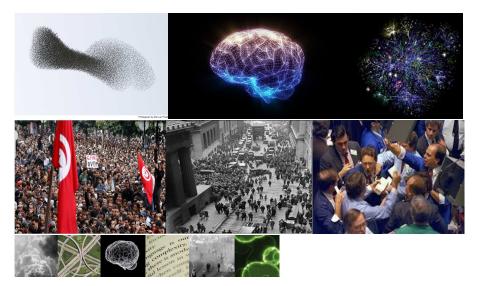
Behavioral & Experimental Macroeconomics and Policy Analysis: a Complex Systems Approach

Cars Hommes¹ University of Amsterdam & Bank of Canada

NBER Behavioral Macroeconomics Research Boot Camp Boston, 12 March 2020

Examples of Complex Systems

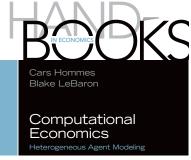


Some Characteristics of Complex Systems

- interactions of particles/heterogeneous agents at micro level create patterns and structure at aggregate level (emergent macro behaviour); More is different
- nonlinear and critical transitions:
 small changes at micro-level may lead to large and irreversible changes at macro level
- complex economic systems: "the particles can think"
 agents learn and adapt their behavior, thus changing the laws of
 motion of the system
 How to model (ir)rationality?
 How to model expectations in a complex environment?
 Behavioural Theory in this talk: learning of simple,
 optimal heuristics in a complex, unknown environment

This talk focuses on stylized 'few types' models

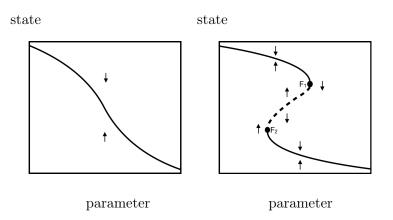
But large literature on detailed Agent-Based Models (ABMs)



VOLUME 4

NORTH-HOLLAND

Key Feature Complex Systems: Critical Transitions between Multiple Equilibria; Tipping points



Plan of the Talk

Hommes, JEL 2020, forthcoming

Focus of the survey: boundedly rational expectations in stylized complex systems.

Five behavioural take-aways

- Complex/nonlinear systems exhibit critical transitions and tipping points
- Simple forecasting heuristics that make us smart
 - ullet learning optimal homogeneous AR(1) rule
 - switching between heterogeneous anchor and adjustment rules
- Empirical validation of expectations through laboratory macro experiments
- Policy insight: how to **manage** complex economic systems?

Outline

- Introduction Complex Systems
- 2 Learning a simple AR(1) forecasting heuristic
- 3 Laboratory Experiments on Expectations
- 4 Behavioral Heuristics Switching Model
- 5 GA model with smart heuristic
- 6 Policy insight: managing complex systems
- Conclusions and Discussion

Behavioral Learning Equilibrium (BLE)

Hommes and Zhu, JET 2014

- simplest/parsimonious misspecification equilibrium
- for each endogenous variable in the economy perceived law of motion (PLM) ≡ AR1 process ≠ actual law of motion (ALM)
- consistency requirements: fixed point observable statistics
 - unconditional mean + autocorrelation of PLM \equiv unconditional mean + autocorrelation of ALM
- simple learning mechanism for parameters through sample autocorrelation learning to learn the optimal AR(1) heuristic

Simplest example: asset pricing model with AR(1) driving dividends

1-D linear model driven by autocorrelated shocks/fundamentals

 p_t : price

 y_t : driving dividends

$$\begin{cases}
p_t = \frac{1}{R} \left[p_{t+1}^e + a + \rho y_t \right] + \delta_t \\
y_t = a + \rho y_{t-1} + \varepsilon_t,
\end{cases}$$
(1)

 δ_t , ε_t : i.i.d. noise

no noise case: $\delta_t \equiv 0$

Asset pricing model with linear AR(1) forecasts

• Perceived law of motion (PLM) of agents:

AR(1) process

$$p_t = \alpha + \beta(p_{t-1} - \alpha) + v_t$$

- α is the mean; β is first-order autocorrelation
- Actual law of motion (ALM):

$$\begin{cases} p_t = \frac{1}{R} \left[\alpha + \beta^2 (p_{t-1} - \alpha) + a + \rho y_t \right] + \delta_t \\ y_t = a + \rho y_{t-1} + \varepsilon_t \end{cases}$$

