
Nonparametric Estimates of Demand in the
California Health Insurance Exchange ∗

Pietro Tebaldi† Alexander Torgovitsky‡ Hanbin Yang§

November 8, 2018

Abstract

We estimate the demand for health insurance in the California Affordable Care Act
marketplace (Covered California) without using parametric assumptions about the
unobserved components of utility. To do this, we develop a computational method for
constructing sharp identified sets in a nonparametric discrete choice model. The model
allows for endogeneity in prices (premiums) and for the use of instrumental variables
to address this endogeneity. We use the method to estimate bounds on the effects of
changing premium subsidies on coverage choices, consumer surplus, and government
spending. We find that a $10 decrease in monthly premium subsidies would cause
between a 3.3% and 8.4% decline in the proportion of low-income adults with coverage.
The reduction in total annual consumer surplus would be between $56 and $70 million,
while the savings in yearly subsidy outlays would be between $441 and $768 million.
These nonparametric estimates reflect substantially greater price sensitivity than in
comparable logit or probit models.
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1 Introduction

Under the Patient Protection and Affordable Care Act of 2010 (“ACA”), the United

States federal government spends over $40 billion per year on subsidizing health insur-

ance premiums for low-income households. The design of the ACA and the regulation

of non-group health insurance remain objects of intense debate among policy mak-

ers. Addressing several key design issues, such as the structure of premium subsidies,

requires estimating demand under counterfactual scenarios.

Recent research has filled this need using discrete choice models in the style of Mc-

Fadden (1974). For example, Chan and Gruber (2010) and Ericson and Starc (2015)

used conditional logit models to estimate demand in Massachusetts’ Commonwealth

Care program, Saltzman (2017) used a nested logit to estimate demand in the Cali-

fornia and Washington ACA exchanges, and Tebaldi (2017) estimated demand in the

California ACA exchange with a variety of logit, nested logit, and mixed (random

coefficient) logit models.

These various flavors of logit models differ in the way they deal with the indepen-

dence of irrelevant alternatives property (e.g. Goldberg, 1995; McFadden and Train,

2000), and in how they deal with potential endogeneity of prices (e.g. Berry, 1994;

Hausman, 1996; Berry, Levinsohn, and Pakes, 1995). However, they are all fully para-

metric, with the logistic and normal distributions playing a central role in the param-

eterization. This raises the concerning possibility that these models generate demand

predictions that are significantly driven by functional form.

In this paper, we use a nonparametric model to estimate the effects of changing

premium subsidies on demand, consumer surplus, and government spending in the

California ACA exchange (Covered California). The model is a distribution-free coun-

terpart of a standard discrete choice model in which a consumer’s indirect utility for

an insurance option depends on its price (premium) and on their unobserved valuation

for the option. In contrast to parametric models, we do not assume that these valu-

ations follow a specific distribution such as normal (probit) or type I extreme value

(logit). The main restriction of the model is that indirect utility is additively separable

in premiums and latent valuations. The model allows for premiums to be endoge-

nous (correlated with latent valuations), and allows a researcher to use instrumental

variables to address this endogeneity.1

Point identification arguments in nonparametric discrete choice models with ex-

ogenous prices are often premised on the assumption of large variation in prices (e.g.

1 While we develop our methodology with a focus on health insurance, it may also be useful for analyzing
demand in other markets, as well as for discrete choice analysis more generally.
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Thompson, 1989; Matzkin, 1993). When prices are endogenous, these arguments shift

the variation requirement to the instruments, sometimes with an additional complete-

ness condition (Chiappori and Komunjer, 2009; Berry and Haile, 2010, 2014). In the

Covered California data, we only observe limited variation in premiums, so these condi-

tions will not be satisfied. This leads us to consider a partial identification framework.

The primary challenge with allowing for partial identification is finding a way to

characterize and compute sharp bounds for target parameters of interest. We develop

a characterization based on the observation that in a discrete choice model, many

different realizations of latent valuations would lead to identical choice behavior under

all relevant observed and counterfactual prices. Using this idea, we partition the space

of unobserved valuations according to choice behavior by constructing a collection of

sets that we call the Minimal Relevant Partition (MRP). We prove that sharp bounds

for typical target parameters of interest can be characterized by considering only the

way the distribution of valuations places mass over the MRP. We then use this result

to develop estimators of these bounds, which we implement using linear programming.

We apply our empirical methodology with administrative data to estimate demand

counterfactuals for the California ACA exchange. We focus on the choice of metal tier

for low-income households who are not covered under employer-sponsored insurance

or public programs. Our main counterfactual of interest is how changes in premium

subsidies would affect the proportion of this population that chooses to purchase health

insurance, as well as their chosen coverage tiers, and their realized consumer surplus.

To identify these quantities, we use the additively separable structure of utility in

the nonparametric model together with institutionally-induced variation in premiums

across consumers of different ages and incomes. We exploit this variation by restricting

the degree to which preferences (latent valuations) can differ across consumers of similar

age and income who live in the same market.

Since the nonparametric model is partially identified, this strategy yields bounds,

rather than point estimates. However, the bounds are quite informative. Using our

preferred specification, we estimate that a $10 decrease in monthly premium subsidies

would cause between a 3.3% and 8.8% decline in the proportion of low-income adults

with coverage. The average consumer surplus reduction would be between $1.91 and

$2.40 per person, per month, or between $56 and $70 million annually when aggregated.

Total annual savings on subsidy outlays would be $441 to $768 million. When we

analyze heterogeneity by income, we find that poorer consumers incur the bulk of the

surplus loss from decreasing subsidies. Overall, our estimates reinforce and amplify the

finding that the demand for health insurance in this segment of the population is highly

price elastic (e.g. Abraham, Drake, Sacks, and Simon, 2017; Finkelstein, Hendren, and
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Shepard, 2017).2

We show that comparable estimates using logit models tend to yield price responses

close to our lower bounds, and so may substantially understate price sensitivity while

overstating the value that consumers place on health insurance. This possibility be-

comes more acute when considering larger price changes that involve more distant

extrapolations. It also remains when considering richer parametric models, such as

mixed logit, that allow for valuations to be correlated across options. Our findings

provide an example in which the shape of the logistic (or similarly-shaped Gaussian)

distribution can have an important impact on empirical conclusions.3 The nonpara-

metric model we use presents a remedy for this problem, and in this case provides

empirical conclusions that differ significantly along a policy-relevant dimension.

The remainder of the paper is organized as follows. In Section 2, we begin with

a discussion of the key institutional aspects of Covered California. In Section 3, we

develop our nonparametric discrete choice methodology for estimating the demand for

health insurance.4 In Section 4, we discuss the data, our empirical implementation,

and the main findings. In Section 5 we contrast these findings with estimates from

parametric models. Section 6 contains some brief concluding remarks.

2 Covered California

Covered California is one of the largest state health insurance exchanges regulated

by the ACA, accounting for more than 10% of national enrollment. The purpose of

the exchange is to provide health insurance options for households not covered by an

employer or a public program, such as Medicaid or Medicare.

The basic structure of Covered California is determined by federal regulation, and

so is common to ACA marketplaces in all states. The regulation splits states into

geographic rating regions comprised of groups of contiguous counties or zip codes. In

California, there are 19 such rating regions. Insurers are allowed to vary premiums

across (but not within) rating regions, and consumers face the premiums set for their

resident region. Each year in the spring, insurers announce their intention to enter

a region in the subsequent calendar year and undergo a state certification process.

2 We do not model supply, so all of these estimates should be interpreted as holding insurers’ decisions
fixed. Tebaldi (2017) considers equilibrium price responses under different subsidy designs with a parametric
demand model.

3 Other examples include Ho and Pakes (2014) and Compiani (2018), who also found that logit models
underestimate price elasticities relative to less parametric alternatives, albeit using different methods in
different empirical settings.

4 Appendix A contains a review of the related methodological literature on semi- and nonparametric
discrete choice models.
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Consumers are then able to purchase insurance for the subsequent year during an open

enrollment period at the end of the year.

However, Covered California also differs from other ACA marketplaces in several

important aspects. One difference is that an insurer who intends to participate in a

rating region is required to offer a menu of four plans classified into metal tiers of

increasing actuarial value: Bronze, Silver, Gold and Platinum.5 Unlike other market-

places, the insurer must provide the entire menu of four plans in any region where

it enters.6 Moreover, the actuarial features of the plans are standardized to have the

characteristics shown in Table 1 (among others not shown). Insurers who enter a rating

region must therefore offer each of the plans listed in Table 1 with the features shown

there.

Insurers are also regulated in the way in which they can set premiums. Each

insurer chooses a base premium for each metal tier in each rating region. This base

premium is then transformed through federal regulation into premiums that vary by

the consumer’s age.7 The insurer is not permitted to adjust premiums based on any

other characteristic of the consumer.8 Premiums are therefore a deterministic function

of a consumer’s age and resident rating region.

Households with income below 400% of the Federal Poverty Level (FPL) pay lower

premiums than received by the insurer, with the difference being made up by premium

subsidies. We focus our analysis on these households, since they constitute a large group

of key policy interest.9 The premium subsidies vary by household according to federal

regulations. These ensure that the subsidized premium of the second-cheapest Silver

plan is lower than a maximum affordable amount that varies by income (measured

in FPL) and household size.10 Post-subsidy premiums are therefore a deterministic

function of a consumer’s age, resident rating region, income, and household size.

To further incentivize insurance uptake, the ACA introduced a universal coverage

mandate which determines an income tax penalty for remaining uninsured. We treat

5 There is a fifth coverage level called minimum (or catastrophic) coverage, but this is not available to
subsidized buyers, so we omit it from our analysis.

6 In other ACA marketplaces, insurers are required to offer one Silver and one Gold plan, while additional
plans are optional.

7 This transformation involves multiplying base premiums by an adjustment factor that starts at 1 for
individuals at age 21 and increases smoothly to 3 at age 64. These factors are set by the Center for Medicaid
& Medicare Services. Individuals 65 and older are covered by Medicare. See Orsini and Tebaldi (2017) for
further discussion.

8 Some states also allow for adjustments based on tobacco use, but California is not one of these states.
9 In 2014, this group comprised over 94% of purchasing households in Covered California.

10 The reduction in subsidies we consider in our counterfactuals is equivalent to an increase in this maximum
affordable amount, holding insurers’ decisions fixed.
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Table 1: Standardized Plan Characteristics in Covered California

Panel (a): Characteristics by metal tier before cost-sharing reductions

Annual Annual max Primary E.R. Specialist Preferred Advertised
Tier deductible out-of-pocket visit visit visit drugs AV∗

Bronze $5,000 $6,250 $60 $300 $70 $50 60%
Silver $2,250 $6,250 $45 $250 $65 $50 70%
Gold $0 $6,250 $30 $250 $50 $50 79%
Platinum $0 $4,000 $20 $150 $40 $15 90%

Panel (b): Silver plan characteristics after cost-sharing reductions

Income Annual Annual max Primary E.R. Specialist Preferred Advertised
(%FPL) deductible out-of-pocket visit visit visit drugs AV∗

200-250% FPL $1,850 $5,200 $40 $250 $50 $35 74%
150-200% FPL $550 $2,250 $15 $75 $20 $15 88%
100-150% FPL $0 $2,250 $3 $25 $5 $5 95%

Source: http://www.coveredca.com/PDFs/2015-Health-Benefits-Table.pdf

this tax penalty as affecting the value of the outside option. The universal mandate

was weak in 2014, and generally unenforced between 2014–2017 (Miller, 2017). It was

repealed under the Tax Cuts and Jobs Act of 2017.

In addition to premium subsidies, the ACA also provides cost-sharing reduction

(CSRs) for households with income lower than 250% of the FPL. In Covered California,

CSRs are implemented by changing the actuarial terms of the Silver plan for these

households. As a result, the terms of a Silver plan vary across households according

to income, with discrete changes at 150%, 200%, and 250% of the FPL; see Table 1.

The CSRs make the Silver plan very attractive for low-income households relative to

the more expensive Gold and Platinum plans.

3 Empirical Framework and Methodology

3.1 Nonparametric Model

We consider a model in which a population of consumers indexed by i each choose a

single health insurance plan Yi from a set J ≡ {0, 1, . . . , J} of J+1 choices. Each plan j

has a premium, Pij , which is indexed by the consumer, i, since different consumers face

different post-subsidy premiums depending on their sociodemographic characteristics.

Choice j = 0 represents the outside option of not choosing any of the insurance plans,

and has premium normalized to 0, so that Pi0 = 0. When we take the model to the

Covered California data in Section 4, we will have five choices (J = 4) with options
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1, 2, 3, and 4 representing Bronze, Silver, Gold, and Platinum plans, respectively.

Consumer i has a vector Vi ≡ (Vi0, Vi1, . . . , ViJ) of valuations for each plan, with the

standard normalization that Vi0 = 0.11 The valuations are known to the consumer, but

latent from the perspective of the researcher. We assume that consumer i’s indirect

utility from choosing plan j is given by Vij − Pij , so that their plan choice is given by

Yi = arg max
j∈J

Vij − Pij . (1)

We do not assume that the distribution of Vi follows a specific functional form such as

i.i.d. type I extreme value (logit) or multivariate normal (probit). We also allow Vij

and Vik to be dependent for j 6= k.

Models like (1) in which valuations and premiums are additively separable have

been widely used in the recent literature on insurance demand, see e.g. Einav, Finkel-

stein, and Cullen (2010a), Einav, Finkelstein, and Levin (2010b), and Bundorf, Levin,

and Mahoney (2012). In Appendix B, we derive (1) from an insurance choice model

similar to the ones in Handel (2013) and Handel, Hendel, and Whinston (2015), in

which consumers have quasilinear utility and constant absolute risk aversion prefer-

ences. In this model, differences in Vi across consumers arise from heterogeneity in

their unobserved preferences, risk factors (and/or perception), and risk aversion.

