Imperfect Macroeconomic Expectations: Evidence and Theory

George-Marios Angeletos, Zhen Huo, and Karthik A. Sastry MIT and NBER, Yale, and MIT

35th NBER Macro Annual (1st Ever on Zoom) April 3, 2020

State of The Art

Lots of lessons outside representative agent, rational expectations benchmark

But also a "wilderness" of alternatives

- Rational inattention, sticky info, etc. (Sims, Mankiw & Reis, Mackowiak & Wiederholt)
- Higher-order uncertainty (Morris & Shin, Woodford, Nimark, Angeletos & Lian)
- Level-K thinking (Garcia-Schmidt & Woodford, Farhi & Werning)
- Cognitive discounting (Gabaix)
- Over-extrapolation (Gennaioli, Ma & Shleifer, Fuster, Laibson & Mendel, Guo & Wachter)
- Over-confidence (Kohlhas & Broer, Scheinkman & Xiong)
- Representativeness (Bordalo, Gennaioli & Shleifer)
- Undue effect of historical experiences (Malmendier & Nagel)
- ..

This Paper

Contributions:

- Use a parsimonious framework to organize existing theories and evidence
- Provide new evidence
- Clarify which evidence is most relevant for the theory
- Identify the "right" model of expectations for business cycle context

This Paper

Contributions:

- Use a parsimonious framework to organize existing theories and evidence
- Provide new evidence
- Clarify which evidence is most relevant for the theory
- Identify the "right" model of expectations for business cycle context

Main lessons:

- Little support for FIRE, cognitive discounting, level-k
- Mixed support for over-confidence or representativeness
- Best model: dispersed info + over-extrapolation
- Best way to connect theory and data: IRFs of average forecasts (and their term structure)

Outline

The Facts

Facts Meet Theory (without/with GE)

Conclusion

Fact 1: Aggregate Forecast Errors are Predictable

Coibion and Gorodnichenko (2015)

$$\left(x_{t+k} - \overline{\mathbb{E}}_t x_{t+k}\right) = a + \frac{\mathsf{K}_{\mathsf{CG}}}{\mathsf{CG}} \cdot \left(\overline{\mathbb{E}}_t x_{t+k} - \overline{\mathbb{E}}_{t-1} x_{t+k}\right) + u_t$$

Fact 1: Aggregate Forecast Errors are Predictable

Coibion and Gorodnichenko (2015)

$$(x_{t+k} - \overline{\mathbb{E}}_t x_{t+k}) = a + K_{\mathsf{CG}} \cdot (\overline{\mathbb{E}}_t x_{t+k} - \overline{\mathbb{E}}_{t-1} x_{t+k}) + u_t$$

	(1)	(2)	(3)	(4)
variable	Unemp	loyment	Inflation	
sample	1968-2017	1984-2017	1968-2017	1984-2017
Revision _t (K _{CG})	0.741 (0.232)	0.809 (0.305)	1.528 (0.418)	0.292 (0.191)
R ²	0.111	0.159	0.278	0.016
Observations	191	136	190	135

Notes: The dataset is the Survey of Professional Forecasters and the observation is a quarter between Q4-1968 and Q4-2017. The forecast horizon is 3 quarters. Standard errors are HAC-robust, with a Bartlett ("hat") kernel and lag length equal to 4 quarters. The data used for outcomes are first-release.

Fact 1: Aggregate Forecast Errors are Predictable

Coibion and Gorodnichenko (2015)

$$(x_{t+k} - \overline{\mathbb{E}}_t x_{t+k}) = a + K_{\mathsf{CG}} \cdot (\overline{\mathbb{E}}_t x_{t+k} - \overline{\mathbb{E}}_{t-1} x_{t+k}) + u_t$$

	(1)	(2)	(3)	(4)
variable	Unemp	loyment	Inflation	
sample	1968-2017	1984-2017	1968-2017	1984-2017
Revision _t (K _{CG})	0.741 (0.232)	0.809 (0.305)	1.528 (0.418)	0.292 (0.191)
R ²	0.111	0.159	0.278	0.016
Observations	191	136	190	135

Notes: The dataset is the Survey of Professional Forecasters and the observation is a quarter between Q4-1968 and Q4-2017. The forecast horizon is 3 quarters. Standard errors are HAC-robust, with a Bartlett ("hat") kernel and lag length equal to 4 quarters. The data used for outcomes are first-release.