Rational Expectations Equilibrium

$$p_t^* = \frac{aR}{(R-1)(R-\rho)} + \frac{\rho}{R-\rho} y_t.$$
 (3)

In special case when $\{y_t\}$ is i.i.d., i.e. $a = \bar{y}$ and $\rho = 0$, then

$$p_t^* = \frac{a}{R-1} = \frac{\bar{y}}{R-1}$$

first order ACF under rational expectations:

$$Corr(p_t^*, p_{t-1}^*) = \rho$$

Behavioral Learning Equilibrium (BLE)

Consistency requirements:

Mean and first order autocorrelation of price must satisfy

$$\bar{p} := \frac{\alpha(1-\beta^2) + \bar{y}}{R-\beta^2} = \alpha,$$

$$F(\beta) := \frac{\beta^2 + R\rho}{\rho\beta^2 + R} = \beta.$$

If $0 < \rho < 1$ and no noise $(\delta_t \equiv 0)$ then there exists a **unique** behavioural learning equilibrium (BLE) (α^*, β^*) , given by

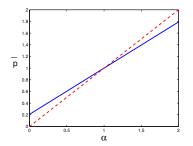
$$\begin{array}{ll} \alpha^* &= \frac{\bar{y}}{R-1} = \overline{p^*} & \text{(unbiased)} \\ \beta^* &> \rho & \text{(persistence \& volatility amplification)} \end{array}$$

no free parameters; optimal AR(1) rule

Unique BLE in asset pricing model; near unit root

no noise case

$$(\alpha^*, \beta^*) = (1.0, 0.997)$$



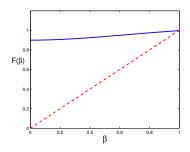


Figure: (a) α^* where mean $\bar{p} = \frac{\alpha(1-\beta^2)+\bar{y}}{R-\beta^2}$ intersects red diagonal α ; (b). β^* , where blue $F(\beta) = \frac{\beta^2+R\rho}{\rho\beta^2+R}$ intersects red diagonal; parameters $R=1.05, \ \rho=0.9, \ a=0.015$.

Sample Autocorrelation Learning (SAC-learning)

• SAC-learning: Hommes and Sorger (1998)

$$\alpha_t = \frac{1}{t+1} \sum_{i=0}^t p_i, \quad \beta_t = \frac{\sum_{i=0}^{t-1} (p_i - \alpha_t)(p_{i+1} - \alpha_t)}{\sum_{i=0}^t (p_i - \alpha_t)^2}$$

• PLM under SAC-learning:

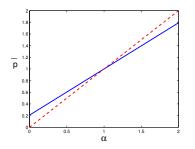
$$p_t = \alpha_{t-1} + \beta_{t-1}(p_{t-1} - \alpha_{t-1}) + v_t$$

• ALM under SAC-learning

$$\begin{cases} p_t = \frac{1}{R} \left[\alpha_{t-1} + \beta_{t-1}^2 (p_{t-1} - \alpha_{t-1}) + a + \rho y_t \right], \\ y_t = a + \rho y_{t-1} + \varepsilon_t. \end{cases}$$

unique BLE stable under SAC-learning

$$(\alpha^*, \beta^*) = (1.0, 0.997)$$



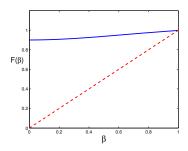
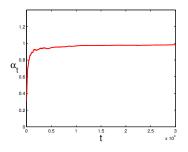


Figure: (a) α^* where mean $\bar{p} = \frac{\alpha(1-\beta^2)+\bar{y}}{R-\beta^2}$ intersects red diagonal α ; (b). β^* , where blue $F(\beta) = \frac{\beta^2+R\rho}{\rho\beta^2+R}$ intersects red diagonal; parameters R = 1.05, $\rho = 0.9$, a = 0.015.