The additive separability (quasilinearity) of premiums in (1) imposes restrictions

on substitution patterns. In particular, if all premiums were to increase by the same

amount, then a consumer who chose to purchase plan j ≥ 1 before the premium increase

will either continue to choose plan j after the premium increase, or will switch to the

outside option (j = 0), but they will not switch to a different plan k ≥ 1, k 6= j. This

limits the role of income effects to the extensive margin of purchasing any insurance

plan versus taking the outside option.

However, it is important to note that (1) is a model of a given consumer i. When we

take (1) to the data, we combine observations on many consumers, so in practice we can

allow for income effects by allowing for dependence between a consumer’s income and

their valuations. To formalize this, we treat a consumer’s income and other observed

characteristics as part of a vector, Xi, and then restrict the dependence between Vi

and the various components of Xi. We discuss these restrictions in Section 3.4.1 and

our specific implementation of them in Section 4.2.

One observable characteristic of consumer i that will be particularly important is

their market, which in Covered California is their resident rating region. In particular,

11 Choosing j = 0 may incur a tax penalty due to the universal coverage mandate. Normalizing Vi0 = 0
means that Vij also incorporates the value of not facing by the tax penalty.
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when we estimate demand we will do so conditional on a market, so that market-level

unobservables responsible for price endogeneity are held fixed in the counterfactual

(e.g. see Berry and Haile, 2010, pg. 5). To emphasize this, we let Mi denote consumer

i’s market, and we treat Mi as separate from Xi.

3.2 Comparison with a Common Parametric Model

A common parametric specification for discrete choice demand models is

Yim = arg max
j∈J

X ′ijmβim − αimPijm + ξjm + εijm, (2)

where i, j, and m index consumers, products, and markets, Pijm is price, Xijm are

observed characteristics, ξjm are unobserved product-market characteristics, βim and

αim are individual-level random coefficients, and εijm are idiosyncratic unobservables.12

In the influential model of Berry et al. (1995), εijm are assumed to be i.i.d. logit (type I

extreme value), and (βim, αim) are assumed to be normally distributed. Our motivation

in considering (1) is to preserve the utility maximization structure in (2), while avoiding

these types of parametric assumptions.13

The three indices in (2) reflect different possible levels of data aggregation. If only

market-level data is available, as in Berry et al. (1995) or Nevo (2001), then (2) is

aggregated to the (j,m) level, and the data is viewed as drawn from a population of

markets and/or products (Berry, Linton, and Pakes, 2004b; Armstrong, 2016). Our

model presumes richer individual-level choice data as in Berry, Levinsohn, and Pakes

(2004a) or Berry and Haile (2010), but the number of markets we study is small and

fixed. To emphasize this, we index the nonparametric model (1) only over i and j, and

we record the identity of consumer i’s market using the random variable Mi.

After replacing m subscripts with i subscripts, (1) can be seen to nest (2) by

dividing through by αi and taking Vij ≡ α−1
i (X ′ijβi + ξij + εij).

14 This observation

highlights some important considerations for our analysis. First, we do not want to

assume that Vi and Pi are independent, since Vi depends on ξi ≡ (ξi1, . . . , ξiJ), which

captures unobserved product characteristics in consumer i’s market (Berry, 1994). We

address this by conditioning on the market, Mi, after which ξi is nonstochastic. Second,

12 For example, see equation (6) of Nevo (2011), or equation (1) of Berry and Haile (2015). We include i
indices on Xijm and Pijm to maintain consistency with our notation.

13 Fox, Kim, Ryan, and Bajari (2012) provide conditions under which the distribution of (βim, αim) is
nonparametrically point identified, and Fox, Kim, Ryan, and Bajari (2011) develop an estimator based on
discretizing this distribution. Their results maintain the logit assumption on εijm, and require additional
structure to allow for price endogeneity.

14 This requires the mild assumption that αi > 0 with probability 1.
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after conditioning on Mi, we still want to be careful about assuming that Pi and Vi are

independent, because Vi may depend on consumer characteristics, Xi, and premiums in

Covered California are also a function of these characteristics. Our empirical strategy,

which we describe in more detail later, will be based on the assumption that valuations

vary less with consumer characteristics than do premiums, so that, at least within fairly

homogenous groups of consumers in the same market, Pi is independent of Vi. Third,

we want to allow for Vij and Vik to be arbitrarily dependent for j 6= k, in order to

avoid imposing the unattractive substitution patterns associated with the logit model

(Hausman and Wise, 1978; Goldberg, 1995; Berry et al., 1995; McFadden and Train,

2000).

3.3 Target Parameters

The primitive object of (1) is the distribution of valuations, Vi, conditional on premi-

ums, Pi, market, Mi, and other covariates, Xi. We will assume throughout the paper

that this distribution is continuous so that ties between choices in (1) occur with zero

probability. In addition to ensuring no ties, this also means we can associate the con-

ditional distribution of valuations with a conditional density function f(·|p,m, x) for

each realization Pi = p, Mi = m, and Xi = x.15 In Covered California, post-subsidy

premiums are a deterministic function of market and consumer demographics. We de-

note this function by Pi ≡ π(Mi, Xi), and we drop the redundant conditioning on Pi.

In Appendix C, we discuss how to modify our methodology for settings in which prices

vary at different levels.

The density f is a key object in the following. Common counterfactual quantities of

interest can be written as integrals (or sums of integrals) of f . For example, a natural

counterfactual quantity is the proportion of consumers who would choose plan j at a

counterfactual premium vector, p?. This proportion can be written in terms of f as∫
1[vj − p?j ≥ vk − p?k for all k]︸ ︷︷ ︸

choose j if premiums were p?

f(v|m,x) dv, (3)

where we are conditioning on market, m, and other consumer characteristics, x. An-

other natural counterfactual quantity is the impact on average consumer surplus caused

15 More formally, this requires the assumption that the distribution of Vi, conditional on (Pi,Mi, Xi) =
(p,m, x) is absolutely continuously distributed with respect to Lebesgue measure on RJ for every (p,m, x)
in the support of (Pi,Mi, Xi).
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by changing premiums from p to p?. This can be written as∫ {
max
j∈J

vj − p?j
}
f(v|m,x) dv︸ ︷︷ ︸

consumer surplus under p?

−
∫ {

max
j∈J

vj − pj
}
f(v|m,x) dv︸ ︷︷ ︸

consumer surplus under p

, (4)

where again the market, m, is being held fixed in the counterfactual.

Conceptually, we view both (3) and (4) as scalar-valued functions of f . The func-

tions vary in their form, and will further vary when we consider different counterfactual

premiums, p?, choice probabilities for plans other than j in (3), and different values

of (or averages over) the covariates, x. In Section 4, we also estimate a third class of

quantities that measure changes in government spending on premium subsidies.

To handle this generality, we consider all such quantities to be examples of target

parameters, θ : F → Rdθ , where F is the collection of all conditional density functions

on RJ . A target parameter is just a function of the conditional density of valuations,

f . In the examples just given it is a scalar function, so that dθ = 1. However, we

might also want to consider cases with dθ > 1, for example to understand the joint

identified set for two related target parameters of interest, such as consumer surplus

and government expenditure. Our goal is to infer the values of θ(f) that are consistent

with both the observed data and our prior assumptions.

3.4 Assumptions

We augment (1) with two types of prior assumptions. The first assumption is that one

or more components of Xi are suitable instruments. The second assumption exploits

the vertical structure of the metal tiers in the ACA.

3.4.1 Instrumental Variables

To describe the first type of assumption, let Wi and Zi be two subvectors (or more

general functions) of the market and covariates, Mi and Xi. The Zi subvector consists

of instruments that satisfy an exogeneity assumption discussed ahead. This exogeneity

assumption will be conditional on Wi, which are viewed as control variables. Note that

either or both of these subvectors could be chosen to be empty.

Stating the instrumental variable assumption requires the density of valuations

conditional on Wi and Zi. We can construct this object by averaging over f as follows:

fV |WZ(v|w, z) ≡ E
[
f(v|Mi, Xi)

∣∣∣Wi = w,Zi = z
]
. (5)
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Our assumption that Zi is an instrument, conditional on Wi, can then be stated as:

fV |WZ(v|w, z) = fV |WZ(v|w, z′) for all z, z′, w, and v. (6)

In words, (6) says that the distribution of valuations is invariant to shifts in Zi, condi-

tional on Wi. That is, Zi is exogenous. In our application, Wi includes Mi and coarse

age and income bins, and Zi is residual variation in age and income within these bins.

Thus, (6) requires latent valuations to be invariant to small changes in age and income.

In Section 4.4, we discuss one way to weaken this assumption.

In order for (6) to be a useful assumption, shifts in the instrument Zi (still condi-

tioning on Wi) should have an effect on premiums. This follows the usual intuition:

If Zi is exogenous, then changes in observed choice shares as Zi varies reflect changes

in premiums, rather than changes in valuations. The more that premiums vary with

Zi, the more information we will have to pin down different parts of the density of

valuations, f , and hence the target parameter, θ. In our application, this premium

variation comes from the age-rating and income subsidies legislated by the ACA.

It is common to justify point identification of nonparametric discrete choice models

by assuming that the instrument has a large amount of variation.16 However, in our

data we can plainly see that this is not the case. For this reason, we consider the partial

identification framework discussed in the next section. This framework does not require

the instrument to have any particular amount of variation. However, greater variation

is still rewarded in the form of more informative bounds.

3.4.2 Vertical Structure

The second assumption we use exploits the vertical structure of the ACA, that is, the

fact that the Platinum plan is actuarially more generous than the Bronze plan. For

example, the Bronze plan has a higher deductible and higher out-of-pocket maximum

than the Platinum plan (see Table 1). Our assumption is that, for equal premiums, a

consumer would always prefer a plan that is more generous to one that is less generous.

With j = 4 as the Platinum plan, and j = 1 is the Bronze plan, this means we assume

that f places zero mass on regions where v1 > v4 or, equivalently, concentrates all of

16 These types of “large support” assumptions, and the closely related concept of identification-at-infinity,
have had a prominent role in the literature on nonparametric identification more generally. Early examples
of their use include Manski (1985), Thompson (1989), Heckman and Honoré (1990), and Lewbel (2000).
More recent applications of this argument to discrete choice include Heckman and Navarro (2007) and Fox
and Gandhi (2016).
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its mass on regions with v4 ≥ v1.17

Implementing this assumption in the context of the ACA is complicated by the

existence of CSRs. As discussed in Section 2, CSRs are used in Covered California to

change the terms of the Silver plan depending on a consumer’s income. Lower-income

consumers face more generous Silver plans, and this generosity gets gradually phased

out at higher incomes. The effect of this is that, depending on a consumer’s income,

they might, at equal premiums, prefer a Silver plan to a Gold or even a Platinum plan.

With this flexibility in mind, we formalize the verticality assumption as follows.

For each realization of Wi defined as in the previous section, we choose a set V(w) and

then assume that f is such that∫
V(w)

fV |WZ(v|w, z) dv = 1 for all w, z. (7)

This assumption captures the idea that the distribution of valuations is concentrated

on a given region, e.g. by taking V(w) = {v : v4 ≥ v1} in the example above. Allowing

V(w) to change with covariates w will be used in our application to allow the vertical

ordering to change with income, so as to account for CSRs. The case of no verticality

assumption is nested by taking V(w) = RJ .

3.5 The Identified Set

We now develop our method for determining the set of possible values that the target

parameter θ(f) could take over valuation densities f that both satisfy the assumptions

in the preceding section, and are consistent with the observed data. To do this, we

assume that the researcher has at their disposal a collection of conditional choice shares

denoted as

s(j|m,x) ≡ P[Yi = j|Mi = m,Xi = x]. (8)

In our application, we estimate these shares from a combination of administrative

data on enrollment and survey data used to construct the market size. Here, our

identification analysis is premised on the thought experiment of perfect knowledge of

these choice shares.18

Each density of valuations implies a set of choice shares analogous to (8). In par-

ticular, a consumer would choose option j when faced with a premium p if and only if

17 Note that we will not assume that consumers prefer any of the plans (inside options) to the outside
option. That is, we always allow for vj ≤ v0 = 0 for j = 1, 2, 3, 4.

18 More formally, it is premised on perfect knowledge of the joint distribution of (Yi,Mi, Xi).
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they have valuations in the set

Vj(p) ≡
{

(v1, . . . , vJ) ∈ RJ : vj − pj ≥ vk − pk for all k
}
. (9)

The choice shares for plan j implied by the density f are just determined by the mass

that f places on this set when prices are Pi = π(Mi, Xi). We denote these implied

choice shares by

sf (j|m,x) ≡
∫
Vj(π(m,x))

f(v|m,x) dv. (10)

We say that a valuation density f is observationally equivalent if its predicted choice

shares match the observed choice shares, i.e. if

sf (j|m,x) = s(j|m,x) for all j, m and x. (11)

The identified set of valuation densities is the set of all f that are both observa-

tionally equivalent and satisfy the assumptions laid out in the previous section. We

call this set F?:

F? ≡ {f ∈ F : f satisfies (6), (7), and (11)} . (12)

However, our real interest centers on the target parameter, θ, examples of which include

counterfactual demand (3) and changes in consumer surplus (4). The identified set for

θ is the image of the identified set for F? under θ. That is,

Θ? ≡ {θ(f) : f ∈ F?}.

The set Θ? consists of all values of the target parameter that are consistent with both

the data and the instrumental variable and verticality assumptions (6) and (7). It is

our central object of interest.

The difficulty lies in characterizing Θ?. In the following, we develop an argument

that enables us to compute Θ? exactly. The idea is to partition RJ into the small-

est collection of sets within which choice behavior would remain constant under all

premiums that were observed in the data, as well as all premiums that are required

to compute the target parameter. We call this collection of sets the minimal relevant

partition (MRP) of valuations. We then reduce the problem of characterizing Θ? from

one of searching over densities f to one of searching over mass functions defined on the

sets that constitute the MRP. For cases in which the target parameter is scalar-valued
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(dθ = 1), this latter problem can often be solved with two linear programs.

