by +1
e Not Hispanic, is VotingAge: S changes by +1, D changes by +1
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The Role of Strategy
Strategy Example

@ In a given region, suppose we are interested in:
o X = # of Hispanic individuals
e Y = # of VotingAge individuals
e What do we add noise to?
o Attempt 2:
o Add noise to S = X + Y (Hispanic + VotingAge)
o Add noise to D = X — Y (Hispanic - VotingAge)
e Note: not very intuitive quantities.
@ Sensitivity? In any database, adding/removing individual who is:

Neither Hispanic nor VotingAge: S and D unchanged.

Hispanic but not VotingAge: S changes by +1, D changes by +1
Not Hispanic, is VotingAge: S changes by £1, D changes by +1

Both Hispanic and VotingAge: S changes by +2, D is unchanged.

DP Stats 17 / 48



The Role of Strategy
Strategy Example

@ In a given region, suppose we are interested in:
o X = # of Hispanic individuals
e Y = # of VotingAge individuals

e What do we add noise to?

o Attempt 2:
o Add noise to S = X + Y (Hispanic + VotingAge)
o Add noise to D = X — Y (Hispanic - VotingAge)
e Note: not very intuitive quantities.

@ Sensitivity? In any database, adding/removing individual who is:
o Neither Hispanic nor VotingAge: S and D unchanged.
e Hispanic but not VotingAge: S changes by +1, D changes by +1
e Not Hispanic, is VotingAge: S changes by +1, D changes by +1
e Both Hispanic and VotingAge: S changes by £2, D is unchanged.
e Maximum change: 2
e Sensitivity: 2
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Strategy Example

@ In a given region, suppose we are interested in:
o X = # of Hispanic individuals
e Y = # of VotingAge individuals
e What do we add noise to?
o Attempt 2:
o Add noise to S = X + Y (Hispanic + VotingAge)
o Add noise to D = X — Y (Hispanic - VotingAge)
e Note: not very intuitive quantities.
@ Sensitivity? Equals 2
o Noisy Measurements:
o S =15+ Laplace(2/e)
o D =D+ Laplace(2/¢)
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@ In a given region, suppose we are interested in:
o X = # of Hispanic individuals
e Y = # of VotingAge individuals

What do we add noise to?

Attempt 2:
o Add noise to S = X + Y (Hispanic + VotingAge)
o Add noise to D = X — Y (Hispanic - VotingAge)
o Note: not very intuitive quantities.
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The Role of Strategy
Strategy Example

@ In a given region, suppose we are interested in:
o X = # of Hispanic individuals
e Y = # of VotingAge individuals

What do we add noise to?

Attempt 2:
o Add noise to S = X + Y (Hispanic + VotingAge)
o Add noise to D = X — Y (Hispanic - VotingAge)
o Note: not very intuitive quantities.

Sensitivity? Equals 2

o Noisy Measurements:
o S =5+ Laplace(2/¢) o Accuracy:
o D =D+ Laplace(2/¢) o Var(S ) =8/¢
@ Reconstruction (postprocessing): ° Va’(D) =8/e
v T~ ° (X) = 4/62
=(5+D)/2 2 )
Y = (5 - D)/2 o Var(Y) =4/e
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The Role of Strategy
Summary

@ In a given region, suppose we are interested in:

e X = # of Hispanic individuals

o Y = # of VotingAge individuals
What do we add noise to?
Attempt 1:

e Add noise to X

e Add noise to Y

o Variance: 8/¢?
Attempt 2:

o Add noise to X + Y

e Add noise to X — Y

e Reconsruct

o Variance: 4/¢?

Select-Measure-Reconstruct Paradigm [LHRT10].

What you want is not always what you should add noise to.
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Chi-Squared Testing
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Chi-Squared Testing

Differential Privacy and Gaussian Noise

@ There are versions of differential privacy compatible with Gaussian
noise.

o Approximate differential privacy [DKM*06]
o zCDP [BS16]
o Renyi Differential Privacy [Mirl7]

@ Privacy semantics are harder to understand.
@ Noise (Gaussian) is easier to understand.

o Noise scale depends on L; sensitivity Aff).
2
o AP = supp, p, [|F(D1) = F(D2)|
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Chi-Squared Testing
Classical Chi-Squared Test

o Chi-Squared Tests

o Goodness of fit.
o Test of sample proportions.
o Test of independence.

