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Motivation
I Stylized facts:

I Large and growing spending in the US compared to other countries, not much better
outcomes

I Wide variation in spending and outcomes in the US, very little correlation

I Important questions in health economics:
I Are we spending the right amount on health care?
I Could we get more by spending the same amount?
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Example
Heart attack mortality vs. spending across US states

 37 

Figure 4: Average Risk-Adjusted 1-Year AMI Mortality and Average 
Risk-Adjusted 1-Year AMI Expenditures (1989-2000), by State 
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Source: Skinner, Jonathan, and Douglas Staiger. “Technology Adoption From Hybrid Corn to Beta Blockers.” Working Paper.
National Bureau of Economic Research, April 2005.
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Allocative vs. Productive Efficiency
Figure 2b

Explaining “Flat of the Curve” Health Care Expenditures
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Source: Garber, Alan M., and Jonathan Skinner. “Is American Health Care Uniquely Inefficient?” The Journal of Economic
Perspectives 22, no. 4 (November 1, 2008): 27–50.
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Chandra and Staiger (2007)
“Productivity Spillovers in Healthcare: Evidence from the Treatment of Heart
Attacks”

I How should we rationalize the facts that (i) medical treatments seem to work (e.g.,
RCTs) and (ii) little correlation between spending and outcomes?

I Prominent explanation: “flat of the curve” medicine (i.e., overuse)
I Alternative explanation: productivity spillovers and Roy selection

I Positive productivity spillovers: higher treatment rates increase benefits to treatment
I Areas with more intensive treatment have worse outcomes for non-intensive treatment ⇒

little difference in overall outcomes
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Roy Model
I Rational selection into treatment
I Selection depends on production function

I Production function in turn depends on learning by doing, support services, physician
sorting
I All of these are interesting (more later)
I At a high level, these factors may imply productivity spillovers
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Basic Model
I Consider two mutually exclusive types of treatment: “intensive” (D = 1) or not (D = 0)
I Proportion of cases with intensive treatment is P
I Net utility from choosing intensive treatment as function of net benefits and net costs

UD = BD + λCD

U = U1 − U0

= f (X ,P) ,

for patient characteristics X (assume no observable characteristics for now) and P.
I Note: f (X ,P) embeds both productivity (B0,C0,B1,C1) and spending preferences λ
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Basic Model
I Rationality: D = 1 (f (X ,P) > 0)

I Spillovers: f (X ,P) is increasing in P
I Identical patients (same X ) under same function f could be treated with different P

I Fixed point in equilibrium: P = E [1 (f (X ,P) > 0)] ≡ G (P)
I Equilibrium or equilibria depend on distribution of X and function f (X ,P), which jointly

determine G (P)
I Note: random assignment to areas + uniform productivity and spending preferences ⇒

single G (P)
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Graphical Selection Decision
Rationality: Patients who are more appropriate for intensive treatment will receive
intensive treatment
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Graphical Selection Decision
Knowledge spillovers: Increasing P raises U for patients treated intensively, lowers U for
patients not treated intensively
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Possible Equilibria
Single Equilibrium, Different G (P) Functions
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Possible Equilibria
Multiple Equilibria, Single G (P) Function
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Use of Model
I Rationalize stylized facts:

I Substantial differences in intensity (spending) across areas, not fully explained by patient
characteristics

I Spending not related to average outcomes
I Large returns to receiving intensive intervention
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Model Testable Predictions
1. Marginal patients receiving intensive treatment in intensive areas will be less

appropriate than the average patient (rationality)
2. Utility associated with nonintensive treatment is worse in areas that are intensive

(spillovers)
I In intensive areas, utility will be higher for patients more appropriate for intensive

treatment, lower for patients less appropriate

3. Net utility of intensive treatment should be higher among treated patients (treatment
on treated) in intensive areas; gains highest for patients most likely to be treated
intensively (TOT > ATE)
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Distinguishing from Alternative Models
1. Differences in productivity of intensive treatments across areas, not necessarily

related to spillovers
I Probability of treatment for given patient should be unrelated to characteristics of other

patients
I Productivity between intensive and non-intensive treatment not necessarily negatively

related

2. Flat of the curve medicine
I High-intensity areas should have lower benefits and higher costs (lower net utility)
I Also, predictions in #1 should hold, as no spillovers
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Empirical Implementation
I Study case of AMI treatment: intensive treatment being catheterization or surgery;

non-intensive being medical management (e.g., thrombolysis)
I AMIs attractive for number of reasons (e.g., high mortality, common, little patient mobility,

bimodal treatment choices)
I Study choice of AMI treatment according to area (Dartmouth HRR), estimate

plausibly causal treatment effects within area on cost and survival
I Data from Cooperative Cardiovascular Project (CCP, collected by Medicare) on

patient characteristics treated for AMI
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Empirical Implementation
I Specification:

Outcomeij = βk Intensivei + Xi Πk + εijk ,

where k is some group of interest that is a function of i and j (e.g., high-risk patients,
high-intensity HRR)

I βk is object of interest, represents returns to intensive treatment in group k
I Estimated by using differential distance as IV for intensive treatment (c.f., McClellan et

al, 1994)
I Predict appropriateness for intensive treatment based on patient characteristics,

focus on differences between above- and below-median appropriateness
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Results
First Stage, Reduced Form, Balance

TABLE 2
Relationship between Differential Distance (DD) and Probability of Catheterization and Survival, and Differential Distance and

Observable Characteristics (%)

Sample

30-Day Cath Rate One-Year Survival
One-Year Predicted

Survival

30-Day Predicted
Cath Rate for

Patients Getting
Cath

DD Below
Median

(1)

DD Above
Median

(2)

DD Below
Median

(3)

DD Above
Median

(4)

DD Below
Median

(5)

DD Above
Median

(6)

DD Below
Median

(7)

DD Above
Median

(8)

All patients (N p 129,997) 48.9 42.8 67.6 66.7 67.5 67.2 63.3 63.2
By cath propensity:

Above the median (N p 64,733) 74.0 67.1 84.6 83.8 83.4 83.5 72.6 72.6
Below the median (N p 65,244) 22.9 19.5 50.1 50.4 51.1 51.6 32.3 32.5

By age:
65–80 (N p 90,016) 61.1 54.9 74.3 73.5 73.9 73.9 67.4 67.3
Over 80 (N p 39,961) 20.3 16.5 52.1 52.1 52.6 52.7 34.6 34.1

Note.—Cath propensity is an empirical measure of patient appropriateness for intensive treatments. We define this measure by using fitted values from a logit model of the receipt of cardiac
catheterization on all the CCP risk adjusters. Differential distance is measured as the distance between the patient’s zip code of residence and the nearest catheterization hospital minus the distance
to the nearest hospital.

I Implies average positive returns to treatment
I Note: finding not new (McClellan et al 1994)



21/62

Results
Rational Selection productivity spillovers 127

Fig. 3.—Relation between average patient and marginal patient receiving cardiac cath-
eterization. For each of the 306 HRRs we graph the average propensity to receive cardiac
catheterization (among patients who actually received it) against the log of the area risk-
adjusted cath rate. Using local regression, we estimated the relationship between the
average propensity and the risk-adjusted cath rate and the slope of this line at each point.
These estimates were then used to plot the average (upper line) and marginal patient
(lower line and estimated as the local difference in the average) receiving treatment.

by the ACC and the AHA. Table 3 indicates that by both measures, the
marginal patient is significantly less likely to be appropriate for cardiac
catheterization.13

Figure 3 provides a graphical illustration of this relationship. For each
of the 306 HRRs, we graph the average propensity to receive cardiac
catheterization (among patients who actually received it) against the
log of the area risk-adjusted cath rate. Using local regression, we esti-
mated the relationship between the average propensity and the risk-
adjusted cath rate and the slope of this line at each point (which we
also smoothed). These estimates were then used to plot average and

13 Both measures are included as covariates in our estimation of the empirical appro-
priateness for cardiac catheterization. As such, these results are not three separate con-
firmations of the same prediction. The ACC/AHA measures are based on an evaluation
of the patient’s chart characteristics and classify each patient as being ideal, appropriate,
or inappropriate for catheterization; see Scanlon et al. (1999) for details. This measure,
however, is not our preferred measure because, as others have noted, expert panels have
been shown to exhibit enormous variability, particularly for the use of procedures classified
as inappropriate, and to be greatly influenced by the composition of the panel (Shekelle
et al. 1998).
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Spillover Results
TABLE 4