Simulation of SAC-learning

$$\rho = 0.9;, \, \beta^* = 0.997$$

Learning to believe in near-unit root



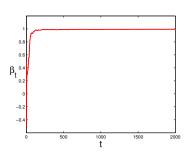
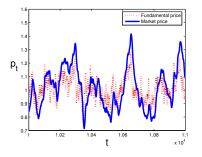


Figure: Time series of α_t and β_t under SAC learning.

• Converging slowly to (unique) stable SCEE $(\alpha^*, \beta^*) = (1.0, 0.997)$

Behavioral Learning Equilibrium

 $\rho = 0.9; \beta^* = 0.997$ (no noise case)



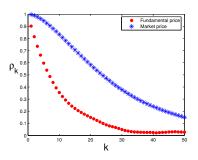
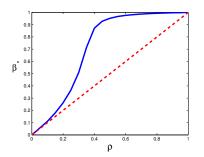


Figure: Time series of fundamental prices (red) and market prices (blue).

- Market prices fluctuate around fundamental prices
- Persistence & volatility amplification

Persistence & Volatility Amplification in Behavioral Learning Equilibrium

$$\rho = 0.9;, \beta^* = 0.997$$
 (no noise case)



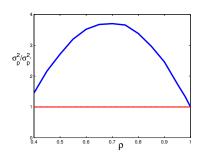
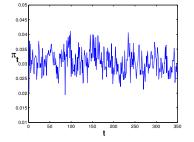


Figure: (a) SCEE β^* as a function of ρ ;

(b) ratio of variance of market prices and variance of RE fundamental prices as a function of ρ .

Behavioral Equilibria with low and high persistence

co-existence of stable equilibria $\beta^*=0.3066$ and $\beta^*=0.9961$ (with noise δ_t)



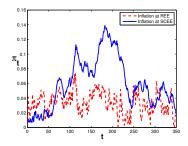


Figure: Convergence to low or high persistence equilibria β^* depending on initial states

Critical Transitions of Equilibria β^* depending on ρ

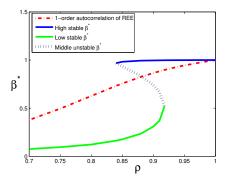


Figure: $\beta^*(1 \to 2 \to 3 \to 2 \to 1)$ as $\rho \uparrow$, where $\delta = 0.99, \gamma = 0.075, \frac{\sigma_u^2}{\sigma_z^2} = 0.1$.

High persistence BLE matches US inflation

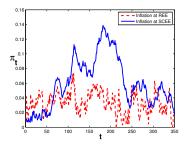


Figure: (a). Time series of inflation at stable SCEE (α^*, β^*) = (0.02, 0.995); (b). Empirical time series of inflation: Tallman (Federal Reserve Bank of Atlanta, ECONOMIC REVIEW, Third Quarter 2003).

Recent and ongoing work

Hommes, Mavromatis, Özden and Zhu, (2020)

- application and estimation of BLE in 3-Eq. NK-model optimal AR(1) rules for both inflation and output
- estimation of BLE in Smets-Wouters DSGE model
- Relevance: simple behavioral learning equilibria are important, because coordination of expectations may be more likely;

(different propagation mechanism of shocks than under RE)

• future extensions: optimal AR(2) rule

$$p_t^e = \alpha + \beta_1 p_{t-1} + \beta_2 (p_{t-1} - p_{t-2})$$

Is there trend-extrapolation and mean-reversion?

Why Macro Experiments?

- If a theory does not work in the lab, why would it work in reality?
- A macro experiment studies group behaviour in a (simple) complex system in the lab, where aggregate behaviour depends on all individual interactions and decisions
- A learning-to-forecast experiment studies individual expectations and aggregate macro behaviour in simple expectations feedback systems
- Main question: do agents coordinate on RE equilibrium or on behavioural learning outcome?

Lucas, JPE, 1986 on Learning and Experiments

"Recent theoretical work is making it increasingly clear that the **multiplicity** of equilibria ... can arise in a wide variety of situations involving sequential trading, in competitive as well as finite agent games. All but a few of these equilibria are, I believe, behaviorally uninteresting: They do not describe behavior that collections of adaptively behaving people would ever hit on. I think an appropriate stability theory can be useful in weeding out these uninteresting equilibria ... But to be useful, stability theory must be more than simply a fancy way of saying that one does not want to think about certain equilibria. I prefer to view it as an **experimentally testable** hypothesis, as a special instance of the adaptive laws that we believe govern all human behavior."