_F.\2
@ Test statistic: T = Zfﬁzl (Xi _E,)

e X;: number of people of type i
[ X[ X [ | Xioa [ X |
o E;: expected number of people of type i under null hypothesis.

e Asymptotically:
o T has x2 distribution.
o 7 is degrees of freedom (depends on how E; is estimated)
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Chi-Squared Testing

Chi-Squared Tails

Chi-Square with 1 d.f.

dehisq(x, df = 1)

‘ \
3 ‘ \\
‘ N
3
T T T
0 1 2 3 4
x
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Chi-Squared Testing

Testing with Differential Privacy

] Data:’Xl ‘Xg ‘ ‘Xk—l ‘Xk‘
@ Suppose we are given noisy measurements.

o Added Gaussian Noise.

o Scale depends on privacy parameters.
] X1 = Xl + N(O,Uz)

° )?2 =X5+ N(0,02)

Xi = Xy + N(0,02)
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Chi-Squared Testing

Testing with Differential Privacy

] Data:’Xl ‘X2 ‘ ‘Xk—l ‘Xk‘
@ Suppose we are given noisy measurements.

o Added Gaussian Noise.

o Scale depends on privacy parameters.
] X1 = Xl + N(O,Uz)

° )?2 =X5+ N(O,Jz)

°
° )?k =X+ N(O,Jz)
(Xi—E:)?

o Attempt 1: pretend X; are the real data. T = ZLI =

e Run standard chi-squared test on )N(l, ceey Xk
o Reject if p-value below «.
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Chi-Squared Testing
QQ Plot for Attempt 1

o Red: sampling distribution under null hypothesis.
@ Blue: ideal behavior for valid p-values.
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Chi-Squared Testing

Testing with Differential Privacy

] Data:’Xl ‘X2 ‘ ‘Xk—l ‘Xk‘

@ Suppose we are given noisy measurements.
o Added Gaussian Noise.

Scale depends on privacy parameters.

X1 =X+ N(07O'2)

X2 = X2 + N(0,0’z)

o !
o Xy = Xy + N(0,0?)
(Xi—E)?

o Attempt 1: pretend X; are the real data. T = Sk =

o Run standard chi-squared test on )~<1, ey Xk
o Reject if p-value below a.
@ In this procedure, added noise:
e does not change underlying phenomena (fit, independence, etc. of
original data)
e tends to make test statistic larger.
o “p-values’ appear smaller
o leads to increased false discovery
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Chi-Squared Testing

Testing with Differential Privacy

o Data: | X1 [ Xo | -+ [ Xie1 [ X |
@ Suppose we are given noisy measurements.

o Added Gaussian Noise.
Scale depends on privacy parameters.
X1 = X1+ N(0,0?)

X2 = X2 + N(0,0’z)

°
o X, =Xk + N(O,O’Q)
o Attempt 2:
. . .. - k  (Xi—E)?
o Re-use noisy data in test statistic. T =5, ; =
o Estimate sampling distribution of T more accurately.
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Chi-Squared Testing
QQ Plot for Attempt 2

o Red: sampling distribution under null hypothesis.

@ Blue: ideal behavior for valid p-values.
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Chi-Squared Testing

Testing with Differential Privacy

o Data: | X1 [ Xo | -+ [ Xie1 [ X |
@ Suppose we are given noisy measurements.

e Added Gaussian Noise.

Scale depends on privacy parameters.
X1 =X+ N(0,0’z)

)?2 = X2 + N(0,0’z)

o
o Xi = Xi+ N(0,02)
o Attempt 2:

(Xi—E)?
=
o Estimate sampling distribution of T more accurately.

o Re-use noisy data in test statistic. T = Zf.;l

@ p-values are valid.

@ Are we done?
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Chi-Squared Testing

Testing with Differential Privacy

° Data:]Xl ‘Xz ‘ ‘Xk,1 ‘ Xk ‘
@ Suppose we are given noisy measurements.
o Added Gaussian Noise.
e Scale depends on privacy parameters.
o X1 = Xi + N(0,0?)
o Xo = Xo + N(0,0?)

o .
o Xi = Xi + N(0,02)
o Attempt 3:

o Sampling distribution (under null) from prior attempts is not
approximately chi-squared. B
e Is there a test statistic over the X; that is?
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Chi-Squared Testing

Testing with Differential Privacy

] Data:’Xl ‘X2 ‘ ‘Xk—l ‘Xk‘
@ Suppose we are given noisy measurements.

o Added Gaussian Noise.
Scale depends on privacy parameters.
X1 = X1 + N(O,Uz)

Xo = X5+ N(O,O’2)

° :
o Xi = Xi + N(0,02)
o Attempt 3:

e Sampling distribution (under null) from prior attempts is not

approximately chi-squared. B

e Is there a test statistic over the X; that is?

o Yes! [RK17] (projected statistic)

o Appears to be more powerful.
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Chi-Squared Testing
Projected Statistic

@ Loss of power of other statistics compared to projected statistic
[RK17].

Power Comparisons with Projected Statistic

III
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Chi-Squared Testing

Testing with Differential Privacy

o Data: | X1 [ Xo | -+ [ Xie1 [ X |
@ Suppose we are given noisy measurements.

o Added Gaussian Noise.

o Scale depends on privacy parameters.
o X1 = Xi + N(0,0?)

o Xo = Xo + N(0,0?)

