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Abstract

Educational assortative mating has important implications for household income
inequality and intergenerational mobility. Previous work has found that assortative
mating has increased over time, using a measurement paradigm that compares ob-
served matches to a counterfactual world where men and women match randomly. I
show that the measured increase in assortative mating over the last 50 years is in fact
mechanically driven by the closing of the gender gap in education. That is, as men’s
and women’s education distributions grew more similar over time, men and women had
more opportunity to find a match with someone of the same education level. Given this
finding, I propose a new measure of assortative mating, which I call the Perfect-Random
normalization, which bounds observed matches from below by a counterfactual world
where men and women match randomly and from above by a counterfactual world
where men and women match perfectly according to education. Once I control for the
changing gender gap in education using my proposed Perfect-Random normalization,
I find that assortative mating has actually decreased over time, until around 2000, at
which point it began to sharply increase. I then use the Perfect-Random normalization
to measure trends in assortative mating among all new parents using an administrative
dataset of birth certificates in the U.S. Existing work has primarily studied married or
cohabiting couples due to data constraints, but births to unmarried parents comprise
roughly 40 percent of all births and are concentrated among parents with lower levels
of education. I find that sorting among all new parents has been higher than sorting
among married parents only since 1990.
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1 Introduction

How couples form matters for dynamics of income inequality and intergenerational mobility.

If high-skilled men and women tend to couple off with each other rather than with less-skilled

individuals, income and other resources become more concentrated at the household level. As

these couples have children, this higher concentration of resources entails higher inequality

in the resources available for children’s development, and, thus, potentially higher inequality

in their later-life outcomes (Kremer, 1997; Fernández and Rogerson, 2001; Fernández et al.,

2005). Some have argued that marriages have become more assortative over the past 50

years (e.g., Schwartz and Mare, 2005; Eika et al., 2018) although there is some debate about

these trends (Gihleb and Lang, 2016).

To make progress in understanding these dynamics, it is important that we accurately

measure assortative mating. In this paper, I develop new tools to do so. Measuring edu-

cational assortative mating is challenging in part because men and especially women have

become more educated over time. As women have caught up to men in educational attain-

ment, couples with similar levels of education are mechanically more likely to form because

there are more individuals with similar levels of education to match with. When measuring

educational assortative mating, researchers often aim to measure changes in sorting that

occur in excess of changes that would naturally occur because of men’s and women’s chang-

ing education distributions. The reason for this distinction is that, from the perspective

of studying how sorting impacts inequality and intergenerational mobility, we are generally

interested in how the matching mechanism impacts these dynamics and thus want to net

out effects that may arise from compositional shifts in education.

A common method researchers use to control for men’s and women’s changing education

distributions is to compare observed matches to a counterfactual world where men and

women match randomly (e.g., Schwartz and Mare, 2005; Eika et al., 2018). The logic behind

this comparison is that, if we see more similarity in couples’ educational attainment than

we would see by random chance, we can conclude that some mechanism (preferences, search
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frictions) must be drawing similarly-educated individuals to each other. Moreover, the more

similarity we see above what we would see by random chance, the more assortative matches

are. Using this measurement paradigm, existing work has found that educational assortative

mating increased between 1960 and present day (Schwartz and Mare, 2005; Mare, 1991;

Blossfeld and Timm, 2003; Mare, 2016; Kalmijn, 1991; Qian and Preston, 1993).

In this paper, I show that the measured increase in educational assortative mating over

the past 50 years (as measured by these relative-to-random-benchmark measures) is in fact

mechanically driven by the closing of the gender gap in education. The key observation

behind this result is that men and women need not have the exact same education distribu-

tions (Figure 1), and thus, not everyone can find a spouse of the same education level, even

under perfectly assortative matching. As men’s and women’s education distributions grow

more similar, more people are able to find a spouse of the same education level, and thus,

the theoretical maximum degree of sorting—that is, the degree of sorting that occurs if men

and women match perfectly according to education—increases. I show that the increase in

assortative mating documented in existing studies and interpreted as a rise in sorting tech-

nologies or preferences for homogamy is in fact an artifact of men’s and women’s educational

attainment growing more similar.

Given this finding, I propose a new measure of assortative mating, which I call the Perfect-

Random normalization. This measure extends and generalizes work by Liu and Lu (2006)

who consider only two categories of education. Like existing studies, the Perfect-Random

normalization continues to treat the random matching counterfactual as the lower bound

on assortativeness but adds the perfect matching counterfactual as an upper bound.1 The

perfect matching counterfactual assumes that men and women match perfectly according to

education—for example, college graduate men and women always match with each other to

the fullest degree possible. As the gender gap in education closes, more people can match

1Because observed matches have been more assortative than the random matching counterfactual, I focus
on measuring positive assortative mating. An analogous measure can be defined for negative assortative
mating, where I would normalize the random matching counterfactual to be 0 and the perfect negative
matching counterfactual to be −1 and ask where in between these two bounds the observed matches lie.
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with someone of the same education level, and the assortativeness of matches in the perfect

matching counterfactual—which is the theoretical maximum assortativeness that a society

can attain—increases as well. I normalize the random matching counterfactual to equal

0 and the perfect matching counterfactual to equal 1. The interpretation of the Perfect-

Random normalization is then how assortative matches are as a share of the theoretical

maximum assortativeness. According to the Perfect-Random normalization, for example,

college graduates have consistently matched at about 50 to 60 percent of the theoretical

maximum since 1960.

Using the Perfect-Random normalization and standard survey data sources (the Current

Population Survey), I find that educational assortative mating among married couples has

actually decreased over time, until around 2000, at which point it began to sharply increase.

The year 2000 is pivotal because it is the year that men’s and women’s education distri-

butions were the most equal among married individuals in the U.S. Thus, the decline in

assortative mating among married couples through 2000 is due in part to the gender gap

in education closing: While the potential for more assortative matches to occur increased,

the assortativeness of observed matches did not increase to the same degree. After 2000, as

women began to surpass men in educational attainment, the potential to form more assor-

tative matches decreased, but the assortativeness of observed matches did not decline to the

same degree.

Finally, I use the Perfect-Random normalization to measure educational assortative mat-

ing among all new parents using information on parental education from the Vital Statistics

birth certificates dataset, an administrative dataset of all births in the U.S. Births to un-

married parents comprise over 40 percent of all births in the U.S., but existing work on

assortative mating has focused on studying married or cohabiting couples. This focus is in

part due to data constraints: Commonly used nationally representative datasets such as the

Current Population Survey or the Decennial Census are household-level datasets, and, as

such, can only identify couples who live together. Births to unmarried parents have been
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concentrated among couples with lower levels of education (Figure 2a), so we effectively

exclude the lower part of the education distribution by focusing on married couples. For

example, over 90 percent of advanced degree-advanced degree couples are married, but fewer

than 50 percent of high school dropout-high school dropout couples are married.

In Figure 2b, I provide suggestive evidence that assortative mating is particularly bad

for intergenerational mobility at the low end of the education distribution, a segment of the

population that is particularly likely to be excluded from a sample of married couples. In

particular, a child is substantially more likely to not finish high school herself if both of her

parents have not finished high school—that is, above and beyond the effect of each parent

not finishing high school. Very few nationally representative datasets have information about

non-cohabiting parents, and among these datasets, the Vital Statistics birth certificates data

has the most historical coverage. I find that trends among all new parents are similar to

trends among married parents only through 1990, at which point sorting among all new

parents started to diverge to a higher level of sorting than among married parents.