Bad news for: RE + common information

Good news for: (i) RE + dispersed noisy information

(ii) under-confidence, under-extrapolation, cognitive discounting, level-K

Fact 2: Individual Forecast Errors are Predictable

Bordalo, Gennaioli, Ma, and Shleifer (2018); Kohlhas and Broer (2018); Fuhrer (2018)

$$(x_{t+k} - \mathbb{E}_{i,t} x_{t+k}) = a + \mathcal{K}_{\mathsf{BGMS}} \cdot (\mathbb{E}_{i,t} x_{t+k} - \mathbb{E}_{i,t-1} x_{t+k}) + u_t$$

Fact 2: Individual Forecast Errors are Predictable

Bordalo, Gennaioli, Ma, and Shleifer (2018); Kohlhas and Broer (2018); Fuhrer (2018)

$$(x_{t+k} - \mathbb{E}_{i,t}x_{t+k}) = a + \frac{K_{\mathsf{BGMS}}}{(\mathbb{E}_{i,t}x_{t+k} - \mathbb{E}_{i,t-1}x_{t+k})} + u_t$$

	(1)	(2)	(3)	(4)
variable	Unempl	oyment	Inflation	
sample	1968-2017	1984-2017	1968-2017	1984-2017
Revision _{i,t} (K _{BGMS})	0.321	0.398	0.143	-0.263
	(0.107)	(0.149)	(0.123)	(0.054)
R ²	0.028	0.052	0.005	0.025
Observations	5383	3769	5147	3643

Notes: The observation is a forecaster by quarter between Q4-1968 and Q4-2017. The forecast horizon is 3 quarters. Standard errors are clustered two-way by forecaster ID and time period. Both errors and revisions are winsorized over the sample to restrict to 4 times the inter-quartile range away from the median. The data used for outcomes are first-release.

BGMS argue that $K_{BGMS} < 0$ is more prevalent in other forecasts. If so, then:

Bad news for: under-extrapolation, cognitive discounting, and level-K thinking

Good news for: over-extrapolation and over-confidence (or "representativeness")

But: perhaps $K_{BGMS} \approx 0$ "on average"

Facts $1 + 2 \Rightarrow$ Dispersed Info

variable	Unemployment		Infla	ition
sample	1968-2017	1984-2017	1968-2017	1984-2017
K _{cg}	0.741	0.809	1.528	0.292
K_{BGMS}	0.321	0.398	0.143	-0.263
$K_{CG} > K_{BGMS}$	1	✓	✓	✓

Q: What does $K_{CG} > K_{BGMS}$ mean?

A: My forecast revision today predicts your forecast error tomorrow

Evidence of dispersed private information

The Missing Piece: Conditional Moments

So far: unconditional correlations of forecasts, outcomes, and errors

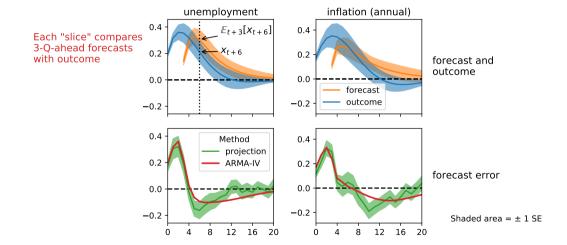
What we really want to know: conditional responses to the ups and downs of the business cycle

The Missing Piece: Conditional Moments

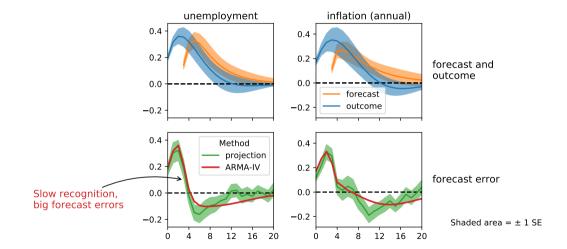
So far: unconditional correlations of forecasts, outcomes, and errors