Positive versus Negative Feedback Experiments

Heemeijer et al. (JEDC 2009); Bao et al. (JEDC 2012)

• negative feedback (strategic substitute environment)

$$p_t = 60 - \frac{20}{21} \left[\sum_{h=1}^{6} \frac{1}{6} p_{ht}^e \right] - 60 + \epsilon_t$$

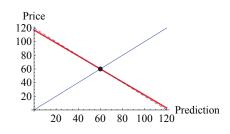
• positive feedback (strategic complementarity environment)

$$p_t = 60 + \frac{20}{21} \left[\sum_{h=1}^{6} \frac{1}{6} p_{ht}^e - 60 \right] + \epsilon_t$$

- common feature: same RE equilibrium 60
- only difference: sign in the slope of linear map +0.95 vs -0.95

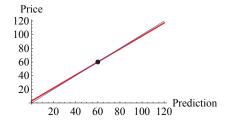
Feedback Mappings in LtFE

negative feedback



$$p_t = 60 - \frac{20}{21} \left(\overline{p_t^e} - 60 \right) + \varepsilon_t$$

positive feedback



$$p_t = 60 + \frac{20}{21} \left(\overline{p_t^e} - 60 \right) + \varepsilon_t$$

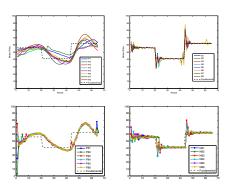
Concern with macroeconomic theory:

full information rational expectations ignores almost self-fulfilling equilibria in (strong) positive feedback systems

Positive vs Negative Feedback; Large Shocks

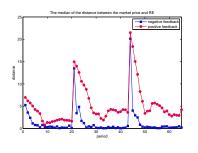
Bao, Hommes, Sonnemans, Tuinstra, JEDC 2012

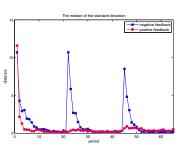
positive FB (8 groups) coordination failures negative FB (8 groups) coordination on RE



group 8, 6 individuals

Positive/Negative Feedback; Large Shocks





positive feedback: quick coordination on 'wrong' price negative feedback: slower coordination on correct RE price

Outline

- Introduction Complex Systems
- \bigcirc Learning a simple AR(1) forecasting heuristic
- 3 Laboratory Experiments on Expectations
- 4 Behavioral Heuristics Switching Model
- 5 GA model with smart heuristic
- 6 Policy insight: managing complex systems
- Conclusions and Discussion

Heuristics Switching Model

Brock and Hommes, ECMA 1997; Anufriev and Hommes, AEJ:Micro 2012

- agents choose from a number of simple forecasting heuristics
- performance based reinforcement learning: agents evaluate the **performances** of all heuristics, and tend to **switch** to more successful rules;

fractions of belief types are gradually updated in each period: (discrete choice model with asynchronous updating)

$$n_{ht} = \delta n_{h,t-1} + (1 - \delta) \frac{e^{\beta U_{h,t-1}}}{Z_{t-1}}$$

where Z_{t-1} is normalization factor.

- U_{ht} fitness measure (e.g. utility, forecasting errors, etc.)
- β is intensity of choice.
- δ asynchronous updating

Heuristic Switching Model: four forecasting heuristics Anufriev and Hommes, AEJ:Micro 2012

• adaptive expectations rule, [w = 0.65]

ADA
$$p_{1,t+1}^e = 0.65 p_{t-1} + 0.35 p_{1,t}^e$$

• weak trend-following rule, $[\gamma = 0.4]$

WTR
$$p_{2,t+1}^e = p_{t-1} + 0.4 (p_{t-1} - p_{t-2})$$

• strong trend-following rule, $[\gamma = 1.3]$

STR
$$p_{3,t+1}^e = p_{t-1} + 1.3 (p_{t-1} - p_{t-2})$$

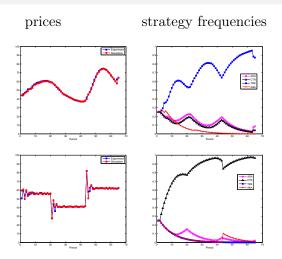
• anchoring and adjustment heuristic with learnable anchor

LAA
$$p_{4,t+1}^e = \frac{1}{2} (p_{t-1}^{av} + p_{t-1}) + (p_{t-1} - p_{t-2})$$

Problem: but where do these 4 rules and their coefficients come from?