This paper contributes to several different strands of literature. First, I contribute to

the educational assortative mating literature. Existing work has used various measurement

techniques to find that educational assortative mating has increased over time (e.g., Schwartz

and Mare, 2005; Gonalons-Pons and Schwartz, 2017; Kalmijn, 1991). Some have built upon

this finding and asked whether and to what extent this measured increase in educational

assortative mating has contributed to the rise in household income inequality (Greenwood

et al., 2014; Eika et al., 2018; Schwartz, 2010; Breen and Salazar, 2011; Cancian and Reed,

1998, 1999; Karoly and Burtless, 1995). These studies differ in their conclusions about

whether assortative mating has contributed meaningfully to the rise in household income

inequality but mostly (all except the last 3 papers) rely on comparing observed matches to

a random matching counterfactual to come to their conclusions.

Many have built upon the finding that educational assortative mating has increased over

the past 50 years by exploring factors behind this rise. Some have interpreted the measured
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increase in assortative mating as being driven by increasing insularity of college graduates

and/or the increasing isolation of high school dropouts (Schwartz and Mare, 2005; Arum

et al., 2008; Hou and Myles, 2008; Eika et al., 2018). Others have interpreted the rise as

the result of schools (rather than churches or families) playing a greater role in dating and

marriage markets today than yesterday (Kalmijn, 1991; Blossfeld and Timm, 2003), and, in

particular, have hypothesized that rising homogamy is a function of the difference between

age at leaving school and age at marriage (Mare, 1991; Shafer and Qian, 2010). Still others

have interpreted the rise as due to the growing symmetry of men’s and women’s roles in

marriage (Gonalons-Pons and Schwartz, 2017). See Schwartz (2013) for a review.

The Perfect-Random normalization that I propose is similar in spirit to a Gini coefficient

and to methods used to measure the geographic segregation of income or race in that these

other methods also compare observed phenomena to both a lower and an upper bound

counterfactual distribution (e.g., Logan and Parman, 2017; Reardon and Bischoff, 2011).

For example, Logan and Parman (2017) bound the observed geographic racial segregation

from below by assuming that all individuals randomly choose where to live (so all, e.g., MSAs

have the same racial composition as the nation as a whole), and from above by assuming

perfect segregation—that is, that all, e.g. white people live in a particular area, all black

people another, etc.

The remainder of this paper is structured as follows: Section 2 provides further back-

ground on why measuring educational assortative mating is challenging and details some

existing methods that researchers use to address those challenges. Section 3 discusses the

simulation exercise that I conduct to show that a common measurement paradigm, the

random matching normalization, fails to control for a changing gender gap in education. In

Section 4, I discuss my proposed measure of assortative mating, the Perfect-Random Normal-

ization, and in Section 5, I discuss the trends I find using the Perfect-Random normalization.

Section 6 provides further detail on the Vital Statistics birth certificates data and discusses

trends measured among all new (including unmarried) parents. Section 7 concludes and
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proposes future avenues for research.

2 Background: Measuring assortative mating

2.1 Measurement Challenges

One reason researchers are interested in studying assortative mating is because of its relation-

ship with household income inequality and intergenerational mobility. From the perspective

of exploring these dynamics, education effectively serves as a proxy for human capital or

earnings potential. Education is an imperfect proxy, though, because it is lumpy, and,

moreover, as individuals have become more educated, the average human capital that each

education level represents has likely changed. For example, the average high school dropout

today is likely more negatively selected than the average high school dropout, say, in the

1940s, when a much smaller share of the population attended college.2 Analogously, a 1960s

couple with a college graduate husband and a high school graduate wife might have the same

levels of human capital as, say, a college-college couple today, given the expansion in higher

education in the intervening time period. The former is counted as not assortatively matched

while the latter is, even though they are effectively the same couple from a measurement

perspective. To the extent that we are interested in education as a sufficient statistic for

earnings potential or human capital, we want to control for some of this changing selection.

A related challenge with measuring assortative mating is separating how much sorting

would naturally occur (e.g., if men and women matched randomly, many same-education

couples would still form) from how much is due to the matching technology (e.g., people’s

preferences for traits in partners, or search frictions that tend to draw certain types of people

2This is a particularly lively debate in work estimating trends in mortality among less-educated whites.
As Americans have become more educated, high school dropouts are more negatively selected. The trend
of rising mortality among less educated whites could be due to either: (1) Mortality staying constant at
every education percentile, but increasing educational attainment means that high school dropouts are more
negatively selected, or (2) Mortality is indeed rising at the low end of the education distribution, or (3) some
combination of (1) and (2). See, e.g., Novosad and Rafkin (2019).
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together). We can conceptualize assortative mating in many different ways—for example,

a natural starting point for measuring educational assortative mating is to measure the

correlation between a husband’s and a wife’s education or to calculate the share of couples

with the same levels of education.3 From the perspective of answering questions such as:

“How much of the increase in household income inequality is due to changes in assortative

mating?”, researchers tend to implicitly refer to changes in assortative mating due to the

matching technology, rather than say, the fact that women have become more educated, and,

thus, same-educated are mechanically more likely to form. Measures such as the correlation

between spouses’ education or the share of couples with the same education include both

changes that are due to men’s and women’s changing educational attainment as well as those

due to changes in the matching technology.

From both of these reasons, men’s and women’s increase in educational attainment over

the past 60 years or so presents a measurement challenge. Women in particular have made

dramatic advances in educational attainment and in the 1990s have surpassed men in edu-

cational attainment (Goldin et al., 2006; Goldin, 2006, 2014; Van Bavel et al., 2018). First,

the increase in educational attainment means that a college degree in the 1960s represents

a higher level of average human capital than a college degree today, so making apples-to-

apples comparisons across time is challenging. Second, the increase in educational attainment

means that there is a different portion of the educational similarity of couples that is due

to the relative supply of men and women of different education levels rather than to the

matching technology, and an ideal measure of assortative mating should be able to directly

measure latter while controlling for the former. What researchers have relied upon to con-

trol for changing educational attainment is to compare observed matches to a counterfactual

world where men and women match randomly according to education. These comparisons

3Researchers use a range of other methodologies as well, depending on research questions. For example,
some rely on simple measures such as the correlation between husbands’ and wives’ education levels, a
regression of husband’s years of education on wife’s years of education (Greenwood et al., 2014), or calculate
the share of couples who share the same education level (Gihleb and Lang, 2016). Other papers have used
structural methods to measure trends in assortative mating (Chiappori et al., 2017; Chade and Eeckhout,
2017).
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take varying forms but all share the common feature of comparing to the same reference

distribution of matches.