3.6 The Minimal Relevant Partition of Valuations

We illustrate the definition and construction of the MRP using a simple example with

J = 2, so that a consumer’s valuations (and the premiums of the plans in their choice

set) can be represented as points in the plane. A general (and formal) definition of the

MRP is given in Section 3.8.

Suppose that the data consists of a single observed premium vector, pa ≡ (pa1, p
a
2),

and that we are concerned with behavior under a counterfactual premium vector, p?,

which we do not observe in the data. The idea behind the MRP is illustrated in Figure

1. Panel (a) shows that considering behavior under premium pa divides R2 into three

sets depending on whether a consumer would choose options 0, 1, or 2 when faced

with pa.19 Panel (b) shows the analogous situation under premium p?. Intersecting

these two three-set collections creates the collection of six sets shown in panel (c). This

collection of six sets is the MRP for this example.20

The MRP is minimal in the sense that any two consumers who have valuations in

the same set would exhibit the same choice behavior under both premiums pa and p?.

Conversely, any two consumers with valuations in different sets would exhibit different

choice behavior under at least one of these premiums. For example, consumers with

valuations in the set marked V2 in Figure 1c make the same choices as those with

valuations in V4 under pa, but make different choices under p?, where the first group

chooses the outside option, and the second group chooses plan 1. Similarly, consumers

with valuations in V2 and V6 both choose the outside option at p?, but at pa the first

group chooses plan 2 and the second group chooses plan 1.

In Figure 1d, we show how the MRP would change if we were to observe a second

premium, pb. The MRP now consists of ten sets, but the idea is the same: Consumers

with valuations within a given set have the same choice behavior under all premiums

pa, pb, and p?, while consumers with valuations in different sets would make different

choices for at least one of these premiums.

The way the MRP is constructed ensures that predicted choice shares for any val-

uation density can be computed by summing the mass that the density places on sets

included in the MRP. For example, suppose that we fix Mi = m, and that there are

19 Diagrams like panel (a) appear frequently in the literature on discrete choice, see e.g. Thompson (1989,
Figure 1), Chesher, Rosen, and Smolinski (2013, Figure 1), or Berry and Haile (2014, Figure 1).

20 The MRP is related to the class of core-determining sets derived by Chesher et al. (2013). Comparing
our Figure 1c to their Figures 2–3 shows that the MRP is a strict subset of the class of core-determining
sets, since the latter also includes all connected unions of sets in the MRP.
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Figure 1: Partitioning the Space of Valuations
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two values of Xi such that pa = π(m,xa), and pb = π(m,xb). In Figure 1c, we can

see that the share of consumers who would choose good 1 if premiums were pa can be

written as

sf (1|m,xa) =

∫
V5∪V6

f(v|m,xa) dv =

∫
V5
f(v|m,xa) dv +

∫
V6
f(v|m,xa) dv,

while the share of consumers who would choose good 2 is given by

sf (2|m,xa) =

∫
V2∪V3∪V4

f(v|m,xa) dv.

This allows us to simplify the determination of whether a given f is observationally

equivalent by considering only the total mass that f places in sets in the MRP, without

having to be concerned with how this mass is distributed within these sets.

Since we included p? when constructing the MRP, the same is also true when

considering target parameters θ that measure choice behavior at p?. For example,

suppose that our target parameter is the choice share of plan 2 if premiums were

changed from pa to p?. This is a particular case of (3), and can be written in terms of

the MRP as

θ(f) =

∫
V3
f(v|m,xa) dv. (13)

As another example, we could write the associated change in this choice share as

θ(f) =

∫
V3
f(v|m,xa) dv −

∫
V2∪V3∪V4

f(v|m,xa) dv = −
∫
V2∪V4

f(v|m,xa) dv.

In both of these quantities, we have fixed the density conditional on the market, m,

and observed covariates, xa. This corresponds to the usual counterfactual of changing

prices while holding fixed unobservable factors that might be correlated with price.

3.7 Computing Bounds on the Target Parameter

Now suppose that we observe the following choice shares:

s(0|m,xa) = .20, s(1|m,xa) = .14, and s(2|m,xa) = .66.

For simplicity, we will start by assuming thatXi is exogenous, i.e. we limit our attention

to f for which f(v|m,xa) = f(v|m,x?) = f(v|m).21 In this case, the observational

21 In terms of (6), this would be like taking Wi = Mi and Zi = Xi.

15



equivalence condition (11) can be written as∫
V1
f(v|m) dv = s(0|m,xa) = .20,

and

∫
V5
f(v|m) dv +

∫
V6
f(v|m) dv = s(1|m,xa) = .14,

and

∫
V2
f(v|m) dv +

∫
V3
f(v|m) dv +

∫
V4
f(v|m) dv = s(2|m,xa) = .66. (14)

As shown in (13), if the target parameter is the choice share of plan 2 at p?, this can

be written as

θ(f) =

∫
V3
f(v|m) dv. (15)

The key observation is that even though all of these quantities depend on a density

f , they can be computed with knowledge of just six non-negative numbers:{
φl ≡

∫
Vl
f(v|m) dv

}6

l=1

.

This suggests that we can focus only on the total mass placed on the sets in the MRP

without losing any information. To find the largest value that θ(f) can take while still

respecting (14), we rephrase all quantities in terms of {φl}6l=1 and then maximize (15)

subject to (14):

t? ≡max
φ∈R6

φ3 (16)

subject to: φ1 = .20

φ5 + φ6 = .14

φ2 + φ3 + φ4 = .66

φl ≥ 0 for l = 1, . . . , 6.

This is a linear program. In this simple example, one can see by inspection that the

solution of the program is to take φ3 = .66, so that t? = .66. To find the smallest value

of θ(f) we solve the analogous minimization problem, the optimal value of which we

call t?. In this example, t? = 0.

In the next section, we formally prove that Θ? = [t?, t
?]. This result shows that

the procedure of reducing f to a collection of six numbers {φl}6l=1 is a sharp char-

acterization of Θ? in the sense that it entails no loss of information. The intuition

behind the sharpness is as follows. First, for any value t ∈ Θ?, there must exist (by
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definition) an f ∈ F? such that θ(f) = t. This f generates a collection of numbers

{φl =
∫
Vl f(v|m) dv}6l=1, which must satisfy the constraints in (16), since every f ∈ F?

satisfies (14). Conversely, given any value of t ∈ [t?, t
?], there exists a set of numbers

{φl}6l=1 satisfying the constraints in (16), and such that φ3 = t.22 From this set of

numbers {φl}6l=1, we can construct a density f that satisfies (14) by distributing mass

in the amount of φl arbitrarily within each Vl. Evidently, this density will also satisfy

θ(f) = φ3 = t. Thus, Θ? = [t?, t
?].

Now suppose that we have a second observed premium, pb, so that the MRP is

as shown in Figure 1d. In this case, the MRP contains 10 sets, so the linear program

analogous to (16) will have 10 variables of optimization. In addition to the observational

equivalence constraints for xa in (16), these variables will also need to satisfy three

more observational equivalence constraints corresponding to the observed shares for

xb, which we will suppose here are given by

s(0|m,xb) = .27, s(1|m,xb) = .31, and s(2|m,xb) = .42.

Reasoning through the solution to the resulting program is more complicated. Since

the observed shares for pa still need to be matched, it is still the case that a total mass

of .66 must be placed over consumers who would choose plan 2 under pa. Some of

these consumers might choose the outside option under pb. In fact, as shown in Figure

2, this must be the case for a proportion of at least s(0|m,xb) − s(0|m,xa) = .07 of

consumers. Given this new requirement, the maximum amount of mass remaining to

distribute over consumers who would choose plan 2 under p? has decreased from .66 to

.66− .07 = .59. This is the new upper bound, t?. The fact that it is smaller than the

previous upper bound reflects the additional information contained in pb. The lower

bound, t?, is still zero, because it is still possible to match the observed choice shares

for pa and pb by concentrating all mass to the south of p?.

When we take this procedure to the data, the linear programs will have thousands

of variables and constraints, which makes this sort of case-by-case reasoning impossible.

Instead, we will use state of the art solvers to obtain t? and t?.
23 In practice, we also

do not assume that f(v|m,x) is invariant in x. This makes a graphical interpretation

unweildy, since a separate diagram like Figure 2 would be needed for each value of

x. The mass placed over sets within each diagram is linked together by imposing

22 This follows because the constraint set in (16) is closed and connected and the objective function is
continuous.

23 In particular, we use Gurobi (Gurobi Optimization, 2015) and double-check a subset of the results using
CPLEX (IBM, 2010). We formulate and presolve the problems using AMPL (Fourer, Gay, and Kernighan,
2002).
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Figure 2: The numbers in each set show a solution to the linear program when the target parameter
is the proportion of consumers who choose plan 2 at p? and the objective is to find the upper bound
(maximize) this proportion. Matching the share of consumers who choose the outside option at the
new observed premium, pb, means there is now .07 less mass to devote to this objective.

constraints on these masses that are analogous to the instrumental variable assumption

(6). Part of the formal analysis in the next section involves showing that such a

procedure retains sharpness.

3.8 Formalization

In this section, we formalize the discussion in the previous three sections in the following

ways. First, we provide a precise definition of the MRP. Second, we generalize the

transformation from densities f to mass functions over the sets in the MRP, which,

as in the previous section, we refer to as φ. Third, we show how to compute bounds

for any target parameter under the instrumental variable and verticality assumptions.

Fourth, we provide the general statement and proof of the result that these bounds are

sharp. Lastly, we consider the conditions under which these bounds can be computed

by solving linear programs. Throughout the analysis, we model (Mi, Xi) as discretely
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distributed with finite support, although this is not essential to the discussion.

Beginning with the MRP, we let P denote a finite set of premiums that is chosen by

the researcher and always contains at least the marginal support of premiums, supp(Pi).

The premiums in P are used to construct the MRP, so a given MRP depends on P.

For example, in Figure 1c we had P = {pa, p?}, while in Figure 1d, P = {pa, pb, p?}.
The choice of which additional points to include in P is determined by the parameter

of interest, θ. In Figure 1, our focus was on demand at a new premium, p?, so P had

to include p?. This restriction will be formalized below as the statement that θ(f) can

be evaluated for any f by only considering the total mass that f places on sets in the

MRP. Additional points can always be added to P to help satisfy this restriction.

We use the set P to formally define the MRP as follows.

Definition 1. Let Y (v, p) ≡ arg maxj∈J vj−pj for any (v1, . . . , vJ), (p1, . . . , pJ) ∈ RJ ,

where v ≡ (v0, v1, . . . , vJ) and p ≡ (p0, p1, . . . , pJ) with v0 = p0 = 0. The minimal

relevant partition of valuations (MRP) is a collection V of sets V ⊆ RJ for which the

following property holds for almost every v, v′ ∈ RJ (with respect to Lebesgue measure):

v, v′ ∈ V for some V ∈ V ⇔ Y (v, p) = Y (v′, p) for all p ∈ P. (17)

Definition 1 creates a collection of sets that is minimal in the sense that any two con-

sumers who have valuations in a set in the collection would exhibit the same choice

behavior for every premium vector in P. Conversely, any two consumers with valua-

tions in different sets would exhibit different choice behavior for at least one premium

in P. Constructing the MRP is intuitive, but somewhat involved both notationally

and algorithmically. Since the details of constructing the MRP are not necessary for

understanding the methodology, we relegate our discussion of this to Appendix D.24

The utility of the MRP as a concept is that it allows us to express the choice

probabilities associated with any density of valuations, f , in terms of the mass that f

places on sets in V. In particular, for every p ∈ P and j ∈ J , let Vj(p) ⊆ V denote

the sets in the MRP for which a consumer with valuations in these sets would choose

j when facing premiums p.25 Then the probability that a consumer chooses j under

24 We should, however, note two small misnomers in our terminology that become evident in the construc-
tion, or perhaps by inspecting Figure 1. First, the MRP may not be a strict partition, because adjacent sets
in V could overlap on their boundary. Since we are limiting attention to continuously distributed valuations,
this distinction does not have any practical or empirical relevance, and does not violate Definition 1. Second,
and for the same reason, although we have described the MRP as “the” MRP, it may not be unique, since one
could consider a boundary region to be in either of the sets to which it is a boundary without violating (17)
on a set of positive measure. Again, this is not important for our analysis given our focus on continuously
distributed valuations.

25 Using the notation of Definition 1, Vj(p) ≡ {V ∈ V : Y (v, p) = j for almost every v ∈ V}.
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premiums p is the probability that Vi lies in the union of V ∈ Vj(p). Since sets in V

are disjoint, the observational equivalence condition (10) can be written as the sum of

the masses that a given f places on sets in Vj(p), that is

sf (j|m,x) =
∑

V∈Vj(π(m,x))

∫
V
f(v|m,x) dv. (18)

Having defined the MRP, we now define mass functions over the MRP. To do this,

let φ(·|·, ·) denote a function with domain V× supp(Mi, Xi). Such a function φ can be

viewed as an element of Rdφ , where dφ is the product of the cardinalities of these sets.

Let R
dφ
+ denote the subset of Rdφ whose elements are all non-negative and define

Φ ≡
{
φ ∈ R

dφ
+ :

∑
V∈V

φ(V|m,x) = 1 for all (m,x) ∈ supp(Mi, Xi)

}
. (19)

The set Φ contains all functions that could represent a conditional probability mass

function with domain given by the finite collection of sets, V.

Each conditional valuation density f generates a mass function φf ∈ Φ defined by

φf (V|m,x) ≡
∫
V
f(v|m,x) dv. (20)

We assume that the value of the target parameter for any f is fully determined by

φf . Formally, the assumption is that there exists a known function θ with domain Φ

such that θ(f) = θ(φf ) for every f ∈ F . Since Φ depends on the MRP, and the MRP

depends on P, satisfying this requirement is a matter of choosing P to be sufficiently

rich to evaluate the target parameter of interest, θ.

