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Abstract 

We investigate the role of education in equalizing differences in socio-economic status (SES) 
across groups determined by two at-birth “lotteries:” birthplace and genetics. Birthplace and 
genetics are strongly related to long-term SES and education is believed to be a way to overcome 
disadvantages on such initial endowments. We ask how the effects of a compulsory schooling law-
induced increase in secondary education vary with the quality of an individual’s birth 
neighborhood and their polygenic score for educational attainment. We use a regression 
discontinuity framework and a large sample that allows for well-powered estimates of such 
interactions. While the law change reduced differences in educational attainment across birthplace 
and genetic groups, it increased existing differences in middle age SES. In particular, the extra 
education benefited those with high genetic scores the most, doubling the gradient between the 
polygenic score and SES. Our findings suggest that compulsory schooling policies, while 
equalizing educational attainment, might have limited ability in reducing lifecycle SES inequalities 
by genetics and birthplace.    
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"Education then, beyond all other devices of human origin, is a great equalizer of the conditions 
of men -- the balance wheel of the social machinery." 

Horace Mann, pioneering American educator, 1848 

 

"In America, education is still the great equalizer." 

Arne Duncan, U.S. Secretary of Education, 2011 

 

 
1. Introduction 

Education is considered by many to be the “great equalizer” and education policy an important 

tool to fight poverty, reduce inequality and improve socio-economic mobility. In a world where 

initial endowments matter for later life economic success, education would be a way to “level the 

playing field” and to ensure that children from disadvantaged backgrounds have a fair shot at 

success. In this paper, using a change in compulsory schooling law as a natural experiment, we 

find just the opposite. Education exacerbates socio-economic differences across groups based on 

two proxies for endowments that are significantly related to later life outcomes and determined at 

birth: birthplace and genetics.  

Birthplace and genetics are important predictors of long-term SES. In a series of influential 

papers, Chetty and co-authors find that outcomes such as earnings, college attendance, fertility and 

marriage patterns depend on the quality of the neighborhood in which children live (e.g. Chetty 

and Hendren 2018a and 2018b). Children living in counties with less concentrated poverty, less 

income inequality and better schools have better later-life outcomes, especially if they come from 

poor families. Genetics also play an important role in predicting SES. Lee et al. (2018) use newly 

developed methods in behavior genetics to conduct a large-scale genetic association analysis of 

educational attainment. The individual-level genetic index (generally called polygenic score) 

resulting from their analyses predict 11-13% of the variance in educational attainment and 7-10% 

of the variance in cognitive performance. Importantly, though perhaps unintuitively, this polygenic 

score reflects not only cognitive and non-cognitive skills, but also the community and household 

in which a child grows up and various other internal and external factors.  
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We ask whether education reinforces or equalizes the relationship between these initial 

endowments and SES. In particular, we ask how the effects of an increase in education vary with 

the quality of an individual’s birth neighborhood and with their polygenic score for educational 

attainment. To deal with the endogeneity of education, we explore a well-known compulsory 

schooling age reform in the UK that generated as-good-as-random variation in education (Clark 

and Royer 2013; Barcellos, Carvalho and Turley 2019).  

In 1972, England, Scotland, and Wales increased the minimum age at which students could 

drop out of school from 15 to 16 years. The reform affected only students born on or after 

September 1, 1957, generating a discontinuity in the relationship between education and date of 

birth. We explore such discontinuity to estimate the causal effect of secondary education on middle 

age SES, using a credible regression discontinuity design (RDD). We stratify the RDD analysis by 

predetermined birthplace and genetic groups and document how the effects of the education reform 

and the resulting extra education vary across birthplace and genetic groups. 

Theoretically, it is not clear how the returns of such exogenous increase in education would 

vary with initial endowments. On the one hand, education might compensate for environmental 

and genetic disadvantages or there might be diminishing returns in the production of SES, 

suggesting that education might equalize SES differences across birthplace and genetic groups. On 

the other hand, returns to education might be higher in neighborhoods with more economic 

activity, or “smarter” people might benefit more from a given amount of education, suggesting 

that education might reinforce initial disadvantages. Therefore, the sign of these interactions are 

an empirical matter.  

We use data from the UK Biobank, a study that collected measures of SES between 2006 and 

2010; 34-38 years after the policy change. The data was collected using in-person interviews and 

self-administered questionnaires for more than half a million individuals ages 40 to 69. Moreover, 

the cohort was fully genotyped. The data includes exact date of birth and geographical coordinates 

of birth that we used to merge to local historical SES measures. In a verbal interview, UK Biobank 

respondents reported their occupation and answers were coded in 400+ detailed occupation 

categories. We use the 2009 Annual Survey of Hours and Earnings (ASHE) to match such 

categories to median wages at each occupation. This is our main measure of middle age SES in 

this paper. Our main analytic sample contains approximately 100 thousand people born in England, 
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Scotland, and Wales between September 1, 1947 and August 31, 1967 who left full time education 

by age 18 and who are of classified as having “European ancestry.”2 The unprecedented 

availability of SES and genetic measures for such a large sample permits well-powered estimation 

of gene-by-education and birth environment-by-education interactions described here. 

Consistent with the literature on the importance of initial endowments, we find that both the 

educational attainment polygenic score (EA PGS) and birth neighborhood quality are strongly 

associated with wages in mid-life. A one standard deviation (SD) in the PGS is associated with a 

2.7% increase in wages and a one SD in birth neighborhood quality is associated with a 1.8%  

increase in wages, both relationships are highly significant (p-value<0.001). We also find that the 

compulsory schooling reform disproportionally increased the average education of those from less 

advantaged birthplaces and with lower PGS such that it reduced education differences across 

birthplace and genetic groups. For example, in our main analytic sample, the reform induced 

students in the bottom PGS tercile to stay in school for 0.38 extra years, among students in the top 

tercile the increase was only 0.28 years. Similar differences are seen across the distribution of 

neighborhood quality. Because the law change required students to stay in school until age 16, it 

disproportionally affected students from the bottom terciles of the PGS and neighborhood quality 

distributions, who were less likely to stay in school until age 16 before the reform. Therefore, the 

change in compulsory schooling had the effect of equalizing education across these groups. 

Based on our reduced form estimates, the reform’s largest benefits in terms of middle age SES 

are seen for those with high PGS, despite disproportionally increasing education among groups 

with low PGS. Wages in the top PGS tercile increased by 2.4%, the increase in the bottom PGS 

tercile was 1%. We see a similar positive interaction with birthplace quality, but the magnitude is 

smaller and the coefficients are not always significant. What is clear is that we see no evidence of 

the reform closing existing gaps in wages across birthplace and genetic groups.     

Our two-stage least squares estimates indicate that the extra education induced by the reform 

more than doubled the gradient between the PGS and middle age wages among policy compliers. 

For individuals in the highest PGS tercile of the score distribution, one extra year of education 

                                                            
2 As we explain below, the compulsory school reform we study did not affect the probability of staying in school 
past age 18, therefore we restrict our sample accordingly. Moreover, the polygenic score we use was developed 
using European samples and is not applicable to other ancestry groups, hence the European descent restriction.  
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induced by the reform increased wages by approximately 9-11%. In comparison, the returns to 

education among the bottom tercile were 3-5%. Our analyses suggest it is unlikely that differences 

in the characteristics of the marginal student populations affected by the reform across genetic 

groups explain this finding. Results are virtually identical in models with both genetic and 

neighborhood interactions.  

Our findings question the usefulness of compulsory schooling policies as a tool to equalize the 

existing differences in SES across birthplace and genetic groups. If anything, in our context, the 

increase in school leaving age had the effect of further deepening SES differences across genetic 

groups. Around the world, compulsory schooling laws are among the most common types of 

education policy, but they might fall short from the ideal of being the “great equalizer.” Our results 

suggest that, if a main goal of education policy is to reduce economic inequality resulting from 

initial endowments, alternative policies, perhaps more targeted at barriers faced by disadvantaged 

populations, are needed.  

