## Sudden Stops, Productivity, and the Exchange Rate

Discussion by Şebnem Kalemli-Özcan

NBER, IFM, July 2020

The Key Message of Castillo-Martinez (2020): Fixed exchange rate regimes fare better under a sudden stop shock as aggregate productivity improves

<u>Mechanism:</u> Selection effect at exit: Unproductive firms' exit more under fixed exchange rates, improving aggregate productivity.

The Key Message of Castillo-Martinez (2020): Fixed exchange rate regimes fare better under a sudden stop shock as aggregate productivity improves

<u>Mechanism:</u> Selection effect at exit: Unproductive firms' exit more under fixed exchange rates, improving aggregate productivity.

• This is a very interesting paper that takes firm heterogeneity seriously to understand aggregate outcomes by introducing new channels

The Key Message of Castillo-Martinez (2020): Fixed exchange rate regimes fare better under a sudden stop shock as aggregate productivity improves

<u>Mechanism</u>: Selection effect at exit: Unproductive firms' exit more under fixed exchange rates, improving aggregate productivity.

- This is a very interesting paper that takes firm heterogeneity seriously to understand aggregate outcomes by introducing new channels
- With some additional work, the paper can be more convincing on:
  - Is it really the case the unproductive firms exit under a peg and unproductive firms enter under a float?
  - Can Spain results driven by other factor/s instead of the exchange rate regime?

- Aggregate and Manufacturing TFP Trends
- 2 Representativeness of ESEE Data
- Impirical Analysis and Alternative Mechanisms

I. TFP Trends

# Spain Aggregate TFP is flat/declining since the Euro



## Spain Manufacturing TFP is flat/declining since 1990s

..also flat/declining in measures constructed from firm level data since 2000s



#### II. Representativeness of ESEE Data

- Large firms only (almost no SMEs), skewed firm size distribution
- Firm entry moves with the size threshold of the data collection
- Limited coverage of the manufacturing sector

# Coverage of the Manufacturing Sector

|      | ESEE       |           |              | ORBIS-Amadeus |           |              |
|------|------------|-----------|--------------|---------------|-----------|--------------|
|      | Employment | Wage Bill | Gross Output | Employment    | Wage Bill | Gross Output |
| 1005 | 0.20       | 0.18      | 0.18         |               |           |              |
| 1006 | 0.20       | 0.16      | 0.16         |               |           |              |
| 1007 | 0.10       | 0.10      | 0.10         |               |           |              |
| 1008 | 0.17       | 0.10      | 0.19         | 0.44          | 0.65      | 0.70         |
| 1000 | 0.16       | 0.17      | 0.19         | 0.56          | 0.69      | 0.75         |
| 2000 | 0.10       | 0.20      | 0.23         | 0.58          | 0.05      | 0.75         |
| 2000 | 0.19       | 0.19      | 0.23         | 0.50          | 0.75      | 0.79         |
| 2001 | 0.10       | 0.19      | 0.22         | 0.65          | 0.75      | 0.79         |
| 2002 | 0.14       | 0.16      | 0.19         | 0.65          | 0.74      | 0.78         |
| 2003 | 0.14       | 0.17      | 0.19         | 0.65          | 0.75      | 0.78         |
| 2004 | 0.17       | 0.21      | 0.23         | 0.66          | 0.74      | 0.70         |
| 2005 | 0.17       | 0.21      | 0.23         | 0.67          | 0.74      | 0.77         |
| 2000 | 0.17       | 0.20      | 0.23         | 0.67          | 0.74      | 0.77         |
| 2007 | 0.18       | 0.24      | 0.24         | 0.65          | 0.74      | 0.72         |
| 2000 | 0.18       | 0.24      | 0.23         | 0.03          | 0.72      | 0.72         |
| 2009 | 0.10       | 0.25      | 0.24         | 0.68          | 0.72      | 0.73         |
| 2010 | 0.18       | 0.21      | 0.24         | 0.69          | 0.75      | 0.75         |
| 2012 | 0.18       | 0.22      | 0.23         | 0.69          | 0.74      | 0.75         |
| 2012 | 0.12       | 0.17      | 0.19         | 0.70          | 0.75      | 0.75         |

# Firm Size Distribution

|                         |                                                      | Employment           | Wage Bill            | Gross Output         |
|-------------------------|------------------------------------------------------|----------------------|----------------------|----------------------|
| ESEE                    | 1-19 employees                                       | 0.01                 | 0.01                 | 0.00                 |
|                         | 20-249 employees                                     | 0.19                 | 0.15                 | 0.12                 |
|                         | 250+ employees                                       | 0.80                 | 0.84                 | 0.88                 |
| ORBIS-AMADEUS           | 1-19 employees<br>20-249 employees<br>250+ employees | 0.24<br>0.50<br>0.26 | 0.19<br>0.47<br>0.34 | 0.14<br>0.42<br>0.45 |
| Eurostat (SBS)–Official | 0-19 employees<br>20-249 employees<br>250+ employees | 0.31<br>0.43<br>0.26 | 0.20<br>0.43<br>0.37 | 0.14<br>0.38<br>0.49 |