We have now phrased both the target parameter and observational equivalence

condition in terms of φ. The last step is to translate the instrumental variable and

verticality assumptions into statements about φ. For the instrumental variable as-

sumption, we first define for any φ ∈ Φ a function φV|WZ in analogy to (5) as

φV|WZ(V|w, z) ≡ E
[
φ(V|Mi, Xi)

∣∣∣Wi = w,Zi = z
]
, (21)

where Wi and Zi are as in the statement of that condition. Then, a condition appro-

priately analogous to (6) is

φV|WZ(V|w, z) = φV|WZ(V|w, z′) for all z, z′, w, and V. (22)

20



Similarly, for the verticality assumption, we define in analogy to (7),∑
V∈V(w)

φV|WZ(V|w, z) = 1 for all w, z, (23)

where V(w) is the subset of V that intersects V(w), i.e. V(w) ≡ {V ∈ V : λ(V ∩
V(w)) > 0}, with λ denoting Lebesgue measure on RJ .

The next proposition shows that Θ? can be characterized exactly by solving systems

of equations in φ.

Proposition 1. Let t ∈ Rdθ . Then t ∈ Θ? if and only if there exists a φ ∈ Φ such that

θ(φ) = t, (24)∑
V∈Vj(π(m,x))

φ(V|m,x) = s(j|m,x) for all j ∈ J and (m,x), (25)

φV|WZ(V|w, z) = φV|WZ(V|w, z′) for all z, z′, w, and V, (26)

and
∑
V∈V(w)

φV|WZ(V|w, z) = 1 for all w, z. (27)

Observe that each of (25)–(27) are linear in φ.26 If θ is also linear in φ, then Proposition

1 shows that Θ? can be exactly characterized by solving linear systems of equations.

This linearity is satisfied for common target parameters, such as demand and consumer

surplus.27 One byproduct of this linearity is that Θ? will be connected, and so when

dθ = 1 it can also be characterized by solving two linear programs. We record this

point in the following proposition.

Proposition 2. If θ is continuous on Φ, then Θ? is a compact, connected set. In

particular, if dθ = 1, then Θ? = [t?, t
?], where

t? ≡ min
φ∈Φ

θ(φ) subject to (25)–(27), (28)

and with t? defined as the solution to the analogous maximization problem.

In practice, one often finds that the feasible set in (28) is empty, so that Θ? is

also empty.28 This is an indication of either sampling error in the observed shares,

s(j|m,x), or model misspecification, or both. Instead of reporting empty identified

26 This requires noting from (21) that φV|WZ(V|w, z) is itself a linear function of φ.
27 The former is clear from e.g. (15), but the latter is not obvious; see Appendix F.
28 We follow the usual convention here of letting t? = +∞ and t? = −∞ if the feasible set is empty, in

which case Θ? = ∅.
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sets, we modify Proposition 2 to construct a set estimator of Θ?. The estimator uses

a procedure analogous to the method of moments for point identified models. First,

we minimize a criterion function that measures the extent to which the observational

equivalence equality in (25) is violated. Second, we find the set of values t that θ(φ)

can take while coming close to the optimal value of the criterion.29 By choosing an

absolute deviations criterion, this procedure amounts to solving three linear programs

in cases where θ is linear. We provide more detail on the estimation procedure in

Appendix G.

4 Demand in Covered California

4.1 Data

Our primary data are administrative records on the universe of households who pur-

chased a plan through Covered California in 2014. The data contain unique person and

household identifiers for each individual in each household, as well as their age, income

measured in percentage of FPL, gender, zipcode of residence, and choice of plan. We

focus on the subpopulation of subsidy-eligible households (100-400% FPL) in which

the uninsured members consist of either one or two adults aged 27 and older.30 In

addition, we drop the relatively small number of purchasing households with income

under 140% of FPL, since these households are typically eligible for Medi-Cal (Cali-

fornia’s Medicaid program). These restrictions reduce our analysis sample to 630,924

of the 877,365 households who purchased coverage. Of these, 436,224 are singles, and

194,700 are couples.

We characterize each household i by its resident rating region (market), Mi, and

a vector Xi of observables consisting of the household’s age, income, and whether it

consists of one or two adults. Household age is defined as the age of a single household

member, or the rounded average age of a couple. We discretize household age into

38 single-year bins running from 27 to 64. We discretize household income into 52

bins of 5% of the FPL. (These bins are [140, 145), [145, 150), . . . , [395, 400].) When

crossed with the 19 rating regions in Covered California, this yields 59,176 unique

rating region × household size × age × income bins of the observable characteristics,

(Mi, Xi). Since the number of households per bin varies greatly by region, we will

report parameters that average over (Mi, Xi), and therefore put greater weight on

larger geographic markets.

29 This second step would not be needed if the model were point identified.
30 That is, the household either is childless, or the children are insured through a public health insurance

program. The maximum age is 64, after which individuals become eligible for Medicare.
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We reconstruct the post-subsidy per-person premiums faced by each household

(Pij) using their demographic information together with knowledge of insurers’ base

prices. As described in Section 2, individual pre-subsidy premiums for a given metal

tier, rating region, and insurer only vary by age, while the post-subsidy premiums

also vary by income and household structure. As a consequence, Pi ≡ π(Mi, Xi) is a

deterministic function of (Mi, Xi).

Our analysis is focused on a household’s choice of coverage level (metal tier). The

implicit assumption here is that a household’s choice of coverage level is separable

from their choice of insurer. We view this as a reasonable assumption for Covered

California because the regulations ensure that the metal tiers offered—as well as the

characteristics of the tiers—do not vary by insurer. We define premiums for each tier

in each market by taking the median post-subsidy premium across insurers.31

As in most demand analysis, we do not directly observe individuals who chose

the outside option, i.e. to not purchase a plan through Covered California. This

means that we first need to transform data on quantities chosen for the inside choices

into choice shares by estimating the size of the market. To do this, we use the 2013

American Community Survey public use file (via IPUMS, Ruggles et al., 2015) to

estimate uninsurance rates conditional on (Mi, Xi). Our estimation procedure for this

part closely follows those used by Finkelstein et al. (2017) and Tebaldi (2017). For

more detail, see Appendix H.

Table 2 provides some summary statistics. We consider demand for insurance for

each bin of observables (Mi, Xi), and this is the level at which we summarize the data.

Each bin contains on average 32 enrollees. The average participation rate in Covered

California is 32%, and varies widely across markets and demographics, with a standard

deviation of 34%. Older and poorer buyers are significantly more likely to purchase

coverage. The impact of the CSRs is evident in panel (b) of the table: Buyers with

income below 200% face premiums of less than $100 per month to purchase a Silver

plan with actuarial value of 88% or more (recall Table 1). As a consequence, 23% of

such consumers purchase a Silver plan, whereas among consumers with income over

250% of FPL, fewer than 8% purchase the more expensive and less generous non-CSR

Silver plan.

4.2 Identifying Assumptions

In this section, we describe our specific implementations of assumptions (6) and (7).

31 We have also estimated a subset of our results using other measures of price, such as the mean, minimum,
and second-cheapest premiums across insurers. The estimates turn out to be fairly insensitive to this choice.
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Table 2: Summary Statistics

Panel (a) : Data by region and household type

Observations Mean St. Dev. P-10 Median P-90

Number of buyers 59,176 32.25 56.06 1 10 90
Age 59,176 44.83 11.34 29 45 60
Income (FPL%) 59,176 227.92 63.58 155 215 320
Household size 59,176 1.24 0.43 1 1 2
Takeup rate 59,176 0.33 0.34 0.03 0.18 1.00
Average premium paid 59,176 148.78 85.17 58 128 274

Panel (b) : Heterogeneity in premiums and market shares

Bronze Silver Gold Platinum
Premium Share Premium Share Premium Share Premium Share

By age:

27-34 88 0.051 143 0.098 198 0.011 241 0.012
35-49 84 0.054 148 0.143 215 0.012 267 0.013
50-64 76 0.059 181 0.187 296 0.012 386 0.010

By income (FPL%):

140-150 4 0.008 54 0.259 132 0.004 193 0.005
150-200 21 0.034 87 0.229 166 0.006 228 0.007
200-250 70 0.063 151 0.119 231 0.011 293 0.010
250-400 161 0.078 255 0.076 344 0.020 413 0.019

By household size:

Singles 93 0.051 174 0.119 257 0.011 323 0.012
Couples 45 0.068 115 0.244 196 0.016 259 0.012

Note: Each observation in panel (a) is a unique combination of rating region × household type × age × income bins of the
observable characteristics, (Mi, Xi). All statistics are calculated across bins, weighted by number of buyers in each bin.
Standard deviation refers to the standard deviation across bins of the within-bin median of the corresponding variable. In
panel (b), premium is calculated as the average premium paid across buyers of a given age/income group, while market
shares are calculated as proportion of potential buyers.

An insurer’s primary decision in Covered California is the base price for each rating

region and coverage level. This decision likely depends on differences in demand and

cost specific to each rating region, for example due to the underlying socioeconomic

or health characteristics of the residents in a region, or due to differences in hospitals

of medical providers. These factors are unobserved in our data, so we will not assume

that variation in premiums across regions is exogenous. That is, we define a market

Mi to be a rating region, and we will not impose any restriction on how preferences

(the density of valuations f) varies across markets.

Instead, we will assume—in a limited way—that preferences are invariant to changes
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in age and income. Since premiums vary with age due to the age-rating, and with

income due to the premium subsidies, this will provide variation in premiums that we

can use to help identify demand counterfactuals. The way in which premiums evolve

with age and income is prescribed by the ACA regulations, so the behavior of insurers

is not likely to be an important threat to this strategy. Rather, our main concern is

that valuations also change with age or income due to changes in latent risk factors or

preferences. For this reason, we will use only local variation in age and income.

We formulate this approach using the notation of Section 3 by letting Wi denote a

coarser aggregate of Xi bins. To do this, we group Xi into age bins given by {27–30,

31–35, 36–40, . . . , 56–60, 61–64} and income bins given in percentage of FPL by {140–

150, 150–200, 200–250, 250–300, 300–350, 350–400}. A value of Wi is then taken to be

the market indicator Mi crossed between household size and all possibilities of these

coarser age-income bins. Conditioning on a value of Wi, we observe multiple premiums

corresponding to variation in age and income within the Wi bin. Our assumption

is that the distribution of latent valuations does not change as Xi varies within this

coarser bin.

For example, one value of Wi = w corresponds to singles in the North Coast rating

region who are aged between 36–40 with incomes between 150–200% of the FPL. Within

this bin, we have 50 values of Xi, comprised of the 5 ages 36, 37, 38, 39, 40 crossed with

the 10 income bins between 150 and 200 in steps of 5%. For each of these 50 values

we observe a different premium vector. Since the variation we want to use is now in

Xi, conditioning on a value of Wi, the notation we developed in Section 3 corresponds

to taking Zi = Xi. The assumption we use is now precisely (6) in that discussion,

repeated here for emphasis:

fV |WZ(v|w, z) = fV |WZ(v|w, z′) for all z, z′, w, and v.︸ ︷︷ ︸
within a coarse bin (Wi = w), valuations are invariant to age and income (z 6= z′)

(29)

The local invariance to income in assumption (29) gives empirical content to the

separability between income and valuations in (1). The implied behavioral restriction

is that a change in income that leaves a household inside a given Wi bin would not

affect their choice of metal tier, although it could lead a household to switch to or from

the outside option. That is, the assumption is that there are no income effects with

respect to the choice of metal tier within a coarse income bin. This assumption can be

made weaker by decreasing the income range of the Wi bins, or stronger by increasing

this range.

The other aspect of (29) is the local invariance to age. We are more concerned
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about this assumption, since health risks certainly increase in age, and likely at an

increasing rate. We begin with (29) primarily for ease of interpretability. In Section 4.4,

we relax assumption (6)/(29) to a strictly weaker “imperfect instrument” assumption

that allows for some variation with age. Our estimated bounds there are wider, but

based on weaker assumptions.

The other assumption we utilize is the verticality assumption (7), adjusted to ac-

count for CSRs as shown in Table 1. To account for CSRs, we have chosen the coarse

bins (Wi) so as not to cross the income thresholds of 150, 200 and 250% FPL at which

plan characteristics change. We impose a verticality assumptions only when a plan

dominates another plan on all characteristics.32 In no case do we assume that any of

the plans are preferred to the outside option.

4.3 Results

Our focus is on measuring the effect of an equal change in post-subsidy premiums for

all consumers on demand, consumer surplus, and government subsidy expenditure. We

do not model supply, so all of our results should be interpreted as holding supply fixed.

Integrating our nonparametric methodology with a model of supply-side behavior is a

promising avenue for future research.

We consider counterfactual premium vectors of the form π(Mi, Xi) + δ, for various

choices of δ. That is, the counterfactuals we consider can be represented as the impact

of shifting every households’ premium from the observed premium, Pi ≡ π(Mi, Xi) to

a counterfactual premium, P ?i ≡ π(Mi, Xi) + δ. For each value of Wi, we construct the

MRP using the set formed from all Pi and P ?i .

Figure 3 plots observed and counterfactual Bronze and Silver premiums for buyers

with income lower than 250% of the FPL. We use this case for illustration since it can be

plotted on the plane, and because most buyers (over 93%) in this income range choose

Bronze and Silver, presumably due to the CSRs. In Figure 3b, the counterfactual is

an increase in the premium of the Bronze plan by $10 for all consumers, while Figure

3c illustrates the analogous change in the Silver plan. In Figure 3d, both the Bronze

and Silver plan premiums are increased by $10.33

32 For consumers with income below 150% FPL, we assume that Silver is preferred to Platinum, Platinum
is preferred to Gold, and Gold is preferred to Bronze. In the 150–200% FPL range, we assume that Silver
is preferred to Bronze, that Platinum is preferred to Gold, and that Gold is preferred to Bronze, however
we do not impose an ordering between Silver and Gold, or between Silver and Platinum. For households
in the 200–250% FPL, we assume that Platinum is preferred to both Silver and Gold, and that both Silver
and Gold are preferred to Bronze, but we do not impose an ordering between Silver and Gold. Lastly, for
consumers with income above 250% FPL, we assume that Platinum is preferred to Gold, Gold is preferred
to Silver, and Silver is preferred to Bronze.