2.2 The Random Matching Normalization

A common approach for controlling for changing education levels is to compare observed

matches to a counterfactual world where individuals randomly match with each other (Schwartz

and Mare, 2005; Eika et al., 2018). Throughout this paper, I will refer to this class of mea-

sures as a “random matching” or “random-only” normalization. The logic behind these

normalizations is that if there is a high prevalence of a certain characteristic—e.g., college

education—then, the random matching counterfactual will also have a high prevalence of cou-

ples where both partners are college-educated, just by random chance. If the observed world

has more matches of the, e.g., college-college type than this random matching counterfactual

scenario, then we can conclude that some mechanism must be drawing college-educated men

and women together. As men and women become more educated, the random matching

counterfactual will change accordingly, and the random matching normalization measures

changes in assortativeness net of what would have happened by random chance. Moreover,

the more same-education couples we see above what we would see by random chance, the

more assortative the matches are.

2.2.1 Eika et al. (2018)

Eika et al. (2018), for example, measure educational assortative mating using an odds mea-

sure. In particular, they calculate:

Random matching normalization =
Pr(Observed match)

Pr(Seeing same match under random matching)
(1)
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More formally, if Em and Ew are random variables for a husband’s vs. a wife’s education,

and e and e′ are any two levels of education, their measure is:

Random matching normalization =
Pr(Em = e and Ew = e′)

Pr(Em = e) · Pr(Ew = e′)
(2)

Where the denominator comes from assuming that Em and Ew are statistically independent.

They calculate aggregate trends in assortative mating by calculating a weighted average of

the random matching normalization for all couples where Em = Ew. A value greater than

1 indicates positive assortative mating and values less than 1 indicate negative assortative

mating.

2.2.2 Schwartz and Mare (2005)

Schwartz and Mare (2005), as well as several other papers4, measure educational assortative

mating using the “log-linear model,” a common method for measuring social stratification

in sociology. The null hypothesis of the log-linear model is complete statistical independence

(i.e., random matching). In particular, let i be a husband’s education level and j be a wife’s

education level, and let πij be the number of couples where the husband has education i and

the wife has education j. Then, statistical independence means that:

πij = A · αi · βj (3)

Where A, αi, and βj are parameters to be fit. Usually, researchers take logs of the above

equation, so that:

log(πij) = A′ + α′
i + β′

j (4)

Where again, A′, α′
i, and β′

j are parameters to be fit, but they can now be fit using a lin-

ear regression. An additional residual term added to Equation 4 captures how assortative

4E.g., Mare (1991); Kalmijn (1991); Schwartz and Mare (2012), and many others. See Agresti (2003).
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matches are, net of what would be predicted by random matching. For example, to mea-

sure aggregate trends, Schwartz and Mare (2005) add in a dummy variable equal to 1 if a

husband’s and a wife’s education is the same and zero otherwise (the “homogamy model,”

equation (2)). To isolate particular parts of the education distribution that are driving the

aggregate trends, they estimate a “crossings model”, where they add in several dummy vari-

ables that estimate the relative difficulty of crossing each education boundary (Schwartz and

Mare (2005), equation (3)).

2.2.3 Greenwood et al. (2014)

Greenwood et al. (2014) compare observed matches to random matching in their analysis of

whether assortative mating has contributed to the rise in household income inequality.5 In

particular, to control for changing educational attainment over time, they calculate Gini co-

efficients using observed matches and compare them to Gini coefficients calculated assuming

that men and women match randomly.

3 Simulation exercise

Researchers claim that the random matching normalization fully controls for the mechan-

ical changes in the educational similarity of spouses that arise from changes in men’s and

women’s educational attainment. As a test of that claim, I run a simulation exercise where

I assume perfect assortative matching in every year—for example, college graduate men and

women always match with each other to the fullest degree possible, and “leftover” college

graduate men match with some college women.6 While matching by construction never

changes in my simulation exercise, I allow the education distributions of men and women

to change each year according to the data. Therefore, because the only changes occuring

in my simulation exercise are the changing education distributions of men and women, the

5They do not use the random matching normalization when measuring trends in assortative mating,
though.

6Or vice versa, when there are more college graduate women than men.
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only changes in the educational similarity of spouses are mechanical, and, thus, the random

matching normalization should not measure any changes in educational assortative mating

over time (that is, it should remain constant). What I will show, however, is that the trends

I measure in this perfect matching simulation exercise actually replicate the measured trends

found in existing work.

The specifics of my simulation exercise are as follows (See Figure 3 for a visual rep-

resentation): I assume that everyone is characterized by a latent and continuous (scalar)

characteristic which I call human capital. In each year t, an equal number of men and

women are separately ranked according to their human capital, so that there is a “top” man

and a “top” woman. Every year, everyone forms a match and matching is always perfect:

the “top” man and “top” woman always match, as do the second-ranked man and woman,

and so on. While matching by construction never changes in my simulation exercise, how

men and women of different human capital ranks sort into different education categories does

change. In particular, the top block of men and women are always assigned to be college

graduates, the next block are always assigned to have some college education but no degree,

and the bottom-most block is always assigned to have less than a high school degree. I

allow the sizes of these blocks to differ by gender and to change each year according to the

observed education distributions of men and women in my data.

I examine the random matching normalization as implemented by Eika et al. (2018)

because their implementation is the most straightforward, but similar arguments apply to

other analyses that compare observed matches to the random matching counterfactual.7 In

order to make direct comparisons, I follow Eika et al. (2018) in sample definition and how

I measure education. In particular, I examine married couples in the Current Population

Survey where at least one spouse is aged 26-60. I measure education using 4 categories: 1

= Less than high school (<12 years), 2 = high school graduate (12 years), 3 = some college

7Unfortunately, because my perfect matching simulation exercise results in many cells having no
matches—for example, there are never any matches between a high school dropout and a college gradu-
ate in my perfect matching simulation exercise—I cannot measure trends using the log-linear model used by
Schwartz and Mare (2005). Doing so would involve taking logs of zeros.
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but no degree (13-15 years), and 4 = college graduate (16+ years).

I plot the measured assortativeness of matches in my perfect matching simulation exercise

in Figure 4 together with the measured trends in assortative mating found in Eika et al.

(2018). Because matching by construction never changes in my simulation exercise, an ideal

statistic to measure assortative mating should also remain unchanged, even as men’s and

women’s education distributions change. What I find, however, is that the assortativeness of

the perfectly matched couples in my simulation exercise has increased over time according

to the random-only normalization (the dashed red line). Indeed, the assortativeness of the

simulated perfect matches has increased in parallel with the assortativeness of observed

matches (the solid blue line).

The intuition behind this result is that as women have caught up to men in educational

attainment—that is, as the education distributions of men and women have grown more

similar—men and women have become more able to find spouses of the same education

level. Consider, in the 1960s, when about ten percent of men and six percent of women were

college graduates. Assuming everyone matches, the maximum share of college-college couples

that can form is min(10, 6) = 6 percent. In the perfect matching scenario, the remaining

4 percent of college-educated men would match with women with some college education

but no degree. As the education distributions of men and women grew more similar in the

1990s, all college-educated men could find a match with a college-educated woman, so no

“leftover” college-educated men matched with “some college” women. Thus, the measured

assortativeness of matches in the perfect matching simulation increased relative to the 1960s

when education distributions were more dissimilar, even though the underlying matching

mechanism remained the same.