HRR-Level Measures of Intensive Treatment, Medical Management, Support of
Medical Treatment, and Demographic Characteristics

HRR Indicator Mean
Standard
Deviation

10th
Percentile

90th
Percentile

Correlation
with HRR
Cath Rate

Measures of intensive treatment:
Risk-adjusted 30-day cath rate 46.3% 9.1% 34.5% 58.3% 1.00
Risk-adjusted 30-day PTCA

rate 17.7% 5.1% 11.3% 23.6% .81
Risk-adjusted 30-day CABG

rate 13.4% 2.9% 10.2% 16.9% .51
Risk-adjusted 12-hour PTCA

rate 2.7% 2.6% .6% 5.8% .52
Measures of quality of medical

management:
Risk-adjusted beta-blocker rate 45.6% 9.5% 34.2% 58.3% 2.31

Support for intensive treatment:
Cardiovascular surgeons per

100,000 1.06 .27 .70 1.40 .33
Cath labs per 10,000 2.40 .76 1.50 3.30 .39

Demographic characteristics:
Log of resident population 13.96 .89 12.72 15.18 2.05
Log of per capita income 9.55 .20 9.31 9.85 .02
Percent college graduates 19.3% 5.5% 13.1% 26.6% 2.05

Note.—HRR surgical and medical intensity rates are computed as the risk-adjusted fixed effects from a patient-level
regression of the receipt of cath or beta-blockers on HRR fixed effects and CCP risk adjusters.
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Spillover Results 130 journal of political economy

TABLE 6
Instrumental Variable Estimates of Intensive Management and Spending on

Survival, by Surgical Intensity of Hospital Referral Region

Instrumental Variable Estimates of

Impact of Cath

Sample

On One-Year
Survival

(1)

On One-Year
Cost ($1,000s)

(2)

Impact of $1,000 on
One-Year Survival

(3)

A. All patients:
HRR risk-adjusted cath rate:

Above the median (N p
63,771)

.256
(.061)

6.691
(3.510)

.038
(.021)

Below the median (N p
66,124)

.09
(.059)

9.835
(3.155)

.009
(.007)

Difference .166
(.085)

�3.144
(4.720)

.029
(.022)

B. Patients above the median
cath propensity:

HRR risk-adjusted cath rate:
Above the median (N p

32,388)
.271

(.064)
.347

(4.370)
.78

(9.820)
Below the median (N p

32,411)
.168

(.046)
4.962

(2.890)
.034

(.021)
C. Patients below the median

cath propensity:
HRR risk-adjusted cath rate:

Above the median (N p
31,383)

.206
(.129)

16.21
(5.130)

.013
(.009)

Below the median (N p
33,713)

�.139
(.165)

22.064
(6.870)

�.006
(.007)

Note.—HRR intensity rates are computed as the risk-adjusted fixed effects from a patient-level regression of the
receipt of cath on HRR fixed effects and CCP risk adjusters. Differential distance (measured as the distance between
the patient’s zip code of residence and the nearest catheterization hospital minus the distance to the nearest hospital)
is the instrument. Each model includes all the CCP risk adjusters, and the standard errors are clustered at the level of
each HRR.

cath rate (based on patient characteristics), there is an additional 0.53-
percentage-point increase in the probability that an individual receives
cath because of spillovers. In column 2 we control for area demographics
that could potentially confound this relationship, but they are insignif-
icant and do not materially change the coefficient.

A key implication of our model (and any model in which productivity
differences across areas generate specialization) is that the return to
intensive management should be higher in high-intensity areas than in
low-intensity ones. This prediction provides a sharp test of our model
against the flat of the curve model, which predicts the opposite. To test
this prediction, we use our estimates of HRR-level intensity from the
estimation of equation (9) to classify patients as being treated in high-
or low-intensity regions (as measured by whether the risk-adjusted cath
rate is above or below the median rate). In table 6, we report instru-
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Interpretation
I Can reject flat of the curve hypothesis
I Strong evidence of productivity variation and some Roy selection [in this paper]
I Evidence of spillovers

I Negative correlation between medical process measures (beta blockers) / outcomes and
surgical intensity [in this paper]

I Possibly simpler story of productivity variation
I Not necessarily with spillovers, nor with full Roy selection
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How should this look like for “flat of the curve” hypothesis? For full Roy selection with
single G (P)?