2. Background and Data 

A. The 1972 Raising of the School Leaving Age 

The British compulsory schooling laws specify the maximum age by which children must start 

school and the minimum age at which they can leave school. In this paper, we exploit the 1972 

Raising of School Leaving Age (ROSLA) legislation, which increased the minimum school-

leaving age from 15 to 16 years of age in England, Scotland, and Wales. These laws and their 

implementation have been extensively documented in other studies (see Clark and Royer 2010, 

2013) so we only include a brief summary of its main features here.  

The UK’s 1944 Education Act raised the minimum school-leaving age from 14 to 15 years of 

age in England, Wales, and Scotland and gave the Minister of Education the power to further raise 

it to 16 years when conditions allowed. The Minister did so in January 1972 for Scotland (Statutory 

Instrument No. 59)3 and in March 1972 for England and Wales (Statutory Instrument No. 444)4. 

Both changes took effect in September 1, 1972, implying that those who were 15 or younger before 

that date (born on September 1, 1957 or later) had to stay in school until at least age 16 in the three 

                                                            
3 http://www.legislation.gov.uk/uksi/1972/59/pdfs/uksi_19720059_en.pdf 
4 http://www.legislation.gov.uk/uksi/1972/444/pdfs/uksi_19720444_en.pdf 

http://www.legislation.gov.uk/uksi/1972/59/pdfs/uksi_19720059_en.pdf
http://www.legislation.gov.uk/uksi/1972/444/pdfs/uksi_19720444_en.pdf
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countries (hereafter, we use the term “stayed in school until age 16” to refer to those who stayed 

in school until at least age 16). Infrastructure investments, such as school building to absorb the 

additional students, preceded the 1972 ROSLA but key elements of the school system did not 

change with the policy. 

Figure 1: School Leaving Age (SLA) by Quarter of Birth 
 
 

 
Notes: The figure shows average school leaving age of study participants among those who left school by 18 years old by quarter of birth. The 
dashed vertical line marks the first birth cohort affected by the 1972 school-leaving age reform. Cohorts born to the right of the line had to stay in 
school until age 16 while cohorts born before could leave at age 15. The curves show quadratic polynomials in quarter of birth that capture birth 
cohort trends. The circumference of each circle reflects the number of participants born in that quarter. N =104,578.   
 

The main effect of the reform was to keep students who were dropping out of school at age 

15 in school until age 16, with much smaller effects on the probability of staying in school until 

age 17 or 18.5 Consistent with other papers, we find that the reform did not affect the probability 

                                                            
5 Before the 1972 ROSLA, age 15 was the minimum school leaving age in the UK and compliance with the law was 
high.  
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of staying in school past age 18 or of entering college (see Appendix B Table 1).6  Therefore, in 

order to focus the analysis on the affected population and improve power, we follow previous 

papers and restrict our analytical sample to those who left school ages 18 or younger (Banks and 

Mazonna 2012; Banks, Carvalho and Perez-Arce 2019).   

Figure 1, which displays the average school leaving age (SLA) (y-axis) by quarter of birth 

(x-axis) for our sample, shows that the policy generated a discontinuous relationship between these 

two variables. There is a large jump at the September 1, 1957 cutoff marked by the vertical dashed 

line. We estimate that the policy increased average SLA among those who left school by age 18 

by 0.3-0.33 years – see Table 4. 

Notice there is a cyclical drop in school leaving age, corresponding to those born between 

June and August. This phenomenon is not specific to our data and has been noted by others. 

According to Clark and Royer (2013), “when the minimum leaving age became age 16, students 

had to stay until part way through grade 10. Grade 10 finishes with the “O level” exam period and, 

technically, students finish when they complete their last exam. Since the exam period starts in 

late May and finishes in mid-June, starting in 1972, students born in late June, July, and August 

could leave at 15, technically younger than the minimum leaving age (16)” (pg. 2 of Online 

Appendix). We include calendar month of birth dummies in our regressions to control for this 

seasonality. 

B. Data 

We use data from the UK Biobank, a large, population-based prospective study initiated by the 

UK National Health Service (NHS) (Sudlow et al. 2015). Between 2006 and 2010, invitations were 

mailed to 9.2 million people between the ages of 40 and 69 who were registered with the NHS and 

lived up to about 25 miles from one of 22 study assessment centers distributed throughout the UK 

(Allen et al. 2012) – see Appendix Figure C1.7 The sample is formed by 503,325 individuals who 

agreed to participate (i.e. a response rate of 5.47%). Although the sample is not nationally 

                                                            
6 Appendix B Table 1 shows that while the ROSLA may have had a small effect on the probability of staying in 
school until 18 or older, it had no effect on staying until 19 or older. Therefore, our strategy of focusing on those 
leaving school by age 18 is appropriate.  
7 The NHS has contact details for an estimated 98% of the UK population.  
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representative, our estimates have internal validity because there is no differential selection on the 

two sides of the September 1, 1957 cutoff – see Appendix A.8  

In a verbal interview, respondents were asked about their occupation (or last occupation if 

retired); responses were mapped in more than 400 detailed categories. We use the 2009 Annual 

Survey of Hours and Earnings (ASHE) to match such categories to median wages at each 

occupation. We used gender-specific wages that were calculated among full-time employees and 

included all labor earnings (such as bonus, tips, overtime, etc.).  This is our main measure of middle 

age SES. For simplicity, we refer to this measure of occupation-based wages simply as wages.  

Exact date and approximate coordinates of birth are also available in the UK Biobank data. 

Exact date of birth increases the precision of RDD estimates and coordinates of birth allow us to 

link participants to local historical SES measures at their neighborhood and time of birth, as we 

describe below. Every participant was genotyped, we use this information to construct polygenic 

scores for educational attainment (EA PGS).  

B.1. Genetic Heterogeneity 

 Using individual-level genetic information available in the UK Biobank, we summarize 

the genetic factors related to educational attainment using a linear index known as polygenic score 

(PGS). A person’s genome is determined at conception and immutable; therefore, the PGS we will 

use in our analyses is predetermined with respect to the 1972 ROLSA. Below, we describe what 

genetic data represent and how a PGS is constructed. 

Human DNA is made up of twenty-three pairs of long molecules, called chromosomes. 

While humans are all identical for 99.9% of their DNA, there are tens of millions of locations in 

the genome where individuals differ by a single genetic marker. These locations are called Single 

Nucleotide Polymorphisms, or SNPs. At the vast majority of SNPs, people can have one of two 

possible genetic variants. The variant that a person has is called their allele. In genetic data, one of 

the two possible alleles is arbitrarily chosen as the reference allele. Because individuals have two 

copies of each chromosome, they will either have 0, 1, or 2 copies of the reference allele. The 

number of reference alleles that an individual has at a SNP is called their genotype for that SNP. 

                                                            
8 When the predetermined variable is continuous, we test whether the pre- and post-reforms distributions are 
different. When the predetermined variable is dichotomous, we conduct a test of difference in means. 
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The first step in producing a PGS is conducting a Genome Wide Association Study 

(GWAS). GWASs scan the entire genome and estimate associations between individual genotypes 

and outcomes of interest. Specifically, a GWAS is a series of regressions of some outcome onto 

the genotype of each SNP, one at a time, and a set of covariates. These covariates normally include 

sex, age, and the first several principal components of the genetic data. These principle components 

are included to account for ancestry-related omitted variable bias (see section B.2 for more details 

on this bias). 