° :
o Xy = Xy + N(0,0?)
o Attempt 3:
o Sampling distribution (under null) from prior attempts is not
approximately chi-squared. B
Is there a test statistic over the X; that is?
Yes! [RK17] (projected statistic)
Appears to be more powerful.
Now are we done?
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Chi-Squared Testing

Testing with Differential Privacy

o Data:’Xl ‘X2 ‘ ‘Xk—l ‘Xk ‘
@ Suppose we are given noisy measurements.

o Added Gaussian Noise.

o Scale depends on privacy parameters.
o X1 = Xi + N(0,0?)

o Xo = X5+ N(0,02)

° :
° )?k =X+ N(O,O’Q)

o Attempt 3:
o Sampling distribution (under null) from prior attempts is not

approximately chi-squared. B

Is there a test statistic over the X; that is?

Yes! [RK17] (projected statistic)

Appears to be more powerful.

Now are we done?

We could pick a better noise distribution! [AS20]
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Takeaway Messages

e Differential Privacy is like ’ .

@ Also like spending money.
o Easy to waste privacy loss budget without “financial” planning.
e Where do you add the noise?
e What do you do after the noise?
o Accurate tracking of total privacy cost [Mirl7, BW18].
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Takeaway Messages
Takeaway Message |l

e Differentially private algorithms produce many data products:
°eg,

Intermediate noisy measurements (safe to release)
Synthesized microdata (safe to release)
e Source code (safe to release)

o Demystified:

o Noisy measurements are often just counts + noise
o Noise is often unbiased
e Variance and distribution are known
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Thank You
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Common Pitfalls
Outline
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Common Pitfalls
Normalizing Data

e Data normalization and feature selection prior to model fitting.
@ In a dataset of Age, Weight, Height, Income:

Subtract off the mean age, divide by std of ages.

o Subtract off mean weight, divide by std of weights.
e Subtract off mean height, divide by std of heights.
e Subtract off mean income, divide by std of income.

e This affects sensitivity: adding/removing 1 record can affect entire
dataset.

e Adding 1 billionaire can throw off mean and standard deviation.
e Most of the normalized incomes are near 0.
o Causes sensitivity to equal n, number of records.

@ Better: use some privacy budget for:
e normalization.
o feature selection

@ Suggestion: use robust statistical models.
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Common Pitfalls
Non-Numerical Operations

e Operations that don't return numbers still affect sensitivity.

o0
(] oo%
o Consider reporting the results of a clustering. °°
00
o0
o
& %o
@ Cluster the data °°© o
(o]
000

@ Within each cluster compute the sum of points + Laplace noise
© Within each cluster compute the number of points 4+ Laplace noise
°9o
@ Divide, to get approximate cluster centers °© o o
%o
@ Publish these cluster centers.
@ Common mistake: forgetting to use differential privacy in the initial
clustering.

e Adding 1 record can result in a completely different clustering.
o Instead, use a differentially private clustering algorithm (e.g., [McS09]).
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Common Pitfalls
Neighbors |

e Bounded differential privacy:
e Neighbors Dy, D, differ on value of one record.
o n (# of respondents) comes for free.
e n is the same for all records.
@ Unbounded differential privacy:
o Neighbors Dy, D, differ on presence/absence of one record.
e D; and D, have different number of respondents.
e nis not free. If you need it, use privacy budget to get an approximate
value.
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Common Pitfalls
Neighbors 2

@ Must consider all possible D; and D, that are neighbors of each other.

e Common mistake: only considering neighbors of current database.

e Example database of ages capped at 115:
D* ={1,2,35,36,36,99,115}
e What is sensitivity of the median?
o Adding/removing 1 record for this dataset changes median by at most
1.
1 is not the sensitivity.
Consider D; = {0,0,0,115,115}, D, = {0,0,0,115,115,115}
So sensitivity is 115/2.
More advanced techniques add less noise when median is stable (like in
D*)
@ Smooth sensitivity [NRS07].
o Private quantiles and Exponential Mechanism [Smill, MT07].
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Additional Mechanisms
Additional Mechanisms

Exponential mechanism [DR14, MT07]
Noisy Max [DR14, DWZK19]

Sparse Vector [DR14, DWZK19]
Smooth Sensitivity [NRS07]

Example usage: [HLM12]
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Additional Mechanisms
Basic Mechanism Comparisons

e Pure differential privacy (no 9).
o Ly Sensitivity AW: supp, p. [|F(D1) — F(D2)|x
o Laplace mechanism. Noise scale: 5.
e Privacy is a function of A&l)/ﬂ (this equals €).
o Approximate differential privacy
o Ly Sensitivity AEF): supp, ~p, ||f(D1) — f(D2)||2
o Laplace mechanism. Noise scale: 5.
e Privacy (e, d curve) is a function of Aff)/o [BW18]
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