 37 

Figure 4: Average Risk-Adjusted 1-Year AMI Mortality and Average 
Risk-Adjusted 1-Year AMI Expenditures (1989-2000), by State 
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Source: Skinner, Jonathan, and Douglas Staiger. “Technology Adoption From Hybrid Corn to Beta Blockers.” Working Paper.
National Bureau of Economic Research, April 2005.
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Welfare Implications: Marginal vs. Average
I Spillovers⇒ externalities⇒ individual optimizing choices 6= welfare optimizing

choices
I Share of intensive treatment determined by marginal patient at which U = 0;

welfare-optimal share depends on E [U], averaged across all patients
I Implies that welfare would be optimized by more extreme P (closer to 0 or 1) than in

equilibrium; i.e., we should have more variation
I However, this depends:

I f (X ,P) abstracts from moral hazard, other frictions
I Reducing variation may still improve welfare under multiple equilibria

I Need to know microfoundations of production function (or f (X ,P))
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Moral Hazard
Chan (2016): “Teamwork and Moral Hazard: Evidence from the Emergency
Department”

I Classically, working in teams⇒ moral hazard (Holmstrom 1982)
I Can teamwork reduce moral hazard (increase effort)?
I Empirical setting: Large ED with two systems of work assignment

I “Nurse-managed system:” physicians directly assigned work by a triage nurse
I “Self-managed system:” triage nurse assigns work to a team of physicians; physicians

then decide who sees each patient
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Empirical Setting
Patient arrives
in ED triage

Triage nurse
decides on pod

Triage nurse
decides on bed

Triage nurse
decides on bed

Nurse-managed Self-managed

Patient arrives
in pod bed

Patient arrives
in pod bed

Physicians decide
on assignment

Physician
assigned

Physician
assigned

Physicians
own beds

I Two locations (“pods”): Alpha always self-managed; Bravo changed from
nurse-mangaged to self-managed system in March 2010
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Overall Effect
I Event study: for patient visit i ,

Yi =
∑

m

αm(i),p(i) + βXi + ηTi + νj(i) + εi

I Yi : length of stay, orders, admissions, bouncebacks
I pod p (i), month-year m (i)
I Xi : patient characteristics
I Ti : time dummies
I j (i): physician-nurse team

I How do you think outcomes will differ with self-management?
I What would be the mechanisms?
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Overall Effect
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I 10-13% decrease in length of stay with self-managed system
I No effect on other outcomes: orders (~14 per visit), mortality (2% of sample), admissions (25% of sample),

bouncebacks (8% of sample)
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Mechanisms
I Potential mechanisms

I Advantageous selection: better matching
I “Free-riding”: waiting for peer to choose patients
I Foot-dragging: pretending to be busy so won’t be assigned patient

I Free-riding and foot-dragging both forms of moral hazard on effort
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Foot-dragging
How to empirically identify foot-dragging as a mechanism?

1. Suggestive: Advantageous selection would imply different outcomes (e.g., orders,
costs, readmissions, mortality). Don’t see this.

2. We can observe time to first order as measure of “free-riding”. Don’t see this.
3. Foot-dragging distinguished as response to expected future work

I Temptation to foot-drag is greater when physicians expect more new work coming
I No other mechanism should be affected by expectations
I The flow of patients to the ED is exogenous to physicians
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Foot-dragging
I Estimate effect of self-management interacted with expected future work (stock or

flow of patients in waiting room) on length of stay:

Yi =
10∑

q=2

αd
0
(
1− SELFp(i),t(i)

)
Dq
(
EDWORKt(i)

)
+

10∑
q=1

αq
1SELFp(i),Dq

(
EDWORKt(i)

)
+

βXi + ηTi + ζp(i) + νj(i) + εi

I SELFp(i),t(i): indicator for whether pod p (i) is self-managed at t (i)
I EDWORKt(i): measure of expected future work at t (i)
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Foot-dragging
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Joint Experience
Chen (2019): “Team-Specific Human Capital and Team Performance: Evidence from
Doctors”

I What drives team performance?
I Better match between team members, or
I Team-specific human capital (requires experience working together)

I Broader economic concept: skills and knowledge on how to work together is a form of
specific human capital
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Empirical Setting
I Doctors treating heart attack patients in Medicare