A polygenic score (PGS) is a weighted sum of SNP genotypes: 

 𝑆𝑆𝑖𝑖 = ∑ 𝑔𝑔𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖 ,                                                                           (3) 

where 𝑆𝑆𝑖𝑖 is the polygenic score for individual 𝑖𝑖, 𝑔𝑔𝑖𝑖𝑖𝑖 𝜖𝜖 {0,1,2} is the count of the number of reference 

alleles for individual 𝑖𝑖 at SNP 𝑗𝑗, and 𝑤𝑤𝑖𝑖 is the weight for SNP 𝑗𝑗. 9 The weights in a PGS are derived 

from estimated coefficients in GWAS. In this paper, we use GWAS coefficients based on Lee et 

al. 2018, the largest currently available GWAS for educational attainment (EA).10 There are 

several methods for producing PGS weights from GWAS coefficients, but each of them transform 

the GWAS coefficients in a way that is meant to account for the correlation structure that exists in 

the genome. We use a Bayesian method called LDpred (Vilhjálmsson et al., 2015). The PGS using 

this GWAS and LDpred can explain 12-13% of the variation in education (Lee et al., 2018).  

B.2 Interpreting PGS Results 

PGSs reflect associations only and should not be interpreted as causal effects of genetics 

on education or as capturing exclusively direct genetic effects. For example, a major potential 

source of bias in studies using genetic data is population stratification. This is a form of omitted 

variable bias where certain groups may differ in the average level of some outcome for reasons 

unrelated to genetics, and certain alleles may be more common in those groups by chance. This 

would lead to a correlation between the genotype and the unobserved group assignment, and 

                                                            
9 GWASs for educational attainment have shown that education is associated to a large number of genetic markers, 
each with a small influence. Polygenic scores are a way to aggregate these many influences and construct a genetic 
marker that is sufficiently predictive to use in empirical applications.   
10 In this case, we use a version of the GWAS coefficients from Lee et al. (2018) that omit the subset of individuals 
from the UK Biobank that we use in our analysis. Specifically, we conduct a GWAS in the UK Biobank that exactly 
matches the specification in Lee et al., except that we exclude individuals that are born within 10 years 1 September 
1957. This is done to avoid overfitting.  
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therefore would produce spurious correlations between genotypes (or polygenic scores) and the 

outcome.11 Previous work has shown that these biases in PGS results are substantially larger than 

the direct effect of the PGS (Martin et al. 2017). 

For this reason, samples in genetic research are nearly always restricted to individuals with 

approximately homogeneous genetic ancestry. Groups with homogeneous genetic ancestry are 

usually defined as a set of people who have tightly clustered first and second principle components 

of their genetic data. Due to Euro-centric bias in data collection, in most genetic data sets, the 

largest tightly clustered group usually contain only individuals who self-identify as “White” or 

“Caucasian.” Homogeneous clusters containing mostly individuals self-identifying this way are 

usually labeled as having “European ancestry.” Restricting the sample this way has two 

implications. First, PGSs based on currently available GWAS coefficients are substantially more 

predictive in other European ancestry samples (Martin et al, 2019). Second, PGS-based results 

only apply to groups with European ancestries and may not generalize to groups with African, 

Asian, Hispanic, or other non-European ancestries. The lack of generalizability means individuals 

with European ancestries have accrued much of the benefit of previous genetics research. For this 

reason, there is an urgent need to expand genetic samples to include individuals with diverse 

ancestries. That said, the reform studied in this paper only affected those born in the UK in the 

1950s and 1960s. Because these individuals were predominantly of European ancestry, this 

restriction only made us drop a small fraction of our sample (less than 5%). However, it will be 

crucial expand the ancestral diversity of genetic samples in order to validate that our results 

generalize to modern populations. 

Even restricting to approximately homogeneous samples, there is still risk that subtle 

population stratification can remain in the data. To account for this, the first several principle 

components of the genetic data are usually included as control variables in genetic studies. 

Empirically, it has been shown that restricting the sample and controlling for genetic principle 

components removes nearly all of the bias due to population stratification (Price et al. 2006). In 

our analyses, we include specifications that do and do not control for principle components. In 

                                                            
11 The canonical example of population stratification is chopstick use (Price et al. 2006). Consider a GWAS of 
whether an individual regularly uses chopsticks and a sample that includes individuals of Asian and non-Asian 
backgrounds. This GWAS would find many SNPs that are associated with chopstick use, but each of these 
associations would correspond to SNPs that have alleles that are more common in Asian populations rather than to 
SNPs that represent any sort of genetic pathway between genes and the outcome. 
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analyses that omit the principle components, the PGS should be interpreted as not only 

representing pathways influenced to genetic factors but also pathways related to their ancestry. 

This could include cultural priorities and differences in resources that are available to their 

community. In the results below, we find little difference when controlling for the first 20 principal 

components of the genetic matrix, meaning that there is not much stratification in our analytic 

sample.  

 Another source of omitted variable bias when using PGSs is parental background. For 

example, imagine that a person’s educational attainment can be influenced by their own genes and 

by the educational attainment of their parents. Since, parental genes affect both offspring genes 

and parental educational attainment, genetic studies that omit parental genotypes or educational 

attainment as covariates will be biased. Kong et al. 2018 quantify this bias using a dataset that 

contains parental and offspring genetics. They estimate that about half of the variation in 

educational attainment explained by a polygenic score is due to a direct genetic effect; the residual 

is driven by the parental effects described above. Therefore, our results using the EA PGS are 

going to be in part reflecting these intergenerational effects. Using siblings in the UK Biobank 

data, we show results that are consistent with the results in Kong et al. 2018, see Table 2.  

  Table 1: Log Wages and Educational Attainment PGS among pre-reform cohorts. 

 

PGS 0.027 0.027 0.018 0.016
[0.003]*** [0.002]*** [0.005]*** [0.003]***

Top PGS Tercile 6.131 6.136 6.014 6.023
[0.007]*** [0.005]*** [0.012]*** [0.009]***

Middle PGS Tercile 6.114 6.108 6.035 6.017
[0.007]*** [0.005]*** [0.012]*** [0.009]***

Bottom PGS Tercile 6.068 6.071 5.976 5.983
[0.006]*** [0.005]*** [0.011]*** [0.009]***

Constant 6.098 6.099 6.005 6.005
[0.005]*** [0.005]*** [0.009]*** [0.008]***

Bandwidth 4 yrs 10 yrs 4 yrs 10 yrs 4 yrs 10 yrs 4 yrs 10 yrs
Observations 21,881 59,460 6,161 20,586 21,881 59,460 6,161 20,586
Notes: specification includes pre-cohort trends,  linear for 4-year bandwidth and quadratic for 10-year. 

Dependent Variable: Ln Wages
All Sample Compliers Only All Sample Compliers Only
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 Table 1 shows pre-ROSLA (i.e. cohorts born before Sept 1 1957) associations between 

wages and the EA PGS in all our analytic sample and among the ROSLA complier population 

only. Pre-reform compliers are approximated in this case as those who were born before September 

1957 and left school before age 16. All of these individuals would have been constrained to obtain 

additional education if they had been born after September 1957 instead. Among these individuals, 

those with relatively high EA PGS exhibit higher wages. A one standard deviation (SD) increase 

in the PGS is associated with a 1.6-1.8% increase in wages. In other words, those at the top tercile 

of the PGS distribution have, on average, 4% higher wages than those at the bottom tercile. These 

associations are highly significant (p-value < 0.001). As expected, when we use the whole sample, 

these associations are even larger.12  

Table 2: Log Wages and EA PGS among siblings from pre-reform cohorts 

 

As explained above, part of this association might be due to environmental factors (such 

as population stratification or home environment) shared by people with similar genetic 

backgrounds. To explore this possibility, we take advantage that the UK Biobank contains 

approximately 20,000 sibling pairs. Table 2 presents analyses similar to the ones on Table 1 among 

siblings born within 10 years of the ROSLA birth cutoff. The first two columns present OLS results 

                                                            
12 This is among our analytic sample of those who left school by age 18. If we calculate this association lifting this 
restriction, 1 SD increase in the PGS is associated with a remarkable (and highly significant) 7.2 increase in wages.  

