Social Connections, Strategic Referrals, and On-the-Job Search

Ji-Woong Moon The Pennsylvania State University

March 14, 2019

Introduction

Empirical Motivation

Model

Quantitative Analysis

Introduction

Referral is prevalent in labor market

(b) Use network in the job search

Figure: Referral usage in the labor market¹

- $\blacktriangleright~36\%$ of workers are referred to the current job
 - online + career center + help ads + professional registers = 34%
- $\blacktriangleright~51\%$ of workers use connections to find a new job

¹Source: Survey of Consumer Expectations,©2013-2018 Federal Reserve Bank of New York (FRBNY)

Motivation

Distinctive features of referrals from other job search methods

- Convey private information
 - Different match quality and wage
- ▶ Offers arrive unevenly
 - Inequality and amplification

Motivation

Distinctive features of referrals from other job search methods

- Convey private information
 - Different match quality and wage
- ▶ Offers arrive unevenly
 - Inequality and amplification

Two missing points in previous literature

- ▶ Strategic incentive of a referrer
- ▶ Partial equilibrium: exogenous offer, only unemployed search

Motivation

Distinctive features of referrals from other job search methods

- Convey private information
 - Different match quality and wage
- ▶ Offers arrive unevenly
 - Inequality and amplification

Two missing points in previous literature

- ▶ Strategic incentive of a referrer
- ▶ Partial equilibrium: exogenous offer, only unemployed search

This paper studies a search model with

- Endogenous information transmission through referral
- ▶ On-the-job search/Endogenous wage offer/Business cycles

Conveying private information rationalizes referral wage premium

Conveying private information rationalizes referral wage premium

- A referrer responds to incentive \Rightarrow Information distortion
 - ▶ Why wage premium? How about match quality?

Conveying private information rationalizes referral wage premium

- A referrer responds to incentive \Rightarrow Information distortion
 - ▶ Why wage premium? How about match quality?

To what extent information is transmitted?

- ▶ Endogenous referral wage premium and match quality
- ▶ Payoffs (e.g, wage) is endogenous in the labor market \rightarrow Need a GE

Conveying private information rationalizes referral wage premium

- A referrer responds to incentive \Rightarrow Information distortion
 - ▶ Why wage premium? How about match quality?

To what extent information is transmitted?

- ▶ Endogenous referral wage premium and match quality
- ▶ Payoffs (e.g, wage) is endogenous in the labor market \rightarrow Need a GE

On-the-job search is essential for understanding referral

- ▶ (Data) the effectiveness of referral is different for the employed/unemployed
- ▶ (Theory) Endogenous wage dispersion / heterogeneous effect of referral

Empirical observation motivating the theory

Referral usage patterns and wage premium

Empirical observation motivating the theory

Referral usage patterns and wage premium

Introduce an on-the-job search model with strategic referral

- ▶ Directed search in both formal and referral markets + Match-specific shock
- ▶ Formal: a signal / Referral: a signal (exogenous) + a message (endogenous)

Empirical observation motivating the theory

Referral usage patterns and wage premium

Introduce an on-the-job search model with strategic referral

- ▶ Directed search in both formal and referral markets + Match-specific shock
- ▶ Formal: a signal / Referral: a signal (exogenous) + a message (endogenous)

Qualitative properties of the equilibrium

- Conditions under which referral leads to higher wages and match qualities
- Efficiency / Comparative statics on the signal precision

Empirical observation motivating the theory

Referral usage patterns and wage premium

Introduce an on-the-job search model with strategic referral

- ▶ Directed search in both formal and referral markets + Match-specific shock
- ▶ Formal: a signal / Referral: a signal (exogenous) + a message (endogenous)

Qualitative properties of the equilibrium

- Conditions under which referral leads to higher wages and match qualities
- ▶ Efficiency / Comparative statics on the signal precision

Quantitative analysis with business cycles

Previous literature

Empirical papers identifying the effects of social connections

 Marmaros & Sacerdote (2002), Cingaro & Rosolia (2012), Kramarz & Skans (2014), Burks et al. (2015), Schmutte (2015), Dustmann et al. (2016) etc.