I Proceduralist: doctor who performs an intervention (PCI or CABG)
I Physician: doctor who cares for the patient before and after the procedure

I Qualitative interviews: shared work experience⇒ communication, coordination, trust
I Identification strategies

I Emergency cases quasi-randomly assigned to doctors on shift
I [Two-way fixed effects for proceduralist and physician, interest in joint work experience

between the two]
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Specification and Identification
I For mortality yi of patient i ,

yi = αEi + θk(i) + Tiη + εi ,

with shared work experience Ei , proceduralist fixed effect θk(i), and time dummies Ti .
I Also can control for patient characteristics Xi , average characteristics of physician(s) HJ(i),

proceduralist/physician individual work experience Fi

I Independence: patients quasi-randomly assigned to doctor teams
I Exclusion: effect is through shared work experience and not other characteristics

(e.g., HJ(i) or Fi )
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Results

Results: Descriptive evidence

Figure: Actual 30-day mortality rates vs. shared work experience

(a) PCI (b) CABG

Mean actual 30-day mortality rates versus shared work experience
Actual vs. predicted

25 / 43

I 10-13% decrease in mortality with 1 s.d. increase in shared work experience (same
magnitude as 1 s.d. increase in spending from Doyle et al 2015)

I Flat relationship between shared work experience and predicted mortality
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Mechanisms
Production function, for physician j and proceduralist k

yjk (e) = Ajk (e) + Mjk

1. Returns to shared work experience: Ajk (e)
I Past collaboration experience e improves performance

2. Match quality Mjk
I Better-matched doctors more likely to work together and to have better outcomes

(invariant of e)
I Limited institutional (e.g., shifts) or empirical evidence (match effects model from Card et

al 2013) for this
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Mechanisms
How does shared work experience improve outcomes?

Ajk (e) = ajk (e) · f (Ijk (e))

1. Improved productivity ajk (e)
I Proceduralists and physicians learn to work more efficiently (i.e., better outcomes with

same inputs) ⇒ welfare improvements

2. Increased inputs Ijk (e)
I They increase inputs instead ⇒ ambiguous welfare implications

I Inputs generally decrease with shared work experience
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Adoption
Sacarny (2018): “Adoption and Learning Across Hospitals: The Case of a
Revenue-Generating Practice”

I A simple “revenue-generating practice”
I In 2008, Medicare paid more for physicians to specify the type of heart failure in claims
I If left unspecified, would be equivalent to leaving money on the table

I Yet hospitals only captured about half of this revenue



43/62

Adoption of Coding Practice Over Time

Figures

Share of
Revenue
Taken Up

Reform date

0.0

0.1

0.2

0.3

0.4

0.5

2007 2008 2009 2010 2011
Year

Figure plots the share of revenue available for detailed coding of HF that was captured
by hospitals over time. Dotted line shows revenue that would have been captured in 2007
if hospitals had been paid per 2008 rules. See Appendix Section A.1.2 for more details.

Adoption of Coding Practice Over Time

Figure 1

48
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Revenue at Stake per Heart Failure Patient

Hospitals: 3,103
Mean: $1,006.90
SD: $229.60

Number of
Hospitals

0

100

200

300

500 750 1,000 1,250 1,500 1,750
Gain in Dollars per HF Patient

Revenue at stake is calculated using pre-reform (2007) patients processed under post-
reform (2009) payment rules. The prediction process is described in the appendix.
The 422 hospitals with <50 HF patients are suppressed and the upper and lower 1%
in revenue at stake per HF patient are then removed.

Revenue at Stake per HF Patient across Hospitals

Figure 3

50
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Hospital Adoption of Coding Practices Over Time
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A hospital's adoption equals the share of its HF patients who received a detailed HF code in that
year. Hospitals with fewer than 50 HF patients in the year excluded.

Adoption of Coding Practice Across Hospitals Over Time

Figure 4

51
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Hospital Determinants
I Using physician movers, about 80% of difference in adoption is due to hospitals

I Reflects hospitals’ ability to extract documentation from physicians
I Hospitals that extract more revenue ...