33 In this example with J = 2, j = 1 denoting Bronze, and j = 2 denoting Silver, Figures 3b, 3c, and
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Figure 3: Observed and Counterfactual Premiums
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(b) Increase Bronze premiums by $10
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(c) Increase Silver premiums by $10
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(d) Increase both premiums by $10
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Note: The figure shows observed and counterfactual premiums of Bronze and Silver plans for households with income between
140-250% of the FPL. Panel (a) plots the prices observed in the data in grey, where each observation is a unique region-household
size-age-income combination. Panel (b) overlays in red the counterfactual prices representing an increase in $10 per person, per
month for Bronze premiums. Panel (c) is like Panel (b), but the price increases are for Silver premiums. Panel (d) is like Panels
(b) and (c) with price increases of $10 for both Silver and Bronze premiums.
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The first set of target parameters we consider is the change in choice shares for each

good. For market m, consumer characteristics x, and good j, this can be written as

∆Sharej(f |m,x) ≡
∫
Vj(π(m,x)+δ)

f(v|m,x) dv −
∫
Vj(π(m,x))

f(v|m,x) dv, (30)

where Vj(p) was defined in (9). Note that in (30), we omit the dependence on the

premium change, δ, since this will be clear from the way we present our results. In

order to aggregate (30) into a single measure, we average it over markets and covariates:

∆Sharej(f) ≡
∑
m,x

∆Sharej(f |x,m) P[Mi = m,Xi = x]. (31)

We will average other parameters in an analogous way. In the notation of Section 3,

∆Sharej is an example of a target parameter, θ.

Table 3 reports estimated bounds for ∆Sharej across the four metal tier choices

together with bounds on overall participation, i.e. on 1−∆Share0. The rows of Table

3 reflect different types of premium increases, δ. The nominal premium increase is

taken to be $10 per person, per month, which represents a moderate to large price

increase for many consumers (see Table 2). Our estimated bounds are quite informa-

tive. For example, for the full sample in panel (a), we estimate that a simultaneous $10

increase in all premiums reduces the proportion of households that purchase coverage

by between 3.3 and 8.4%. Panel (b) shows that these estimates are larger in magnitude

for low-income households, at between 3.9 and 9.9%, and panel (c) shows that they

are smaller in magnitude for higher-income households, who we estimate would reduce

participation in Covered California by between 2.4 and 5.6%. Comparing panels (b)

and (c) more generally, we find a pattern of higher price sensitivity for low-income

households.

The other columns of Table 3 measure substitution patterns within and between

coverage tiers. For example, panel (a) shows that an increase in Bronze premiums by

$10 per person, per month would lead to a decrease of between 1.2 and 4.8% in the

share of consumers choosing the Bronze plan, and an increase in the share choosing

Silver of between 0.4 and 4.1%. The increase in the share choosing Gold or Platinum

is significantly smaller, reflecting the closer substitutability of the Bronze and Silver

plans. The extensive margin change of participation for a Bronze premium increase

is between 0.4 and 1.7%, which is naturally both smaller and tighter than the change

when all premiums are increased together. In contrast, increasing Platinum premiums

3d would correspond to taking δ = (10, 0), δ = (0, 10) and δ = (10, 10), respectively, where the price of the
outside option is always fixed at 0.
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Table 3: Substitution Patterns

Change in probability of choosing
$10/month premium Bronze Silver Gold Platinum Any plan

increase for LB UB LB UB LB UB LB UB LB UB

Panel (a): 140 - 400% FPL

Bronze -0.048 -0.012 +0.004 +0.041 +0.000 +0.024 +0.000 +0.020 -0.017 -0.004

Silver +0.002 +0.105 -0.169 -0.029 +0.000 +0.123 +0.000 +0.098 -0.059 -0.008

Gold +0.000 +0.006 +0.000 +0.010 -0.013 -0.002 +0.000 +0.011 -0.004 -0.000

Platinum +0.000 +0.005 +0.000 +0.008 +0.000 +0.012 -0.012 -0.002 -0.004 -0.000

All plans -0.020 -0.007 -0.062 -0.022 -0.005 -0.001 -0.005 -0.001 -0.084 -0.033

Panel (b): 140 - 250% FPL

Bronze -0.041 -0.010 +0.004 +0.035 +0.000 +0.020 +0.000 +0.016 -0.014 -0.002

Silver +0.002 +0.132 -0.221 -0.036 +0.000 +0.159 +0.000 +0.126 -0.079 -0.012

Gold +0.000 +0.004 +0.000 +0.008 -0.010 -0.002 +0.000 +0.009 -0.003 -0.000

Platinum +0.000 +0.003 +0.000 +0.007 +0.000 +0.010 -0.010 -0.002 -0.003 -0.000

All plans -0.016 -0.005 -0.082 -0.030 -0.004 -0.001 -0.004 -0.001 -0.099 -0.039

Panel (c): 250 - 400% FPL

Bronze -0.061 -0.016 +0.005 +0.052 +0.000 +0.033 +0.000 +0.026 -0.024 -0.006

Silver +0.001 +0.055 -0.073 -0.015 +0.000 +0.056 +0.000 +0.044 -0.021 -0.002

Gold +0.000 +0.009 +0.000 +0.014 -0.017 -0.003 +0.000 +0.016 -0.006 -0.000

Platinum +0.000 +0.007 +0.000 +0.010 +0.000 +0.015 -0.016 -0.003 -0.006 -0.000

All plans -0.027 -0.010 -0.023 -0.009 -0.008 -0.001 -0.007 -0.001 -0.056 -0.024

by the same amount would lead to a much smaller decline in the proportion of buyers

not purchasing coverage. Overall, Table 3 indicates substitution patterns inconsistent

with the independence of irrelevant alternatives property of the logit model.

One consequence of adopting a partial identification framework is that the amount

of information that the data and assumptions yield about a specific counterfactual

quantity is reflected in the width of the bounds. The bounds for more ambitious coun-

terfactuals will be wider than for more modest counterfactuals that are closer to what

was observed in the data. This situation is evident in Figure 4, which plots the average

extensive margin (enrollment) response as a function of a given increase or decrease

in all premiums. Our bounds are relatively tight for small changes in premiums, and

then widen as the premiums get farther from what was observed in the data. We con-
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Figure 4: Extensive Margin Demand for Different Counterfactuals
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sider this an attractive feature of our approach, since it reflects the increasing difficulty

of drawing inference about objects that involve larger departures from the observed

data, and so captures an important dimension of model uncertainty. In contrast, a

fully parametric model point identifies any counterfactual quantity regardless of how

distant the extrapolation involved.34

The second set of parameters we consider measure the effects of changing premium

subsidies on consumer surplus and government spending. From the household’s per-

spective, a decrease in premium subsidies—which in terms of policy can be thought

of as an increase in the maximum affordable amount—is the same as an increase in

premiums faced.35 Such a subsidy change generates an average change in consumer

surplus for a household in market m with characteristics x of

∆CS(f |m,x) ≡
∫ [

max
j∈J
{vj − πj(m,x)− δj} −max

j∈J
{vj − πj(m,x)}

]
f(v|m,x)dv,

34 Note that confidence intervals on point estimates from a parametric model will tend to widen as one
extrapolates further. However, for the parametric models we consider in Section 5, the width of these
confidence intervals is basically zero even for very distant extrapolations.

35 Our analysis here requires maintaining a partial equilibrium framework in which there are no other
supply side responses in base premiums due to an adjustment in subsidy schemes. As noted above, integrating
our approach with a model of insurance supply is an interesting avenue for future research.
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which we aggregate by averaging over markets and demographics into

∆CS(f) ≡
∑
m,x

∆CS(f |m,x) P[Mi = m,Xi = x].

We will contrast the change in consumer surplus to the change in government spending

on premium subsidies. This is given by

∆GS(f |m,x) ≡
∑
j>0

(subj(m,x)− δj)×
[∫
Vj(π(m,x)+δ)

f(v|m,x) dv

]

−
∑
j>0

subj(m,x)×
[∫
Vj(π(m,x))

f(v|m,x) dv

]
,

where subj(m,x) denotes the baseline premium subsidy for purchasing plan j. We

denote the aggregated change in government spending as

∆GS(f) ≡
∑
m,x

GS(f |m,x) P[Mi = m,Xi = x].

Both ∆CS and ∆GS are other examples of target parameters θ.36

Figure 5 depicts our bounds on ∆CS for a $10 decrease in subsidies as the shaded

areas between the two demand curves. The lower bound on the change in consumer

surplus is the area to the left of the flatter demand curve, while the upper bound also

includes the entire area to the left of the steeper demand curve. Intuitively, the lower

bound is attained at the upper bound (smallest magnitude) of price elasticity for the

extensive margin, while the upper bound of the change in consumer surplus is attained

at the lower bound (largest magnitude) of this price elasticity. Note that while the

bounds on ∆CS shown here are sharp and unique, the demand curves we have plotted

are not, since there are many ways to draw a demand curve up to a $10 premium

increase that can yield the same area to the left, while still respecting the data and

assumptions.

Table 4 tabulates the estimated bounds on ∆CS for the same $10 decrease in pre-

mium subsidies. The first column shows estimated bounds using the entire sample,

while the second and third columns split the estimates on income. In the fourth

column of Table 4, we report bounds on the corresponding reduction in government

spending that results from the lower subsidies. We estimate these by fixing average con-

sumer surplus at its lower or upper bound, then solving for the bounds on government

36 In Appendix F, we show how to construct sharp bounds on ∆CS by deriving corresponding θ functions
that are linear in φ.
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Figure 5: Change in Consumer Surplus Resulting from a Change in Premiums
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spending that could be realized for this consumer surplus change.37

Our bounds imply that a $10 decrease in monthly subsidies would lead to a reduc-

tion in average monthly consumer surplus of between $1.91 and $2.40 per person. The

impacts for the lower-income sample ($2.32–$2.88) are estimated to be approximately

twice as large as the impacts for the higher-income sample ($1.14–$1.50). This reflects

the fact that individuals with income lower than 250% of the FPL have a higher up-

take of insurance and are covered under more generous plans due to the CSRs. Our

estimates of changes in consumer surplus are dwarfed by the corresponding change

in government expenditure on premium subsidies, which we estimate to be between

$15.00 and $26.13 per consumer, per month. The large magnitude of the expenditure

savings is due to the large number of marginal buyers who exit the market due to the

post-subsidy premium increase. When these buyers exit, they relinquish their entire

premium subsidy, which in most cases is significantly greater than $10.

The bottom row of Table 4 shows the aggregate yearly impact of a $10 reduction of

subsidies in Covered California. The total consumer surplus impact would be between

$56 and $70 million, with the majority of the losses concentrated among households

with income below 250% of the FPL. At the same time, government subsidy outlays

37 We do this because a given consumer surplus change could be attained in a variety of different ways,
each of which might be associated with different changes in government spending.
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Table 4: The Impacts of Reducing Monthly Subsidies by $10

140 - 400% FPL 140 - 250% FPL 250 - 400% FPL 140 - 400% FPL
Change in Change in Change in Associated change

consumer surplus consumer surplus consumer surplus in subsidy outlays
LB UB LB UB LB UB LB UB

Average ($/person-month) -2.397 -1.905 -2.881 -2.317 -1.500 -1.142 -26.125 -14.995

Aggregate ($ million/year) -70.485 -56.012 -56.036 -45.059 -16.434 -12.506 -768.142 -440.884

would decline by between $441 and $768 million per year. Overall, our findings suggest

that consumers value health insurance significantly less than it would cost in premium

subsidies to induce them to purchase a plan. This finding is consistent with a growing

number of empirical analyses, see e.g. Finkelstein et al. (2017). In interpreting this find-

ing, we caution that our estimates do not account for the existence of potentially large

externalities such as the cost of uncompensated care, debt delinquency, or bankruptcy

(Finkelstein et al., 2012; Mahoney, 2015; Garthwaite, Gross, and Notowidigdo, 2018).

4.4 Allowing Valuations to Change Within Coarse Age Bins

The primary assumption that drives our results is (29). As we noted, the part of this

assumption that imposes independence between valuations and age within coarse age

bins is probably questionable, since valuations likely change with risk factors, and risk

factors change with age.38 In this section, we consider a strictly weaker version of

(29) that allows for deviations away from perfect invariance. This can be viewed as a

sensitivity analysis, and is similar in spirit to proposals by Conley, Hansen, and Rossi

(2010), Nevo and Rosen (2012), and Manski and Pepper (2017).

The way in which we do this is to relax (29) into two inequalities controlled by a

slackness parameter. The relaxed assumption is that

(1− κ(z, z′))fV |WZ(v|w, z′) ≤ fV |WZ(v|w, z) ≤ (1 + κ(z, z′))fV |WZ(v|w, z′)
for all z, z′, w, and v, (32)

38 Indeed, the importance of age heterogeneity in health insurance demand has been emphasized in existing
work, see e.g. Ericson and Starc (2015), Geruso (2017), and Tebaldi (2017).
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Table 5: Allowing for Valuations to Vary Within Coarse Age Bins

Change in Change in consumer Change in government
Allowed variation probability of not enrolling surplus ($/person-month) spending ($/person-month)

in preference if all per-person premiums if per-person subsidies if per-person subsidies
with age increase by $10/month decrease by $10/month decrease by $10/month

LB UB LB UB LB UB

κ = 0 +0.033 +0.084 -2.397 -1.905 -26.125 -14.995

κ = 0.2 +0.034 +0.086 -2.450 -1.941 -26.504 -14.909

κ = 0.4 +0.034 +0.088 -2.481 -1.966 -26.991 -15.032

κ = 0.8 +0.035 +0.092 -2.541 -1.998 -28.339 -14.825

κ = 1 +0.033 +0.098 -2.574 -1.951 -29.374 -14.169

κ = 3 +0.032 +0.104 -2.641 -1.952 -31.027 -13.496

κ = +∞ +0.027 +0.114 -2.714 -1.846 -34.215 -11.632

where κ(z, z′) ≥ 0 is the slackness parameter. We specify κ in the following way:

κ(z, z′) =


κ, if z and z′ differ only in age, and only by a single bin

0, if z and z′ differ only in income

+∞, otherwise.