Theoretical papers study non-strategic information transmission

 Montgomery (1991, 1994), Mortensen & Vishwanath (1994), Calvo-Armengol & Jackson (2004), Galenianos (2013, 2014), Arbex, O'Dea & Wiczer (2018), Chen (2018)

Strategic behavior of referrers

- ▶ Field experiment: Bandiera et al. (2009), Beaman & Magruder (2012)
- ▶ Empirical approach: Pinkston (2012)

Empirical Motivation

Data

Source: Survey of Consumer Expectations,©2013-2018 Federal Reserve Bank of New York (FRBNY).

- ▶ Demographics (age, education, gender), occupation, etc.
- ▶ Job search method for the current job / previous job information

Definition of a referred worker

- ▶ Q) "How did you learn about the current job?"
 - Referred by a friend or relative
 - ▶ Referred by a former co-worker, supervisor, business associate
 - Referred by a current employee at the company
- ▶ Example of other answers
 - Found through the employers website; Found through an employment agency; Found through a school/university/government employment or career center; etc.

Referral and Wage Offer

Figure: Job search method and outcome

▶ Referral is on average productive

Job Search Methods and Labor Status

Figure: Referral Usage and Outcome

▶ Relatively more efficient for the full-time workers

Referral and Wage

	(1)	(2)	(3)	(4)	(5)	(6)	
Referral	$.1992^{**}$.2331**	.0575	.1231*	$.1271^{\dagger}$	0207	
	(2.43)	(2.64)	(0.32)	(2.05)	(1.85)	(-0.18)	
N	362	266	96	630	472	158	
Sample	All, $t \leq 1$	${\rm EE}, t \leq 1$	${\rm UE},t\leq 1$	$\mathrm{All}{,}t\leq 2$	${\rm EE}, t \leq 2$	${\rm UE}, t \leq 2$	
$p^{\dagger} < .1, p^* < .05, p^{**} < .01, p^{***} < .001$							

- ▶ Controls: age, gender, education, part-time, year, previous wage
- ▶ On average, the referred earn higher wage
- ▶ Effect exists only for the employed
- Results fit with endogenous information provision

Model

Continuous and infinite time, discount rate r>0

Workers

- ▶ Homogeneous, risk-neutral, home production b > 0
- ▶ Labor market status, $\omega \in \{u, e\}$
- Social connection, $n \in \{0, 1\}$
- ▶ *n* follows a markov process with $Tr(n'|n, \omega) \equiv \psi_n^{\omega}$

- ▶ All workers search for a job by directly applying (without referral)
 - Rate of search λ_u, λ_e
- ▶ A socially connected worker can apply to a referral position at rate λ_f
- ▶ A vacancy is either a direct applying position or a referral position
 - Workers can simultaneously search in both markets

Productions

- ▶ Productions take place by a pair of one employer and one worker
- Productivity $y + \epsilon \phi$
 - y: Aggregate productivity
 - ▶ ϕ : Match-specific productivity, where $\phi \sim F(\cdot)$ with F(0) = 0, F(1) = 1
- $\blacktriangleright~\phi$ is independent across time and matches
- Exogenous separation rate $\delta > 0$

Match Creation

- Submarkets are indexed by (w, n) and the position type
 - \blacktriangleright w is fixed wage rate and commitment
- ▶ $\theta \equiv v/u$: Market tightness
 - $p(\theta)$: Meeting probability for a worker
 - $q(\theta)$: Meeting probability for a vacancy
- ▶ Before hiring decision, a signal $s \sim F_s(\cdot | \phi)$ (interview) is realized

$$F_s(x|\phi) = \begin{cases} (1-\tau)F(x), & \text{if } x < \phi\\ (1-\tau)F(x) + \tau, & \text{if } x \ge \phi \end{cases}, \quad \tau \in (0,1) : \text{Precision of signal}$$

i.e, $s=\phi$ w.p $\tau,$ and $s\sim F\perp\phi$ w.p $1-\tau$

• Free entry with flow vacancy cost k > 0

Match Creation

 \blacktriangleright A referred worker brings a message m from a referrer

- ▶ The expected productivity before hiring
 - A referred: $E(\phi|s, m)$
 - A non-referred: $E(\phi|s)$
- When hiring through a referral, referral bonus z > 0 is paid
 - ▶ Fixed cost z for a non-referral position \rightarrow equally costly
 - Focus on the case when $z \to 0$
- ▶ z is constant \rightarrow incentive misalignment
 - Intuition can be generalized to $z(\phi)$ case

Timing of Events

1. A referrer observes ϕ and sends $m \in \mathcal{P}[0, 1]$ to an employer before the signal s is realized $\rightarrow \sigma(\phi, w)$