As an additional check, I re-run my simulation exercise, but I assume no gender gap in

education. That is, I maintain the assumption that everyone matches perfectly according

to human capital each year (the top man and woman always match, etc.), and continue to

assign men and women to education categories based on their human capital rank. Instead of
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allowing the education distributions to differ by gender, however, I assume in each year that

men and women have the same education distribution, given by the education distribution

of the pooled sample of men and women for each year. I plot the assortativeness of matches

in this alternative version of the perfect matching simulation exercise also in Figure 4 (the

dotted green line) and find that the random matching normalization is constant over time

in this alternative perfect matching simulation exercise, even though men’s and women’s

education is still increasing over time.

At the education-category level, I also find that the assortativeness of the perfectly

matched couples in my simulation exercise (allowing education distributions to differ by

gender) has changed over time according to the random-only normalization, even though

matching by construction does not change (Figure 5b). In fact, the measured trends in my

simulation exercise closely resemble measured trends in the “real world” (Figure 5a). For

example, according to the random-only normalization, “real world” sorting among college

graduates has declined over time. In my simulation exercise, sorting among college gradu-

ates has declined as well. Similarly, “real world” sorting among high school dropouts has

increased over time; in my simulation exercise, I find the same trend.

If the education levels of men and women had increased in lockstep—that is, if men

and women always had the same education distributions, and they changed in the exact

same way—then the random-only normalization would suffce for controlling for changing

educational attainment. However, because the gap in educational attainment changed in

addition to men and women becoming more educated, the random-only normalization fails

to fully control for mechanical increases in assortativeness arising from changing educational

attainment.

Existing work on the log-linear method has hinted at this issue of the random matching

normalization not being able to control for a changing gap in the marginal distributions but

has never fully addressed it (Logan, 1996; Hellevik, 2007; Xie and Killewald, 2013).8 The odds

8The log-linear method is closely related to the odds measure as calculated by Eika et al. (2018). In
particular, assortativeness in the log-linear model is the log of the odds calculated by Eika et al. (2018).
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measure as calculated by Eika et al. (2018) has been used extensively in intergenerational

mobility research and is usually calculated using a contingency table, which is essentially a

cross-tabulation of husband’s education along one dimension and wife’s education along the

other. Viewed another way, a contingency table is a square matrix. When an entire row

or an entire column in the matrix is multiplied by a constant, the odds measure for cells

in that row or column do not change. This “proportional invariance” property of the odds

measure has in general been overinterpreted to mean that the odds measure is invariant to

any change in the marginal distributions.

4 The Perfect-Random Normalization

Given the results of my simulation exercise, I propose a new measure of assortative mating,

which I call the Perfect-Random normalization. I define the Perfect-Random normalization

as follows: I normalize the random matching counterfactual to equal 0 and the perfect

matching counterfactual to equal 1 and ask where in between these two bounds the observed

matches lie.9 More concretly, my normalization is:

Perfect-Random Normalization =
Observed− Random

Perfect− Random
(5)

Note that if observed matches coincide with perfect matching (i.e., Observed = Perfect), this

normalization equals 1, and, conversely, if observed matches coincide with random matching

(Observed = Random), this normalization equals zero.

The Perfect-Random Normalization is easiest to understand visually. In Figure 6, I

plot the share of high school dropout-high school dropout couples as predicted under the

9If observed matches are below the random matching counterfactual, then I treat random matching as
the upper bound (normalized to be equal to 0) and simulate perfectly negative assortative matching—that is
the “top” man matches with the N -th ranked woman, 2 matches with N − 1, etc. I then treat the perfectly
negative assortative matching counterfactual is then the lower bound, normalized to be −1, and the Perfect-
Random normalization (for negative assortative matching) asks where in between these two bounds the
observed matches lie.
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perfect and random matching counterfactuals (the red dashed line and green dotted lines,

respectively) and as observed in the real world (the solid blue line). As can be seen from

this figure, the three lines move in parallel, with random matching effectively serving as a

lower bound and perfect matching effectively serving as an upper bound.10 The numerator

of the perfect-random normalization (Figure 6a) is the distance between the observed and

random matching lines, and the denominator of the perfect-random normalization (Figure

6b) is the distance between the perfect and random matching lines.

How I implement the perfect-random normalization is category-by-category.11 More for-

mally, let Em and Ew be random variables for a man’s and a woman’s education level and let e

and e′ be any two levels of education. Denote psim(e, e′) where sim ∈ {Perfect,Random,Observed}

as the probability of observing a match with Em = e and Ew = e′ under each matching sce-

nario. Then the Perfect-Random normalization is:

s(e, e′) =
pobserved(e, e′)− prandom(e, e′)

pperfect(e, e′)− prandom(e, e′)
(6)

The random matching simulation is random in a statistical sense—that is, I assume that Em

and Ew are independent random variables, so prandom(e, e′) = Pr(Em = e) · Pr(Ew = e′).12

To calculate aggregate trends in assortative mating, I calculate a weighted average of the

perfect-random normalization calculated for when a couple has the same education level and

the weights are the share of observed matches in each of these cells, following the spirit of

Eika et al. (2018).

10During the period observed in my data (1962-present), assortative mating by education has always been
positive—that is, there have always been more same-education couples than as predicted under random
matching. However, one could also imagine that perfect anti-matching serving as a true lower bound. The
way I think about the Perfect-Random Normalization is that whether the observed matches lie above or
below the random matching counterfactual determines the sign of assortative matching—that is, whether
it is positive or negative assortative matching. How assortative the matches are—that is, the magnitude of
assortative matching—is then the distance between the random matching line and either the perfect matching
or perfect anti-matching lines, depending on whether there is positive or negative assortative mating.

11Later, in Section 5.2, I also calculate the Perfect-Random normalization in aggregate—e.g., instead of
using category-by-category probabilities, I calculate the correlation between spouses’ education under each
reference distribution and plug these values into the same perfect-random normalization.

12It is difficult to write a clean formula for pperfect(e, e
′) because it depends on how “leftover” men and

women match.
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5 Results

5.1 Main results

Figure 7 plots aggregate trends in assortative mating as measured by the Perfect-Random

normalization. In contrast to existing work that has found that assortative mating has in-

creased over time, I find that educational assortative mating has declined over time, until

around 2000, at which point it began to increase again. Again, the Perfect-Random nor-

malization controls for the changing gender gap in educational attainment. The downward

trend through 2000 is driven in part by increasing potential for more assortative couples to

form; observed assortativeness did not increase at the same rate. The subsequent increase in

assortative mating after 2000 driven by the gender gap re-emerging as women have surpassed

men in educational attainment.

Looking at component parts in Figure 8, I find that college graduates and high school

dropouts have historically been the most assortative groups, sorting at about 50-60 percent

of the theoretical maximum since the 1960s. Up until 2000, college graduates were the

most assortative, but around 2000, high school dropouts surpassed college graduates as

the most assortative group, which is consistent with a story that high school dropouts are

increasingly isolated from those with higher levels of education (a common hypothesis in

research measuring the mortality rates of non-hispanic whites with lower levels of education—

e.g., Novosad and Rafkin (2019)). In contrast, sorting among high school graduates and some

college has been lower, with sorting among those with some college education but no degree

falling to about 20 percent of the theoretical maximum in recent years (a.k.a., it has been

pretty close to random).