In words, the assumption is that within any coarse bin (i.e., conditional on Wi = w),

the pointwise difference in conditional valuation densities corresponding to any two

adjacent one-year age bins (with identical income) can be no greater than κ%. The

constant κ must be chosen, but we will report results for various choices.

Table 5 reports bounds on some of our main target parameters under (29) for

different values of κ.39 The row with κ = 0 are the same as the estimates reported

in the previous section, because this choice of κ reduces (32) back to our previous

assumption of (29). At the opposite extreme, the row with κ = +∞ corresponds

to estimates that only use variation in income. We also include a variety of choices

of κ in between these two poles. For example, estimates in the row with κ = 0.4 are

obtained under the assumption that valuations can differ by no more than 40% between

individuals who are one year apart in age, within a coarse age bin.40 Overall, Table 5

39 Note that it is straightforward to modify the sharp characterization in Proposition 1 to allow for an
assumption like (29) instead of (6). The difference in implementation just amounts to replacing (26) with
an inequality analogous to (29).

40 Note that the bounds generally widen with κ, since larger values correspond to weaker assumptions.
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suggests are findings are robust to allowing for dependence between valuations and age,

including the extreme case of κ = +∞ in which we are completely agnostic about this

dependence. In this case, we estimate that reducing monthly premium subsidies by $10

leads to a drop in coverage between 2.7% and 11.4%, to a reduction in consumer surplus

of between $1.85 and $2.71 per person, per month, and to a reduction in government

spending between $11.63 and $34.22 per person, per month.

5 Estimates from Parametric Models

The motivation of this paper has been to provide estimates of key policy parameters

using a model that does not use parametric distributional assumptions. In this sec-

tion, we compare our nonparametric bounds to estimates from some fully parametric

logit and probit models which do use such assumptions. These models all follow a

specification similar to (2):

Yi = arg max
j∈J

1[j ≥ 1] (γi + βiAVij − αiPij + ξj) + εij , (33)

where γi is an individual-specific intercept, AVij is the actuarial value of tier j for

individual i (see Table 1), αi and βi are individual slope coefficients, and ξj are un-

observable preference shifters for each tier. The presence of the indicator sets the

contribution of these terms to 0 for the outside option (j = 0). We consider logit

models in which the distribution of εij is assumed to follow a type I extreme value

distribution, independently across j, as well as probit models in which this unobserv-

able is assumed to follow a standard normal distribution. We always estimate (33)

market-by-market, so that all parameters vary by market.

The first model we estimate is a logit in which the price parameter, αi, is constant

within markets, similarly to ξj , but both γi and βi vary with observables in a rich way.41

The second model is a probit with the same specification.42 We then consider three

However, this is not always the case, due to the fact that we are estimating these bounds using the procedure
in Appendix G. Essentially, that procedure works by restricting attention to densities that come closest to
fitting the observed choice shares. This fit mechanically improves as κ increases, because more densities are
considered. As a result, densities that seemed to fit well for smaller values of κ might no longer be deemed
to fit well when κ increases, since the best fit has improved. This creates a countervailing effect to changing
κ, which can lead to non-monotonicity in the estimated bounds even though monotonicity must hold for the
population bounds.

41 The specification allows βi to vary freely by market with a different value in each of the following four
age bins: {27–34, 35–44, 45–54, 54–64}. It allows also γi to vary freely by market, and within each region

restricts γi = γInci + γAge
i , where γInci varies in three FPL income bins {140–200, 200–250, 250–400}, and

γAge
i varies in the same four age bins as βi.
42 We had difficulty estimating a similar probit with correlated εij because the likelihood is very flat.
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Figure 6: Comparison Between Nonparametric Bounds and Parametric Estimates
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mixed logit models. In all of these models, γi and βi vary with observables as in the

baseline model, and the premium coefficient αi still varies with the market. The three

models differ in whether γi, αi, or both have an additional unobservable component

that is normally distributed with unknown variance. In the latter case, we also assume

that the two unobservable components are uncorrelated.

Figure 6 illustrates how our nonparametric bounds for the extensive margin compare

to the estimates one obtains from these five parametric models. The estimates shown

are for the counterfactuals of a $10 and $20 increase in all premiums (or decrease

in subsidies). All of the point estimates are within the nonparametric bounds, but

clustered near the upper bound, where price sensitivity is lowest. The one exception,

with point estimates closer to the midpoint of our nonparametric bounds, is the mixed

logit in which the premium coefficient αi varies across individuals within a market.

The implication is that different distributional assumptions on εij other than logit

and probit could yield estimates near the lower bound, while still preserving the same

degree of fit to the observed choice shares. As we showed in Table 4, these estimates

would have substantially different policy implications in terms of consumer surplus and

government spending. Thus, the assumption of a type I extreme value (or similarly-
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shaped normal) distribution appears to have a significant impact on the empirical

conclusions that would be drawn.

6 Conclusion

We estimated the demand for health insurance in California’s ACA marketplace using

a new nonparametric methodology. While we designed our methodology with health

insurance in mind, it should be applicable to other discrete choice problems as well.

The central idea of the method is to divide realizations of a consumer’s valuations into

sets for which behavior remains constant. We showed how to define the collection of

such sets, which we referred to as the minimal relevant partition (MRP) of valuations.

Using the MRP, we developed a computationally reliable linear programming procedure

for consistently estimating sharp identified sets for target parameters of interest.

Our estimates of demand using this methodology point to the possibility of substan-

tially greater price sensitivity than would be recognized using comparable parametric

models. This is consistent with the commonly-heard folklore that logits are “flat”

models. We showed that this has potentially important policy implications, since it

implies that the impact of decreasing subsidies on consumer surplus could be much

smaller—and the impact of government expenditure much larger—than would be rec-

ognized using standard parametric methods. More broadly, our results provide a clear

example in which functional form assumptions are far from innocuous, and actually

play a leading role in driving empirical conclusions.
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A Methodology Literature Review

In this section, we discuss the relationship of our methodology to the existing literature.

We focus our attention first on semi- and non-parametric approaches to unordered

discrete choice analysis. This literature can be traced back to Manski (1975). The

focus of Manski’s work, as well as most of the subsequent literature, has been on

relaxing parameterizations on the distribution of unobservables, while the observable

component of utility is usually assumed to be linear-in-parameters.43 The motivation of

our approach is also to avoid the need to parameterize distributions of latent variables,

however we have chosen to keep the entire analysis nonparametric.44

Our approach has three key properties that, when taken together, make it distinct

in the literature on semi- and nonparametric discrete choice. First, much of the litera-

ture has focused on identification of the observable components of indirect utility, while

treating the distribution of unobservables as an infinite-dimensional nuisance param-

eter. For example, in (2), this would correspond to identifying αi and βi when these

random coefficients are restricted to be constant. Examples of work with this focus

include Manski (1975), Matzkin (1993), Lewbel (2000), Fox (2007), Pakes (2010), Ho

and Pakes (2014), Pakes, Porter, Ho, and Ishii (2006, 2015), Pakes and Porter (2016),

and Shi, Shum, and Song (2016). Identification of the relative importance of observable

factors for explaining choices is insufficient for our purposes, because the policy coun-

terfactuals we are interested in, such as choice probabilities and consumer surplus, also

depend on the distribution of unobservables. Treating this distribution as a nuisance

parameter would not allow us to make sharp statements about quantities relevant to

these counterfactuals.

Second, we allow for prices (premiums in our context) to be endogenous in the

sense of being correlated with the unobservable determinants of utility. This differen-

tiates our paper from work that focuses on identification of counterfactuals, but which

assumes exogenous explanatory variables. Examples of such work includes Thompson

(1989), Manski (2007, 2014), Briesch, Chintagunta, and Matzkin (2010), Chiong, Hsieh,

and Shum (2017), and Allen and Rehbeck (2017). The importance of allowing for en-

dogenous explanatory variables in discrete choice demand analysis was emphasized by

43 Matzkin (1991) considered the opposite case in which the distribution of the unobservable component is
parameterized, but the observable component is treated nonparametrically. See also Briesch, Chintagunta,
and Matzkin (2002).

44 Extending our methodology to a semiparametric model is an interesting avenue for future work, but
not well-suited to our application since there is no variation in choice (plan) characteristics in Covered
California. Conceptually though, one could use our strategy with a semiparametric model by fixing the
parametric component and then repeatedly applying our characterization argument, similar to the strategy
in Torgovitsky (2018).
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Berry (1994) and Hausman, Leonard, and Zona (1994), and motivated the influential

work of Berry et al. (1995, 2004a). In our application, it is essential that we can make

statements about demand counterfactuals while still recognizing that premiums could

be dependent with unobserved components of a consumer’s valuations.

This leads to the third way that our approach differs from existing literature, which

is that we do not place strong demands on the available exogenous variation in the data.

In particular, we do not require the existence of a certain number of instruments, or that

such instruments satisfy strong support or rank conditions. For example, Lewbel (2000)

and Fox and Gandhi (2016) require exogenous “special regressors” with large support,

which are not available in our data. Alternatively, Chiappori and Komunjer (2009) and

Berry and Haile (2014) provide identification results that require a sufficient number

of continuous instruments that satisfy certain “completeness” conditions, which can be

viewed as high-level analogs to traditional rank conditions.45 Besides the difficulty of

finding a sufficient number of continuous instruments, one might also be concerned with

the interpretability and/or testability of the completeness condition (Canay, Santos,

and Shaikh, 2013). Not maintaining these types of support and completeness conditions

leads naturally to a partial identification framework (Santos, 2012).

Other authors have also considered taking a partial identification approach to un-

ordered discrete choice models. Pakes (2010), Ho and Pakes (2014), Pakes et al. (2006,

2015), Pakes and Porter (2016) developed moment inequality approaches that can be

used to bound coefficients on observables in specifications like (2) without parametric

assumptions on the unobservables. As noted, this is insufficient for our purposes, since

we are concerned with demand counterfactuals. Manski (2007), Chiong et al. (2017)

and Allen and Rehbeck (2017) bound counterfactuals, but assume that all explanatory

variables are exogenous. In parametric contexts, Nevo and Rosen (2012) have consid-

ered partial identification arising from allowing instruments to be partially endogenous,

and Gandhi, Lu, and Shi (2017) treated the problem of non-purchases in scanner data

as one of partial identification.

Chesher et al. (2013) provide a general framework for deriving moment inequalities

in discrete choice models that may be partially identified.46 They use random set

theory to characterize identification, which leads to the concept of a core-determining

class of sets. For the quasilinear utility models that we consider in this paper, the

core-determining class is strictly larger than the collection of sets we call the minimal

relevant partition (see footnote 20). However, the analysis of Chesher et al. (2013)

45 See also Compiani (2018), who has shown how to construct and implement estimators based on the
results of Berry and Haile (2014).

46 Chesher and Rosen (2017) generalize this framework to an even broader class of models.
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also applies to models that are not quasilinear in utility. Our methodology also differs

from theirs in terms of computation. Whereas Chesher et al. (2013) provide moment

inequalities that must be checked for each candidate distribution of valuations (f),

our approach effectively profiles out this distribution in search of bounds on the finite-

dimensional target parameter (θ). As a consequence, our approach can be implemented

nonparametrically, whereas feasibly implementing the Chesher et al. (2013) approach

requires parameterizing the distribution of valuations (see their Section 4.2).

More generally, our work is related to a literature on computational approaches

to characterizing identified sets in the presence of partial identification.47 In par-

ticular, the linear programming structure we exploit has been noted by many other

authors, see e.g. Balke and Pearl (1994, 1997) and Hansen, Heaton, and Luttmer

(1995) for early examples. Previous work that has implemented linear programming

to characterize sharp identified sets includes Honoré and Tamer (2006), Honoré and

Lleras-Muney (2006), Manski (2007, 2014), Lafférs (2013), Freyberger and Horowitz

(2015), Demuynck (2015), Kline and Tartari (2016), Torgovitsky (2016, 2018), Kamat

(2017), and Mogstad, Santos, and Torgovitsky (2018). Of this work, ours is closest to

Manski (2007), who also considered discrete choice problems. Methodologically, our

work differs from Manski’s because we maintain and exploit more structure on prefer-

ences (via (1)), and in addition we do not assume that explanatory variables (or choice

sets in Manski’s framework) are exogenous.

B A Model of Insurance Choice

In this section, we provide a model of choice under uncertainty that leads to (1). The

model is quite similar to those discussed in Handel (2013, pp. 2660–2662) and Handel

et al. (2015, pp. 1280–281). Throughout, we suppress observable factors other than

premiums (components of Xi) that could affect a consumer’s decision. All quantities

can be viewed as conditional on these observed factors, which is consistent with the

nonparametric implementation we use in the main text.

Suppose that each consumer i chooses a plan j to maximize their expected utility

taken over uncertain medical expenditures, so that

Yi = arg max
j∈J

∫
Uij(ex) dGij(ex), (34)

47 In addition to the series of papers by Chesher and Rosen (2013, 2014, 2017) and Chesher et al. (2013),
this also includes work by Beresteanu, Molchanov, and Molinari (2011), Galichon and Henry (2011), and
Schennach (2014).
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where Uij(ex) is consumer i’s ex-post utility from choosing plan j given realized ex-

penditures of ex, and Gij is the distribution of these expenditures, which varies both

by consumer i (due to risk factors) and by plan j (due to coverage levels). Assume

that Uij takes the constant absolute risk aversion (CARA) form

Uij(ex) = − 1

Ai
e−AiCij(ex), (35)

where Ai is consumer i’s risk aversion, and Cij(ex) is their ex-post consumption when

choosing plan j and realizing expenditures ex. We assume that ex-post consumption

takes the additively separable form

Cij(ex) = Inci − Pij − ex + Ṽij , (36)

where Inci is consumer i’s income, Pij is the premium they paid for plan j, and Ṽij is

an idiosyncratic preference parameter.