What we really want to know: conditional responses to the ups and downs of the business cycle

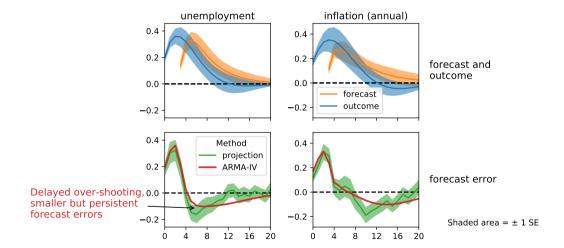
Solution: estimate IRFs of forecasts to shocks

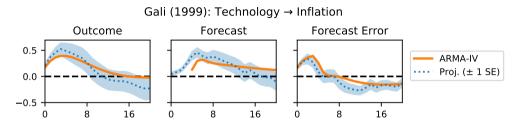

Shocks: usual suspects; or DSGE shocks; or "main BC shocks" (Angeletos, Collard & Dellas, 2020)

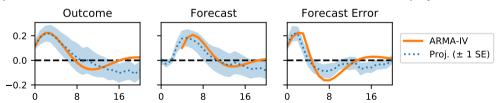
Estimation method: plain-vanilla linear projection; or big VARs; or ARMA-IV (novel approach) details


Moments of interest:

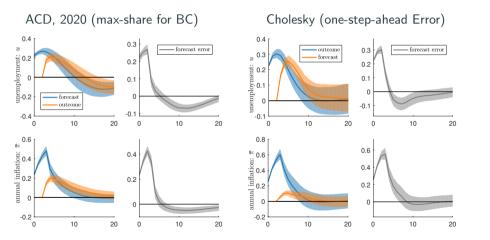
$$\left(\frac{\partial \mathsf{ForecastError}_{t+k}}{\partial \mathsf{BusinessCycleShock}_t}\right)_{k=0}^K = \mathsf{Pattern} \ \mathsf{of} \ \mathsf{mistakes}$$


Fact 3: Dynamic Over-Shooting in Response to Business Cycle Shocks


Fact 3: Dynamic Over-Shooting in Response to Business Cycle Shocks


Fact 3: Dynamic Over-Shooting in Response to Business Cycle Shocks

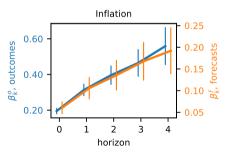
Fact 3 [Over-shooting]: Same Pattern with Other Identified Shocks



Justiniano, Primiceri, and Tambalotti (2010): Investment Shock → Unemployment

Fact 3 [Over-shooting]: Same Pattern in a Structural VAR

13-Variable Model: macro "usual suspects" + unemployment and inflation forecasts (SPF) (ISS)



Fact 3 [Over-shooting]: Over-persistence in the "Term Structure"

$$\bar{\mathbb{E}}_t[x_{t+k}] = \alpha_k + \beta_k^f \cdot \epsilon_t + \gamma' W_t + u_{t+k}$$
$$x_{t+k} = \alpha_k + \beta_k^o \cdot \epsilon_t + \gamma' W_t + u_{t+k}$$

Expectation from
$$t = 0$$

Reality from $t = 0$

Outline

The Facts

Facts Meet Theory (without/with GE)

Conclusion

Need to Combine Frictions to Explain Facts

	Theory	Fact 1	Fact 2	Fact 3
Information	Noisy common information	No	No*	No
	Noisy dispersed information	Yes	No*	No

Need to Combine Frictions to Explain Facts

	Theory	Fact 1	Fact 2	Fact 3
Noisy o	Noisy common information	No	No*	No
mormation	Noisy dispersed information	Yes	No*	No
Over-confidence or representative- ness heuristic Under-confidence or "timidness"	No	Maybe	No	
	Under-confidence or "timidness"	No	Maybe	No