PGS 0.072 0.072 0.076 0.075 0.039 0.039
[0.001]*** [0.001]*** [0.003]*** [0.003]*** [0.007]*** [0.007]***

Constant 6.251 6.247 6.222 6.233 6.222 6.222
[0.001]*** [0.006]*** [0.003]*** [0.024]*** [0.000]*** [0.000]***

PCs No Yes No Yes No No
Observations 192,131 192,131 11,524 11,524 11,524 11,524
Number of fam 5,639 5,639

Dependent Variable: Ln Wages
All Sample

OLS
Sibling Sample

OLS
Sibling Sample
Fixed Effects
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among all sample (with and without principal components, PCs, controls), columns 3-4 present 

OLS results among our much smaller siblings sample, and columns 5-6 present family fixed-

effects results. The results show that the association between wages and the EA PGS is large and 

very similar among the whole sample and the sibling sample (with or without controlling for PCs). 

A one SD increase in the PGS is associated with 7.2% higher wages. Moreover, in the within 

family estimates these associations are still strongly significant but the magnitudes fall by 

approximately half. This is consistent with the results by Kong et al. 2018 and the existence of 

biases related to parental background, as described above. However, it is important to note that the 

PGS is still highly predictive of wages within families.  

B.3. Neighborhood Heterogeneity 

We use the approximate coordinates of birth available in the UKB to link each individual 

to SES conditions at their neighborhood and time of birth. In particular, we link 1961 Census data 

on local authority level SES measures, such as average education and occupation levels, home 

ownership and mortality.13 As our main measure of neighborhood SES, we use the fraction of 

adults in the local authority who stayed in school until age 15 or later. We chose to use an 

educational variable since it was most related to our treatment variable, and we chose the threshold 

of age 15 since that was the age that maximized the variation in neighborhood characteristics in 

our sample. Importantly, this variable was chosen before assessing its association with our 

measures of SES and education. Fortunately, this measure captures a large fraction, of the potential 

neighborhood variation at this level of aggregation, and it captures nearly all of the variation 

explained by all of our historical neighborhood variables collectively.14  

                                                            
13 Historical local authority level data comes from http://www.visionofbritain.org.uk/, which makes local-level 
Census data available. In our data, we have 1637 different local authorities, each with on average 39K people 
(median 19K people).  
14 See Appendix Figures D1-D4 for the histograms of this variable among the whole sample and compliers only.  

http://www.visionofbritain.org.uk/
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Figure 2 shows the incremental variance explained by different neighborhood and genetic 

variables for SES and school-leaving age (SLA). Incremental variance explained is defined to be 

the difference in R2 between a model that includes only our covariates15 and a model that includes 

our covariates and the neighborhood or genetic variables. One can see that, in both cases, the 

percent staying in school until age 15 explains about 2/3 of the total variation explained by all the 

1961 Census variables and 1/3 of the variation explained by a large set of local authority dummies 

(which can be interpreted as the upper bound of the total variation that can be explained at this 

level of aggregation). Moreover, the EA PGS explains about 1.5% of the variation in SES and 

2.3% of the variation in SLA. Note that 2.3% is smaller than the 12-14% that is seen in some data 

sets. This is because SLA is only measured in the UK Biobank for those who never attended 

college, so our sample is restricted to this more narrow sample of individuals. Estimates of the 

                                                            
15 The covariates in the case include date of birth, date of birth squared, an indicator of whether an individual was 
born after 1 September 1952, the interactions of the date of birth variables and this indicator, and sex. We restricted 
to those born within 10 years of the ROSLA reform and weighted our regression with a triangle kernel. The 95%-
confidence intervals were calculated using a bootstrap with 1000 replications. 
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heritability16 of EA in the UK Biobank sample are as a result substantially smaller than in other 

samples with better measures of EA. 

 

Table 3: Log Wages and Birth Neighborhood Quality among Pre-Reform Cohorts 

 

The fraction staying in school until age 15 at an individual’s neighborhood of birth is also 

positively associated with middle-age SES: individuals born in higher SES neighborhoods exhibit 

higher wages later in life (Table 3). A one SD increase in birth neighborhood quality is associated 

with 1.8% increase in wages. The association is still positive but smaller and not significant among 

our complier sample (p-value=0.119). Those at the top quality tercile have wages that are on 

average 1.4-1.8% higher than those at the bottom quality tercile. Below we investigate whether an 

increase in secondary education brought by a change in compulsory schooling laws mitigated or 

reinforced the relationships documented in Tables 1 and 3.   

 

 

 

                                                            
16 Heritability is the total amount of variation in an outcome that can be explained by genetic factors. As a result, it 
may be thought of as an upper bound of the predictive power of a PGS. 

RegEdu15 0.018 0.016 0.007 0.005
[0.003]*** [0.002]*** [0.005] [0.003]

HIGH 6.129 6.128 6.018 6.014
[0.007]*** [0.006]*** [0.013]*** [0.010]***

MID 6.098 6.100 6.001 6.000
[0.007]*** [0.006]*** [0.012]*** [0.010]***

LOW 6.084 6.087 6.000 6.000
[0.007]*** [0.006]*** [0.012]*** [0.010]***

Constant 6.100 6.102 6.005 6.004
[0.006]*** [0.005]*** [0.010]*** [0.009]***

Bandwidth 4 yrs 10 yrs 4 yrs 10 yrs 4 yrs 10 yrs 4 yrs 10 yrs
Observations 18,863 51,183 5,288 17,777 18,863 51,183 5,288 17,777
Notes: specification includes pre-cohort trends,  linear for 4-year bandwidth and quadratic for 10-year. 

Dependent Variable: Ln Wages
All Sample Compliers Only All Sample Compliers Only
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3. Regression Discontinuity (RD) Model 

We use a Regression Discontinuity Design (RDD) to investigate whether an exogenous 

increase in education can mitigate SES disadvantages related to genetic makeup and neighborhood 

of birth.  The RDD compares the outcomes of individuals born just before and just after September 

1, 1957, controlling for cohort trends. Intuitively, individuals born on August 31, 1957 and 

individuals born on September 1, 1957 were comparable (e.g., in terms of their childhood health 

and SES) before the reform. In other words, the SES of those born on August 31, 1957 provides a 

counterfactual of the SES those born on September 1, 1957 would have had had they not been 

forced to stay in school until age 16. For this reason, any later-life SES differences between these 

two groups can be attributed to the causal effect of the additional year of schooling. In Appendix 

A, we offer evidence that those born just before and just after September 1, 1957 were comparable 

before the reform. For example, we show that the two groups are genetically similar. Genetic 

markers are useful to test the RDD assumption because genotypes are objectively measured, 

determined at conception, and immutable. 