 $\phi \in m$ (i.e, m is truthful), m = cl(m)

- 2. The employer observes both m and s, and forms a belief $\mu(\phi|m, s, w)$
- 3. The employer decides whether to hire: $h(m, s, w) \in \{0, 1\}$

Examples of the m

- Transparent/Uninformative: $m = \{\phi\}, m = [0, 1]$
- ▶ **Pass/Fail**: $m = [\underline{\phi}, 1]$ if $\phi \ge \underline{\phi}, m = \{\phi\}$ if $\phi < \underline{\phi}$

Equilibrium Concept

A sequential equilibrium of the game

- 1. $\sigma(\phi, w)$ is optimal given μ, h
- 2. $\mu(\phi|m,s,w)$ is consistent with σ (off-the-path: prob. 1 on $\min m)$
- 3. h(m, s, w) = 1 iff the value of the job is weakly positive under b
- A referrer preferred equilibrium (σ^*,μ^*,h^*)
 - ▶ (Referrer Optimality) For all w, if (σ, μ, h) satisfies 1 3,

$$\underbrace{\int_{0}^{1}\int_{0}^{1}h^{*}(\sigma^{*}(\phi,w),s,w)dF_{s}(s|\phi)dF(\phi)}_{en\ ante\ hiring\ probability\ in\ submarket\ w} \\ \geq \int_{0}^{1}\int_{0}^{1}h(\sigma(\phi,w),s,w)dF_{s}(s|\phi)dF(\phi)$$

Justification

Value Function

The value of employed

$$rV(w,1) = w + \lambda_f R_{\rho}(w) + \lambda_e R(w,1) + \delta(U(1) - V) + \psi_1^e(V(w,1) - V(w,0)) + \Pi$$

where

$$R_{\rho}(w) = \max_{w'} \left[p(\theta_{\rho}(w')) H_{\rho}(w') (V(w', 1) - V(w, 1)) \right]$$
$$H_{\rho}(w) = \int_{0}^{1} \int_{0}^{1} h(\sigma(\phi, w), s, w) dF_{s}(s|\phi) dF(\phi)$$

For a non-referred worker, the hiring probability is

$$H(w) = \int_{0}^{1} \int_{0}^{1} h(s, w) dF_{s}(s|\phi) dF(\phi)$$

Market Tightness, Free Entry Condition

The value of a filled-position

$$\begin{aligned} r^{*}(w,1)J(w,1,\phi) &= y + \epsilon \phi - w + \psi_{1}J(w,0,\phi) \\ r^{*}(w,1) &= r + \delta + \lambda_{e}p^{*}H^{*} + \lambda_{f}p^{*}_{\rho}H^{*}_{\rho} \end{aligned}$$

Expected value of a filled-position given s in the formal market

$$r^{*}(w,1)\underbrace{E(J(w,1,\phi)|s)}_{=J(w,1,E(\phi|s))} = y + \epsilon E(\phi|s) - w + \psi_{d}E(J(w,0,\phi)|s)$$

where $E(\phi|s) = \tau s + (1 - \tau)E(\phi)$

Market tightness function $\theta(w, n)$

$$k \geq q(\theta) \left[\int_0^1 h(s,w) \left(J(w,1,E(\tilde{\phi}|s)) - z \right) dF_s(s|\phi) dF(\phi) \right]$$

= $q(\theta) \left[\int_0^1 \left(J(w,1,E(\tilde{\phi}|s)) - z \right)^+ dF_s(s|\phi) dF(\phi) \right]$

Market Tightness, Free Entry Condition

Expected value of a position given $s, m: J(w, 1, E(\phi|m, s, w))$

Example: $m = [m_l, m_h]$ and $\mu|_m \propto F|_m$,

$$\begin{split} E(\phi|m,s,w) &= I_{\{s\notin m\}} \cdot \bar{m}(m,w) + I_{\{s\in m\}} \cdot \left(\tau's + (1-\tau')\bar{m}(m,w)\right) \\ \tau' &= \frac{\tau}{(F(m_h) - F(m_l))(1-\tau) + \tau} \\ \bar{m}(m,w) &= \frac{1}{F(m_h) - F(m_l)} \int_{m_l}^{m_h} \phi dF(\phi) \end{split}$$