Need to Combine Frictions to Explain Facts

	Theory	Fact 1	Fact 2	Fact 3
Information	Noisy common information	No	No*	No
	Noisy dispersed information	Yes	No*	No
Confidence	Over-confidence or representative- ness heuristic	No	Maybe	No
Under-confidence or "timidness"	No	Maybe	No	
Foresight	Over-extrapolation	No	Maybe	Yes
	Under-extrapolation or cognitive discounting or level-K	Yes	Maybe	No

Need to Combine Frictions to Explain Facts: A Winning Combination

	Theory	Fact 1	Fact 2	Fact 3
Information	Noisy common information	No	No*	No
Information	Noisy dispersed information	Yes	No*	No
Confidence	Over-confidence or representative- ness heuristic	No	Maybe	No
	Under-confidence or "timidness"	No	Maybe	No
Foresight	Over-extrapolation	No	Maybe	Yes
Under-	Under-extrapolation or cognitive discounting or level-K	Yes	Maybe	No

Familiar Ingredients

Euler equation/DIS

$$c_t = \mathbb{E}_t^*[c_{t+1}] - \varsigma r_t + \epsilon_t$$

Market clearing

$$c_t = y_t$$

Demand shock

$$\xi_t \equiv -\varsigma r_t + \epsilon_t = (1 - \rho \mathbb{L})\eta_t$$

Prices fully rigid (relax later on)

Familiar Ingredients

New Ingredients: noise + irrationality

Euler equation/DIS

$$c_t = \mathbb{E}_t^*[c_{t+1}] - \varsigma r_t + \epsilon_t$$

Market clearing

$$c_t = y_t$$

Demand shock

$$\xi_t \equiv -\varsigma r_t + \epsilon_t = (1 - \rho \mathbb{L})\eta_t$$

Prices fully rigid (relax later on)

Familiar Ingredients

New Ingredients: noise + irrationality

Euler equation/DIS

$$c_t = \mathbb{E}_t^*[c_{t+1}] - \varsigma r_t + \epsilon_t$$

Noisy signal

$$s_{i,t} = \xi_t + u_{i,t}/\sqrt{\tau}$$

Market clearing

$$c_t = y_t$$

Demand shock

$$\xi_t \equiv -\varsigma r_t + \epsilon_t = (1 - \rho \mathbb{L})\eta_t$$

Prices fully rigid (relax later on)

Familiar Ingredients

Euler equation/DIS

$$c_t = \mathbb{E}_t^*[c_{t+1}] - \varsigma r_t + \epsilon_t$$

Market clearing

$$c_t = y_t$$

Demand shock

$$\xi_t \equiv -\varsigma r_t + \epsilon_t = (1 - \rho \mathbb{L})\eta_t$$

Prices fully rigid (relax later on)

New Ingredients: noise + irrationality

Noisy signal

$$s_{i,t} = \xi_t + u_{i,t}/\sqrt{\tau}$$

Perception of signal

$$s_{i,t} = \xi_t + u_{i,t} / \sqrt{\hat{\tau}}$$

over- or

ınder-confidence?

Familiar Ingredients

Euler equation/DIS

$$c_t = \mathbb{E}_t^*[c_{t+1}] - \varsigma r_t + \epsilon_t$$

Market clearing

$$c_t = y_t$$

Demand shock

$$\xi_t \equiv -\varsigma r_t + \epsilon_t = (1 - \rho \mathbb{L})\eta_t$$

Prices fully rigid (relax later on)

New Ingredients: noise + irrationality

Noisy signal

$$s_{i,t} = \xi_t + u_{i,t}/\sqrt{\tau}$$

Perception of signal

$$s_{i,t} = \xi_t + u_{i,t} / \sqrt{\hat{r}}$$

Perception of demand process over- or under-extrapolation? $\xi_t = (1-\hat{\rho}\mathbb{L})\eta_t$

$$\xi_t = (1 - \hat{\rho} \mathbb{L}) \eta$$

Familiar Ingredients

Euler equation/DIS

$$c_t = \mathbb{E}_t^*[c_{t+1}] - \varsigma r_t + \epsilon_t$$

Market clearing

$$c_t = y_t$$

Demand shock

$$\xi_t \equiv -\varsigma r_t + \epsilon_t = (1 - \rho \mathbb{L})\eta_t$$

Prices fully rigid (relax later on)