5.2 Other Sufficient Statistics

I implemented the Perfect-Random normalization category by category and then calculated

a weighted average, but one could calculate the Perfect-Random normalization in other ways
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as well. In particular, we can also calculate the Perfect-Random normalization using the cor-

relation between a husband’s and a wife’s education as a sufficient statistic, or, alternatively,

we could use the share of couples with the same level of education as a sufficient statistic.

Let corrsim with sim ∈ {Observed,Perfect,Random} denote the correlation between a

husband’s and a wife’s education in either in the observed data, or alternatively in the perfect

matching or random matching counterfactuals. Then the Perfect-Random normalization

calculated using the correlation is:

Perfect-Randomcorr =
corrobserved −����

��: cov(Em,Ew)=0
corrrandom

corrperfect −����
��: cov(Em,Ew)=0

corrrandom

=
corrobserved
corrperfect

(7)

Note that because we assume statistical independence in the random matching counterfac-

tual, then cov(Em, Ew) = 0 (where Em and Ew denote a man’s and a woman’s education).

Similarly, for the share of couples with the same level of education, we can calculate:

Perfect-Randomshare same =
E[1[Same]observed]− E[1[Same]random]

E[1[Same]perfect] − E[1[Same]random]
(8)

Figure 9 plots trends in educational assortative mating as measured by the Perfect-Random

normalization using these various sufficient statistics. As can be seen from the figure, trends

across these various implementations of the Perfect-Random normalization largely agree,

although assortative mating as measured by correlation is higher than as measured by share

same (or by using the weighted average). The correlation takes into account the order of

the education categories—e.g., that “some college” is closer to “college graduate” than “high

school dropout” is to “college graduate”—whereas the other two sufficient statistics do not.

5.3 Different ways of measuring education

One critique of existing work measuring educational assortative mating is that trends in

assortative mating are sensitive to how education is measured (Gihleb and Lang, 2016).
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In Figure 10, I calculate the Perfect-Random normalization using different categorizations

of education. In particular, I examine the following different education categorizations,

following the categorizations defined by (Gihleb and Lang, 2016):

− 2 categories: High school grad and below vs. some college and above (a.k.a., “skilled”

vs. “unskilled”)

− 4 categories (same as before): Less than high school (<12 years), high school grad (12

years), some college (13-15 years), college graduate (16+ years)

− 5 categories: 4 categories, but splits out college graduate into college graduate (16

years) and advanced degree (>16 years)

− 6 categories: 5 categories, but splits out less than high school (<12 years) into middle

school (≤ 8 years) and high school (9-11 years)

To measure trends in assortative mating, I rely on the weighted average of the Perfect-

Random normalization calculated for each combination of husband’s/wife’s education (equa-

tion (4)). Figure 10 plots the results. While the trends are not exactly the same (nor we

would expect them to be, as they measure different phenomena), the trends are qualita-

tively similar: Assortative mating, across all methods of measuring education, still declines

through 2000 and rises thereafter. What differs across the different methods of measuring

education is how much of a dip occurs. In particular, splitting out advanced degree from col-

lege graduate leads to a bigger drop in assortative mating through 2000 than combining those

two categories (i.e., by measuring education using 5 vs. 4 categories). Assortative mating as

measured using 2 categories (i.e., “skilled” vs. ”unskilled”) leads to a finding that assortative

mating overall is much higher than as measured using more granular categorizations.

5.4 Mechanics behind observed patterns

A common pattern across the various education categorizations is declining sorting through

2000 followed by increasing sorting thereafter. We can see the drivers behind these trends
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by separately plotting the correlations between spousal education under perfect matching,

observed matching, and random matching. By construction, the correlation between spousal

education under random matching will be essentially zero13. Thus, we can focus our attention

on the trends in the correlation of spousal education under the observed and perfect matching

scenarios, plotted in Figure 11a. Recall that the perfect + random normalization is:

Observed− Random

Perfect− Random

This normalization, when using the correlation as the sufficient statistic, essentially simplifies

to:

Observed

Perfect

Recall that the perfect matching scenario is the maximum value that the correlation in

spousal education can reach, given that the most educated men and women match with each

other. Figure 11b shows why the year 2000 is such a significant year: It is the year in my

sample when women surpassed men in attending college, aka the year when men and women

had the most equal education distributions. Because the education distributions were so

equal in that year, the correlation under perfect matching is as close as possible to 1. In

the years after 2000, the correlation of spousal education under perfect matching declines as

women become increasingly more educated than men, and, therefore, more college-educated

women must “marry down.” In the years prior to 2000, the reverse is occurring: the maximum

possible correlation of spousal education increases as women catch up to men in educational

attainment.

13It will not be exactly zero because men and women have different education distributions, so not all
college-educated women can be matched with college-educated men, since there are more college-educated
women than men. This type of “structural” mismatch will cause the correlation of spousal education under
random matching to deviate from zero.
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6 Vital Statistics

So far, we have focused on studying married or cohabiting couples because of data con-

straints: Nationally representative datasets such as the Current Population Survey and the

Decennial Census are household-level datasets and, as such, can only identify couples who

live together. Studying only married couples excludes a large relevant swath of the popula-

tion when studying questions relating to intergenerational mobility. In particular, births to

unmarried parents rose to 40 percent in recent years, and, moreover, have been concentrated

among couples with lower (less than college) levels of education. Therefore, studying only

married parents in the intergenerational mobility context effectively excludes couples at the

bottom of the education distribution. Very few nationally representative datasets have in-

formation about non-cohabiting parents, and among these datasets, the vital statistics birth

certificates data has the most historical coverage.

In my analysis, I use information on parental education recorded on administrative birth

certificates records, which allows for studying trends in assortative mating among unmarried,

non-cohabiting parents in addition to the standard married couples sample. Beginning with

the 1968 Standard Birth Certificate form, states in the U.S. began to collect information on

parents’ education. In addition to parental education, the birth certificates data also include

other demographic information on parents such as mother’s and father’s race, marital status,

mother’s and father’s age, and mother’s county of residence, as well as information on the

child such as birthweight and gestational age.

Unfortunately, because state-level vital statistics offices are responsible for collecting data,

states differ in when they began reporting parental education. In 1969, for example, only

36 states reported parents’ education, but, as more states adopted the 1968 Standard Birth

Certificate Form, that number gradually increased. Another issue with the birth certificates

data is that the Centers for Disease Control, the federal agency responsible for collecting

data from individual states, did not collect information on father’s education between 1995

and 2008, so I am unable to speak to trends in assortative mating during that time period.
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Finally, individual birth certificates may be missing father’s education because a mother may

opt to not include it.

To address selection of states into and out of education reporting, I examine two primary

samples, which I call a “max years” sample and a “max states” sample. The max years

sample consists of a panel of states that consistently report education over time.14 For ease of

computation, I examine a 1% random sample from each year of the max years sample (1969-

2016). Conversely, the max states sample maximizes geographic coverage at the expense of

some of the earlier years when fewer states reported parental education.15 I include all births

in the max states sample since the max states sample consists of a relatively small number

of years.