Market tightness function $\theta_{\rho}(w)$

$$k \geq q(\theta) \left[\int_0^1 \left(J(w, 1, E(\tilde{\phi} | \sigma(\phi, w), s, w)) - z \right)^+ dF_s(s | \phi) dF(\phi) \right]$$

A steady-state equilibrium consists of value functions (V_U, V, J) , market tightness (θ, θ_{ρ}) , sequential equilibrium of the referral game (σ, b, h) , aggregate variable Π , and aggregate distribution $G_{w,\omega,n}$ such that

- (V_U, V, J) are proper value functions
- (θ, θ_{ρ}) satisfies the free entry
- ▶ (σ, b, h) is the referrer preferred equilibrium
- Π is consistent with $G_{w,\omega,n}$
- $G_{w,\omega,n}$ is a steady-state distribution.

Candidate Equilibrium

For each w, there exists $\phi^*(w)$ such that

$$h(m, s, w) = 1 \iff E(\phi|m, s, w) \ge \phi^*(w)$$

A conjecture of the referrer preferred equilibrium

$$\sigma(\phi, w) = \begin{cases} [\underline{\phi}, 1], & \text{if } \phi \ge \underline{\phi} \\ \{\phi\}, & \text{otherwise} \end{cases}, \quad \text{where} \quad E(\phi|[\underline{\phi}, 1], \underline{\phi}, w) = \phi^*(w)$$

Intuition

- ▶ Whenever $\phi \in [\phi, 1], \forall s, h(\phi, s, w) = 1 \rightarrow No$ incentive to deviate
- ▶ Better than revealing as $\phi < \phi^*$
- ► As $h([\phi \epsilon, 1], \phi \epsilon, w) = 0$, thus $\phi > \phi^*$ deviates to $\{\phi\}$ if pooling $[\phi \epsilon, 1]$

Proposition

The referrer optimal strategy $\sigma(\phi, w)$ is 'pass/fail' strategy. The threshold level $\phi(w)$ is increasing in w. $\phi(w) \to \phi^*(w)$ as $\tau \to 1$.

The proposition is a corollary of the following

▶ In any sequential equilibrium,

: $\phi \geq \phi^*(w)$ is hired, and $\phi < \phi(w)$ is not hired

Referrer Optimal Message

Figure: Expected productivity under pooling and revealing

- ▶ Pool: $E(\phi|m = [x, 1], x, w) = \min_{s} E(\phi|m = [x, 1], s, w)$
- \blacktriangleright Reveal: x

Discussions

Why not revealing?

- m affects the payoff only through h, not directly through b
- ▶ h is bounded by 1, thus no incentive to deviate if h = 1 for all s
- ► If payoff is directly increasing in the posterior belief → always incentive to reval high quality

Pooling is robust to any *ex post* incentive provision $z(\phi)$

 \blacktriangleright It can depend on any $ex\ post$ event, such as job separation

Pooling is the threshold type under mild conditions

• Firms prefer higher ϕ and $z(\phi)$ is non-decreasing

Probability of Hiring

Figure: Hiring probability given ϕ realization

►
$$s^* = \frac{\phi^* - (1 - \tau)E(\phi)}{\tau} > \phi^*$$
: threshold signal

▶ Average match quality = integral of hiring probability

Match Creation Probability and Match Quality

Proposition

Whenever $\underline{\phi}(w) > 0$, conditional on a meeting, the match creation rate is higher in the referral market

$$1 - F(\underline{\phi}) > 1 - F(s^*)$$

and the ex ante expected value of a job are higher in the referral market

$$(1 - F(\underline{\phi})) \times \left(J(\cdot, \cdot, E(\phi|\phi \ge \underline{\phi})) - z\right) >$$

$$(1 - F(s^*)) \times \left(J(\cdot, \cdot, \tau E(\phi|\phi \ge s^*) + (1 - \tau)E(\phi)) - z\right)$$

Under some conditions on F, the average match quality conditional on a hiring is strictly higher in the referral market.