New Ingredients: noise + irrationality

Noisy signal

$$s_{i,t} = \xi_t + u_{i,t}/\sqrt{\tau}$$

Perception of signal

$$s_{i,t} = \xi_t + u_{i,t} / \sqrt{\hat{\tau}}$$

$$\xi_t = (1 - {\color{red} \hat{
ho}} \mathbb{L}) \eta_t$$

Perception of demand process $\xi_t = (1-\hat{\rho}\mathbb{L})\eta_t$ over- or under-extrapolation? $\hat{\rho} < \rho \text{ in GF} \approx \text{cognitive}$

 $\hat{\rho} < \rho$ in GE \approx cognitive

discounting, level-K

Proposition: Mapping to Forecast Data

Closed-form expressions:

F1.
$$K_{CG} = \mathcal{K}_{CG}(\hat{\tau}, \rho, \hat{\rho}; mpc)$$

F2.
$$K_{\mathsf{BGMS}} = \mathcal{K}_{\mathsf{BGMS}}(\tau, \hat{\tau}, \rho, \hat{\rho}; \mathsf{mpc})$$

F3.
$$\left\{\frac{\partial \overline{\mathsf{Error}}_{t+k}}{\partial \eta_t}\right\}_{k \geq 1} = F(\hat{\tau}, \rho, \hat{\rho}; \mathsf{mpc})$$

Proposition: Equilibrium Outcomes

As-if representative, rational agent with

$$egin{aligned} c_t &= -r_t + \omega_f \mathbb{E}_t^*[c_{t+1}] + \omega_b c_{t-1} \ & \ (\omega_f, \omega_b) = \Omega(\hat{ au},
ho, \hat{
ho}, \mathsf{mpc}) \end{aligned}$$

$$(\omega_f,\omega_b)=\Omega(\hat{ au},
ho,\hat{
ho},\mathsf{mpc})$$

Proposition: Mapping to Forecast Data

Closed-form expressions:

F1.
$$K_{CG} = \mathcal{K}_{CG}(\hat{\tau}, \rho, \hat{\rho}; \mathbf{mpc})$$

F2.
$$K_{\mathsf{BGMS}} = \mathcal{K}_{\mathsf{BGMS}}(\tau, \hat{\tau}, \rho, \hat{\rho}; \mathsf{mpc})$$

F3.
$$\left\{\frac{\partial \overline{\mathsf{Error}}_{t+k}}{\partial \eta_t}\right\}_{k \geq 1} = F(\hat{\tau}, \rho, \hat{\rho}; \mathsf{mpc})$$

Proposition: Equilibrium Outcomes

As-if representative, rational agent with

$$c_t = -r_t + \omega_f \mathbb{E}_t^*[c_{t+1}] + \omega_b c_{t-1}$$

$$(\omega_f,\omega_b) = \Omega(\hat{ au},
ho,\hat{
ho}, ext{mpc})$$

• **General equilibrium** matters through mpc = slope of Keynesian cross

Proposition: Mapping to Forecast Data

Closed-form expressions:

F1.
$$K_{CG} = \mathcal{K}_{CG}(\hat{\tau}, \rho, \hat{\rho}; mpc)$$

F2.
$$K_{BGMS} = K_{BGMS}(\tau, \hat{\tau}, \rho, \hat{\rho}; mpc)$$

F3.
$$\left\{ \frac{\partial \overline{\mathsf{Error}}_{t+k}}{\partial \eta_t} \right\}_{k \geq 1} = F(\hat{\tau}, \rho, \hat{\rho}; \mathsf{mpc})$$

Proposition: Equilibrium Outcomes

As-if representative, rational agent with

$$c_t = -r_t + \omega_f \mathbb{E}_t^*[c_{t+1}] + \omega_b c_{t-1}$$

$$(\omega_f,\omega_b)=\Omega(\hat{ au},
ho,\hat{
ho},\mathsf{mpc})$$

- ullet General equilibrium matters through mpc = slope of Keynesian cross
- ullet Actual dispersion au only affects K_{BGMS} ; irrelevant for aggregate outcomes and main facts