For comparison, I also examine trends in the Current Population Survey. To create a

comparable sample to the births dataset, I examine married couples in the CPS where at

least one spouse is between the ages of 25-34 and the household contains at least one own

child under the age of 5. Table 1 reports summary statistics for the CPS sample as well as

three additional samples: (1) A 1% random sample of all births data available, (2) the max

years sample (a subset 1% random sample), and (3) the max states sample (but with all

births in the years chosen. The main contrast between these samples is the rates of marriage:

Whereas all women are married in the CPS sample, roughly 70 percent are married in the

various births samples. As such, these samples are less white (particularly the fathers), and

less educated (for example, there are more mothers and fathers who haven’t finished high

school). While the CPS and max years 1% sample are roughly the same size, the max states

sample contains many more couples. Reassuringly, the samples look pretty similar between

14The specific states that comprise the max years sample are those states with data available for all
years. 19 states meet this requirement, and they are: Colorado, Iowa, Indiana, Kansas, Kentucky, Michigan,
Montana, North Dakota, Nebraska, New Hampshire, Nevada, Oklahoma, South Carolina, South Dakota,
Tennessee, Utah, Vermont, and Wyoming. See Appendix Figure A.2 for data availability and reporting of
parental education.

15The years in the “max states” sample are: 1978, 1989, 1994, and 2016. In all years, only a handful of
states did not report parents’ education. In 1978, these were Washington, Texas, and New Mexico. In 1989,
these were Washington and New York (excluding New York City, which did report parental education) In
1994, all states except Washington, D.C. reported. In 2016, all states reported parental education.

21



the max years and max states samples, although the max years sample is slightly whiter.

6.1 Main comparison: CPS vs. births

Figure 12 plots trends in educational assortative mating for parents in the births samples

as well as the parents in the CPS. The trends across these samples are remarkably similar,

although sorting in the max states sample is slightly higher starting around 1990. Restricting

the CPS sample to couples where at least one spouse is aged 25-34 (versus 26-60 for earlier

results) does not change trends much through 2000 but does result in a steeper rise in

assortative mating since 2000 (Appendix Figure A.3). Now, the rise in assortative mating

after 2000 is steeper than the decline through 2000.

6.2 Missing dads

Roughly 15 to 20 percent of birth certificates are missing information on father’s education,

in part because many mothers choose not to report it. While births to unmarried parents rose

consistently over the past 50 years, paternity acknowledgement initiatives helped to decouple

the unmarried and missing dads trends, so that today, births with missing information on

fathers are roughly 15 percent of births whereas births to unmarried parents are 40 percent

of all births (Appendix Figure A.4; Rossin-Slater (2017)). These mothers are particularly

disadvantaged (Table 2): the mothers are younger, much less likely to be white, and only

8 percent are married. The mothers are also less educated and their babies have lower

birthweight than births where father’s education is reported. These births most closely

resemble births to fathers who have not finished high school (Column (4)), so, to address

the missing dads issue, I calculate trends where I assume all of the missing dads have less

than a high school degree.

I plot these trends in Figure 13. When I categorize missing dads as less than high school

(rather than dropping these parents from the sample), I find higher levels of assortative

mating starting around 1990 (the solid blue line), which is consistent with a story of high
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school dropouts being particularly disadvantaged, and, moreover, that these disadvantaged

individuals are increasingly isolated from those with higher levels of education.

6.3 Trends by race

In Figure A.5, I plot trends in assortative mating for couples where the woman is black. In

over 90 percent of these couples, her partner is also black. Sorting among these couples has

been on a slight upward trajectory over time, and trends largely agree across the samples

I examine. In particular, sorting trends among married black couples are similar to sorting

trends among the full sample of black couples. Trends for white couples, not very surpris-

ingly, resemble trends for the full sample of couples (Figure A.6). In Figure A.7, I compare

trends for white couples vs. black couples, but just for the CPS sample (to reduce clutter).

Educational sorting among black couples has, for the most part, been lower than sorting for

white couples.

6.4 Trends by birth order

Unmarried women might match with someone of lower education for their first birth but are

able to find better matches as they get older. I find that, for the most part, sorting among

first vs. second births have largely coincided, although, in recent years, have separated

somewhat so that first births are more assortative than later births (Figure A.8).

7 Conclusion

In this paper, I developed new tools to measure educational assortative mating and applied

these tools to measure sorting in a new use of the Vital Statistics birth certificates data. In

particular, I showed (using a simulation exercise) that existing methods that rely on compar-

ing observed matches to random matching to control for changing educational attainment

(the “random matching normalization”) can control for changing levels of education but fail
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to control for a changing gender gap in education.

Given this finding, I proposed a new measure of assortative mating, which I called the

Perfect-Random normalization. The Perfect-Random normalization continues to compare

observed matches to random matching but adds in an additional comparison to a counter-

factual world where men and women match perfectly according to education. The changing

gender gap in education limits the maximum assortativeness that a pool of couples can at-

tain: If men and women are very mismatched in terms of education, not everyone can find a

spouse of the same education level; conversely, if they have exactly the same education dis-

tribution, then everyone can find a spouse of the same education level. Thus, the theoretical

maximum assortativeness is a function of the gender gap in educational attainment. The

random matching normalization fails to consider this upper bound, and, as a result, the mea-

sured increase in assortative mating over the past 50 years was in part mechanically driven

by an increasing upper bound assortativeness as women caught up to men in educational

attainment.

Using the Perfect-Random normalization, I then documented that educational assortative

mating has actually declined over time, until around 2000, at which point it began to increase.

2000 was a pivotal year in my sample because it is the year in which men and women were

closest in terms of educational attainment. Thus, my finding that assortative mating declined

over time was in part a result of the theoretical maximum assortativeness increasing, and

the observed assortativeness not keeping apace. As women surpassed men in educational

attainment in 2000, this theoretical maximum assortativeness has again been declining, thus

driving the increase in assortative mating as measured by the Perfect-Random normalization.

At the education-category level, I found that college graduates and high school dropouts are

the most assortative education groups, matching at about 50 to 60 percent of the theoretical

maximum since 1960.

A final contribution of this paper was to measure trends in assortative mating using

information on parental education in the Vital Statistics Birth Certificates dataset. Existing
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work measuring assortative mating has focused on married or cohabiting couples because

of data constraints: commonly used nationally representative datasets such as the Current

Population Survey or the Decennial Census are household-level datasets, and, as such, can

only track couples that live together. With births to unmarried parents comprising 40

percent of all births, however, studying married couples misses a large relevant swath of

the population, particularly if we are interested in studying assortative mating because of

its potential implications for intergenerational mobility. I found that trends in assortative

mating among all new parents in the birth certificates data were similar to married parents

in the CPS, although when I take into consideration new parents where a new mother has

declined to fill in information on the father (by assuming these fathers have not finished high

school, as these births most closely resemble those births), I find higher levels of sorting than

for married parents only.

Ample future research opportunities exist to build upon my findings in this paper. First,

as I motivated in the introduction, with key progress in accurately measuring assortative

mating, we can start to think about how these trends interact with dynamics of family

income inequality and with intergenerational mobility. As I documented in the introduction,

assortative mating is particularly associated with negative outcomes at the lower end of

the education distribution: A child is particularly likely to not finish high school himself

if both of his parents have not finished high school. Future research could explore the

causal relationships behind this association. Moreover, a growing body of research has

documented the existence of a gender norm that a husband should earn more than his wife

(e.g., Bertrand et al., 2015). As women have surpassed men in educational attainment,

perhaps some couples where the woman is more educated than the man are not forming

(whereas the reverse would have formed in the world where men were more educated than

women). Finally, measuring educational assortative mating is very similar to measuring

intergenerational educational or occupational mobility. Future research could apply the same

Perfect-Random normalization to see if measured trends in intergenerational occupational
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or educational mobility are similarly driven by a changing gap in occupation or education

distributions between father and son generations.
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Figures

Figure 1: Educational attainment of men and women, 1950-current

Source: Decennial Census (1950, 1960), Current Population Survey (1962-2017)
Notes: Sample is all men and women aged 25 to 34, and tertiary education is defined as an Associate’s
degree or above.
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Figure 2: Mother and father’s education vs. probability that...