To investigate whether the effect of education on SES varies with genetic makeup and 

neighborhood of birth, we compare the discontinuous changes in outcomes of groups with different 

PGSs and birth neighborhood quality, accounting for the differences in the fraction of individuals 

affected by the reform in different groups. We start by estimating our “first stage” regressions that 

estimate how the effect of the 1972 ROLSA on education varied by (predetermined) birth 

neighborhood and genetic groups: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 = 𝛼𝛼0 + 𝛼𝛼1(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 × 𝑅𝑅𝑅𝑅𝑔𝑔𝑅𝑅𝑅𝑅𝑅𝑅15𝑖𝑖) + 𝛼𝛼2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 + 𝛼𝛼3𝑅𝑅𝑅𝑅𝑔𝑔𝑅𝑅𝑅𝑅𝑅𝑅15𝑖𝑖 + 
+𝑓𝑓(𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖) + 𝒙𝒙𝑖𝑖′𝜶𝜶4 + 𝜀𝜀𝑖𝑖, (1) 

And  

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑆𝑆𝑖𝑖) + 𝛽𝛽2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 + 𝛽𝛽3𝑃𝑃𝑃𝑃𝑆𝑆𝑖𝑖 + 
+𝑓𝑓(𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖) + (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 × 𝑷𝑷𝑷𝑷𝑖𝑖′)𝜷𝜷4 + 𝑷𝑷𝑷𝑷𝑖𝑖′𝜷𝜷5 + 𝒙𝒙𝑖𝑖′𝜷𝜷6 + 𝑅𝑅𝑖𝑖, (2) 

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 stands for school leaving age, our measure of the educational attainment of individual 

𝑖𝑖; 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 is 1 if individual 𝑖𝑖 was born on or after September 1, 1957 (and 0 otherwise); 𝑅𝑅𝑅𝑅𝑔𝑔𝑅𝑅𝑅𝑅𝑅𝑅15𝑖𝑖  

is the fraction of adults staying in school until age 15 according to the 1961 Census at individual 

i’s neighborhood of birth; 𝑃𝑃𝑃𝑃𝑆𝑆𝑖𝑖 is the EA PGS; 𝑷𝑷𝑷𝑷𝑖𝑖 is a vector of the first 20 principal components 

of the genotypic data; 𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖 is individual 𝑖𝑖’s date of birth; and the vector 𝒙𝒙𝑖𝑖 contains predetermined 

characteristics—namely age, age-squared, gender, month and country of birth. Date of birth is 
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measured in days relative to the cutoff, such that 𝐷𝐷𝑃𝑃𝐷𝐷 = 0 for someone born on September 1, 

1957. The function 𝑓𝑓(∙) captures birth cohort trends in educational attainment, which are allowed 

to differ on either side of the September 1, 1957 cutoff. In regressions where we look for genetic 

heterogeneity, we include 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 × 𝑷𝑷𝑷𝑷𝑖𝑖′ and 𝑷𝑷𝑷𝑷𝑖𝑖′ to correct for population stratification, as 

explained above. The coefficients 𝛼𝛼1  and 𝛽𝛽1 estimate how the effect of the 1972 ROSLA on 

educational attainment vary with neighborhood of birth and genetics.17 

We restrict the data to study participants born in England, Scotland, or Wales within 4 (or 10) 

years of September 1957 – that is, born between September 1, 1953 and August 31, 1961 – and 

use a linear (quadratic) polynomial in date of birth to capture cohort trends (i.e., function 𝑓𝑓(∙) in 

equations (1 and 2)).18  In Appendix Table B1, we show that the 1972 ROSLA had no effect on 

the probability staying in school past age 18, therefore, to improve power, we restrict our sample 

to those who left school ages 18 or younger. As described above, we also restrict the sample to 

participants of European ancestry, for which the existing PGSs are applicable. Our final sample 

with these restrictions has approximately 42 thousand (104 thousand for 10-year bandwidth) 

observations. We use triangular kernel weights that give greater weight to study participants born 

closer to the cutoff. The set of predetermined characteristics include gender, age in days (at the 

time of the baseline assessment) and age squared, dummies for ethnicity, dummies for country of 

birth, and dummies for calendar month of birth (to control for seasonality).19 

Notice that even though previous work studying the 1972 ROSLA clustered standard errors 

by month-year of birth (e.g., Clark and Royer 2013; Davies et al. 2017), we do not need to cluster 

our standard errors because our data include exact date of birth. As Lee and Card (2008) discuss, 

in applications where the running variable is only reported in coarse intervals (e.g., month-year of 

birth), researchers have to choose a particular functional form for the model relating the outcomes 

of interest to the running variable. The deviation between the expected value of the outcome and 

the predicted value from a given functional form is modeled as a random specification error, which 

is incorporated in inference by clustering the standard errors for different values of the running 

                                                            
17 The inclusion of predetermined controls in equations (1) and (2) is not needed for identification but can improve 
the precision of estimates. 
18 We opt to use 4-year bandwidths because it was the closest integer number to the optimal bandwidth for the direct 
effect of the 1972 ROLSA according to the algorithm in CCT. We present results using a 10-year bandwidth and 
quadratic trends for robustness. 
19 Because participants were surveyed for the baseline assessment between 2006 and 2010, date of birth and age are 
not perfectly collinear. 



18 
 

variable. This specification error should be negligible in our context because our data include day-

month-year of birth. We get virtually identical standard errors estimates irrespective of whether 

we cluster by date of birth or not.20  

Our main estimating equation use the 1972 ROSLA birth cutoff to instrument for the effects 

of education on SES. Formally, we estimate the following regressions:  

𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 = 𝛿𝛿0 + 𝛿𝛿1(𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 × 𝑅𝑅𝑅𝑅𝑔𝑔𝑅𝑅𝑅𝑅𝑅𝑅15𝑖𝑖) + 𝛿𝛿2𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 + 𝛿𝛿3𝑅𝑅𝑅𝑅𝑔𝑔𝑅𝑅𝑅𝑅𝑅𝑅15𝑖𝑖 + 
+𝑓𝑓(𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖) + 𝒙𝒙𝑖𝑖′𝜹𝜹4 + 𝜀𝜀𝑖𝑖, (3) 

and 

𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 = 𝛾𝛾0 + 𝛾𝛾1(𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑆𝑆𝑖𝑖) + 𝛾𝛾2𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 + 𝛾𝛾3𝑃𝑃𝑃𝑃𝑆𝑆𝑖𝑖 + 
+𝑓𝑓(𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖) + (𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 × 𝑷𝑷𝑷𝑷𝑖𝑖′)𝜸𝜸4 + 𝑷𝑷𝑷𝑷𝑖𝑖′𝜸𝜸5 + 𝒙𝒙𝑖𝑖′𝜷𝜷𝜸𝜸6 + 𝑅𝑅𝑖𝑖, (4) 

 

where 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 is log wages and all the other variables and specification choices are defined as above. 

To account for the endogeneity of 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 and for the differential impacts of the reform on the 

education of groups with different PGSs and neighborhood qualities, we estimate equations (3) 

and (4) through two-stages least squares (2SLS), using the reform as an instrument. The 2SLS 

estimates the effect of staying in school one more year among those affected by the reform (i.e., 

those who would have dropped out at age 15 in the absence of the reform). In other words, our 

results cannot be explained by the fact that individuals with different EA PGSs and from different 

neighborhoods were differentially affected by the reform. We will also present results from a 

secondary, more non-parametric specification, were we create indicators for whether an individual 

is in the bottom, middle, or top tercile of the distribution of the PGS and neighborhood quality: 

 

𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 = 𝛿𝛿0 + 𝛿𝛿1(𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 × 𝑏𝑏𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅15𝑖𝑖) + 𝛿𝛿2(𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 × 𝑏𝑏𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅15𝑖𝑖) + 𝛿𝛿3(𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 ×
𝑃𝑃𝑃𝑃𝑡𝑡𝑅𝑅𝑅𝑅𝑅𝑅15𝑖𝑖)𝛿𝛿2𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 + 𝛿𝛿4𝑃𝑃𝑃𝑃𝑡𝑡𝑅𝑅𝑅𝑅𝑅𝑅15𝑖𝑖 + 𝛿𝛿5𝑏𝑏𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅15𝑖𝑖 + 𝛿𝛿6𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 + 𝑓𝑓(𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖) + 𝒙𝒙𝑖𝑖′𝜹𝜹7 + 𝜀𝜀𝑖𝑖,