Substituting (36) into (35) and then into (34), we obtain

Yi = arg max
j∈J

− 1

Ai

[
eAi(Pij−Inci−Ṽij)

∫
eAiex dGij(ex)

]
Transforming the objective using u 7→ − log(−u), which is strictly increasing for u < 0,

we obtain an equivalent problem

Yi = arg max
j∈J

− log

(
1

Ai

[
eAi(Pij−Inci−Ṽij)

∫
eAiex dGij(ex)

])
= arg max

j∈J
− log

(
1

Ai

)
+Ai

(
Inci − Pij + Ṽij

)
+ log

(∫
eAiex dGij(ex)

)
.

Eliminating additive terms that don’t depend on plan choice yields

Yi = arg max
j∈J

−AiPij +AiṼij + log

(∫
eAiex dGij(ex)

)
.

Suppose that Ai > 0, so that all consumers are risk averse.48 Then we can express the

consumer’s choice as

Yi = arg max
j∈J

[
Ṽij +

1

Ai
log

(∫
eAiex dGij(ex)

)]
− Pij ,

48 Showing that (1) would arise from risk neutral consumers is immediate.
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which takes the form of (1) with

Vij ≡
[
Ṽij +

1

Ai
log

(∫
eAiex dGij(ex)

)]
.

Examining the components of Vij reveals the factors that contribute to heterogene-

ity in valuations in this model. Heterogeneity across i can come from variation in risk

aversion (Ai), from differences in risk factors or beliefs (Gij), and from idiosyncratic

differences in the valuation of health insurance (Ṽij). Differences in valuations across

j arise from the interaction between risk factors and the distribution of corresponding

expenditures (Gij), as well as from idiosyncratic differences in valuations across plans

(Ṽij). The main restrictions in this model are the assumption of CARA preferences

in (35) and the quasilinearity of ex-post consumption in (36). However, as noted in

the main text, these restrictions do not have empirical content until they are combined

with an assumption about the dependence between income (here called Inci) and the

preference parameters, Ai and Ṽij .

C Modifications for More or Less Price Variation

In Covered California, post-subsidy premiums are a deterministic function of the mar-

ket (rating region) and consumer demographics. Our discussion in the main text was

tailored to this case. In this section, we discuss how to modify our approach to settings

in which prices vary either more or less.

The more straightforward (and probably less interesting) case is when Pi still varies

conditional on (Mi, Xi). This could occur if prices vary at the individual level due to

demographic or geographic variables that the researcher does not observe. In this

case, our methodology can be applied with little more than notational changes. The

conditioning on Pi would need to be carried along, since it is no longer redundant

after conditioning on (Mi, Xi). Demand and consumer surplus parameters like (3) and

(4) would be defined as before, but there would be an additional integration step to

construct the density of Vi given (Mi, Xi) from that of Vi given (Pi,Mi, Xi). A similar

comment applies to the assumptions in Section 3.4. The observational equivalence

condition (11) would be modified so that it is defined for all (p,m, x).

The less straightforward (and more interesting) case is when one observes only

a single price for each market, as in Berry et al. (1995); Berry and Haile (2014).

Notationally, this means Pi = π(Mi) depends on Mi only, and not Xi. As a technical

matter, our methodology applies exactly as before to this case. However, since there

is only a single price per market, and since we are not assuming anything about how
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demand varies across markets, the resulting bounds will be uninformative. Here, we

suggest two additional assumptions that could potentially be used to compensate for

limited price variation.

The first assumption is that there is another observable variable that varies within

markets that can be made comparable to prices.49 This is implicit in standard discrete

choice models like (2). Consider modifying (1) to

Yi = arg max
j∈J

Vij +X ′iβj − Pij , (37)

where β ≡ (β1, . . . , βJ) are unknown parameter vectors. For each fixed β, this model is

like (1) but with prices given by P̃ij(βj) ≡ Pij −X ′iβj . While Pij does not vary within

markets, P̃ij(βj) will if a component of Xi does. In order to make use of this variation,

that component of Xi needs to be independent of Vi, which can be incorporated by

modifying the instrumental variable assumptions in Section 3.4.1.

The second assumption is that the unobservables that vary across markets can be

made comparable to prices. In (2), these unobservables are called ξijm. In our notation,

we can incorporate these by replacing (1) with

Yi = arg max
j∈J

Vij + ξj(Mi)− Pij , (38)

where ξj is an unknown function of the consumer’s market. For each fixed ξ, this

model is like (1) but with valuations given by Ṽij(ξ) ≡ Vij + ξj(Mi). After incorpo-

rating unobserved market effects in this way, one may be willing to assume that Vij

is independent of Pi = π(Mi), as is common in implementations of (2). This can be

incorporated by modifying the instrumental variables assumptions in Section 3.4.1.

Implementing either (37) or (38) requires looping over possible parameter values

β or ξ. However, for each candidate β and ξ, one can characterize and compute

the identified set exactly as before. This suggests that such a procedure will still be

sharp. Developing a feasible computational strategy appears more challenging, but not

impossible. Since neither (37) or (38) are needed for our application, we leave fuller

investigations of these extensions to future work.

49 Berry and Haile (2010) show how such information can be used to improve on the nonparametric point
identification arguments in Berry and Haile (2014).

43



D Construction of the Minimal Relevant Partition

We first observe that any price (premium) vector p ∈ RJ divides RJ into the sets

{Vj(p)}Jj=0, as shown in Figures 1a and 1b. Intuitively, we view such a division as a

partition, although formally this is not correct, since these sets can overlap on subsets

like {v ∈ RJ : vj − pj = vk − pk} where ties occurs. These regions of overlap have

Lebesgue measure zero in RJ , so this caveat is unimportant given our focus on con-

tinuously distributed valuations. To avoid confusion, we refer to a collection of sets

that would be a partition if not for regions of Lebesgue measure zero as an almost sure

(a.s.) partition.

Definition 2. Let {At}Tt=1 be a collection of Lebesgue measurable subsets of RJ . Then

{At}Tt=1 is an almost sure (a.s.) partition of RJ if

a)
⋃T
t=1At = RJ ; and

b) λ(At ∩ At′) = 0 for any t 6= t′, where λ denotes Lebesgue measure on RJ .

Next, we enumerate the price vectors in P as P = {p1, . . . , pL} for some integer

L. Let Y ≡ J L denote the collection of all L–tuples from the set of choices J ≡
{0, 1, . . . , J}. Then, since {Vj(pl)}Jj=0 is an a.s. partition of RJ for every pl, it follows

that

{
Ṽy : y ∈ Y

}
where Ṽy ≡

L⋂
l=1

Vyl(pl) (39)

also constitutes an a.s. partition of RJ .50 Intuitively, each vector y ≡ (y1, . . . , yL) is

a profile of L choices under the price vectors (p1, . . . , pL) that comprise P. Each set

Ṽy in the a.s. partition (39) corresponds to the subset of valuations in RJ for which a

consumer would make choices y when faced with prices P.

The collection V ≡ {Ṽy : y ∈ Y} is the MRP, since it satisfies Definition 1 by

construction. To see this, note that if v, v′ ∈ Ṽy for some y, then by (39), v, v′ ∈ Vyl(pl)
for all l = 1, . . . , L, at least up to collections of v, v′ that have Lebesgue measure zero.

Recalling (9), this implies (using the notation of Definition 1) that Y (v, p) = Y (v′, p)

for all p ∈ P. Conversely, if Y (v, p) = Y (v′, p) for all p ∈ P, then taking

y ≡ (Y (v, p1), . . . , Y (v, pL)) = (Y (v′, p1), . . . , Y (v′, pL)), (40)

50 Note that these sets are Lebesgue measurable, since Vj(p) is a finite intersection of half-spaces and Ṽy
is a finite intersection of sets like Vj(p).

44



yields an L–tuple y ∈ Y such that v, v′ ∈ Vyl(pl), again barring ambiguities that occur

with Lebesgue measure zero.

From a practical perspective, this is an inadequate representation of the MRP,

because if choices are determined by the quasilinear model (1), then many of the sets

Ṽy must have Lebesgue measure zero. This makes indexing the partition by y ∈ Y
excessive; for computation we would prefer an indexing scheme that only includes sets

that are not already known to have measure zero. For this purpose, we use an algorithm

that starts with the set of prices P and returns the collection of choice sequences Y
that are not required to have Lebesgue measure zero under (1). We use this set Y in

our computational implementation. Note that since Ṽy has Lebesgue measure zero for

any y ∈ Y \ Y, the collection V ≡ {Ṽy : y ∈ Y} still constitutes an a.s. partition of RJ

and still satisfies the key property (17) of the MRP in Definition 1.

The algorithm works as follows.51 We begin by partitioning P into T sets (or

blocks) of prices {Pt}Tt=1 that each contain (give or take) ψ prices. For each t, we

then construct the set of all choice sequences Yt ⊆ J |Pt| that are compatible with the

quasilinear choice model in the sense that yt ∈ Yt if and only if the set{
v ∈ RJ : vytl

− pytl ≥ vj − pj for all j ∈ J and p ∈ Pt
}

(41)

is non-empty. In practice, we do this by sequentially checking the feasibility of a linear

program with (41) as the constraint set. The sense in which we do this sequentially

is that instead of checking (41) for all yt ∈ J |Pt|—which could be a large set even for

moderate ψ—we first check whether it is nonempty when the constraint is imposed

for only 2 prices in Pt, then 3 prices, etc. Finding that (41) is empty when restricting

attention to one of these shorter choice sequences implies that it must also be infeasible

for all other sequences that share the short component. This observation helps speed

up the algorithm substantially.

One we have found Yt for all t, we combine blocks of prices into pairs, then repeat

the process with these larger, paired blocks. For example, if we let P12 ≡ P1 ∪P2—i.e.

we pair the first two blocks of prices—then we know that the set of y12 ∈ J |P1|+|P2|

that satisfy (41) must be a subset of {(y1, y2) : y1 ∈ Y1, y2 ∈ Y2}. We sequentially

check the non-emptyness of (41) for all y12 in this set, eventually obtaining a set Y12.

Once we have done this for all pairs of price blocks, we then combine pairs of pairs of

blocks (e.g. P12 ∪ P34) and repeat the process. Continuing in this way, we eventually

51 We expect that this algorithm leaves room for significant computational improvements, but we leave
more sophisticated developments for future work. In practice, we also use some additional heuristics based
on sorting the price vectors. These have useful but second-order speed improvements that are specific to our
application, so for brevity we do not describe them here.
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end up with the original set of price vectors, P, as well as the set of all surviving choice

sequences, Y ⊆ Y.

The key input to this algorithm is the number of prices in the initial price blocks,

which we have denoted by ψ. The optimal value of ψ should be something larger than

2, but smaller than L. With small ψ, the sequential checking of (41) yields less payoff,

since each detection of infeasibility eliminates fewer partial choice sequences. On the

other hand, large ψ makes the strategy of combining pairs of smaller blocks of prices

into larger blocks less fruitful. For our application, we use ψ = 8–10, which seems to

be fairly efficient, although it is likely specific to our setting.

E Proofs for Propositions 1 and 2

E.1 Proposition 1

If t ∈ Θ?, then by definition there exists an f ∈ F? such that θ(f) = t. Let φf be

defined as in (20), which we reproduce here for convenience:

φf (V|m,x) ≡
∫
V
f(v|m,x) dv. (20)

Note that φf ∈ Φ, because the MRP V is (almost surely) a partition of RJ , and f is

a conditional probability density function on RJ . Due to the assumed properties of θ,

we also know that θ(φf ) = θ(f) = t, so that (24) is satisfied. To see that φf satisfies

(25), observe that

∑
V∈Vj(π(m,x))

φf (V|m,x) ≡
∑

V∈Vj(π(m,x))

∫
V
f(v|m,x) dv = sf (j|m,x) = s(j|m,x),

where the first equality follows by definition (20), the second follows from (18), and

the third follows from the definition of F?. Similarly, φf satisfies (26) because

E
[
φf (V|Mi, Xi)|Wi = w,Zi = z

]
= E

[∫
V
f(v|Mi, Xi) dv

∣∣∣Wi = w,Zi = z

]
=

∫
V

E
[
f(v|Mi, Xi)|Wi = w,Zi = z

]
dv

=

∫
V

E
[
f(v|Mi, Xi)|Wi = w,Zi = z′

]
dv = E

[
φf (V|Mi, Xi)|Wi = w,Zi = z′

]
where the second equality follows by Tonelli’s Theorem (e.g. Shorack, 2000, pg. 82),

the third uses (6), which holds (by assumption) for all f ∈ F?, and the final equality
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reverses the steps of the first two equalities. That φf also satisfies (27) follows using a

similar argument and the hypothesis that f ∈ F? satisfies (7), i.e.

∑
V∈V(w)

(φf )V|WZ(V|w, z) =
∑
V∈V(w)

∫
V

E
[
f(v|Mi, Xi)|Wi = w,Zi = z

]
dv

=

∫
∪{V:V∈V(w)}

fV |WZ(v|w, z) dv

≥
∫
V(w)

fV |WZ(v|w, z) dv = 1. (42)

The inequality in (42) follows because the definition of V(w), together with the fact

that V is an a.s. partition of RJ , implies that V(w) is contained in the union of sets

in V(w). This inequality implies that φf satisfies (27), because∑
V∈V(w)

(φf )V|WZ(V|w, z) ≤
∑
V∈V

(φf )V|WZ(V|w, z)

= E

[∑
V∈V

φf (V|Mi, Xi)
∣∣∣Wi = w,Zi = z

]
= 1,

as a result of φf being an element of Φ. We have now established that if t ∈ Θ?, then

there exists a φ ∈ Φ satisfying (24)–(27) for which θ(φ) = t.