(a) Parents are married
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Source: Vital Statistics Natality, 2016 (left); General Social Survey (right)
Notes: Education categories: 1 = <12 years; 2 = 12 years; 3 = 13-15 years; 4 = 16 years; 5 = >16 years
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Figure 3: Perfect Matching Simulation Exercise, Visual Representation
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Figure 4: Trends in assortative mating according to the random-only normalization, observed
matches vs. simulated (perfect) matches
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...Simulated matches (with gender gap, right axis)
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Source: Current Population Survey, ASEC/March supplements
Notes: Sample comprises all married couples where at least one spouse is between the ages of 26-60.
Education is measured as follows: 1 = Less than high school (<12 years of schooling); 2 = High school
graduate (12 years of schooling); 3 = Some college education (13-15 years of schooling); 4 = College
graduate (16+ years of schooling). I calculate the random-only normalization according to the
normalization proposed by Eika et al. (2018). That is, for each education category, I calculate the odds
(relative to random matching) of seeing a couple where both partners have that education level and then
calculate a weighted average of these odds, where the weights are the share of same-education matches that
fall in that cell.
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Figure 5: Trends in educational assortative mating according to the random-only normalization, split by education category
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Source: Current Population Survey, ASEC/March supplements
Notes: Sample comprises all married couples where at least one spouse is between the ages of 26-60. Education is measured as follows: 1 = Less
than high school (<12 years of schooling); 2 = High school graduate (12 years of schooling); 3 = Some college education (13-15 years of schooling); 4
= College graduate (16+ years of schooling). I calculate the random-only normalization according to the normalization proposed by Eika et al.
(2018). That is, for each education category, I calculate the odds (relative to random matching) of seeing a couple where both partners have that
education level.
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Figure 6: Share of less than high school - less than high school couples in the observed data and as predicted in the perfect and
random matching counterfactuals
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Source: Current Population Survey
Notes: Sample is all married couples where at least one spouse is between the ages of 26-60, following Eika et al. (2018). Each line plots the share of
couples where both partners have 12 years of education / is a high school graduate. The random matching counterfactual assumes that men and
women match randomly, so that the probability of seeing a high school-high school is equal to Pr(a woman is a high school grad) · Pr(a man is a
high school grad). The perfect matching counterfactual assumes that men and women match perfectly according to education to the maximum
degree possible. So, for example, if there are more college graduate men than women, all of the college graduate women match with college graduate
men, and the “leftover” college graduate men match with some college women.
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Figure 7: Aggregate trends in educational assortative mating according to the Perfect-
Random Normalization vs. the Random-only Normalization
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Source: Current Population Survey, ASEC/March supplements
Notes: Sample comprises all married couples where at least one spouse is between the ages of 26-60.
Education is measured as follows: 1 = Less than high school (<12 years of schooling); 2 = High school
graduate (12 years of schooling); 3 = Some college education (13-15 years of schooling); 4 = College
graduate (16+ years of schooling).
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Figure 8: Trends in educational assortative mating according to the Perfect-Random Nor-
malization, by category
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Source: Current Population Survey, ASEC/March supplements
Notes: Sample comprises all married couples where at least one spouse is between the ages of 26-60.
Education is measured as follows: 1 = Less than high school (<12 years of schooling); 2 = High school
graduate (12 years of schooling); 3 = Some college education (13-15 years of schooling); 4 = College
graduate (16+ years of schooling).
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Figure 9: Perfect-Random Normalization, Other Statistics
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Source: Current Population Survey, ASEC/March supplements
Notes: Sample comprises all married couples where at least one spouse is between the ages of 26-60.
Education is measured as follows: 1 = Less than high school (<12 years of schooling); 2 = High school
graduate (12 years of schooling); 3 = Some college education (13-15 years of schooling); 4 = College
graduate (16+ years of schooling).
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Figure 10: Perfect-Random Normalization, various education categorizations
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Source: Current Population Survey, ASEC/March supplements
Notes: Sample comprises all married couples where at least one spouse is between the ages of 26-60. [talk
about different education categorizations] Education is measured as follows: 1 = Less than high school
(<12 years of schooling); 2 = High school graduate (12 years of schooling); 3 = Some college education
(13-15 years of schooling); 4 = College graduate (16+ years of schooling).
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Figure 11: Mechanics behind observed trends: Education correlation for observed matches vs. simulated matches
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Source: Current Population Survey, ASEC/March supplements
Notes: Sample comprises all married couples where at least one spouse is between the ages of 26-60. Education is measured as follows: 1 = Less
than high school (<12 years of schooling); 2 = High school graduate (12 years of schooling); 3 = Some college education (13-15 years of schooling); 4
= College graduate (16+ years of schooling).
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Figure 12: Trends in educational assortative mating, all parents vs. married parents only
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Source: Current Population Survey, ASEC/March supplements; Vital Statistics Natality
Notes: CPS sample comprises all married couples where at least one spouse is between the ages of 25-34.
The CPS sample comprises all married couples where at least one spouse is between the ages of 25-34. The
vital statistics max years 1% sample consists of a panel of states that consistently report parental
education from 1969 to present day (but is drawn from a 1% random sample of births data from every year
for computational ease). Vital statistics max states sample is a smaller set of five years (1978, 1969, 1994,
2009, 2016) where a relatively large share of states reported parental education (to maxmize geographic
coverage). Education is measured as follows: 1 = Less than high school (<12 years of schooling); 2 = High
school graduate (12 years of schooling); 3 = Some college education (13-15 years of schooling); 4 = College
graduate (16+ years of schooling).
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Figure 13: Trends in educational assortative mating, missing dads = less than high school
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Source: Current Population Survey, ASEC/March supplements; Vital Statistics Natality
Notes: CPS sample comprises all married couples where at least one spouse is between the ages of 25-34
and at least one child under the age of 5 is in the household (to be comparable with the flow of new
couples into forming families). The CPS sample comprises all married couples where at least one spouse is
between the ages of 25-34. The vital statistics max years 1% sample consists of a panel of states that
consistently report parental education from 1969 to present day (but is drawn from a 1% random sample of
births data from every year for computational ease). Vital statistics max states sample is a smaller set of
five years (1978, 1969, 1994, 2009, 2016) where a relatively large share of states reported parental
education (to maxmize geographic coverage). Education is measured as follows: 1 = Less than high school
(<12 years of schooling); 2 = High school graduate (12 years of schooling); 3 = Some college education
(13-15 years of schooling); 4 = College graduate (16+ years of schooling).
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Tables