 (5) 
and 

𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 = 𝛾𝛾0 + 𝛾𝛾1(𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 × 𝑏𝑏𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑃𝑃𝑃𝑃𝑆𝑆𝑖𝑖) + 𝛾𝛾2(𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 × 𝑏𝑏𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑅𝑅𝑃𝑃𝑃𝑃𝑆𝑆𝑖𝑖) + 𝛾𝛾3(𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑆𝑆𝑖𝑖) +
𝛾𝛾4𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑆𝑆𝑖𝑖 + 𝛾𝛾5(𝑏𝑏𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑅𝑅𝑃𝑃𝑃𝑃𝑆𝑆𝑖𝑖) + 𝛾𝛾6𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 + 𝑓𝑓(𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖) + (𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 × 𝑷𝑷𝑷𝑷𝑖𝑖′)𝜸𝜸7 + 𝑷𝑷𝑷𝑷𝑖𝑖′𝜸𝜸8 + 𝒙𝒙𝑖𝑖′𝜷𝜷𝜸𝜸9 +

𝑅𝑅𝑖𝑖, (6) 
  

 

                                                            
20 Results available upon request.  
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4. Results 

 

A. Effects of the Compulsory Schooling Change on Average Education and Wages 

We begin by exploring how the 1972 ROSLA affected overall education and wages. As 

explained above, we focus on participants who left school age 18 or younger, since this is the 

population affected by the law change. Consistent with Figure 1, Table 1 shows that the reform 

made affected cohorts stay on average 0.3 years longer in school. The reform also increased wages 

by 1.7-1.8 percent (see Figure 3). Two-stage least squares estimates imply that one extra year of 

secondary education increase middle age wages by 5.5-5.6 percent. These are consistent with 

estimates in Grenet (2013) which estimated 6-7% return using the education induced by the 1972 

ROSLA and pooled data from the Quarterly Labour Force Survey (QLFS), which contains 

individual-level wages. These effects are highly significant and robust to the use of 4- versus 10-

year bandwidths and quadratic versus linear polynomials on date of birth.     

Table 4: Effects of the 1972 ROSLA on Education and Wages 

              
  First Stage Reduced Form 2SLS 
  SLA SLA lnW lnW lnW lnW 
          
Post 0.305 0.330 0.017 0.018     
  [0.021]*** [0.020]*** [0.007]** [0.007]***     
SLA         0.055 0.056 
          [0.024]** [0.021]*** 
              
Bandwidth 4 years 10 years 4 years 10 years 4 years 10 years 
DoB Polynomial Linear Quadratic Linear Quadratic Linear Quadratic 
Observations 42,221 104,578 42,221 104,578 42,221 104,578 
Mean pre-
reform 14.94 14.95 6.003 6.003 6.003 6.003 

Notes: Regression discontinuity estimates of effects on school leaving age (SLA) and log wages (lnW) 
using 10- and 4-year bandwidths. Effects among participants who left school age 18 or younger.  
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Figure 3: Effect of the 1972 ROSLA on Wages, 4- and 10-year Bandwidth 

 

B. Effects of the Compulsory Schooling Change on Education by Birth Neighborhood and 

Genetic Groups 

Next, we document how the reform differentially affected the education of groups with 

different initial endowments, measured by the EA PGS and birth neighborhood quality, and what 

these differential effects mean for inequalities in education across groups. Figure 4 shows cohort 

trends in school leaving age (left) and fraction leaving school at age 16 or later (right) by polygenic 

score tercile. As expected, before the reform those with lower PGS dropped out of school earlier. 

When the reform kicks in all three groups are affected, but the bottom group has a larger 

discontinuous jump in education. Estimates in Table 5 (columns 1 and 2) imply that the jump is 

about 1/3 or 0.1 years larger for the bottom than the top tercile.  

The increase in SLA comes mostly from an increase in the fraction of students staying in school 

until age 16.  Among cohorts born before September 1957, those with lower EA PGSs were less 

likely to stay in school until age 16. The reform had a strong Gene by Enviroment (“GxE”) effect: 

the difference in the fraction staying in school until age 16 between the bottom and top EA PGS 

terciles fell from 18.4 percentage points before the reform to 3.1 percentage points afterwards. 

Because almost everyone stayed in school until at least age 16 after the reform, there was little 

variation in educational attainment at this level left after the reform to be explained by the EA 

PGS. 
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Figure 4: Effect of the 1972 ROSLA on School Leaving Age and Fraction Leaving 

School Age 16 or Later, by Educational Attainment Polygenic Score 

 

 

Figure 5: Effect of the 1972 ROSLA on School Leaving Age and Fraction Leaving 

School Age 16 or Later, by Birth Neighborhood Quality 

 

 

 Figure 5 presents the education cohort trends by birth neighborhood education. We see 

similar trends. Those from low education neighborhoods on average drop out sooner than those 

from high education neighborhoods and, for these reason, are most affected by the reform. While 

smaller than the differences across PGS groups, the differences in the effect of the reform by 

neighborhoods are meaningful (0.06 years) and highly significant – see Table 6, Panel B, columns 

1 and 2.  
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Because the ROSLA required students to stay in school until age 16, it disproportionally 

affected students from the bottom terciles of the PGS and neighborhood education distributions, 

who were less likely to stay in school until age 16 before the reform. Therefore, the change in 

compulsory schooling had the effect of equalizing education across these groups. In the next 

subsection we investigate whether the reduction in education differences translated in a reduction 

in middle age SES differences across groups.  

 

C. Effects of Education on Wages by Birth Neighborhood and Genetic Groups 

Tables 5 to 7 present our main results. They show results based on the continuous model 

described by equations (3) and (4) in Panel A and on the terciles model described by equations (5) 

and (6) in Panel B. They present first stage (columns 1-2), reduced form (columns 3-4) and 2SLS 

(columns 5-6) results for both 4-year bandwidths (with linear trends) and 10-year bandwidths (with 

quadratic trends). Table 5 documents heterogeneity by EA PGS, Table 6 by birth neighborhood 

quality and Table 7 investigates both interactions jointly (continuous models only).  

Columns 3 and 4 of Table 5 shows the reduced form estimates of the effects of the 1972 

ROSLA on log wages. Despite disproportionally increasing the education of low PGS students, 

the reform had the effect of disproportionally increasing the wages of those with high PGS. As 

seen in Table 4, the reform had the average effect of increasing wages by 1.7%,  Table 5 shows 

that the effect among those with a PGS 1SD above the mean was about 0.6-0.7% higher. These 

differences are only marginally significant using the 4-year bandwidth, but the magnitude of the 

coefficients is very similar across specifications.  

Due to the first stage pattern, the differences in wages across PGS groups are more pronounced 

under the two-stage least squares estimates. In Table 1 above, we document that the pre-reform 

difference in wages among compliers in the top and bottom PGS terciles is 4%. The estimates in 

Table 5 imply that the extra education provided by the reform more than doubled this gradient. 

The estimates on columns 5 and 6 in panel B show that one extra year of education increases wages 

5.5-6.2% more in the top PGS compared to the bottom PGS tercile. Similarly, estimates in Panel 

A show positive and highly significant interactions between SLA and the continuous PGS. In other 

words, not only the extra education did not equalize existing differences in wages, it actually quite 

steeply increased those differences across PGS groups.    
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 We see similar patterns when we explore heterogeneity across birth neighborhoods, see 

Table 6. The interactions here are not significant with the 4-year bandwidth and only marginally 

significant with 10-years, but still coefficients are quite stable across specifications. In any case, 

these results should be interpreted with caution. However, one thing is clear, since all the 

interactions are positive, we see no evidence that education reduced differences in middle age 

wages across birth neighborhoods.  