Proposition: Mapping to Forecast Data

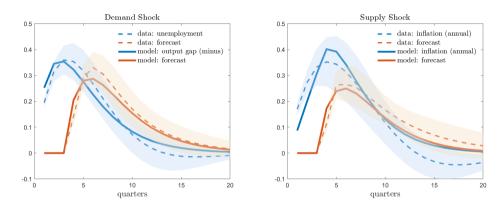
Closed-form expressions:

F1.
$$K_{CG} = \mathcal{K}_{CG}(\hat{\boldsymbol{\tau}}, \boldsymbol{\rho}, \hat{\boldsymbol{\rho}}; mpc)$$

F2.
$$K_{BGMS} = \mathcal{K}_{BGMS}(\tau, \hat{\tau}, \rho, \hat{\rho}; mpc)$$

F3.
$$\left\{ \frac{\partial \overline{\mathsf{Error}}_{t+k}}{\partial \eta_t} \right\}_{k \geq 1} = F(\hat{\pmb{\tau}}, \pmb{\rho}, \hat{\pmb{\rho}}; \mathsf{mpc})$$

Proposition: Equilibrium Outcomes

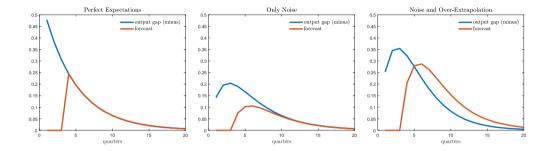

As-if representative, rational agent with

$$c_t = -r_t + \omega_f \mathbb{E}_t^*[c_{t+1}] + \omega_b c_{t-1}$$

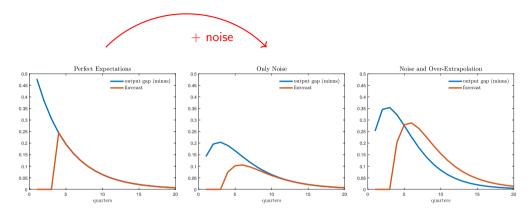
$$(\omega_f,\omega_b)=\Omega(\hat{m{ au}},m{
ho},\hat{m{
ho}},\mathsf{mpc})$$

- General equilibrium matters through mpc = slope of Keynesian cross
- Actual dispersion τ only affects K_{BGMS} ; irrelevant for aggregate outcomes and main facts
- **Key behavior** pinned down by $(\hat{\tau}, \rho, \hat{\rho})$
 - ullet Three parameters o lots of phenomena!
 - Facts 1 and 3 are key; Fact 2 less so

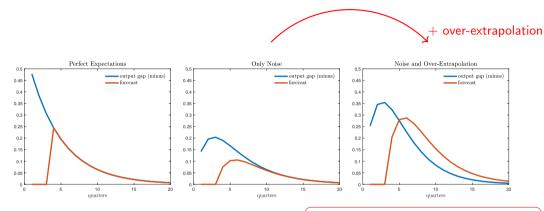
New Keynesian Model Calibrated to Facts 1 and 3



Good fit for demand shock, mediocre for supply shock


Right qualitative ingredients but no abundance of free parameters

Counterfactuals: Interaction of Forces Matters



Counterfactuals: Interaction of Forces Matters

Noise smooths and dampens IRF ("stickiness/inertia and myopia")

Counterfactuals: Interaction of Forces Matters

Noise smooths and dampens IRF ("stickiness/inertia and myopia")

Over-extrapolation increases present value and amplifies initial response ("amplification and momentum")

Outline

The Facts

Facts Meet Theory (without/with GE)

Conclusion

Conclusion

Contributions:

- Developed a simple framework to organize diverse theories and evidence
- Found little support for certain theories (FIRE, cognitive discounting, level-K)
- Argued that the "right" model combines dispersed info and over-extrapolation
- Clarified which moments of forecasts are most relevant in the theory
- Illustrated GE implications

Conclusion

Contributions:

- Developed a simple framework to organize diverse theories and evidence
- Found little support for certain theories (FIRE, cognitive discounting, level-K)
- Argued that the "right" model combines dispersed info and over-extrapolation
- Clarified which moments of forecasts are most relevant in the theory
- Illustrated GE implications

Limitations/Future Work:

- Context: "regular business cycles" vs. crises or specific policy experiments
- Forecast data: ideally we would like expectations of firms and consumers, and for the objects that matter the most for their choices

Facts 1 + 2: Showing Under-reaction and Dispersion

$$\mathsf{Error}_{i,t,k} = a - \mathsf{K}_{\mathsf{noise}} \cdot (\mathsf{Revision}_{i,t,k} - \mathsf{Revision}_{t,k}) + \mathsf{K}_{\mathsf{agg}} \cdot \mathsf{Revision}_{t,k} + u_{i,t,k}$$

	(1)	(2)	(3)	(4)
variable	Unemp	loyment	Infla	ition
sample	1968-2017	1984-2017	1968-2017	1984-2017
Revision _{i,t} - Revision _t (-K _{noise})	- <mark>0.166</mark> (0.043)	- <mark>0.162</mark> (0.053)	- <mark>0.346</mark> (0.042)	-0.410 (0.041)
$Revision_t(K_{agg})$	0.745 (0.173)	0.841 (0.210)	1.550 (0.278)	0.412 (0.180)
R ²	0.103	0.152	0.211	0.072
Observations	5383	3769	5147	3643

Notes: The observation is a forecaster by quarter between Q4-1968 and Q4-2017. The forecast horizon is 3 quarters. Standard errors are clustered two-way by forecaster ID and time period. Both errors and revisions are winsorized over the sample to restrict to 4 times the interquartile range away from the median. The data used for outcomes are first-release.

Estimation Strategy

Overall goal: allow flexibility for dynamics to be "shock-specific"

ARMA-IV: two-stage-least-squares estimate of

$$x_{t} = \alpha + \sum_{p=1}^{P} \gamma_{p} \cdot x_{t-p}^{\mathsf{IV}} + \sum_{k=1}^{K} \beta_{k} \cdot \epsilon_{t-k} + u_{t}$$
$$X_{t-1} = \eta + \mathcal{E}'_{t-1} \Theta + e_{t}$$

where $X_{t-1} \equiv (x_{t-p})_{p=1}^P$, $\mathcal{E}_{t-1} \equiv (\epsilon_{t-K-j})_{j=1}^J$ and $J \geq P$. Main specification: P = 3, J = 6.

Projection: OLS estimation at each horizon h of

$$x_{t+h} = \alpha_h + \beta_h \cdot \epsilon_t + \gamma' W_t + u_{t+h}$$

where the controls W_t are x_{t-1} and $\bar{\mathbb{E}}_{t-k-1}[x_{t-1}]$.

Estimation Strategy

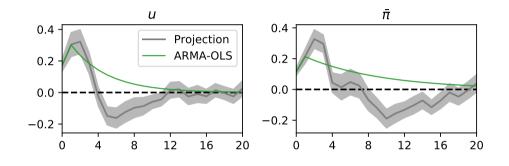


Figure 1: *

Forecast error estimation with projection method (grey) and ARMA-OLS(1,1) (green).

Variable List for SVAR

10 usual suspects: real GDP, real investment, real consumption, labor hours, the labor share, the Federal Funds Rate, labor productivity, and utilization-adjusted TFP

3 forecast variables: three-period-ahead unemployment forecast, three-period annual inflation forecast, one-period-ahead quarter-to-quarter inflation forecast

Table 1: Exogenously Set Parameters

Parameter	Description	Value
θ	Calvo prob	0.6
κ	Slope of NKPC	0.02
χ	Discount factor	0.99
mpc	MPC	0.3
ς	IES	1.0
ϕ	Monetary policy	1.5

Table 2: Calibrated Parameters

	$\hat{ ho}$	ρ	au
Demand shock	0.94	0.80	0.38
Supply shock	0.82	0.57	0.15