Match Quality

When w is above a threshold, as ex ante value of a job is higher,

- Market is tighter in the referral market, i.e, $\theta_{\rho}(w) > \theta(w, 1)$
- ▶ Job-finding rate is higher in the referral market

Some notes

- ▶ A worker is likely to search a higher wege in the referral market
- The *ex post* match quality becomes higher in the referral market as w increases under any F

Efficiency

Efficient allocation: (θ_e, ϕ_e) that maximizes

$$\max_{\theta,\phi} p(\theta)(1 - F(\phi)), \quad \text{s.t} \quad q(\theta)(1 - F(\phi)) \left(J(w, 1, E(\tilde{\phi} | \tilde{\phi} \ge \phi)) - z \right) = k$$

• Taking the separation rates p^*, p^*_{ρ} as given

In general, ϕ_e and ϕ are different

- $\blacktriangleright ~\phi_e$ depends on the matching function p
- $\blacktriangleright \ \phi$ depends on τ

Efficiency: A special case $p(\theta) = \theta^{\alpha}$

Figure: $\phi_e(\text{Red})$ and $\phi(\text{Blue})$ as a function of ϕ^*

▶ Pooling is more efficient than full-revealing if $\alpha \leq \tau$

• $\phi_e < \phi < \phi^*$ whenever information is non-trivial

 When job-finding rate is (in)elastic to ex post profit compared to the precision of the signal, referral provides (more)less information

Block-Recursive Equilibrium

Aggregate distribution appears in the value function only through Π

• The aggregate referral bonus payment $\Pi \propto \int z H_{\rho}(g_{\rho}(w)) dG_w(w)$

 \Rightarrow The steady-state equilibrium is tractable

The effect becomes negligible as $z \to 0$

• Pooling is the equilibrium for all z > 0, and an equilibrium for z = 0

I focus on a Block-Recursive Equilibrium where y: stochastic

- ▶ How does the job serach method vary across business cycles?
- How about amplification? especially if $Tr(n'|n, e) \neq Tr(n'|n, u)$?

Quantitative Analysis

Functional Forms

Match-specific shock: $\phi \sim Beta(\beta, \beta)$

y follows a three-state markov on $[1-\sigma_y,1,1+\sigma_y]$ with transition rate

$$Tr(y'|y) = \begin{bmatrix} \rho^2 & \rho(1-\rho) & (1-\rho)^2 \\ \rho(1-\rho) & \rho^2 + (1-\rho)^2 & \rho(1-\rho) \\ (1-\rho)^2 & \rho(1-\rho) & \rho^2 \end{bmatrix}$$

and arrival rate η

Matching function

$$p(\theta) = (1 + \theta^{-\gamma})^{-1/\gamma}, \quad q(\theta) = (1 + \theta^{\gamma})^{-1/\gamma}$$

Parameter Setting

Objects	Parameters	Value	Source
Discount rate	r	0.0042	Annual discount 5%
Home production	z	0.5	Standard in literature
Separation rate	δ	0.026	CPS separation rate
Search rate (unemployed)	λ_u	1	Normalization
Arrival rate of y shock	η	1/3	Quarterly shock
Autocorrelation of y	ho	0.85	GDP autocorr
Size of y shock	σ_y	0.026	GDP stdev
Matching function elasticity	γ	0.2	Menzio and Shi (2010)

Table: Parameters taken from outside

Justification of the referrer preferred equilibrium

Suppose the followings.

- There exists $\epsilon_1 > 0$ cost of sending a non-trivial message $m \neq [0, 1]$
- There exists $\epsilon_2 > 0$ fraction of referrers who commit to use the referrer preferred equilibrium strategy (unobservable)

Then, the referrer preferred equilibrium is the only sequential equilibrium.

Category

- 1. Contacted an employer directly online or through e-mail
- 2. Contacted an employer directly through other means, including in-person
- 3. Contacted an employment agency or career center, including a career center at a school or university
- 4. Contacted friends or relatives
- 5. Contacted former co-workers, supervisors, teachers, business associates
- 6. Contacted current employees at other companies
- 7. Applied to a job posting online
- 8. Applied to a job opening found through other means, including help wanted ads
- 9. Checked union/professional registers
- 10. Looked at job postings online
- 11. Looked at job postings elsewhere, including help wanted ads
- 12. Posted or updated a resume or other employment information, either online or through other means

Category

- 1. Found through the employers website
- 2. Inquired with the employer directly through other means, including in-person
- 3. Found through an employment agency or career center
- 4. A temporary job was converted to permanent job
- 5. Referred by a friend or relative
- 6. Referred by a former co-worker, supervisor, business associate
- 7. Referred by a current employee at the company
- 8. Found through an online job search engine
- 9. Found job opening through other means, including help wanted ads
- 10. Found through union/professional registers
- 11. Unsolicited contact by potential employer

Back