Positive vs Negative Feedback; Large Shocks

Heuristics Switching Model Simulations



positive feedback: trend-followers amplify fluctuations

Outline

- 1 Introduction Complex Systems
- \bigcirc Learning a simple AR(1) forecasting heuristic
- 3 Laboratory Experiments on Expectations
- 4 Behavioral Heuristics Switching Model
- **5** GA model with smart heuristic
- 6 Policy insight: managing complex systems
- Conclusions and Discussion

Learning First Order Forecasting Heuristic

Simple heuristics that make us smart (Anufriev et al., 2019)

Agents learn two **parameters** of linear heuristic?

• Agent i uses a first order forecasting heuristic h to predict p_t : anchor and adjustment rule

$$p_{i,h,t}^e = \alpha_{i,h,t}p_{t-1} + (1 - \alpha_{i,h,t})p_{i,t-1}^e + \beta_{i,h,t}(p_{t-1} - p_{t-2}).$$

- The rule h requires two parameters: an anchor $\alpha_{i,h,t}$ and a trend $\beta_{i,h,t}$
- General constraint: $\alpha \in [0, 1], \beta \in [-1.1, 1.1].$
- The rule generalizes popular HSM heuristics: naive, adaptive expectations and trend extrapolation.
- **RE**: $\alpha = 0$, $\beta = 0$, $p_{i,t-1}^e = p^f$.

Learning by GA's through simple heuristics

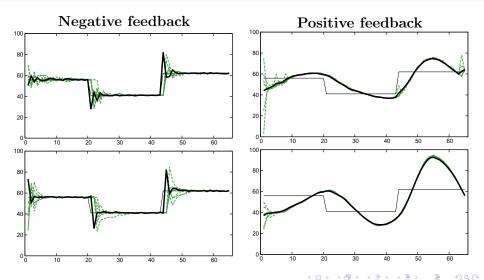
Simple heuristics that make us smart (Anufriev et al., 2019)

- Every agent has a list of H = 20 different heuristics (α, β) .
- When agent i learns the last realized price p_{t-1} , she tries to re-optimize the rules with GA evolutionary operators:
 - sample (with replacement) 20 new heuristics from the old depending on their hypothetical forecasting performance (reproduction); (survival of the fittest)
 - **2 mutation:** with some small probability "mutate" them (modify (α, β) of each heuristic);
 - **3 election:** compare the new and the old heuristics in terms of their hypothetical forecasting performance pick the better ones.

Process mimics natural selection: worse forecasting heuristics are likely to be *replaced* by better; *inefficient experimentation* screened out.

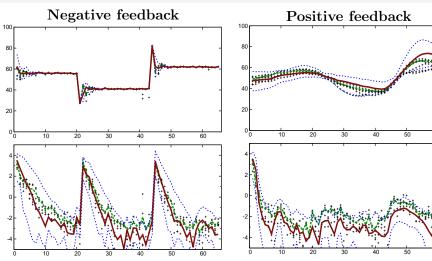
Remark: agents learn independently.

Lab experiment (top) and 65-period simulations (bottom) experimental data Bao et al. (2012)



65-period ahead Monte Carlo simulations (1000)

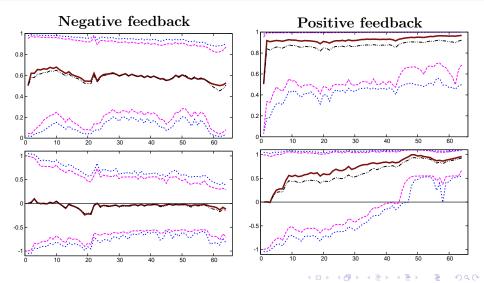
experimental data Bao et al. (2012)



SD individual predictions

SD individual predictions

Anchor α_t (top) and trend β_t (bottom) parameters experimental data Bao et al. (2012)