I have better clinical outcomes
I are more likely to be vertically integrated
I have better management scores (Bloom)

I Similar variation in adoption across multiple settings
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Identifying Productivity
Chan, Gentzkow, and Yu (2019): “Selection with Variation in Diagnostic Skills:
Evidence from Radiologists”

I Can we separately identify production functions using cross-sectional data?
I Restrictions in how production functions can look like
I Simple setting of diagnostic productivity
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Classification Problem

Actual Positive Actual Negative

Classified
Positive True Positive (TP)

False Positive
(FP)

Type I Error

Classified
Negative

False Negative
(FN)

Type II Error

True Negative
(TN)

True Positive Rate

TPR = TP
TP+FN

False Positive Rate

FPR = FP
FP+TN
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Receiver Operating Characteristic (ROC) Curves
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Standard Model
Fixed skill = standard monotonicity; variation in preferences⇔ variation in thresholds
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Alternative Model
Variation in skill; fixed preferences⇒ thresholds depend on skill and preferences
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Distinguishing between Models
I Assume homogeneous populations between providers, observed conditions and

classifications
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A: Varying Preferences
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B: Varying Skill

I Preference vs. skill variation imply different patterns of data
I Concepts: productivity = skill, allocative efficiency = preferences
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Setting: Chest X-Rays for Pneumonia

Radiology  resident  chest  x-ray  reading  363

Figure 1. Flow chart. Forty selected CXR were divided into 3 categories (selection phase) and presented to experts (validation phase).
Sixteen CXR did not reach experts’ consensus and were rejected of the analysis. The 24 CXR with experts’ consensus were presented to
residents (experiment phase) and then included in analysis.

Figure 2. Typical examples of radiographs expected to mobilize detection skills (A—C) and interpretation skills (D—F). Experts’ consensus
diagnoses were: miliary tuberculosis — CXR#6 (A), lung nodule (cancer) in left upper lobe — CXR#19 (B), usual interstitial pneumonia —
CXR#27 (C), left upper lobe atelectasis — CXR#3 (D), right lower lobe infectious pneumonia — CXR#14 (E) and right upper lobe atelectasis
with Golden sign — CXR#36 (F).

Source: Fabre, C., et al. “Radiology Residents’ Skill Level in Chest x-Ray Reading.” Diagnostic and Interventional Imaging 99, no.
6 (June 1, 2018): 361–70.
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Mapping Between Spaces
I One-sided selection:

I Cannot distinguish true positives from false positives; only can observe diagnosis rate Pj ,
type II error rate FNj for each radiologist j

I Observable data in “reduced-form space” (Pj ,FNj)

I Random-assignment: prevalence of pneumonia S same for all j
I One-to-one correspondence with ROC space (FPRj ,TPRj) if S is known

I Upward sloping ROC curve⇔ for two agents j and j ′ with equal skill, FNj−FNj′

Pj−Pj′
∈ [−1,0]
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Reduced-Form Results
Relationship between FNj and Pj
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Coeff = 0.094 (0.007)
N = 4,663,826, J = 3,199
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Structural Results in ROC Space
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Implications
I Variation in radiologist skill is large and drives a 55% of variation in decision

I Policy counterfactuals
I Imposing uniform thresholds slightly reduces welfare
I Small improvements in “skill” may substantially improve welfare (e.g., combining signals

improves welfare by 33% to first best)

I Example of shape restrictions on production functions as identification
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Outline

Motivation

Area-Level Production

Micro-Level Production

Identifying Productivity

Summary and Future Directions
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Summary
I Production functions at different levels

I Chandra and Staiger (2007) at the area level
I Determined by production at the hospital, provider, and team levels

I Preferences or allocative inefficiency at micro-levels could contribute to productive
inefficiency at macro-levels
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Simple Example
Within-area variation and Jensen’s inequality

Figure 2a

A Health Care Production Function
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Source: Garber, Alan M., and Jonathan Skinner. “Is American Health Care Uniquely Inefficient?” The Journal of Economic
Perspectives 22, no. 4 (November 1, 2008): 27–50.
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Future Directions
1. Shed light on informational component and related frictions

I Chandra and Staiger (2007) is a seminal benchmark embedding productivity variation, but
is very high level

I Need to better understand frictions

2. Exploit multiple sources of variation
I Need variation both across and within production functions
I Can rely on rich institutional setting in health care
I Can also imagine designing interventions

3. Assess interactions between various agents
I Health care is very rich
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