Conversely, suppose that such a φ ∈ Φ exists for some t. Recall that Wi was

assumed to be a subvector (or more generally, a function) of (Mi, Xi), and denote this

function by ω, so that Wi = ω(Mi, Xi). Then define

fφ(v|m,x) ≡
∑

V∈V(ω(m,x))

1
[
v ∈ V ∩ V(ω(m,x))

]
λ
(
V ∩ V(ω(m,x))

) φ(V|m,x),

noting that the definition of V(w) ensures that the summands are well-defined. The

function fφ(·|m,x) places total mass of φ(V|m,x) on sets V ∈ V(ω(m,x)), and dis-

tributes this mass uniformly across each set. We will show that t ∈ Θ? by establishing

that fφ ∈ F? and θ(fφ) = t.

First observe that for any V ∈ V,∫
V
fφ(v|m,x) dv ≡

∑
V ′∈V(ω(m,x))

∫
V

1
[
v ∈ V ′ ∩ V(ω(m,x))

]
λ
(
V ′ ∩ V(ω(m,x))

) φ(V ′|m,x) dv

= 1[V ∈ V(ω(m,x))]φ(V|m,x), (43)
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since the sets in V and hence V(ω(m,x)) are disjoint (almost surely). Using (43), we

have that∫
RJ
fφ(v|m,x) dv =

∑
V∈V

∫
V
fφ(v|m,x) dv =

∑
V∈V(ω(m,x))

φ(V|m,x) = 1, (44)

where the first equality uses the fact that V is an (a.s.) partition of RJ . The final

equality is implied by the hypothesis that φ satisfies (27), since

1 =
∑
V∈V(w)

φV|WZ(V|w, z) = E

 ∑
V∈V(ω(Mi,Xi))

φ(V|Mi, Xi)
∣∣∣Wi = w,Zi = z

 ,
and every φ ∈ Φ satisfies∑

V∈V(ω(m,x))

φ(V|m,x) ≤
∑
V∈V

φ(V|m,x) = 1.

Thus, from (44), and since fφ inherits non-negativity from φ ∈ Φ, we conclude that fφ

is a conditional density, i.e. fφ ∈ F .

To see that fφ satisfies (6), notice that

(fφ)V |WZ(v|w, z) ≡ E
[
fφ(v|Mi, Xi)|Wi = w,Zi = z

]
≡ E

 ∑
V∈V(w)

1
[
v ∈ V ∩ V(w)

]
λ
(
V ∩ V(w)

) φ(V|Mi, Xi)
∣∣∣Wi = w,Zi = z


=

∑
V∈V(w)

1
[
v ∈ V ∩ V(w)

]
λ
(
V ∩ V(w)

) φV|WZ(V|w, z)

=
∑
V∈V(w)

1
[
v ∈ V ∩ V(w)

]
λ
(
V ∩ V(w)

) φV|WZ(V|w, z′) = (fφ)V |WZ(v|w, z′),

where the fourth equality uses (26), and the final equality reverses the steps of the first

four. The satisfaction of the verticality condition, (7), follows in a similar way from
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(27) and Tonelli’s Theorem, since∫
V(w)

(fφ)V |WZ(v|w, z) dv ≡
∫
V(w)

E
[
fφ(v|Mi, Xi)|Wi = w,Zi = z

]
dv

= E

 ∑
V∈V(w)

φ(V|Mi, Xi)
∣∣∣Wi = w,Zi = z


=

∑
V∈V(w)

φV|WZ(V|w, z) = 1.

That fφ satisfies the observational equivalence condition (11) follows from (18), (43),

and then (25) via

sfφ(j|m,x) ≡
∑

V∈Vj(π(m,x))

∫
V
fφ(v|m,x) dv

=
∑

V∈Vj(π(m,x))

1[V ∈ V(ω(m,x))]φ(V|m,x)

=
∑

V∈Vj(π(m,x))

φ(V|m,x)−
∑

V∈Vj(π(m,x))

1[V /∈ V(ω(m,x))]φ(V|m,x)

= s(j|m,x),

for all j ∈ J and (p, x) ∈ supp(Pi, Xi). The last equality here uses the implication of

(44) that since φ ∈ Φ, φ(V|m,x) = 0 for any V /∈ V(ω(m,x)).

Finally, note that in the notation of (20), (43) says

φfφ(V|m,x) = 1[V ∈ V(ω(m,x))]φ(V|m,x).

This equality implies that φfφ(V|m,x) = φ(V|m,x) for all V, since for V /∈ V(ω(m,x))

we must have φ(V|m,x) = 0, as implied by (44). Thus, θ(fφ) = θ(φfφ) = θ(φ) = t,

and therefore t ∈ Θ?. Q.E.D.

E.2 Proof of Proposition 2

Observe that Φ is a compact and connected subset of Rdφ . Since (25)–(27) are linear

equalities, the subset of Φ that satisfies them is also compact and connected. Thus,

if θ is continuous on this subset, it follows that its image over it—which Proposition

1 established to be Θ?— is compact and connected as well. If dθ = 1, then Θ? is a

compact interval, so by definition its endpoints must be given by t? and t?. Q.E.D.
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F Implementing Bounds on Consumer Surplus

In this section, we show that setting the target parameter to be the change in consumer

surplus (as defined in (4)) results in a concentrated target parameter function (θ) that

is linear in φ. For shorthand, we denote average consumer surplus at premium p?,

conditional on (Mi, Xi) = (m,x) as

CSp?(f |m,x) ≡
∫ {

max
j∈J

vj − p?j
}
f(v|m,x) dv.

Suppose that V is a minimal relevant partition constructed from a set of premiums

P that contains two premiums of interest, p and p?. Then

CSp?(f |m,x) =
∑
V∈V

∫
V

{
max
j∈J

vj − p?j
}
f(v|m,x) dv, (45)

since the MRP is an (almost sure) partition of RJ . By definition of the MRP, the

optimal choice of plan is constant as a function of v within any MRP set V. That is,

using the notation in Definition 1, arg maxj∈J vj − pj ≡ Y (v, p) = Y (v′, p) ≡ Y (V, p)
for all v, v′ ∈ V and any p ∈ P. Consequently, we have from (45) that

CSp?(f |m,x) =
∑
V∈V

∫
V
vY (V,p?)f(v|m,x) dv − p?Y (V,p?)

Replacing p? by p, it follows that the change in consumer surplus resulting from a shift

in premiums from p→ p? can be written as

∆CSp→p?(f |m,x) ≡ CSp?(f |m,x)− CSp(f |m,x)

=
∑
V∈V

∫
V

(
vY (V,p?) − vY (V,p)

)
f(v|m,x) dv + pY (V,p) − p?Y (V,p?).

Now define the smallest and largest possible change in valuations within any parti-

tion set V as

vp→p?(V) ≡ min
v∈V

vY (V,p?) − vY (V,p),

and vp→p?(V) ≡ max
v∈V

vY (V,p?) − vY (V,p).

Since we do not restrict the distribution of valuations within each MRP set, the sharp

lower bound on a change in consumer surplus is attained when this distribution con-
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centrates all of its mass on vp→p?(V) in every V ∈ V. That is,

∆CSp→p?(f |m,x) ≥
∑
V∈V

vp→p?(V)φf (V|m,x) + pY (V,p) − p?Y (V,p?) ≡ ∆CSp→p?(f |m,x).

Similarly, the sharp upper bound for any f is given by

∆CSp→p?(f |m,x) ≤
∑
V∈V

vp→p?(V)φf (V|m,x) + pY (V,p) − p?Y (V,p?) ≡ ∆CSp→p?(f |m,x).

Therefore, a sharp upper bound on the change in consumer surplus can be found by

taking θ(f) ≡ ∆CSp→p?(f |m,x), setting

θ(φ) ≡
∑
V∈V

vp→p?(V)φ(V|m,x) + pY (V,p) − p?Y (V,p?).

and applying Propositions 1 or 2. The key requirement that θ(f) = θ(φf ) can be

seen to be satisfied here by examining the expression for ∆CSp→p?(f |m,x) above. The

sharp upper bound is found analogously.

G Estimation

Our analysis in Section 3 concerns the identification problem under which the joint

distribution of (Yi,Mi, Xi) is treated as known. In practice, features of this distribution,

such as the choice shares s(j|m,x), need to be estimated from a finite data set, so we

want to model them as potentially contaminated with statistical error. In this section,

we show how to modify Proposition 2 to account for such error in our primary case of

interest with θ linear. A formal justification for this procedure is developed in Mogstad

et al. (2018).

The estimator proceeds in two steps. First, we minimize the discrepancy in the

observational equivalence conditions (25) by solving

Q̂? ≡ min
φ∈Φ

Q̂(φ) subject to (26)–(27),

where Q̂(φ) ≡
∑
j,m,x

P̂[Mi = m,Xi = x]

∣∣∣∣∣∣ŝ(j|m,x)−
∑

V∈Vj(π(m,x))

φ(V|m,x)

∣∣∣∣∣∣ , (46)

with ŝ(j|m,x) the estimated share of choice j, conditional on (Mi, Xi) = (m,x), and

P̂[Mi = m,Xi = x] an estimate of the density of (Mi, Xi). The use of absolute

deviations in the definition of Q̂ means that (46) can be reformulated as a linear
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program by replacing terms in absolute values by the sum of their positive and negative

parts.52 We weight these absolute deviations by the estimated density of (Mi, Xi) so

that regions of smaller density do not have an outsized impact on the estimated bounds.

In the second step, we collect values of θ(φ) among φ that come close to minimizing

(46). That is, we construct the set:

Θ̂? ≡
{
θ(φ) : φ ∈ Φ, and Q̂(φ) ≤ Q̂? + ηn, and φ satisfies (26)–(27)

}
(47)

The qualifier “close” here reflects the tuning parameter ηn, which must converge to zero

at an appropriate rate with the sample size, n. The purpose of this tuning parameter

is to smooth out possible discontinuities caused by set convergence. In our empirical

estimates, we set ηn = .1, and found very little sensitivity to values of ηn that were

bigger or smaller by an order of magnitude. However, there are currently no theoretical

results to guide the choice of this parameter.

In our main case of interest when θ is linear and scalar-valued, we estimate Θ̂? by

solving two linear programs that replace (25) with the condition in (47). That is, we

solve

t̂? ≡ min
φ∈Φ

θ(φ) s.t Q̂(φ) ≤ Q̂? + ηn, (48)

and an analogous maximization problem defining t̂?. The set estimator for Θ? is then

Θ̂? ≡ [t̂?, t̂
?]. For this case, Mogstad et al. (2018) show that t̂? and t̂? are consistent for

t? and t? under weak conditions on ŝ. When θ is linear, (48) can be reformulated as a

linear program, again by appropriately rephrasing the absolute value terms in terms of

their positive and negative parts. In this case, the overall procedure of the estimator

is to solve three linear programs: One for (46), one for (48), and one for the analogous

maximization problem.

H Estimation of Potential Buyers

In this section, we describe how we use the American Community Survey (ACS) to

estimate the number of potential buyers in each market × age × income bin, or each

value of (Mi, Xi) = (m,x). As is often the case in empirical demand analysis, our

administrative data only contains observations of individuals who buy health insurance

in Covered California, but not those who were eligible yet chose the outside option.

That is, we do not have data on the quantity who chose choice 0.53 Instead, we

52 This is a common reformulation argument, see e.g. Bertsimas and Tsitsiklis (1997, pp. 19–20).
53 This is common in discrete choice contexts, see e.g. Berry (1994, pg. 247).
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construct conditional choice probability (market shares) by estimating the number of

potential buyers and dividing the quantity purchased of the inside choices (j ≥ 1) by

this estimate. This gives us estimated choice shares for the inside choices; the estimated

choice share for the outside choice (j = 0) is just the difference between the sum of the

inside shares and 1.

The key step here is estimating the number of potential buyers (market size),

µ(m,x), for each (Mi, Xi) = (m,x). We do this using the California 2013 3-year sub-

sample of the American Community Survey (ACS) public use file, downloaded from

IPUMS (Ruggles et al., 2015).54 We define an individual as a potential buyer, denoted

by the indicator Ii = 1, if they report being either uninsured or privately insured.

Individuals with Ii = 0 include those who are covered by employer-sponsored plans,

Medi-Cal (Medicaid), Medicare, or other types of public insurance. Then our estimator

of µ(m,x) is

µ̂(m,x) =
N∑
i=1

weightiIi1[Mi = m,Xi = x], (49)

where weighti are the individual sampling weights provided in the ACS, and N is the

total sample size. This sample reflects the selection rules discussed in Section 4.1.

To impose the restriction to households with 1 or 2 adults, we combine age with the

IPUMS definition of a health insurance unit (HIU), and keep only individiuals in HIUs

of size 1 or 2.

An adjustment to this procedure is needed to account for the fact that the PUMA

(public use micro area) geographic identifier in the ACS can be split across multiple

counties, and so in some cases also multiple ACA rating regions. For a PUMA that

is split in such a way, we allocate HIUs to each rating region it overlaps using the

population of the zipcodes in the PUMA as weights. This is the same adjustment

factor used in the PUMA to county crosswalk.55 Since the definition of a PUMA

changed after 2011, we also use this adjustment scheme to convert the 2011 PUMA

definitions to 2012–2013 definitions.

A final adjustment is needed for situations in which our estimate µ̂(m,x) is smaller

than the number of enrollees in the Covered California administrative data. Some fix

for such a case is needed in order to keep all shares bounded between 0 and 1. The

fix we use is to replace µ̂(m,x) by the total enrollment observed in the administrative

54 The 3 year sample includes information from 2011 to 2013. We use the entire 3 year sample to increase
our sample size.

55 For example, suppose that an HIU is in a PUMA that spans counties A and B, and that this HIU has a
total sampling weight of 10, so that it represents 10 observationally equivalent households. If the adjustment
factor is 0.3 in county A and 0.7 in county B, we assume there are 3 identical HIUs in county A and 7 in
county B.
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data, so that the estimated share of the outside option is 0. In practice, we find that

this only happens for smaller x bins in sparsely-populated rating regions, and we expect

the cause is statistical error in µ̂(m,x). While our solution is not ideal, it seems to be

the best that we can do given the available data. Since our estimates are weighted by

bin size, the adjustment we use turns out to affect our results little when compared to

some other (also ad hoc) adjustments we have tried.
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