Average Heuristics

Under **negative feedback** agents learn to use **adaptive expectations**:

$$p_{i,t}^e \approx 0.5p_{t-1} + 0.5p_{i,t-1}^e$$

Under **positive feedback** agents learn to become **trend-follower**:

$$p_{i,t}^e \approx 0.95p_{t-1} + 0.05p_{i,t-1}^e + 0.9(p_{t-1} - p_{t-2})$$

Outline

- 1 Introduction Complex Systems
- \bigcirc Learning a simple AR(1) forecasting heuristic
- 3 Laboratory Experiments on Expectations
- 4 Behavioral Heuristics Switching Model
- 5 GA model with smart heuristic
- 6 Policy insight: managing complex systems
- Conclusions and Discussion

Housing market experiment with **positive** versus **negative feedback**

Bao and Hommes, 2019

$$p_t = \frac{1}{1+r}[(1-c)\overline{p}_{t+1}^e + \overline{y}] + \nu_t, \qquad \lambda = \frac{1-c}{1+r}$$

Behavioural intuition: an increase of housing supply (parameter c) adds negative feedback to the system, weakening the overall positive feedback (through speculators) making the system more stable

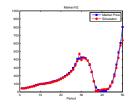
Managing Positive Feedback through Negative FB Policy

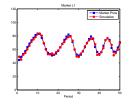
Housing Market Experiments, Bao and Hommes, 2019

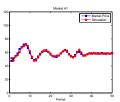
no FB policy large bubble

weak negative no FB policy FB policy large bubble oscillations
$$(\lambda = 0.95; r = 5\%)$$
 $(\lambda = 0.85; r = 18\%)$

strong negative
FB policy
stable
$$(\lambda = 0.71; r = 40\%)$$



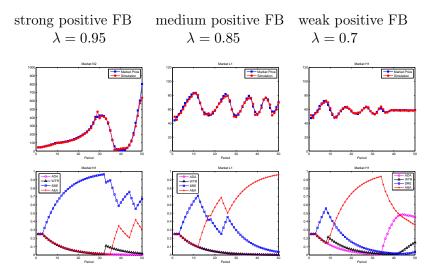




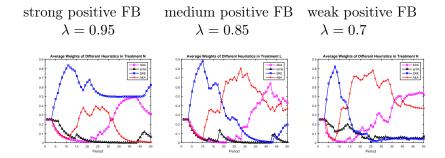
adding negative FB stabilizes complex positive FB system

Note: policy under RE: do not interfere

Simulated 1-period ahead forecasts HSM



Average simulated 1-period ahead forecasts HSM



Policy Implication: negative FB policies that weaken the overall positive feedback may **stabilize** markets by preventing coordination on trend-following behaviour

Outline

- 1 Introduction Complex Systems
- \bigcirc Learning a simple AR(1) forecasting heuristic
- 3 Laboratory Experiments on Expectations
- 4 Behavioral Heuristics Switching Model
- 6 GA model with smart heuristic
- 6 Policy insight: managing complex systems
- Conclusions and Discussion

Five Behavioral Take-aways

- complex systems (non-linearity, heterogeneity, etc.) exhibit critical transitions between multiple equilibria
- adaptive learning of optimal AR(1) rule generates **near-unit root** and **excess volatility** and **persistence amplification**
- parsimonious **heterogeneous expectations** switching model based on relative performance
- heuristics switching between anchor and adjustment rules fits experimental & empirical data well
- 'negative feedback' policies can affect the self-organisation process, prevent coordination on trend-following behaviour and stabilize complex markets

Open Questions

- optimal AR(1) versus optimal AR(2) short-run **trend-extrapolation** versus average **mean-reversion** Which data are better explained by learning AR(2)?
- homogeneous versus heterogeneous expectations homogeneous AR(2) versus heterogeneous switching between mean-reverting rule and trend-extrapolating rule Are bubbles and crashes better explained by heterogeneous agents model?
- optimal policy under simple behavioral forecasting heuristics

Thank you very much!