- Comparing two shocks for the same country requires that the firm sample is representative over time
- If firm size distribution changes over time due to selection, then entry and exit cannot be interpreted solely as a function of shocks
- Having small firms is essential for capturing the factor misallocation trends
- Misallocation of factors can be an <u>alternative mechanism</u> and also linked to markups

# MRPK dispersion increases MRPL dispersion stays constant over time in Spain

Gopinath, Kalemli-Ozcan, Karabarbounis, Villegas-Sanchez, 2017



## MRPK dispersion does not increase within large firms



III. Empirical Analysis and Alternative Mechanisms

#### Exit and Employment Growth Regression

Foster, Grim, Haltiwanger, 2016 (FGH)

(1) 
$$y_{it} = \beta TFP_{it} + \gamma ss_t^1 \times TFP_{it} + \theta ss_t^2 \times TFP_{it} + \delta ss_t^1 + \mu ss_t^2 + \epsilon_{it}$$

Following FGH exactly:

(2)  $y_{it} = \lambda_t + \mathbf{X}'_{it}\omega + \mathbf{X}'_{it}\omega \times ss_t^j + \beta TFP_{it} + \gamma ss_t^1 \times TFP_{it} + \theta ss_t^2 \times TFP_{it} + \epsilon_{it}$ 

#### Exit and Employment Growth Regression

Foster, Grim, Haltiwanger, 2016 (FGH)

(1) 
$$y_{it} = \beta TFP_{it} + \gamma ss_t^1 \times TFP_{it} + \theta ss_t^2 \times TFP_{it} + \delta ss_t^1 + \mu ss_t^2 + \epsilon_{it}$$

Following FGH exactly:

(2)  $y_{it} = \lambda_t + \mathbf{X}'_{it}\omega + \mathbf{X}'_{it}\omega \times ss_t^j + \beta TFP_{it} + \gamma ss_t^1 \times TFP_{it} + \theta ss_t^2 \times TFP_{it} + \epsilon_{it}$ 

- Specification (1) cannot account for omitted variables at the firm level and policies that differ during two shocks  $(\lambda_t + \mathbf{X'}_{it}\omega)$ 
  - During 1992-1993 exit might be harder as labor market regulations were tighter
  - During 2010-2013, larger demand shock and support for smaller firms not to exit so exit shifted to larger firms
  - No adjustment for capacity utilization, might differ across firms/shocks?

#### Exit and Employment Growth Regression

Foster, Grim, Haltiwanger, 2016 (FGH)

(1) 
$$y_{it} = \beta TFP_{it} + \gamma ss_t^1 \times TFP_{it} + \theta ss_t^2 \times TFP_{it} + \delta ss_t^1 + \mu ss_t^2 + \epsilon_{it}$$

Following FGH exactly:

(2)  $y_{it} = \lambda_t + \mathbf{X}'_{it}\omega + \mathbf{X}'_{it}\omega \times ss_t^j + \beta TFP_{it} + \gamma ss_t^1 \times TFP_{it} + \theta ss_t^2 \times TFP_{it} + \epsilon_{it}$ 

• Specification (1) cannot account for omitted variables at the firm level and policies that differ during two shocks  $(\lambda_t + \mathbf{X'}_{it}\omega)$ 

- During 1992-1993 exit might be harder as labor market regulations were tighter
- During 2010-2013, larger demand shock and support for smaller firms not to exit so exit shifted to larger firms
- No adjustment for capacity utilization, might differ across firms/shocks?
- Specification (1) cannot account for alternative stories: banking crisis, balance sheet effects, misallocation trends, intermediate imports (X'<sub>it</sub>ω × ss<sup>j</sup><sub>t</sub>)
  - How these characteristics interact with shocks and how they correlate with TFP?

• Under the peg, demand and cost channel works (larger demand response), these are muted under the float as monetary policy is effective

- Under the peg, demand and cost channel works (larger demand response), these are muted under the float as monetary policy is effective
- Monetary policy is largely <u>ineffective in emerging markets with capital flows</u> (floats/managed floats)—might even respond to sudden stop (Spain in early 1990s?)
- Maybe can test for monetary policy effectiveness via **short-rate disconnect** (Kalemli-Ozcan, 2019).
- If monetary policy is ineffective, other reasons might also explain the low exit rate during 1992-1993 shock

- Interesting, thought-provoking paper
- It will be great to revisit the aggregate and manufacturing TFP trends in Spain
- It will be good to undertake a systematic empirical analysis to rule out alternative explanations
- Alternatively, can use the model's implications to test different micro moments under different exchange rate regimes
- For the floating regime: need representative firm level data from another country or Census data from Spain.

#### APPENDIX

#### Aggregate TFP: Other Euro Area Countries





#### KLEMS Revision: Manufacturing TFP