Table 1: Summary statistics, by sample

Vital Statistics Births

(1) (2) (3) (4)
CPS 1% sample Max years (1%) Max states

Father’s age 31.61 29.65 28.85 29.89
Mother’s age 28.95 26.55 25.80 26.79
Mother white 0.87 0.79 0.84 0.78
Mother black 0.07 0.16 0.13 0.16
Father white 0.87 0.70 0.75 0.70
Father black 0.08 0.11 0.08 0.11
Mother married 1.00 0.68 0.73 0.69
–Mother’s education
Less than high school 0.14 0.22 0.21 0.21
High school graduate 0.38 0.35 0.39 0.35
Some college 0.24 0.22 0.23 0.23
College graduate 0.24 0.21 0.18 0.22
–Father’s education
Less than high school 0.15 0.18 0.16 0.17
High school graduate 0.35 0.37 0.39 0.36
Some college 0.23 0.21 0.22 0.21
College graduate 0.27 0.25 0.23 0.26
Observations 255,832 1,581,042 274,621 14,119,495

Source: Vital Statistics Natality, CPS
Notes: The CPS sample comprises all married couples where at least one spouse is between the ages of
25-34 and at least one child under age 5 is present in the household. I analyze a 1% random sample of
births for computational ease (column (2)). The vital statistics max years 1% sample consists of a panel of
states that consistently report parental education from 1969 to present day. Vital statistics max states
sample is a smaller set of five years (1978, 1969, 1994, 2009, 2016) where a relatively large share of states
reported parental education (to maxmize geographic coverage). All births in the given years are included in
the max states sample. See Section 6 for further discussion.
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Table 2: Summary statistics of mothers and children by father’s education

Father’s education

(1) (2) (3) (4) (5)
Coll+ SC HS < HS Missing

Mother’s age 29.52 26.99 25.10 24.17 22.65
Mother white 0.93 0.89 0.88 0.87 0.57
Mother black 0.04 0.08 0.10 0.10 0.39
Mother married 0.97 0.87 0.82 0.73 0.08
–Mother’s education
Less than high school 0.01 0.05 0.17 0.56 0.44
High school graduate 0.13 0.32 0.59 0.35 0.38
Some college 0.26 0.44 0.18 0.08 0.15
College graduate 0.60 0.19 0.06 0.01 0.02
–Child birthweight
Birthweight (grams) 3403.98 3369.27 3337.72 3264.84 3143.18
Low birthweight (< 2500g) 0.05 0.05 0.06 0.09 0.12
Very low birthweight (< 1500g) 0.01 0.01 0.01 0.01 0.02
Observations 53,868 50,048 90,358 37,215 43,132

Source: Vital Statistics Natality
Notes: Sample is the Vital Statistics 1% max years sample. See Section 6.2 for further discussion.
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Appendix Figures

Figure A.1: Share of births / number of states reporting parental education over time
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Source: Vital Statistics Natality
Notes: The vertical dotted lines indicate the years I select for the max states sample. I select them because
they are years in which the share of births represented peaks. For example, in 1978, California temporarily
reports parental education for one year, and then drops out of the sample in 1979, which corresponds to a
spike in the share of births with parental education in 1978 in the graph above.
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Figure A.2: States in the max years sample

Notes: States shaded in blue consistenly report mother’s and father’s education between 1969 (the first year of available data) to present day. These
states comprise the “max years” sample that I analyze in the Vital Statistics Natality dataset.
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Figure A.3: Trends in educational assortative mating as measured by the Perfect-Random
Normalization, simulation exercise vs. births samples, CPS
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Source: Current Population Survey
Notes: Sample for dashed red line is all married couples (with spouse present) in the CPS where: (1) At
least one spouse is aged 26-60 (the sample for the simulation exercise). Sample for solid blue line is all
married couples (with spouse present) in the CPS where: (1) At least one spouse is aged 25-34 and at least
one child under the age of 5 is present in the household, to compare trends with trends measured in the
Vital Statistics births data. Education is measured according to: 1 = Less than high school (<12 years of
schooling); 2 = High school graduate (12 years of schooling); 3 = Some college education (13-15 years of
schooling); 4 = College graduate (16+ years of schooling).
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Figure A.4: Share of births where mother is unmarried and/or where father’s education is
missing
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Source: Vital Statistics Natality, Max years 1% sample
Notes: Missing dad is defined as births where mother’s education is reported but father’s education is not.
Sample is all births in states in the max years sample. See Section 6 for further discussion.
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Figure A.5: Trends in educational assortative mating for couples where the woman is black
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Source: Current Population Survey, Vital Statistics
Notes: For all samples, I restrict to couplles where the female partner is black. The CPS sample comprises
all married couples where at least one spouse is between the ages of 25-34, at least one child under age 5 is
present in the household. The vital statistics max years 1% sample consists of a panel of states that
consistently report parental education from 1969 to present day (but is drawn from a 1% random sample of
births data from every year for computational ease). Vital statistics max states sample is a smaller set of
five years (1978, 1969, 1994, 2009, 2016) where a relatively large share of states reported parental
education (to maxmize geographic coverage). All births in the given years are included in the max states
sample. Education is measured as follows: 1 = Less than high school (<12 years of schooling); 2 = High
school graduate (12 years of schooling); 3 = Some college education (13-15 years of schooling); 4 = College
graduate (16+ years of schooling). Trends for black couples in the CPS are smoothed according to a 3-year
moving average because they are a relatively small sample in the CPS and thus are noisy. See Section 6 for
further discussion.
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Figure A.6: Trends in educational assortative mating for couples where the woman is white
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Source: Current Population Survey, Vital Statistics
Notes: For all samples, I restrict to couplles where the female partner is white. The CPS sample comprises
all married couples where at least one spouse is between the ages of 25-34, at least one child under age 5 is
present in the household. The vital statistics max years sample consists of a panel of states that
consistently report parental education from 1969 to present day (but is drawn from a 1% random sample of
births data from every year for computational ease). Vital statistics max states sample is a smaller set of
five years (1978, 1969, 1994, 2009, 2016) where a relatively large share of states reported parental
education (to maxmize geographic coverage). All births in the given years are included in the max states
sample. Education is measured as follows: 1 = Less than high school (<12 years of schooling); 2 = High
school graduate (12 years of schooling); 3 = Some college education (13-15 years of schooling); 4 = College
graduate (16+ years of schooling). See Section 6 for further discussion.
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Figure A.7: Trends in educational assortative mating by race of wife
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Source: Current Population Survey, ASEC/March supplements
Notes: Sample comprises all married couples where at least one spouse is between the ages of 25-34.
Education is measured as follows: 1 = Less than high school (<12 years of schooling); 2 = High school
graduate (12 years of schooling); 3 = Some college education (13-15 years of schooling); 4 = College
graduate (16+ years of schooling). Trends for black couples in the CPS are smoothed according to a 3-year
moving average because they are a relatively small sample in the CPS and thus are noisy.
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Figure A.8: Trends in educational assortative mating by whether first or later birth
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Source: Vital Statistics Natality
Notes: The vital statistics max years 1% sample consists of a panel of states that consistently report
parental education from 1969 to present day. Vital statistics max states sample is a smaller set of five years
(1978, 1969, 1994, 2009, 2016) where a relatively large share of states reported parental education (to
maxmize geographic coverage). All births in the given years are included in the max states sample. See
Section 6 for further discussion.
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