Good luck with your thesis on behavioral macro

Open Questions

- optimal AR(1) versus optimal AR(2) short-run **trend-extrapolation** versus average **mean-reversion** Which data are better explained by learning AR(2)?
- homogeneous versus heterogeneous expectations homogeneous AR(2) versus heterogeneous switching between mean-reverting rule and trend-extrapolating rule Are bubbles and crashes better explained by heterogeneous agents model?
- optimal policy under simple behavioral forecasting heuristics

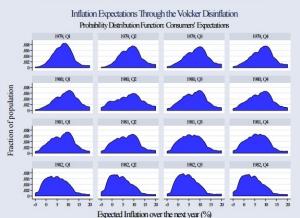
Thank you very much!

Good luck with your thesis on behavioral macro

Survey of Professional Forecasters: bimodal distribution

Mankiw, Reis and Wolfers, 2003

Figure 12: The Volcker Disinflation: The Evolution of Inflation Expectations in the Michigan Survey



NK model with fundamentalists versus naive

Cornea-Madeira, Hommes and Massaro, JBES 2017

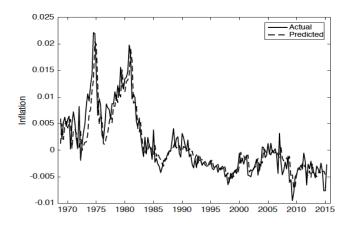
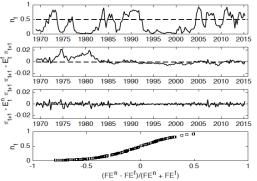


Figure: Actual vs. predicted inflation

NK model with fundamentalists versus naive

Cornea-Madeira, Hommes and Massaro, JBES 2017

Evolution of weight of fundamentalists $n_{f,t}$



average more backward looking agents

Mean	0.353
Median	0.276
Maximum	0.924
Minimum	0.019
Std. Dev.	0.282
Skewness	0.418
Kurtosis	1.720
Auto-corr. $Q(-1)$	0.887

Top panel: Time series of the fraction of fundamentalists $n_{f,t}$ Second panel: Distance between actual and fundamental inflation Third panel: Distance between inflation and naive forecast **Bottom:** Scatter plot $n_{f,t}$ vs relative forecast error naive rule

NK model with fundamentalists versus naive expectations estimated on survey data professional forecasters

Cornea-Madeira, Hommes and Massaro, JBES 2017

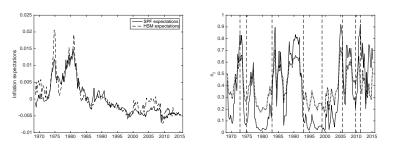
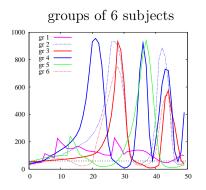


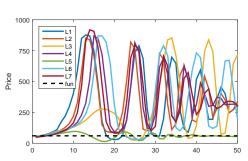
Figure: SPF forecasts vs. HSM expectations and estimated structural breaks with fractions of fundamentalists for inflation and SPF. **SPF switch slower** than inflation expectations

What happens without fundamental robot traders?

Hommes, Sonnemans, Tuinstra, vd Velden, JEBO 2008; Bao et al, 2016



groups of 25-30 subjects



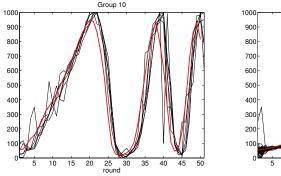
Does positive feedback cause instability?

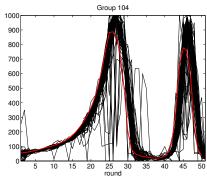
Coordination on bubbles in even larger groups

IBSEN Horizon 2020; Hommes, Kopanyi-Peuker, Sonnemans, 2018

group of 6 subjects

group of 100 subjects





Are bubbles caused by (strong) positive feedback?

Switching model estimated on housing markets Bolt et al., JEDC 2019

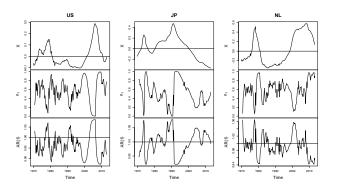


Figure: **Top panels**: relative house price deviations X_t from fundamentals; **Middle panels**: time-varying fractions of mean-reverting fundamentalists; **Bottom**: estimated market sentiment as time-varying AR(1) coefficient.