 One possibility is that these two interactions are capturing the same phenomenon, if, for 

example, birth neighborhood education and PGS are highly correlated. As we discussed below, 

the PGS reflects many factors and it is possible that it captures in part the birth neighborhood 

environment. In order to test for this possibility, in Table 7, we add both interactions to the same 

model. In case of significant overlap, we would expect a reduction in the estimated interaction 

coefficients. That is not what we find. Estimates remain (both in magnitude and significance) 

virtually identical to the ones on Tables 5 and 6, suggesting that education affects these two 

margins independently.  
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Table 5: Effects of Education on Wages by Educational Attainment Polygenic Score

 

SLA SLA lnW lnW lnW lnW

PGS * Post -0.043 -0.046 0.006 0.007
[0.011]*** [0.007]*** [0.004]* [0.002]***

PGS * SLA 0.026 0.025
[0.013]** [0.007]***

Post 0.319 0.343 0.014 0.016
[0.021]*** [0.019]*** [0.007]* [0.007]**

SLA 0.060 0.055
[0.029]** [0.021]**

PGS 0.181 0.186 0.028 0.028 -0.018 -0.015
[0.009]*** [0.005]*** [0.003]*** [0.002]*** [0.020] [0.012]

Panel B: Score Terciles

Top * Post -0.094 -0.099 0.014 0.014
[0.028]*** [0.018]*** [0.010] [0.006]**

Mid * Post -0.063 -0.050 -0.007 0.006
[0.026]** [0.017]*** [0.010] [0.006]

Top * SLA 0.062 0.052
[0.035]* [0.018]***

Mid * SLA -0.016 0.021
[0.031] [0.016]

Post 0.363 0.383 0.013 0.010
[0.025]*** [0.022]*** [0.009] [0.008]

SLA 0.052 0.035
[0.033] [0.021]*

Top 0.393 0.410 0.064 0.065 -0.972 -0.803
[0.021]*** [0.013]*** [0.007]*** [0.004]*** [0.571]* [0.301]***

Middle 0.212 0.208 0.047 0.037 0.295 -0.307
[0.020]*** [0.013]*** [0.007]*** [0.004]*** [0.504] [0.257]

Bandwidth 4 years 10 years 4 years 10 years 4 years 10 years
DoB Polynomial Linear Quadratic Linear Quadratic Linear Quadratic
Observations 42,221 104,578 42,221 104,578 42,221 104,578
Mean pre-reform 14.94 14.95 6.003 6.003 6.003 6.003

First Stage Reduced Form 2SLS

Panel A: Continuous Score

Notes: Regression discontinuity estimates of effects on school leaving age (SLA) and log 
wages (lnW) using 10- and 4-year bandwidths. See equations on section 3 of paper for 
regression specification details. 



25 
 

Table 6: Effects of Education on Wages by Birth Neighborhood Quality 

 

SLA SLA lnW lnW lnW lnW

RegEdu15 * Post -0.014 -0.011 0.004 0.004
[0.009] [0.005]** [0.003] [0.002]**

RegEdu15 * SLA 0.019 0.016
[0.012] [0.006]**

Post 0.313 0.334 0.017 0.019
[0.021]*** [0.020]*** [0.008]** [0.007]***

SLA 0.073 0.065
[0.030]** [0.022]***

RegEdu15 0.122 0.121 0.018 0.016 -0.019 -0.015
[0.008]*** [0.005]*** [0.003]*** [0.002]*** [0.021] [0.011]

Panel B: Neighbrhood Quality Terciles

Top * Post -0.060 -0.065 0.010 0.011
[0.030]** [0.019]*** [0.010] [0.007]*

Mid * Post -0.043 -0.029 -0.005 -0.004
[0.027] [0.017]* [0.010] [0.006]

Top * SLA 0.054 0.045
[0.039] [0.020]**

Mid * SLA -0.013 -0.008
[0.034] [0.017]

Post 0.345 0.363 0.015 0.016
[0.025]*** [0.021]*** [0.009]* [0.008]**

SLA 0.057 0.050
[0.030]* [0.021]**

Top 0.253 0.245 0.033 0.028 -0.874 -0.723
[0.023]*** [0.014]*** [0.007]*** [0.005]*** [0.648] [0.334]**

Middle 0.064 0.042 0.005 0.002 0.217 0.137
[0.020]*** [0.013]*** [0.007] [0.004] [0.549] [0.271]

Bandwidth 4 years 10 years 4 years 10 years 4 years 10 years
DoB Polynomial Linear Quadratic Linear Quadratic Linear Quadratic
Observations 42,221 104,578 42,221 104,578 42,221 104,578
Mean pre-reform 14.94 14.95 6.003 6.003 6.003 6.003

First Stage Reduced Form 2SLS

Panel A: Continuous Neighborhood Quality

Notes: Regression discontinuity estimates of effects on school leaving age (SLA) and log 
wages (lnW) using 10- and 4-year bandwidths. See equations on section 3 of paper for 
regression specification details. 
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Table 7: Effects of Education on Wages by Educational Attainment Polygenic Score and 

Birth Neighborhood Quality 

 

 
  
  

SLA SLA lnW lnW lnW lnW

PGS * Post -0.044 -0.046 0.006 0.007
[0.011]*** [0.007]*** [0.004]* [0.002]***

PGS * SLA 0.027 0.025
[0.013]** [0.007]***

RegEdu15 * Post -0.014 -0.012 0.003 0.004
[0.008]* [0.005]** [0.003] [0.002]*

RegEdu15 * SLA 0.017 0.014
[0.012] [0.006]**

Post 0.320 0.343 0.016 0.017
[0.021]*** [0.019]*** [0.008]** [0.007]**

SLA 0.069 0.061
[0.030]** [0.022]***

PGS 0.176 0.180 0.027 0.027 -0.021 -0.016
[0.009]*** [0.005]*** [0.003]*** [0.002]*** [0.021] [0.012]

RegEdu15 0.113 0.111 0.016 0.014 -0.018 -0.014
[0.008]*** [0.005]*** [0.003]*** [0.002]*** [0.021] [0.011]

Bandwidth 4 years 10 years 4 years 10 years 4 years 10 years
DoB Polynomial Linear Quadratic Linear Quadratic Linear Quadratic
Observations 41,692 103,350 41,692 103,350 41,692 103,350
Mean pre-reform 14.94 14.95 6.003 6.003 6.003 6.003

First Stage Reduced Form 2SLS

Panel A: Continuous Score and Neighborhood Quality

Notes: Regression discontinuity estimates of effects on school leaving age (SLA) and log 
wages (lnW) using 10- and 4-year bandwidths. See equations on section 3 of paper for 
regression specification details. 
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5. Discussion and Conclusions 

Is education, and education policy, the great equalizer? In a world were initial endowments 

matter for long-term SES, we investigate how a change in compulsory schooling law affects 

differences in educational attainment and middle age wages across genetic and birthplace groups. 

Despite being among the most common types of education policy around the globe, little is known 

about the effectiveness of compulsory schooling in reducing lifecycle differences in SES. In the 

British context we study, we find that despite significantly equalizing differences in educational 

attainment, compulsory schooling falls short of equalizing differences in SES. In fact, if anything, 

the law change disproportionally benefited those with high EA PGS, resulting in an increase in 

wage differences across genetic groups.  

Our two-stage least squares estimates imply that the extra education induced by the reform 

more than doubled the pre-reform gradient between wages and the EA PGS among compliers. 

Many different channels would be consistent with such result. First, it might be that high PGS 

students have higher cognitive and/or non-cognitive skills that would allow them to benefit more 

from a given amount of education. Second, high PGS students might attend better quality schools 

and, for that reason, benefit more from staying longer in school. Finally, students affected by the 

law change might differ, in terms of observable and unobservable characteristics, across PGS 

groups. If, within each group there is a distribution of returns to schooling rather than a single, 

constant return, then we might be simply estimating different margins of such distribution.  

Table 8: Correlation EA PGS and predetermined characteristics among compliers 

 

In order to shed light on the last point, Table 8 documents the correlation between the PGS and 

several haracteristics among our sample of pre-reform compliers. We focus on characteristics that 

male birthplace_North birthplace_East RegEdu15 BMIscore leg_length trunk_length height

EA PGS -0.020 0.039 -0.029 0.021 -0.134 0.012 -0.008 0.004

Observations 6,161 6,096 6,096 5,288 6,161 6,150 6,150 6,155
pvalue 0.173 0.00686 0.0496 0.191 0 0.412 0.594 0.788

EA PGS -0.016 0.038 -0.041 0.022 -0.125 0.010 0.001 0.007

Observations 20,586 20,361 20,361 17,777 20,586 20,547 20,550 20,560
pvalue 0.0577 6.68e-06 1.44e-06 0.0145 0 0.231 0.865 0.388
Note: linear pre-trends on date of birth included on Panel A. Quadratic pre-trends included on Panel B. 

Panel B: 10-year bandwidth

Panel A: 4-year bandwidth
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are arguably predetermined in relation to the 1972 ROSLA, such as birthplace coordinates, a PGS 

for BMI, height, and leg and truck length (see Bogin and Varela-Silva 2010 for evidence that leg 

and truck length are markers of nutrition and health during childhood). Table 8 shows that, even 

in cases when these correlations are statistically significant, such as for BMI PGS and birthplace 

coordinates, such correlations are in magnitude small. A correlation with birthplace coordinate has 

been shown by other studies (Abdellaoui et al. 2019), but it’s important to note that the correlation 

with birthplace SES (RegEdu15) is smaller. Overall, Table 8 suggests that compliers do not differ 

sufficiently across EA PGS groups to explain our results. One obvious caveat with this argument 

is that we only have a limited number of predetermined observable characteristics and compliers 

might differ across PGS groups more substantially in other, unobservable, dimensions.  

If, in our context, an increase in compulsory schooling age was not able to equalize differences 

in SES, are there other contexts or educational policies that could? More research is needed to 

understand whether our results generalize to other contexts and margins of education. If they do, 

it would be important to ask whether other types of education policies, that might focus specifically 

on the barriers to education and economic mobility encountered by students from less advantaged 

backgrounds, would be able to fulfill the great equalizer promise.    
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Appendix Figure A1: McCrary Test 
 
 

 
 
 
 
 
 
  
 
 
 
 
 
    
 
 
                                                
 
 
 
Notes: The figure shows the fraction of study participants by day of birth. The dashed vertical line marks the first birth cohort affected by the 1972 
school-leaving age reform. Cohorts born to the right of the line had to stay in school until age 16 while cohorts born before could leave at age 15. 
The curves show nonparametric birth cohort trends. The estimated discontinuity of the density is -0.0201 with a standard error of 0.0174. N = 
271,234.   
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Appendix Figure A2: Balance Tests  The figures show averages by year of birth. The dashed vertical line marks 
the first birth cohort affected by the 1972 school-leaving age reform. Cohorts born to the right of the line had to stay 
in school until age 16 while cohorts born before could leave at age 15. PC1 to PC 15 refers to the first 15 principal 
components of the genotypic data. “East-West” and “North-South” correspond to the latitude and longitude 
coordinates of place of birth.  N = 253,567 for all variables with the following exceptions: birthplace coordinates (N 
= 249,897); right- or left-handed (N = 253,519); and adopted (N = 253,279).   
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Appendix Table A1: Balance Tests This table investigates whether predetermined characteristics are smooth 
around the September 1, 1957 cutoff. It reports the coefficient on an indicator for being born on or after September 1, 
1957 (i.e., “Post”) from regressions where the dependent variables is listed in the column. The regressions include a 
quadratic polynomial in date of birth, which is allowed to be different before and after September 1, 1957. Robust 
standard errors. The mean of Y corresponds to the mean of the dependent variable among those born in the 12 months 
before September 1, 1957.  

 
 
 

The p-value for a joint test of the null hypothesis that there is no discontinuity for any of 
the 25 variables above is 0.6921.  
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Appendix Figure A3: East Coordinate of Birth Place 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: The figure shows the pre- and post-reform CDFs of east coordinate of place of birth. The pre-reform CDF is the CDF in the limit when date of birth is converging 
to September 1, 1957 from the left. The post-reform CDF is the CDF in the limit when date of birth is converging to September 1, 1957 from the right. N = 266,883. 
 

Appendix Figure A4: North Coordinate of Birth Place 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: The figure shows the pre- and post-reform CDFs of north coordinate of place of birth. The pre-reform CDF is the CDF in the limit when date of birth is converging 
to September 1, 1957 from the left. The post-reform CDF is the CDF in the limit when date of birth is converging to September 1, 1957 from the right. N = 266,883. 
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Appendix Figure A5: Subischial Height 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Notes: The figure shows the pre- and post-reform CDFs of subischial height. Subischial height is the difference between standing height and sitting height. The pre-reform 
CDF is the CDF in the limit when date of birth is converging to September 1, 1957 from the left. The post-reform CDF is the CDF in the limit when date of birth is 
converging to September 1, 1957 from the right. N = 271,173. 

 
Appendix Figure A6: Fraction Missing Genetic Data 

 
Notes: The figure shows the fraction of study participants with genetic data available by quarter of birth. The dashed vertical line marks the first birth cohort affected by 
the 1972 school-leaving age reform. Cohorts born to the right of the line had to stay in school until age 16 while cohorts born before could leave at age 15. The curves 
show quadratic polynomials in quarter of birth that capture birth cohort trends. The circumference of each circle reflects the number of participants born in that quarter. 
The discontinuity is 0.0044 with a standard error of 0.0031 (p-value of 0.14). The mean among those born in the 12 months before the cutoff is 0.0591. N = 271,234.    
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Appendix Figure A7: Body Mass Index Polygenic Score 

 
Notes: The figure shows the pre- and post-reform CDFs of the polygenic score for BMI. The pre-reform CDF is the CDF in the limit when date of birth is converging to 
September 1, 1957 from the left. The post-reform CDF is the CDF in the limit when date of birth is converging to September 1, 1957 from the right. N = 253,715. 
 

Appendix Figure A8: Educational Achievement Polygenic Score 

    
Notes: The figure shows the pre- and post-reform CDFs of the polygenic score for educational achievement. The pre-reform CDF is the CDF in the limit when date of 
birth is converging to September 1, 1957 from the left. The post-reform CDF is the CDF in the limit when date of birth is converging to September 1, 1957 from the right. 
N = 253,715.  
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Appendix Table A2: Distributional Test 

 
Notes: The table show the p-values of tests of the equality of the pre- and post-reform CDFs. N = 266,883 (coordinates of place of birth); 
269,173 (subischial height); and 253,715 (polygenic scores for BMI and educational achievement) 
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Appendix Table B1: Effect of the 1972 ROSLA on the Probability of Staying in School 
until age 18 or older (columns 1-2) and age 19 or older (columns 3-4) 

 
 
 

          
  Pr(SLA>=18) Pr(SLA>=19) 
          
Post 0.006 0.020 -0.003 0.004 
  [0.008] [0.007]*** [0.008] [0.007] 
          
Bandwidth 4 years 10 years 4 years 10 years 
DoB Polynomial Linear Quadratic Linear Quadratic 
Observations 77,912 192,045 77,912 192,045 
Mean pre-
reform  0.550 0.550 0.457 0.457 
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Appendix Figure C1: Map with Locations of UK Biobank 22 Assessment Centers 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: The figure shows the location of the 22 assessment centers (as well as the location of the pilot study). 
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Appendix D 
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Appendix Figure D1: Histogram EA PGS, whole sample 

 
Appendix Figure D2: Histogram EA PGS, compliers only 

 

 



48 
 

Appendix Figure D3: Histogram Neighborhood Quality, whole sample 

 
Appendix Figure D4: Histogram Neighborhood Quality, compliers only 
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